LAKE OKEECHOBEE WATERSHED PROJECT

INTEGRATED PROJECT IMPLEMENTATION REPORT & ENVIRONMENTAL IMPACT STATEMENT

PROJECT DELIVERY TEAM MEETING August 10, 2016

Trusted Partners Delivering Value Today for a Better Tomorrow

and the Mart Planet & Martin Provide

US Army Corps of Engineers
BUILDING STRONG_®

MEETING AGENDA LAKE OKEECHOBEE WATERSHED PROJECT INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Introduction (Tim Gysan, USACE) Sub-Teams and Leads (Lisa Aley, USACE) Updates Since Project Kick-off (Lisa Aley, USACE) Project area map Purpose, scope, problems, opportunities, objectives, constraints Management measures Project risks Real estate overview and considerations (Matt Morrison, SFWMD) Existing screening tools RESOPS and LOOPS (Clay Brown, SFWMD) Capital, real estate, and O&M cost estimating tool overview (Tzufit Boyle, SFWMD) Land Suitability Model (Lisa Aley, USACE)

Existing and future without project model assumptions (Clay Brown, SFWMD) Milestone schedule overview, 90 day look ahead and budget review (Tim Gysan, USACE) Tasks to get to Alternatives Milestones (Lisa Aley, USACE) Next Steps

PDT meeting August 24, 2016 – web meeting Task Force Working Group sponsored workshop – TBD Public Comment Period

- Leads: Lisa Aley (USACE), Lesley Bertolotti
- Problems, opportunities, objectives, constraints
- Future without project assumptions
- Identify measures to address concerns
- Initial alternatives and screening
- Identify tentatively selected plan

- Leads: Dr. Gretchen Ehlinger (USACE) and Dr. Bruce Sharfstein (SFWMD)
- Restoration performance measures
- Evaluate environmental effects and benefits
- Coordinate environmental concerns
- Identify measures to address concerns
- Monitoring and adaptive management plans

- Leads: Pete Russell (USACE) and Matt Alexander (SFWMD)
- Technical support to Plan Formulation Subteam
- Develops data and interpretations for hydrologic and geotechnical issues that arise during Alternatives Analysis
- Preliminary design and cost estimates
- Writes and reviews the Engineering Appendix of the EIS-PIR
- Model Selection, validation, and review

LAKE OKEECHOBEE WATERSHED PROJECT PLANNING BOUNDARY

User Name: bibsen Remedy ID Ticket: 29753

Date: 8/4/2016 4 15 11 PM Lad.stwmd.gov/dtsroot/GS/GSBiz/SWPROULC/mxd/Lakel.stok_CERP_ProjBnd.mxd

PROBLEM STATEMENTS

BUILDING STRONG

- Substantial reduction in the spatial extent and functionality of wetlands
- Reduced water storage capacity in the watershed has led to extreme high and low water levels in Lake Okeechobee
- Undesirable Lake Okeechobee regulatory releases of flood control discharge to the St. Lucie and Caloosahatchee estuaries, which adversely affects salinity and estuarine biota
- Degraded habitat for fish and wildlife throughout the study area
- Degraded water quality in the watershed

OPPORTUNITIES

BUILDING STRONG

- Increase system-wide water management operational flexibility
- Reduce undesirability regulatory releases from Lake Okeechobee to the Caloosahatchee and St. Lucie estuaries to minimize ecological impacts
- Reconnect and restore fragmented wetlands to improve wildlife habitat
- Improve water supply and flood control benefits (ancillary)
- Improve water quality (ancillary)
- Increase/improve recreational opportunities within the watershed
 - Coordinate with ongoing restoration activities in watershed

GOALS

BUILDING STRONG

CERP Goal	LOW Project Goals
Enhance Ecological	Improve habitat in the watershed and Lake Okeechobee
Values	Improve Lake Okeechobee Water Levels
	Improve the northern estuaries
Enhance	Maintain water supply in the Lake
Economic Values	Okeechobee watershed
and Social Well Being	Maintain agricultural and urban flood protection
	Protect and manage significant cultural, historical, and archeological resources
	Minimize adverse socioeconomic impacts on the local and regional economies

PROJECT OBJECTIVES

BUILDING STRONG

- Increase the spatial extent and functionality of wetland habitat in the watershed
 - Performance measure: increase in wetland acreage
 - ECO-Subteam working on performance measure for improved habitat for fish and wildlife
- Improve Lake Okeechobee water levels
 - Lake Performance measure: RECOVER Lake Okeechobee Stage Envelope
 - Performance measure: RECOVER Lake Okeechobee Overall Annual Ecological Score
- Provide for better management for releases to northern estuaries
 - Performance Measures: RECOVER northern estuaries salinity envelope, oyster PM, seagrass PM

- Comply with all Federal, state and local laws, regulations and policies.
- Maintain levels of service for flood protection to agricultural and urban lands (Savings Clause [Section 601 (h)(5)(B) of WRDA 2000]).
- Maintain levels of water supply service for legal users (Savings Clause [Section 601 (h)(5)(A) of WRDA 2000]).
- Maintain navigability to the lake and within the watershed
- Operating within the existing flexibility of Lake Okeechobee Regulation Schedule (LORS)

- Performance measure sensitivity
 - 250,000 ac-ft of Lake O storage = 6 inches off the lake
 - Will Lake O and estuarine performance measures be able to show a measurable lift?
- T&E species
 - Ex: Critical habitat for Florida Bonneted Bat has yet to be designated –could affect feature locations after already sited
 - May prevent features from being operated to achieve designated use
- Unanticipated cultural discovery
 - **Uncertainties involved with ASR**

MANAGEMENT MEASURE OVERVIEW

BUILDING STRONG

- Reservoirs
 - Shallow 4 feet, intermediate 6-8 feet and deep 12 feet and over
 - Total storage capacity ~250,000 ac-ft in Yellow Book
- Aquifer recharge storage and recovery Upper Floridan; Middle Floridan; Boulder Zone ASR
- Wetland/Floodplain Restoration

 3,500 acre wetland restoration in Yellow Book
 Wetland rehydration and connectivity
 Removal of exotics
 Lake Okeechobee littoral zone creation and enhancements
 Create/reconnect oxbows and/or restore additional river floodplain
- Improve operational flexibility within existing Lake Okeechobee Regulation Schedule (LORS)
 - Provide ecological benefits to lake (improve lake ecology)
 - Reduce discharges to northern estuaries
 - Provide environmental water supply to meet restoration goals
 - Perpetual Flowage easements

nter-basin Transfer

Real Estate Overview

BUILDING STRONG

ating Aberbardanai and the

EXISTING SCREENING TOOLS

BUILDING STRONG

RESOPS and LOOPS (Clay Brown, SFWMD)

Trusted Partners Delivering Value Today for a Better Tomorrow

EXISTING SCREENING TOOLS

BUILDING STRONG

Capital, real estate, and O&M cost estimating tool overview (Tzufit Boyle, SFWMD)

Trusted Partners Delivering Value Today for a Better Tomorrow

EXISTING SCREENING TOOLS Land Suitability Model

BUILDING STRONG

 Used by the previous LOW PDT to identify locations within the study area that possessed the most desirable characteristics for siting management measures with least environmental Impact

EXISTING SCREENING TOOLS Land Suitability Model- Reservoir

BUILDING STRONG

Constraint Layer	Criteria	Suitability Attributes			Data Source
		<u>Level 1</u> High Suitability	<u>Level 2</u> Moderate Suitability	<u>Level 3</u> Low Suitability	
Real Estate	Minimize number of impacted parcels	0 to 6 parcels/ section ¹	7 to 25 parcels/ section	26 or more parcels/ section	Florida Geographic Data Library
Existing Wetlands	Avoid existing wetlands	Outside the boundary of existing wetlands	-	Within the boundary of existing wetlands	SFWMD
Ecologic Value	Avoid areas with high ecologic values	Areas with ecologic values between 0 and 2	Areas with ecologic values between 3 and 4	Areas with ecologic values greater than 4	USFWS
Land use economic values	Minimize regional economic impacts and real estate costs	Land use types with low economic impact/ value	Land use types with moderate economic impact/ value	Land use types with high economic impact/ value	SFWMD
Cultural Resources	Avoid areas of culturally significant resources	Areas outside a 300-foot buffer zone	-	Areas inside a 300-foot buffer zone.	Florida Division of Historical Resources (FDHR)
Environmental and Economic Equity (EEE)	Avoid areas with EEE populations	Areas with no EEE populations	Areas with moderate EEE populations	Areas with dense EEE populations	SFWMD

EXISTING SCREENING TOOLS Land Suitability Model-Wetland

BUILDING STRONG

Secondary Rationale **High Suitability** Moderate Low Suitability Data Source Suitability Screening (Level 1) (Level 3) Factor (Level 2) Ecological Value Avoid high-Ecological score Ecological score Ecological score USFWS quality of of of wetland siting ecological ecological 0 to 3 4106 71010 lands value model **Contaminants** Target land Land uses with Land uses with Land uses with Best professional uses that are low or no moderate high potential not highly judgment and potential for potential for for contaminant disturbed or contaminant contaminant loads (intensive recent land do not have loads loads agriculture) contaminant studies for high other CERP contaminant loads projects Land use types Land use types Land use types Economic Value Minimize Best local and with low with moderate with high professional regional economic value economic value judgment economic value economic impacts and real estate costs Cultural Avoid areas Areas outside a All sites are Areas inside a FDHR of cultural 300-foot buffer either within or 300-foot buffer Resources zone of a outside of the zone of a resource significance culturally buffer zone. culturally therefore no important important sites rate Level 2 resource resource EEE Avoid areas Areas with no Areas with Areas with SFWMD with EEE concentrations moderate dense populations of EEE concentrations concentrations of EEE of EEE populations populations populations

EXISTING AND FWOP MODEL ASSUMPTIONS

BUILDING STRONG

Existing and future without project model assumptions (Clay Brown,

Trusted Partners Delivering Value Today for a Better Tomorrow

LAKE OKEECHOBEE WATERSHED RESTORATION FEASIBILITY STUDY SCHEDULE (UP TO 36 MONTHS)

BUILDING STRONG

LAKE OKEECHOBEE WATERSHED RESTORATION KEY TASKS: FIRST 90 DAYS

BUILDING STRONG

REPORT

- Determine Study Scope
- Identify Problems/Opportunities
- Inventory Existing Conditions
- Forecast Future Conditions
- Identify Study Objectives/Constraints
- Formulation of initial array of alternatives

SUPPORT DOCUMENTS

- Initiate (update & report at each milestone)
 - ➢ Risk Register
 - Decision Log
 - Report Synopsis
 - Decision Management Plan
 - Project Management Plan
 - Review Plan
 - 3x3x3 Exemption Process if necessary

NEPA

- Publish Notice of Intent
- NEPA Scoping
- Prepare Scoping Meeting Materials
- Conduct Scoping Meeting
- Review scoping comments

- PDT meeting August 24, 2016 web meeting
- Task Force Working Group sponsored workshop – TBD

PUBLIC COMMENT PERIOD

BUILDING STRONG

Trusted Partners Delivering Value Today for a Better Tomorrow

A transfer to the pair is a but his

THANK YOU FOR YOUR PARTICIPATION TODAY!

LAKE OKEECHOBEE WATERSHED PROJECT | INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT