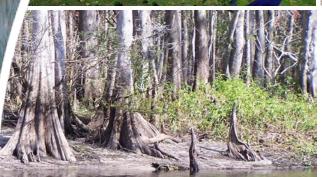
LAKE OKEECHOBEE WATERSHED PROJECT

INTEGRATED PROJECT IMPLEMENTATION REPORT & ENVIRONMENTAL IMPACT STATEMENT

Project Delivery Team Meeting October 5, 2016


Trusted Partners Delivering Value Today for a Better Tomorrow

Alternative Martin Started & alter Martin Provide

US Army Corps of Engineers

BUILDING STRONG

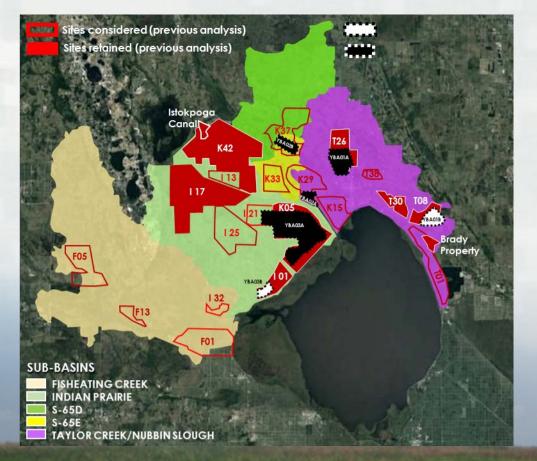
Alternatives Milestone- November 3rd, 2016

- Vertical team (SAJ, SAD, HQ) concurrence on existing and Future Without Project Conditions and the initial array of alternatives the PDT will carry forward for evaluation and comparison to identify the Tentatively Selected Plan
- PDT has completed inventory and forecast of critical resources relative to problems and opportunities
- PDT has completed an initial screening and preliminary evaluation to present a focused array of alternatives

BUILDING STRONG

 The Reservoir Sizing and Operations Screening (RESOPS) model was used test the performance of various storage configurations north of the lake to determine a feasible range of storage options.

RESOPS Summary


- Showed improvement in estuary discharges and Lake Okeechobee stage performance within range of 150,000 350,000 ac-ft reservoir storage
- Reservoir storage target: increments of storage between 150,000 350,000 ac-ft reservoir storage until more detailed regional models could be used to focus the target futher

PLAN FORMULATION STRATEGY Reservoir Formulation

BUILDING STRONG

- Institute of Water Resources
 Plan (IWR Plan) used to
 determine cost-effective and
 best buy reservoir
 configurations within selected
 storage range
- Included top scoring reservoirs in IWR Plan: K-42, T-26, K05 Horizontal, K05 Big, Brady Property, and I-01

PLAN FORMULATION STRATEGY Reservoir Formulation

BUILDING STRONG

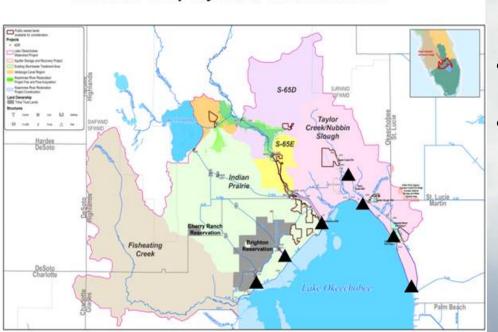
K-42	*			
	K05 Big	Reservoir (s)	Storage Capacity (ac-ft)	Cost (USD)
	KUS DIg	K05H (10')	154,554	\$ 895,974,736
	A - ALLAN	K05 Big - 10'	189,214	\$ 985,857,666
2 1 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		K05H and I-01 (10')	248,822	\$ 1,505,899,999
		K05 Big (14')	263,584	\$ 1,427,446,173
A CARL	K05 Horizontal	K-42 & K05H (14')	315,817	\$ 1,901,564,758
	KUS HUHZUIItai	K05 Big (12') and I-01 (14')	320,761	\$ 1,802,149,113
I-0 Glades				
	Lake			Art St. ogustister Al

PLAN FORMULATION STRATEGY ASR

BUILDING STRONG

Taylor Creek -63N Indian Prairie Paradise Run S-191 Kissimmee akeside Ranch Brighton Brighton ervation Lake Okeechobee Port Mayaca

- CERP ASR regional study identified suitable ASR locations
- 80 ASR wells associated with Lake Okeechobee
- Analyzed increments of 60 and 80 ASR to suite of reservoir storage capacities and determine best-buy based on flow reductions and cost


-	# of ASR	Injection/Recovery Limit (ac-ft/mo)
	20	9,431
	40	18,682
	60	28,023
	80	37,364

PLAN FORMULATION STRATEGY Deep Injection Well Formulation

BUILDING STRONG

Potential Deep Injection Well Locations

- RESOPS results show improvement in release in estuaries and in Lake Okeechob high stage scores with addition of DIW
- 'Last resort' option during extreme wet times
- Once the Lake Okeechobee stage is high enough to trigger regulatory releases to the northern estuaries in excess of estuary need portions of excess flows would be discharged through DIWs rather than discharged to the northern estuaries and consequently lost to tide.

Initial Storage Alternatives

BUILDING STRONG

Storage	Management	Total Storage	Total Cost	
Alternative	Measures	(ac-ft)		
	K05H (14')	154,554.00	\$ 895,974,736	
	+ ASR - 60	182,635.00	\$ 1,195,974,736	
Alternative 1	+ DIW - 30	303,890.00	\$ 1,438,974,736	
	+ ASR - 80	191,996.00	\$ 1,295,974,736	
	+ DIW - 30	313,251.00	\$ 1,538,974,736	
Alternative 2	K05 Big (10')	189,214.00	\$ 985,857,666	
	+ ASR - 60	217,295.00	\$ 1,285,857,666	
	+ DIW - 30	338,550.00	\$ 1,528,857,666	
	+ ASR - 80	226,656.00	\$ 1,385,857,666	
	+ DIW - 30	347,911.00	\$ 1,628,857,666	
Alternative 3	K05H (14') & I-01 (14')	248,822.00	\$ 1,505,899,999	
	+ ASR - 60	276,903.00	\$ 1,805,899,999	
	+ DIW - 30	398,158.00	\$ 2,048,899,999	
	+ ASR - 80	286,264.00	\$ 1,905,899,999	
	+ DIW - 30	407,519.00	\$ 2,148,899,999	

Alternatives are formed with a base reservoir storage, then adding 60 ASR and DIW, then adding a configuration of 80 ASR and DIW.

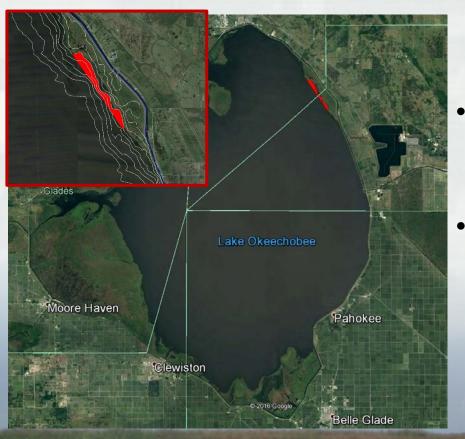
Initial Storage Alternatives

BUILDING STRONG

Storago	Management	Total Storage	Total Cost
Storage	Management	Total Storage	lotal Cost
Alternative	Measures	(ac-ft)	
	K05 Big (14')	263,584.00	\$ 1,427,446,173
	+ ASR - 60	291,665.00	\$ 1,727,446,173
Alternative 4	+ DIW - 30	412,920.00	\$ 1,970,446,173
	+ ASR - 80	301,026.00	\$ 1,827,446,173
	+ DIW - 30	422,281.00	\$ 2,070,446,173
	K-42 (14') & K05H		
	(14')	315,817.00	\$ 1,901,564,758
Alternative 5	+ ASR - 60	343,898.00	\$ 2,201,564,758
	+ DIW - 30	465,153.00	\$ 2,444,564,758
	+ ASR - 80	353,259.00	\$ 2,301,564,758
	+ DIW - 30	474,514.00	\$ 2,544,564,758
	K05 Big (12') &		
	101 (14')	320,761.00	\$ 1,802,149,113
Alternative 6	+ ASR - 60	348,842.00	\$ 2,102,149,113
	+ DIW - 30	470,097.00	\$ 2,345,149,113
	+ ASR - 80	358,203.00	\$ 2,202,149,113
	+ DIW - 30	479,458.00	\$ 2,445,149,113

PLAN FORMULATION STRATEGY Watershed Wetland Restoration

Trusted Partners Delivering Value Today for a Better Tomorrow


0

PLAN FORMULATION STRATEGY In-Lake Littoral Zone

BUILDING STRONG

Chancey Point

- Add 500+ acres to the existing
 littoral zone using material located
 at the mouth of the Kissimmee
 River
- ~ \$34million

Separable Elements Wetland Alternatives

BUILDING STRONG

Wetland Alternative	Potential Restoration Site	Acres	Total Cost
Wetland Alternative 1	Kissimmee River/Paradise Run	4215	\$41,871,810
Wetland Alternative 2	Lake O West	2750	\$27,318,500
Wetland Alternative 3	Lake O East	2693	\$26,752,262
Wetland Alternative 4	Bootheel Creek	3393	\$33,706,062
Wetland Alternative 5	IP-10	2372	\$23,563,448
Wetland Alternative 6	Chancey Point	~500	\$34,000,000

PROJECT RISKS

BUILDING STRONG

Scoping Choice or Event	Risk and its cause
Siting managment	Probability model shows risk of
measures in areas with	cultural resources throughout the
probability of cultural	study area. No available surveys
resource impacts	know in study area
impacts on older version of tribal water	Difficult to determine if storing water north of Lake Okeechobee will impact tribal water supply if entitlement hasn't been updated
Siting features in areas with potential for HTRW or ag chemicals	Risk for HTRW or ag chemicals in project area
	Waiting until the TSP to initiate surveys or needing remedial surveys to adequately determine effects. If
Delay cultural resources survey until TSP	historic properties are discovered and the effects of construction are determined to be adverse, strategies shall be developed to avoid,
	minimize or mitigate adverse effects <i>i</i> in consultation with the Tribes and

Tomorrow

PROJECT RISKS

BUILDING STRONG

attine April a Paris in the

Risk and its cause
Reduced design data acquired, no
new contracts to acquire data. May
result in high cost contingency
Increased uncertainty
If sea level rises, it will require
greater volumes of freshwater
discharges to reduce salinity levels.
At some point, the freshwater
required to protect the estuarine
habitats will be great enough to
substantially compromise the ability
of the regional water management
system to satisfy environmental,
urban, and agricultural water
demands.

PROJECT RISKS

BUILDING STRONG

Sconing Choice or Event	Pick and its sausa
Scoping Choice or Event	
	The real estate market in South and
	Central Florida has been very
	dynamic and large tracts of formerly
	agricultural areas have been
	converted to residential housing
Including large reservoirs	with an accompanying above
requiring acquisition of	average increase in real estate
large tracts of land	prices. There is significant
within the project area	uncertainty regarding whether the
	required land will be developed
	prior to project implementation,
-	how many willing sellers will there
·	be, and how the estimated costs will
· · · · ·	change