LOXAHATCHEE RIVER WATERSHED RESTORATION PROJECT

Project Delivery Team Meeting #03 March 19, 2015

JS Army Corps

Engineers

U.S.ARMY

One of the Last Old Growth Cypress Floodplains in the SE Florida

Last Large Freshwater Wetland Corridor in Project Area

Water Quality Sub-team Update

March 19,2015

Work Efforts to Date

- 1) Develop Water Quality Evaluation Strategy consistent with CERP guidance and project goals.
- 2) Develop Evaluation Strategy for Each Flowway.
- 3) Evaluate / update the Existing Set of Evaluation Criteria.
- 4) Brainstorm potential management measures in Flowways 1,2 and 3.

WQ Evaluation Strategy

- The LRWRP is a CERP project so the water quality (WQ) evaluation will be done in accordance to CERP Guidance Memorandum #23 (CGM 23). According to CGM 23, CERP projects such as LRWRP can be classified into one of three categories:
 - A. Components that includes water quality improvement features
 - B. Components that do not contain water quality improvement features but are designed to achieve water quality improvement
 - c. Components for which the Comp Plan does not include WQ improvement features or specifically reference water quality improvement to be addressed during design.

LOX is primarily a Category B Project

U.S.ARMY

Category B Evaluation Procedure

- 1. Characterizing existing WQ conditions.
- 2. Forecasting base-year WQ conditions.
- 3. Forecasting future without conditions.
- 4. Developing evaluation criteria that incorporate WQ constraints to determine extent of WQ improvement.
- 5. Selecting the least-cost plan that meets WQ restoration objectives.
- 6. Optimizing design to maximize WQ improvement to the extent this can be done without conflicting with primary project purposes and goals.

- As a Category B project, the development of PMs for WQ intended for use in selecting the preferred alternative is not required. That does not mean that post-project implementation performance metrics are not necessary. Even though the WQ team does not need WQ PMs for alternative evaluation we do need an evaluation strategy for assessing the alternative in terms of their ability to:
 - 1. Cause or contribute to WQ standard violations
 - 2. Increase pollutant loads (particularly where there might be a TMDL)

3UILDING STRONG

3. Degrade water quality in OFW or other water bodies.

Evaluation Strategy (Strawdog)

Flowway 1 (L-8 to GWP)

- Evaluation method is under development
 - Have to develop the alternatives before creating the evaluation methodology.
- The team has done some initial work looking at annual load to GWP and the potential additional load that would enter GWP to meet water quantity goals for discharge at G161.

BUILDING STRONG_®

- Team kicked around some management measures within the M-canal and features internal to GWP.
- more to come.

Flowway 2 (C-18 West)

Proposed Evaluation:

- 1. Use hydrologic data and existing WQ data to compute a flowweighted mean inflow concentration into Mecca. To do this, we need to know the relative sources of inflow (L-8, Corbett, C-18) and their average WQ concentrations.
- 2. Use standard WQ nutrient removal equations (Kadlec equation for nutrient uptake in wetlands) to compute the average expected outflow concentration. (consider the shallow reservoir and attached polishing cell)
- Compare the Mecca computed average annual outflow concentration to the PM #6 for WildScenic Lox (Stations 67, 68, 69). If below X ppb for TP, and X for TN, then meets WQ expectations.

BUILDING STRONG_®

Flowway 3 (Cypress Creek Basin)

Proposed Evaluation.

- 1. Look at pre-, and post-, flow estimates. Timing of flows, etc.
- 2. Compute pre-, and post- annual, seasonal loads, use DEP WAM model data to estimate runoff quality using land use loading parameters from that model (kg/acre/yr).
- 3. Compare computed flow-weighted mean concentration to PM for Lox (station 67,68, 69).

Need to understand, FWO, and future with land use assumptions. Is it year 2000 conditions for lands bought specifically for this project as FWO land use, or do we assume 2014 land use for FWO and with project conditions for all lands?

This requires both Hydrologic output for alternatives and WQ loading info from WAM or other sources.

U.S.ARMY

Review and Updating of Existing Performance Measures

Geographic Location of WQ Performance Metrics

EC #6:

Nutrient Concentration (Nitrogen and Phosphorus) and Other Water Quality Parameters for the Northwest Fork of the Loxahatchee River.

Confirming Original Evaluation Target Development:

Time Period: WY1998 – WY2002 (May 1, 1997 - April 30, 2002) Stations: Sites 67, 68 and 69

Dent et al. 2004

U.S.ARMY

Explanation	Parameter	Total Phosphorus (µg/L)	Total Nitrogen (mg/L)
Arithmetic Mean reference period, m :	Mean	44.6	1.04
Standard deviation of reference period, s :	StDev	25.4	0.33
Number of Data Points used in the analysis, N :	N	90	90
Deg. Of Freedom $(Df) = N-1$:	Df	89	89
Probability for Prediction Interval :	1-tail Prob	0.05	0.05
Student-t Statistic (t_p) :	t_p	1.662	1.662
Upper Bound of the 95% CI of the Mean, $m+s*t_p/(N)^{0.5}$:	<i>Limit</i> (95% C.I.)	49	1.09

From Appendix B: Performance Measures and Evaluation Criteria

CERP Evaluation Target

- 1. Five year rolling average of Total Phosphorus concentration shall not exceed 49 ppb (upper bound of the 95% confidence interval of the mean) measured at in-stream monitoring stations #67, 68 and 69.
- Five year rolling average of Total Nitrogen concentration shall not exceed 1.07 mg/L (upper bound of the 95% confidence interval of the mean) measured at in-stream monitoring stations #67, 68 and 69.

Furthermore, all other water quality parameters shall comply with Class III water quality standards.

BUILDING STRONG_®

Reference Period Approach: Loxahatchee River

• Long Term Limit

U.S.ARMY

- Time Period: WY2005 WY2014
- Stations: Sites 67, 68 and 69
- Biological End-point: Achievement of Class III freshwater dissolved oxygen criterion (62-302.533 FAC).

Explanation	1 ur unieler		
Long Term (5-Year) Geometric Mean Limit		Total Phosphorus (µg/L)	Total Nitrogen (mg/L)
Arithmetic Mean of Annual Geometric Means, m :	Mean	42.7	1.03
Standard deviation of annual Geometric Means, s :	StDev	7.72	0.22
Number of Water Years used in the analysis, N :	N	9	9
Deg. Of Freedom $(Df) = N-1$:	Df	8	8
Probability for Prediction Interval :	1-tail Prob	0.10	0.10
Student-t Statistic (t_p) :	t _p	1.397	1.397
Annual $GM = m + s^* t_p / (N)^{0.5}$:	Long Term GM Limit (90% C.I.)	46	1.13

*Six samples per WY. Atleast one in both the wet and dry seasons.

Reference Period Approach: Loxahatchee River

• Long Term Limit

U.S.ARMY

- Time Period: WY2005 WY2014
- Stations: Sites 67, 68 and 69
- Biological End-point: Achievement of Class III freshwater dissolved oxygen criterion (62-302.533 FAC).

	Explanation	Parameter			
Annua	l Station Limit		Total Phosphorus (µg/L)	Total Nitrogen (mg/L)	
	Overall Geometric Mean, gm :	Geometric Mean	41.8	0.94	
	Mean Ln(Geometric Mean), m :	Mean Ln(GM)	3.7	-0.07	
Sta	undard Deviation Ln(Geometric Mean), s :	StDev Ln(GM)	0.193	0.185	
	Σ (No. of water years per station), WYN _s :	WYN _s	18	18	
	Number of Stations, NS :	NS	3	3	
	Deg. Of Freedom $(Df) = WYN_s - NS$:	Df	15	15	
	Probability for Prediction Interval :	1-tail Prob	0.10	0.10	
	Student-t Statistic (t_p) :	t_p	1.341	1.341	
	$Limit = exp(m + s^*t_p)$	Annual Station GM Limit	54	1.20	

*Six samples per WY. Atleast one in both the wet and dry seasons.

Reference Period Approach: Loxahatchee River

Part	Explanation	Total Phosphorus (µg/L)	Total Nitrogen (mg/L)
1	The five-year GM averaged across all stations.	46	1.13
2	The annual GM at all individual station.	54	1.20

62-302.531 (2)(c) 2 FAC

Nutrient Watershed	Total Phosphorus	Total Nitrogen
Region	Nutrient Threshold ¹	Nutrient Threshold ¹
Panhandle West	0.06 mg/L	0.67 mg/L
Panhandle East	0.18 mg/L	1.03 mg/L
North Central	0.30 mg/L	1.87 mg/L
Peninsular	0.12 mg/L	1.54 mg/L
West Central	0.49 mg/L	1.65 mg/L
South Florida	No numeric nutrient	No numeric nutrient
	threshold. The	threshold. The
	narrative criterion in	narrative criterion in
	paragraph 62-	paragraph 62-
	302.530(47)(b),	302.530(47)(b),
	F.A.C., applies.	F.A.C., applies.

¹ These values are annual geometric mean concentrations, not to be exceeded more than once in any three year period.

EC #7:

Nutrient Concentration (Nitrogen and Phosphorus) and Other Water Quality Parameters for the Loxahatchee River Estuary.

The team went back and confirmed the original performance measure criteria for this EC. However, we decided to not use this PM going forward as the revised project is not likely to affect WQ at this location

BUILDING STRONG®

62-302.532(1)(q) F.A.C.

Estuary	Total	Total	Chlorophyll a
	Phosphoru	Nitroge	
	S	n	
Loxahatchee	For estua	ary segme	nts with criteria
River Estuary	expressed as annual geometric means		
	(AGM), the values shall not be exceeded		
	more than once in a three year period. For		
	all other estuary segments, the criteria		
	shall not be exceeded in more than 10		
	percent of the measurements.		
1. Lower	0.032	0.63	1.8 µg/L as AGM
Loxahatchee	mg/L as	mg/L as	
	AGM	AGM	
2. Middle	0.030	0.80	4.0 µg/L as AGM
Loxahatchee	mg/L as	mg/L as	
	AGM	AGM	
3. Upper	0.075	1.26	5.5 µg/L as AGM
Loxahatchee	mg/L as	mg/L as	
LA MEN	AGM	AGM	

EC #8:

Inflow Concentrations of Total Phosphorus and Other Key Water Quality Parameters for the Catchment Area/Grassy Waters Preserve (WCA/GWP) and Loxahatchee Slough.

Work in progress.

Questions:

Paul Julian, 239-344-5605 Paul.Julian@dep.state.fl.us

Mark Shafer, 904-232-3594 mark.d.shafer@usace.army.mil

Subteam members

Eric Hughes (US EPA), Beth Kacvinsky, Pam Lehr, Lucia Baldwin, (SFWMD), Inger Hansen (FDEP), Bud Howard (Loxahatchee River District), and Pat Painter (City of West Palm Beach)

Project Website

http://www.bit.ly/LRWRP_CERP

BUILDING STRONG_®

