LAKE OKEECHOBEE WATERSHED PROJECT

Ecological Subteam Update

Calculation of Ecosystem Benefits Project Delivery Team Meeting #4 October 25, 2016

Gretchen Ehlinger (USACE)

Annual and Martin Started Build Division in the second

US Army Corps of Engineers
BUILDING STRONG_®

LOWP Performance Measures

BUILDING STRONG

LOWP Objective	PM 1 – Wetland Restoration	PM 2 – Lake Okeechobee Stage	PM 3 – Littoral Zone	PM 3 – Caloosahatchee Estuary Salinity	PM 4 - St. Lucie Estuary Salinity
1. Improve timing and distribution of flows into Lake Okeechobee to maintain ecologically desired lake stage ranges		٧			
2. Reduce discharges from Lake Okeechobee to improve the salinity regime and the quality of oyster, SAV, and other estuarine community habitats in the northern estuaries				V	V
3. Increase spatial extent and functionality of aquatic and wildlife habitat within Lake Okeechobee and surrounding watershed	٧		٧		

LOWP Performance Measures

BUILDING STRONG

Wetland Restoration PMs

PM 1.1 Wading Bird Support
PM 1.2 Connectivity
PM 1.3 Surface Water Connection
PM 1.4 Restoration Potential
PM 1.5 Public Access
PM 1.6 Water Storage
PM 1.7 Hydroperiod Duration

Lake Okeechobee PMs (RECOVER Approved)

PM 2.1 Stage Envelope PM 2.2 Ecological Indicator Littoral Zone UMAM

Northern Estuaries PMs (RECOVER Approved)

Caloosahatchee Estuary PM 3.1 Low Flow Targets PM 3.2 High Flow Targets

St. Lucie Estuary PM 4.1 Low Flow Targets PM 4.2 High flow Targets

Calculation of Ecosystem Benefits

Step 1:

 Raw performance measure sub-metrics are linearly rescaled between 0 and 100.

Step 2:

 Within each zone, performance measure sub-metrics are combined for each project alternative to produce a net zone benefits score (Habitat Suitability Index) between 0 and 1.

Step 3:

- The 0 to 1 benefits score for each zone is then multiplied by the acreage of the zone to generate a HU value for the zone.
 - Wetlands
 - Lake Okeechobee
 - Littoral Zone
 - Northern Estuaries (2 zones)

Step 4:

HU Lift = Alternative – FWO Project Condition

Step 3 Calculate Zone HUs for Wetlands, Lake Okeechobee,

Step 1 Normalize Performance

Measures to Common Scale

Step 2

Combine Performance

Measures and Calculate Zone

Scores

Littoral Zone and Northern Estuaries

Step 4 Compare HU lift (Alternative HUs – FWO HUs) of Alternatives

BUILDING STRONG

- The 7 wetland performance measures will be used to separate out the top few potential restoration sites
- Habitat Unit Calculation Methodology
 - 1. For all habitat types within the potential restoration sites we assign a quality factor based on land use or land cover code (LULC; from the 2015 SFWMD shapefile) using best professional judgment, supplemented by limited field evaluations
 - 2. LULCs that are more ecologically degraded receive lower scores, but more native or natural habitats receive higher scores (on a scale of 0.0 to 1.0)
 - 3. Using ArcGIS, the size of each LULC polygon will be measured and multiplied by its quality factor to arrive at a HU for that polygon
 - 4. All polygons inside the wetland restoration site were then summed to calculate the total HUs

Wetland Habitat Unit Calculation Example

BUILDING STRONG

- Hypothetical restoration site with:
 - 21 existing wetlands (green; quality score = 0.5)
 - non-functioning hydric soils (yellow; quality score of 0.01)
 - forested uplands (hashed area; score of 0.7)
 - pasture uplands (white; score of 0.2)
 - Under restored conditions, all areas would receive a quality score of 1.0

- Improved Pasture (FLUCCS Level 4 Code 2110)
 Uplands (FLUCCS 4000 Series Codes)
- Wetland (FLUCCS 6000 Series Codes)
- Hydric Soils

Using the following acreages in the 2,500-acre site:

- Wetlands 500 acres 800 acres
- Non-functioning hydric soils
- **Upland** pasture
- Forested uplands 200 acres

And the quality scores, the existing HUs are as follows:

1,000 acres

Total HUs (Existing) =		598 HUs
 Forested uplands 	200 x 0.7 =	<u>140 HUs</u>
Upland pasture	1,000 x 0.2 =	200 HUs
Non-functioning hydric soils	800 x 0.01 =	8 HUs
Wetlands	$500 \times 0.5 = 2$	250 HUs

Under restored conditions, the non-functioning hydric soils will be restored to wetlands and the HUs are calculated as follows:

Fotal HUs (Restored) =		2,500 HUs
orested uplands	200 x 1.0 =	200 HUs
Jpland pasture	1,000 x 1.0 =	1,000 HUs
Non-functioning hydric so	oils 800 x 1.0 =	800 HUs
Wetlands	500 x 1.0 =	500 HUs

Therefore, the HUs (combined upland and wetland) created by the project are 2,500 – 598 = 1,902 HUs

- Standard Scores Based On The Length of Time and Distance Above and Below the Ecologically Beneficial Stage Envelope - 12.5 ft – 15.5 ft
- Standard Scores Based On Length of Time and Distance Stage is >17 ft and <10 ft

Stage	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
19	3.5	4.0	4.5	5.0	6.0	6.5	6.5	6.0	5.0	4.0	3.5	3.5	
18.5	3.0	3.5	4.0	4.5	5.5	6.0	6.0	5.5	4.5	3.5	3:0	3.0	
18	2.5	3.0	3.5	4.0	5.0	5.5	5.5	5.0	4.0	3.0	2.5	2.5	
17.5	20	2.5	3.0	3.5	4.5	5.0	5.0	4.5	3.5	2.5	2:0	2.0	
17	1.5	20	2.5	3.0	4.0	4.5	4.5	4.0	3.0	2.0	1.5	1.5	
16.5	1.0	1.5	20	2.5	2.5	4.0	4.0	3.5	2.5	1.5	1.0	1.0	
16	0.5	1.0	1.5	2.0	10	3.5	3.5	30	2.0	1.0	0.5	0.5	A
15.5	0.0	0.5	1.0	1.5	26	3.0	50	2.5	1.5	0.5	0.0	0.0	
15	0.0	0.0	0.5	1.0	2.0	2.5	2.5	2.0	1.0	0.0	6.0	0.0	
14.5	0.0	0.0	0.0	0.5	1.5	2.0	2.0	1.5	0.5	0.0	0.0	0.0	
14	0.5	0.0	0.0	0.0	1.0	1.5	1.5	1.0	0.0	0.0	0.5	0.5	
13.5	1.0	0.5	0.0	0.0	0.5	1.0	1.0	0.5	0.0	0.0	1.0	1.0	
13	35	1.0	0.5	0.0	0.0	0.5	0.5	0.0	0.0	0.5	1.5	1.5	
12.5	2.0	15	1.0	0.5	0.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	
12	2.5	2.0	1.5	1.0	0.0	0.0	0.0	0.0	0.5	1.5	15	25	
11.5	3.0	2.5	2.0	1.5	0.5	0.5	0.5	0.5	1.0	20	3:0	3.0	B
11	3.5	3.0	2.5	20	1.0	1.0	1.0	1.0	1.5	2.5	3.5	35	
10.5	4.0	3.5	3.0	2.5	1.5	1.5	1.5	1.5	2.0	3.0	4.0	4.0	
10	4.5	4.0	3.5	3.0	20	2.0	20	2.0	25	3.5	4.5	4.5	
9.5	5.0	4.5	4.0	2.5	2.5	25	2.5	2.5	3.0	4.0	5.0	5.0	
9	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	35	4.5	5.5	5.5	
8.5	6.0	5.5	5.0	4.5	35	3.5	3.5	2.5	4.0	5.0	6.0	6.0	
8	6.5	6.0	5.5	5.0	4.0	4.0	4.0	4.0	4.5	5.5	6.5	6.5	
7.5	7.0	6.5	6.0	5.5	4.5	4.5	4.5	4.5	5.0	6.0	7:0	7.0	

- Based on Strongest Statistically Significant Correlations With Lake Stage Based on Long Term Environmental Monitoring Data Sets.
- Results Used To Develop Indicator Scoring As Follows.
 - Summer Chara : 2 pts (<12ft), 1 pt (12ft-15.5ft), 0 pt (>15.5ft)
 - Summer Cyanobacteria : 2 pts (<12ft), 1 pt (12ft-14ft), 0 pt (>14ft)
 - Epipelon Spring+Fall : 2 pts (<12ft), 1 pt (12ft-15ft), 0 pt (>15ft)
 - Epiphyte Spring+Fall : 2 pts (<14ft), 1 pt (14ft-15ft), 0 pt (>15ft)
 - Winter Panfish Creel Data: 2 pts (12ft-15ft), 1 pt (<12ft or 15ft-16ft), 0 pt (>16ft)
 - Summer Vascular SAV : 2 pts (12ft-15.5ft), 1 pt (10ft-<12ft or >15.5ft-<18ft), 0 pt (<10ft or >18ft)
- Performance Measure Has Completed RECOVER Review

- Habitat Unit Calculation is Based on a Maximum Score of 1.
- Scoring is apportioned as follows:
 - 45% (0.45) stage envelope PM
 - 45% (0.45) Combined Ecological PM
 - 10% > 17 ft, <10 ft PM (7.5% (0.075) for excessive high, 2.5% (0.025) excessive low).
- HU Percentages Based on Sensitivity Analysis Which Indicated This Distribution Provided the Combination of the Greatest Number of Habitat Acre Units and the Maximum Lift
- Overall Score is based on 200k acres, the Combined Area of The Lake Okeechobee Littoral and Nearshore Zones

Lake Stage Habitat Unit (HU) Calculation Example

BUILDING STRONG

- Above and Below Envelope Score:
 0.775 x 0.225 + 0.331 x 0.225 = 0.249 pts
- Ecological Indicator Score: (0.73 x 0.45) = 0.33 pts
- Stage Score:
 >17 ft Score <10 ft Score:
 0.95 x 0.025 = 0.024 pt
 0.99 x 0.075 = 0.074 pts
- Habitat Units = Total of 0.677 pts
 0.677 x 200k acres = 135k habitat units

Littoral Zone Habitat Calculation

BUILDING STRONG

Uniform Mitigation Assessment Method (UMAM)

- Certified model by USACE may be used to assess baseline condition for CERP projects
- Assess the area under current condition and the "with" vision to determine the ecological lift

Part I – Qualitative Characterization

- What are you looking at?
- Impact or mitigation site?
- What are the surroundings?
- What type of community is it?
- What would you expect to see in this type of community?

Part II – Quantification of Assessment Area

- How well does the assessment area compare to the optimal community of this type, considering
 - location and landscape support,
 - water environment,
 - and community structure?
- Scored 0 (no function) 10 (optimal)
 - Current condition
 - "with impact" or "with mitigation"
 - Delta = difference between current and "with"

Chancey Point – RSM

Habitat Enhancement and Creation

Create Habitat at 10 ft-NAVD88

Surface Area: 500 acres Volume of Fill: 690,000 cubic yards

Lakeside Length (for possible stabilization structures): 3.5 miles

Trusted Partners Deliverin

Lake Okeechobee

Pahokee

© 2016 Google

Clewiston

Belle Glade

Caloosahatchee Estuary

- PM 3.1 Low Flow Target no months during October to July when the mean monthly inflow from the Caloosahatchee watershed, as measured at S-79, falls below a low-flow limit of 450 cfs
- PM 3.2 High Flow Target no months with mean monthly flows greater than 2,800 cfs as measured at the S-79

Scoring

- Number of months flow < 450 cfs from Lake Okeechobee releases (Oct-July)
- Number of months flow > 2800 cfs from Lake Okeechobee releases (Jan Dec)

Northern Estuaries Performance Measures

BUILDING STRONG

St. Lucie Estuary

- PM 4.1 Low Flow Target 31 months where mean flow is less than 350 cubic feet per second (cfs).
- PM 4.2 High Flow Target 0 Lake Okeechobee regulatory discharge events (14 day moving averages > 2000 cfs)

Scoring

- Number of months where mean flow is less than 350 cfs
- Number of Lake Okeechobee regulatory discharge events (14 day moving averages > 2000 cfs)

Number of times Salinity Envelope Criteria NOT Met for the Calooshatchee Estuary (mean monthly flows 1965 - 2005)

Run date: 12/07/12 17:40:07 RSMBN V2.3.5 Script used: estuary.scr, ID496 ame: stlue, salicity, flow, bar out agr

RECOVER Performance Measure

Scaling Northern Estuaries Habitat Units

BUILDING STRONG

- 2007 RECOVER System Status Report (SSR)
 - Surveys performed on the state of the oyster reefs in the Northern Estuaries
 - Documented number of acres of live oyster habitat
- Used the percentage of target from the surveys presented in the 2007 SSR to set the ECB value (0 to 100 Scale)
 - Set ECB re-scaled score to 14 for the St. Lucie and 4 for the Caloosahatchee.
 - Extrapolated to determine the minimum or 0 value.
 - Alternatives can still score lower than the ECB ECB No longer has 0 HU value.

Estuary	Existing Oyster Acres (year recorded)	Restoration Target (acres)	% of Target
St. Lucie	117 (2003)	834	14%
Caloosahatchee	18 (2004)	500	4%

Metric	Performance Measure Metric (Zone CE-1)	ECB	FWO	ALT ?
3.1	Low Flow	4	78	
3.2	High Flow	4	17	
	Habitat Suitability Index (0 to 1 Scale)	0.40	0.48	

Metric	Performance Measure Metric (Zone SE-1)	ECB	FWO	ALT ?
4.1	Low Flow	14	12	
4.2	High Lake O. Discharge Events	14	29	
	Habitat Suitability Index (0 to 1 Scale)	0.14	0.21	

Northern Estuaries

- Rescaled results (0 to 100 Scale) for Zones CE-1 and SE-1.
- Compare alternatives to FWO and ECB in Northern Estuaries.

HU and HU Lift: Northern Estuaries

BUILDING STRONG

CEPP Example HU								
Planning RegionsZonesMaximum AcreageAltsECBFWO								
Northern Estuaries	CE-1	70,979	38,696	2,839	33,691			
	SE-1	14,994	4,365	2,099	3,078			

CEPP Example HU LIFT							
Planning Regions	Zones	Alts	ECB				
Northern	CE-1	5,006	-30,768				
Estuaries	SE-1	1,288	-933				

- Example HU Results and HU Lift for Caloosahatchee and St. Lucie Estuaries from CEPP
- ALTS perform better than FWO Project Condition and ECB.

admenter fridansis sublities