LAKE OKEECHOBEE WATERSHED RESTORATION PROJECT (LOWRP)

Project Delivery Team Meeting

September 27, 2017

US Army Corps of Engineers
BUILDING STRONG®

MEETING AGENDA LAKE OKEECHOBEE WATERSHED RESTORATION INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT


- Welcome and Introductions- Gina Ralph (USACE)
- Opening Statement to Landowners- (SFWMD)
- Final array of alternatives overview and the USACE planning process- Lisa Aley (USACE)
- Model results presentation- Water Wilcox (SFWMD)
 - Water supply analysis- Kris Esterson (SFWMD)
- Rough order of magnitude cost development Joel Gaillard (USACE)
- Geotechnical explorations status update Joel Gaillard (USACE)
- Cultural resources considerations for alternatives analysis Robin Moore (USACE)
- Environmental considerations for alternative analysis- Gretchen Ehlinger (USACE)
- Economic analysis- Kevin Wittman (USACE)
- Public Comment Period
- 15 minute break
- PDT Group Exercise- lead by Gina Ralph (USACE)
- PDT group exercise report out
- 15 minute break
- Overview of exercise- Lisa Aley (USACE)
- Public comment period
- Closing remarks (SFWMD and USACE)
- Adjourn

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Final array of alternatives and USACE planning process overview

ALTERNATIVE OVERVIEW

ALTERNATIVE EVALUATION CRITERIA

BUILDING STRONG

USACE Principles and Guidelines Criteria

Efficiency: Uses a cost effective/incremental cost analysis to identify plans that maximize environmental benefits compared to costs

Effectiveness: Extent to which an alternative plan alleviates the specified problems and achieves the specified opportunities

Acceptability: Workability and viability of the alternative plan with respect to acceptance by State and local entities and the public and compatibility with existing laws, regulations, and public policies. Can be legal, technical, financial, environmental, political, or institutional.

Completeness: Extent to which a given alternative plan provides and accounts for all necessary investments or other actions to ensure the realization of the planned effects

ALTERNATIVE EVALUATION CRITERIA CONTINUED

BUILDING STRONG

USACE 'Four Accounts'

National Economic Development: Consider increases in economic values of goods and services resulting from a project

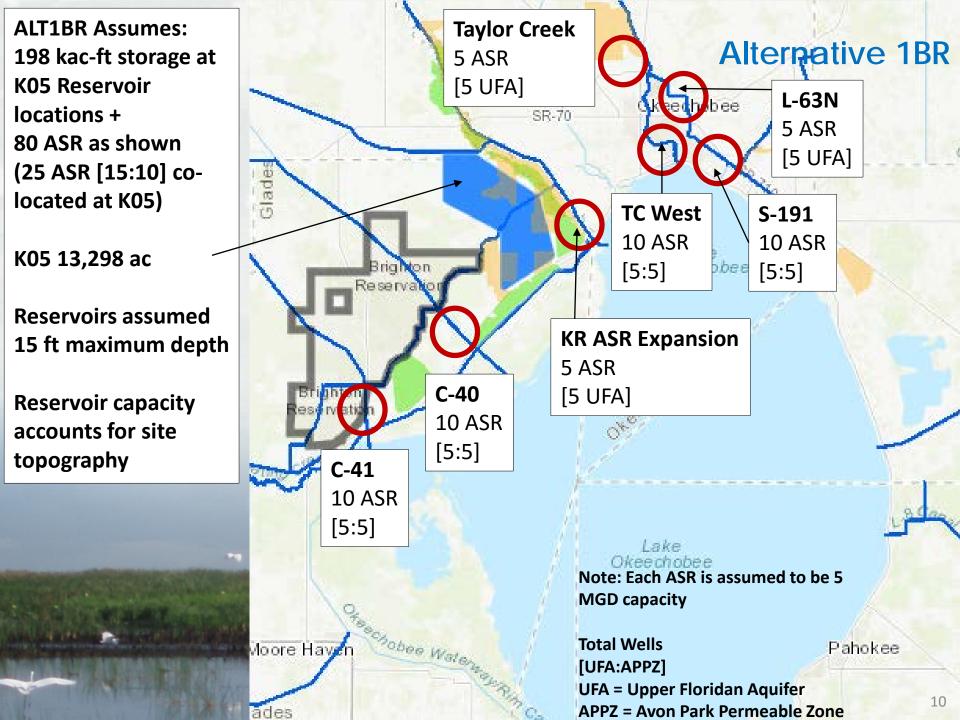
Environmental Quality: Non-monetary effects on ecological, cultural, and aesthetic resources including the positive and adverse effects of ecosystem restoration plans

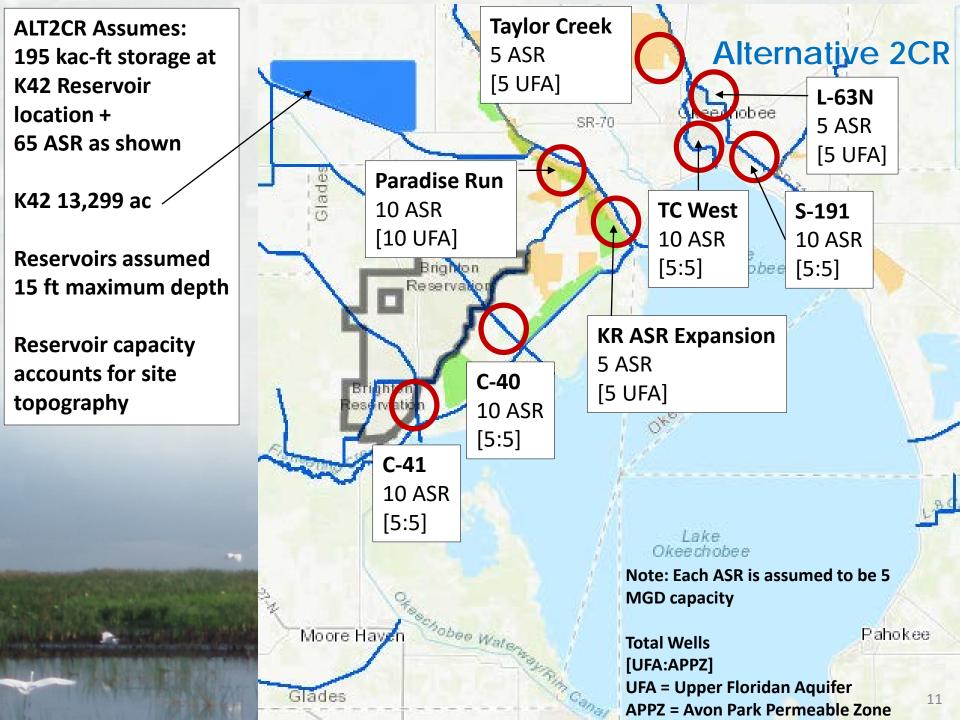
Regional Economic Development: Changes in regional economic activity resulting from this alternative

Other Social Effects: Including but not limited to community impacts; life, health, and safety factors;

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Modeling Results

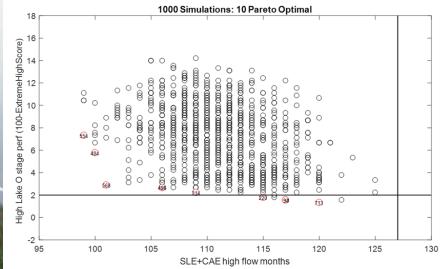

Lake Okeechobee Watershed Restoration Project Ongoing Progress



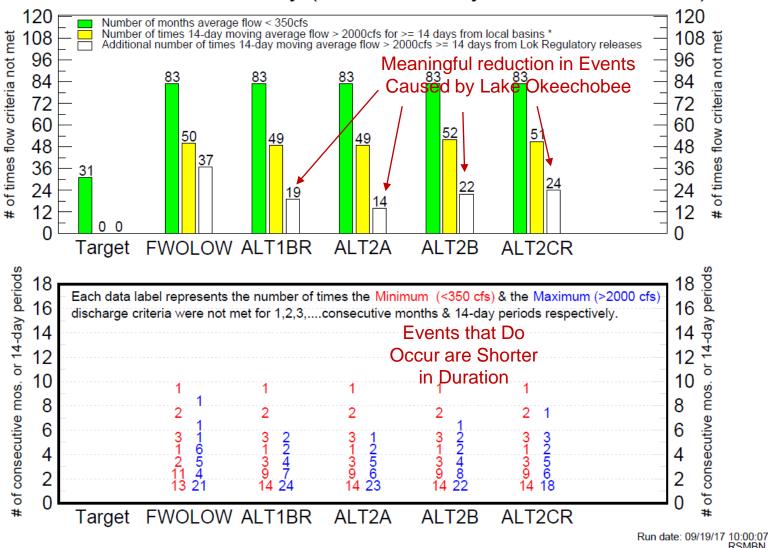
BUILDING STRONG

- The Lake Okeechobee Watershed Restoration Project (LOWRP) performed extensive screening-level modeling using RESOPS in late 2016 to identify feasible features and sizes that could meet project objectives of improving Lake Okeechobee, L.O. watershed and Northern Estuary conditions.
- Detailed hydrologic modeling using RSMBN is currently underway in support of LOWRP.
- Detailed RSMBN model baseline scenarios representing the Existing Condition (ECB) and Future Without LOWRP (FWO) were released on February 2, 2017.
- A first round of three alternatives with potential LOWRP project features modeled in RSMBN was released on March 8, 2017 and a second round of four alternatives was released on June 21, 2017.
- A third round of four alternatives (two revised from round 2) with potential LOWRP project features modeled in RSMBN was released on September 22, 2017 and a summary presentation is being made today (September 27, 2017).
- It is anticipated that review and ecological & economic evaluation of these outcomes will help to inform identification of a Tentatively Selected Plan (TSP).

Model Assumptions & Setup

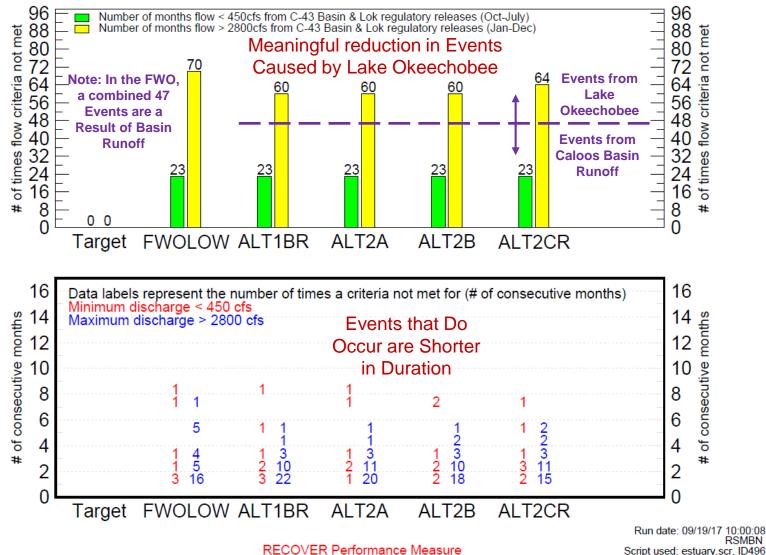


Operational Considerations in LOWRP

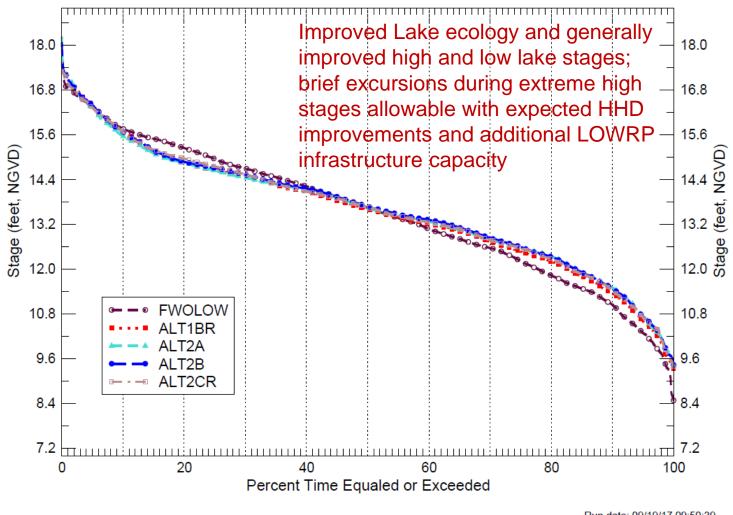

BUILDING STRONG

- In addition to infrastructure assumptions, there is a need to define rules for diverting water to and recovering water from reservoir and ASR storage.
- Also, as storage is added and system infrastructure capability is increased, it makes sense to develop optimized Lake Okeechobee schedule rules that work with storage and focus on the events beyond what storage or conveyance south can handle.
- Approximately 30 parameters affecting the Lake Okeechobee decision outcomes (e.g. "up-to" limits, classification of tributary conditions, etc...) along with a variety of storage diversion and recovery lines were analyzed.
- Constrained and unconstrained Latin Hypercube sampling techniques were used to explore 10,000 unique operational strategies per ALT.
- Selected operations were identified using acceptable performance criteria (e.g. Lake O and Estuary PMs) and Pareto analysis.

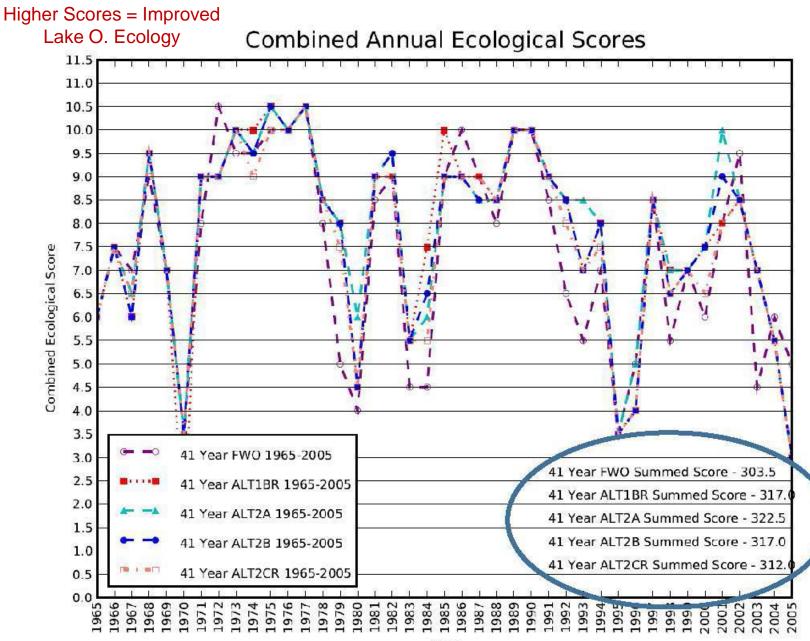
Model Results Summary


Number of times Salinity Envelope Criteria NOT Met for the St. Lucie Estuary (mean monthly flows 1965 - 2005)

RECOVER Performance Measure

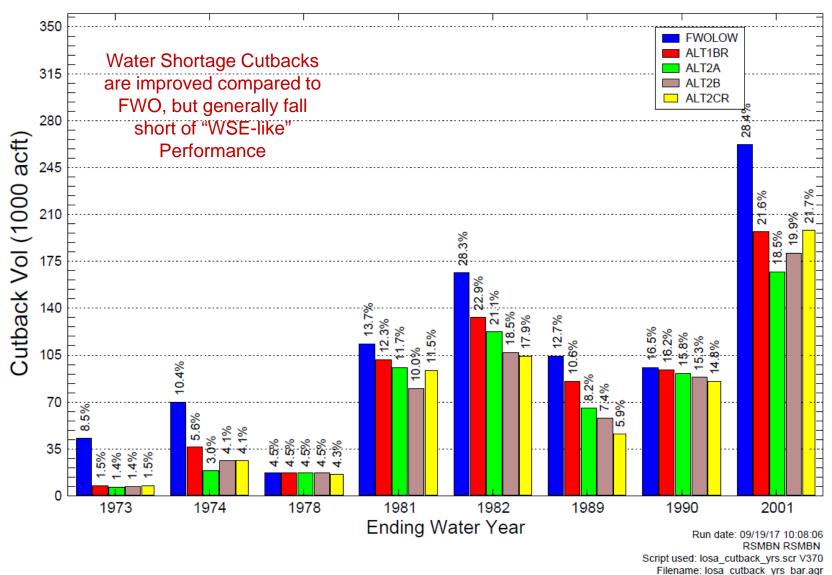

Run date: 09/19/17 10:00:07 RSMBN Script used: estuary.scr, ID496 Filename: stluc_salinity_flow_bar.out.agr

Number of times Salinity Envelope Criteria NOT Met for the Calooshatchee Estuary (mean monthly flows 1965 - 2005)



Filename: caloos_salinity_flow_bar.out.agr

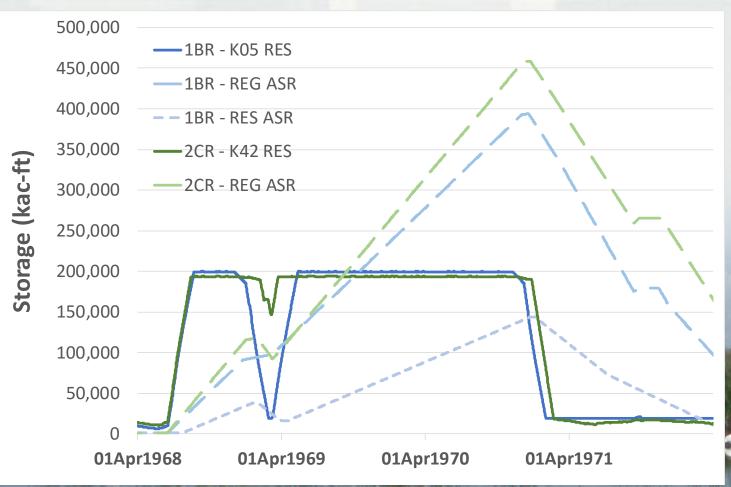
Stage Duration Curves for Lake Okeechobee


Run date: 09/19/17 09:50:39 RSMBN Script used: hyd_dur.scr, ID456 Filename: lok_dai_stgdur.agr

Year

Water Year (Oct-Sep) LOSA Demand Cutback Volumes

for the 8 Years in Simulation Period with Largest Cutbacks



Different Storage Features are Providing Different Benefits (Example)

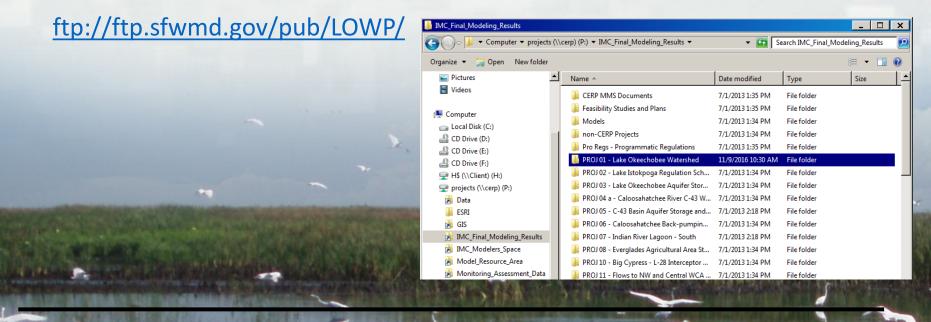
BUILDING STRONG

The operational means to achieve "optimal" outcomes for each alternative is unique. The ASR-assisted K05 Reservoir in Alt1BR is operated more frequently than the K42 Reservoir in Alt2CR. However, regional ASR is utilized more frequently in Alt2CR compared to Alt1BR.

How to Access Model Data

BUILDING STRONG

September 22nd Release of LOWRP 3rd round Alternatives Array


- FWO vs ALT1BR vs ALT2A vs ALT2B vs ALT2CR Performance Measures for RSMBN (e.g. Lake O., Northern Estuaries, LOSA)
- Other Indicators (e.g. water budgets, hydrographs, etc...) for RSMBN
- ALT1BR, ALT2CR model output for RSMBN (new alternatives)
- Spreadsheets summarizing operations optimization

BUILDING STRONG

- LOWRP Modeling data is permanently archived and available on the CERPZone Data Archival Storage and Recovery (DASR) system.
 - Step by step instructions previously provided to PDT or available upon request.
- For a short time, data is also available via ftp at:

Acknowledgements: LOWRP Hydrologic Modeling Team

BUILDING STRONG

- Alaa Ali
- Clay Brown
- Sandeep Dabral
- Jaime Graulau-Santiago
- Harold Hennessey-Correa
- Veera Karri
- Fahmida Khatun

- Kenneth Konyha
- Cal Neidrauer
- Raul Novoa
- Randy VanZee
- Naiming Wang
- Walter Wilcox

Water Supply

BUILDING STRONG

3rd Round Alternatives Array: ALT1BR, ALT2A, ALT2B, ALT2CR

- Evaluated using a suite of metrics including RECOVER's WS-1 performance measure.
- All alternatives improve water supply performance compared to FWO
- All alternatives pass Savings Clause screening

BUILDING STRONG

Water Supply Performance for LOWRP 3rd Round Alternatives Array

Simulation	Cutback Total (kaf)	Severity Score	Number of water years with at least 1 cutback
ECB	857	13	8
FWO	707	12	8
Alt1BR	462	6	6
Alt2A	382	2	5
Alt2B	365	4	6
Alt2CR	384	4	6

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Rough Order of Magnitude Costs

Cost Contingency Development

- The project was broken up into separable elements
- Each element was assigned a risk and likelihood in a matrix
- The matrix determined the contingency percentage for each element
- The overall contingency is dollar weighted by element
- Each element is assigned the same contingency for each alternative, although dollar weighting leads to different overall contingencies for each alternative

Contingency Range per Element: 20-60%


ROM	Cost BUILDING STRONG	
Alternative	Cost	
Alternative 1Br	\$1,787,220,000	
Alternative 2A	\$3,191,295,000	
Alternative 2B	\$2,393,416,000	
Alternative 2Cr	\$1,713,952,000	
Overall Contingency Range: 44-45%		

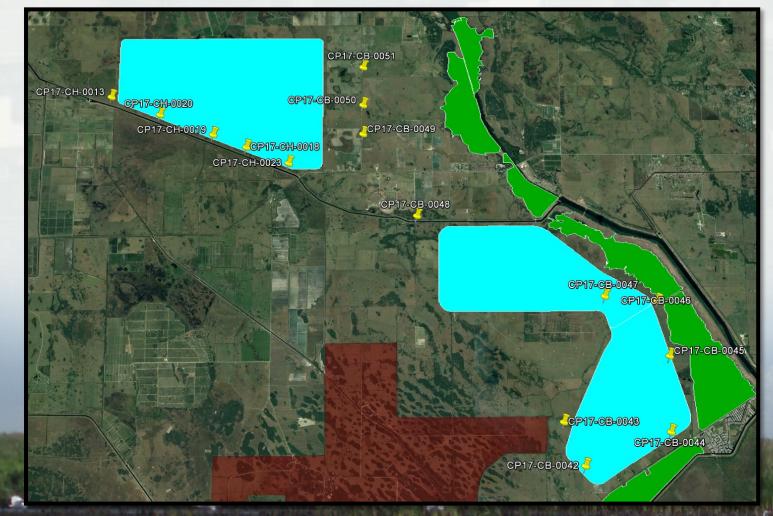
Trusted Partners Delivering Value Today for a Better Tomorrow

29

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Geotechnical Explorations

BUILDING STRONG


- Exploration has been completed for K-42 and the data is being analyzed
- The soils at the K-42 are sandy, indicating a high expected seepage rate
- Exploration at K-05 is ongoing and is expected to be complete in two weeks

Geotechnical Data Collection Locations

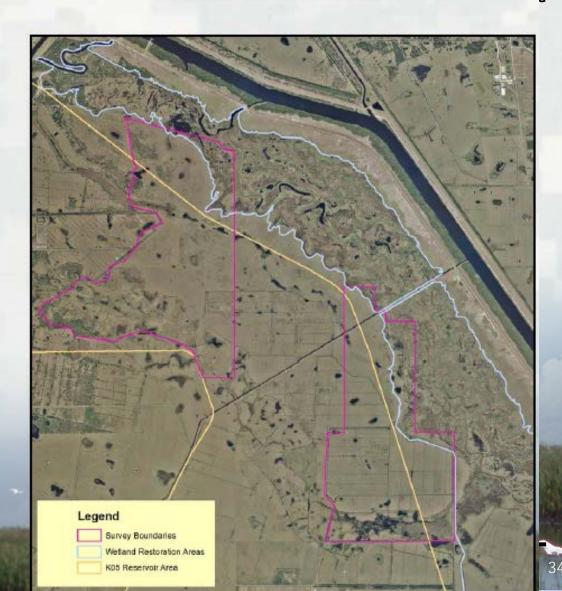
BUILDING STRONG

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Cultural Resources

Cultural Resource Considerations

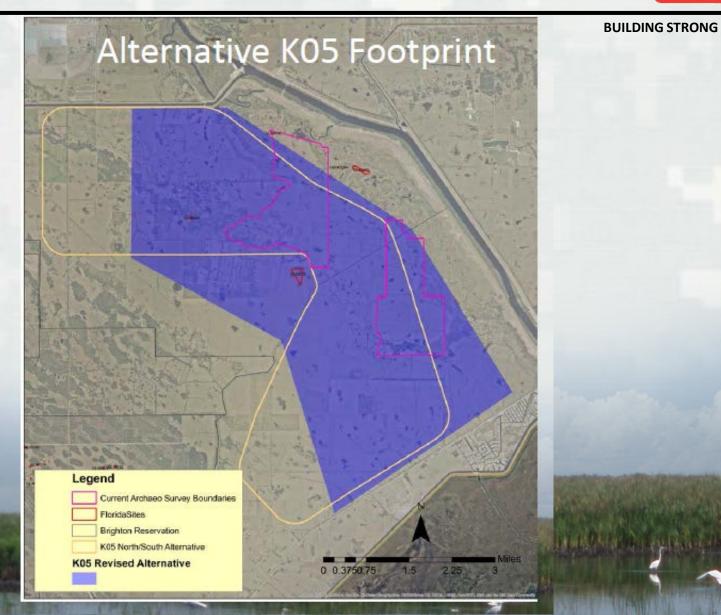
Archaeological Survey


- Only SFWMD lands
- Focus in the K05
- 2,700 acres in survey
- Intensive Field Survey
- SCOPE developed with input from STOF

Timeline:

July 10 – Background research began

Aug 1 - fieldwork begins


Mid-Sept – fieldwork complete

Cultural Resource Considerations

Results of Survey

BUILDING STRONG

- Identify archaeological sites in the project area
- Develop information on cultural affiliation, time period, and significance of identified sites
- Determine what sites/areas will be of special concern for both the Tribes, the State, and USACE
- Determine level of effort and ROM costs for options to avoid, minimize, or mitigate important resources
- Inform future siting decisions of features

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Environmental Considerations

Lake Okeechobee Habitat Units and Habitat Unit Lift Round 3 Modeling

BUILDING STRONG

Habitat Units = Habitat Suitability Index (0-1) * Acreage

Lake Okeechobee Habitat Units	ECB	FWO	ALT1Br	ALT2A	ALT2B	ALT2Cr
Ecological PM HUs (acres)	109,052	106,938	111,695	113,633	111,695	109,933
Stage Envelope PM HUs (acres)	25,976	26,906	30,472	31,979	31,469	30,850
Extreme Stage PM HUs (acres)	43,200	42,971	41,651	41,574	42,208	42,695
Total Lake O Habitat Units (acres)	178,228	176,814	183,817	187,186	185,371	183,478

Habitat Unit Lift = Alt Habitat Units – FWO Habitat Units

Habitat Unit Lift	ALT1Br	ALT2A	ALT2B	ALT2Cr
Ecological PM HU	4,757	6,695	4,757	2,995
Stage Envelope PM HU	3,535	5,074	4,563	3,944
Extreme Stage PM HU	-1,320	-1,396	-763	-276
Total Lake O HU	7,003	10,372	8,557	6,664

BUILDING STRONG

Habitat Suitability Index (0-1) * Acreage = Habitat Units

Caloosahatchee Acreage = 70,979 acres

Metric #	PM Metric	ECB	FWO	ALT1Br	ALT2A	ALT2B	ALT2Cr
3.1	Low Flow (< 450 cfs)	0.02	0.405	0.405	0.405	0.405	0.405
3.2	High Flow (>2800 cfs)	0.02	0.145	0.195	0.195	0.195	0.175
	Total	0.04	0.55	0.60	0.60	0.60	0.58
	Caloosahatchee HUs	2,839	39,038	42,587	42,587	42,587	41,168

St. Lucie Acreage = 14,994 acres

Metric #	PM Metric	ECB	FWO	ALT1Br	ALT2A	ALT2B	ALT2Cr
4.1	Low Flow (< 350 cfs)	0.07	0.155	0.155	0.155	0.155	0.155
4.2	High Flow (>2000 cfs)	0.07	0.275	0.385	0.415	0.365	0.355
	Total	0.14	0.43	0.54	0.57	0.52	0.51
	St. Lucie HUs	2,099	6,447	8,097	8,547	7,797	7,647

Northern Estuaries Habitat Unit Lift Round 3 Modeling

BUILDING STRONG

Habitat Units = Habitat Suitability Index (0-1) * Acreage

Northern Estuaries PMs	ECB	FWO	ALT1Br	ALT2A	ALT2B	ALT2Cr
Caloosahatchee Habitat Units (acres)	2,839	39 <i>,</i> 038	42,587	42,587	42,587	41,168
St. Lucie Habitat Units (acres)	2,099	6,447	8,097	8,547	7,797	7,647
Overall NE Habitat Units (acres)	4,938	45,485	50,684	51,134	50,384	48,815

Habitat Unit Lift = Alt Habitat Units – FWO Habitat Units

Northern Estuaries PMs	ALT1Br	ALT2A	ALT2B	ALT2Cr
Caloosahatchee Habitat Unit	3,549	3,549	3,549	2,130
St. Lucie Habitat Unit	1,650	2,100	1,350	1,200
	Г 100	F 640	4 900	2 2 2 0
Total NE Habitat Unit	5,199	5,649	4,899	3,330

Round 3 Modeling Habitat Units

BUILDING STRONG

ALT1Br	ALT2A	AĽ	T2B	ALT2Cr
				First State
111,695	113,633	111	,695	109,933
30,472	31,979	31,	,469	30,850
41,651	41,574	42,	,208	42,695
183,817	187,186	185	5,371	183,478
42,587	42,587 42,587 42,587		,587	41,168
8,097	8,547	7,	797	7,647
50,684	51,134	50,	,384	48,815
234,501	238,320	235	,755	232,293
12,202	16,021	13,	456	9,994
Je,	-		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
ts ALT1B	r ALT	2A	ALT2B	ALT2Cr
5,374	8,1		6,668	5,091
	111,695 30,472 41,651 183,817 42,587 8,097 50,684 234,501 12,202	111,695 113,633 30,472 31,979 41,651 41,574 41,651 41,574 183,817 187,186 42,587 42,587 8,097 8,547 50,684 51,134 234,501 238,320 12,202 16,021 k	111,695 113,633 111 30,472 31,979 31, 41,651 41,574 42, 183,817 187,186 185 42,587 42,587 42, 8,097 8,547 7, 50,684 51,134 50, 12,202 16,021 13, ts ALT1Br ALT2A	111,695 113,633 111,695 30,472 31,979 31,469 41,651 41,574 42,208 183,817 187,186 185,371 42,587 42,587 42,587 8,097 8,547 7,797 50,684 51,134 50,384 234,501 238,320 235,755 12,202 16,021 13,456

Trusted Partners Delivering Value Today for a Better Tomorrow

4,939

10,313

4,654

11,322

3,164

8,255

5,367

13,545

Northern Estuaries AAHU

Total Round 3 AAHU

Environmental Considerations

BUILDING STRONG

- Climate
- Geology & Soils
- Hydrology
- Water Quality
- Flood Control
- Wetlands
- Vegetation
- Fish & Wildlife
- Protected Species
- Air Quality
- Noise
- AestheticsRecreation

- Land Use
- Socioeconomics
- Agriculture
- Hazardous, Toxic & Radioactive Waste
- Cultural Resources
- Cumulative Effects
- Unavoidable Adverse Impacts
- Irreversible & Irretrievable
 Commitments of
 Resources
 - Energy Requirements & Conservation Potential

(a) and the ALE TO ALE A LEAD A SHEEK AND A

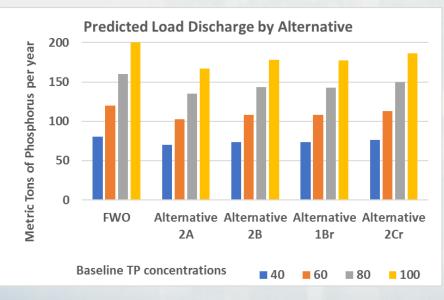
Wetlands Within Reservoir Footprints

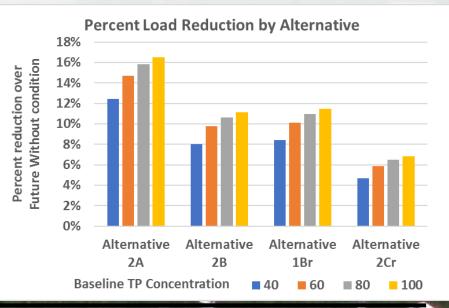
BUILDING STRONG

Existing wetlands (acres) in the reservoirs

FLUCCS Code Description	Alt 1Br	Alt 2A	Alt 2B	Alt 2Cr
Mixed Wetland Hardwoods	1	5	5	0
Mixed Wetland Hardwoods - Mixed Shrubs	45	165	155	135
Cabbage Palm Savannah	0	155	155	155
Freshwater Marshes	1,020	2,576	2,334	1,937
Sawgrass	0	30	30	38
Wet Prairies	73	223	219	269
Emergent Aquatic Vegetation	0	17	17	17
Total Acres of Existing Wetlands in				
Reservoir Footprints	1,138	3,171	2,915	2,551

Wetland TSP (Alt B – Kissimmee River Center and Paradise Run) restores 5,279 acres




Water Quality Sensitivity Analysis

BUILDING STRONG

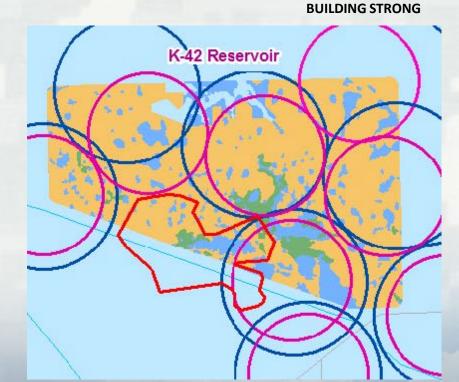
All alternatives for all baseline concentrations reduce total discharge load to the lake in comparison to the Future Without Project Condition

Trusted Partners Delivering Value Today for a Better Tomorrow

44

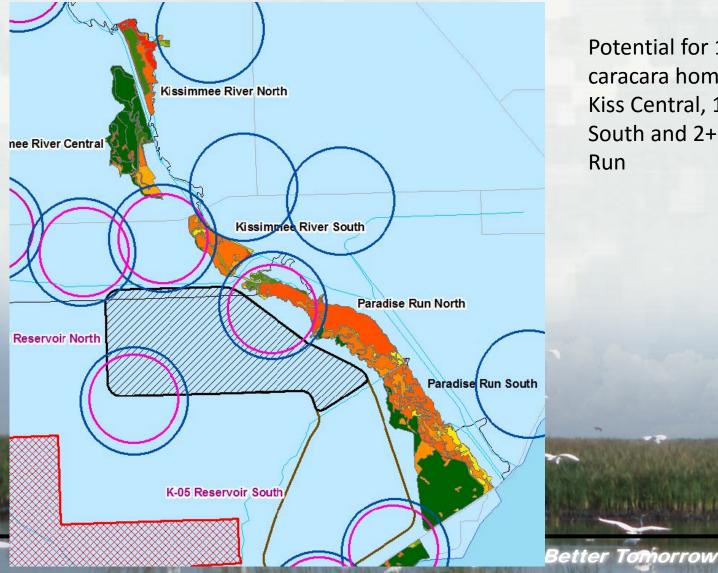
Threatened and Endangered Species

					BUILDING STROM
	Effect in Reservoirs	Effect in Wetlands	Effect of ASR operations*	Effect in Lake O	Effect in Estuaries
Snail Kite	- and +	+	_ *	+	NA
Caracara	-	- and +	NA	NA	NA
Wood Stork	- and +	+	- *	+	+
FL Grasshopper Sparrow	- **	_ **	NA	NA	NA
Whooping Crane (ex pop)		+	NA	+	NA
Manatee	NA	NA	-* and +	+	+
Panther	- **	+ **	_ *	NA	NA
FL Bonneted Bat	- and +	+	-* and +	+	NA
Indigo Snake	-	-	NA	NA	NA
Okeechobee Gourd	NA	+ **	NA	+	NA
Johnson's Seagrass	NA	NA	NA	NA	+
Smalltooth Sawfish	NA	NA	NA	NA	+
* Impingoment discharge	or mo Ha offe	etc			The state of the s


* Impingement, discharge, or me-Hg effects **Potential

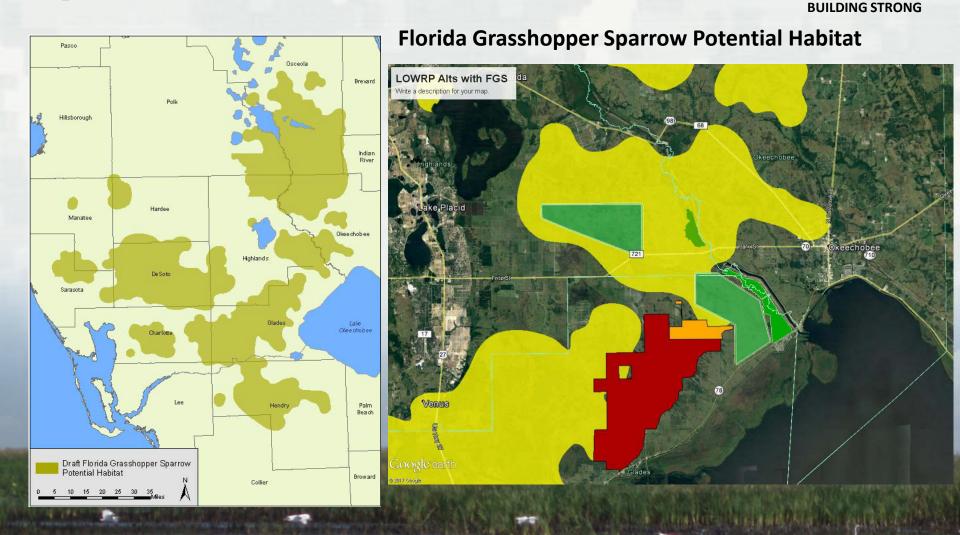
Caracara in Reservoir Footprints

2 or 3 additional caracara home ranges possible in each reservoir footprint (8-10 total).


4 known caracara territories with 3 or 4 possible unknown (7 or 8 total)

Caracara in Wetland TSP Sites

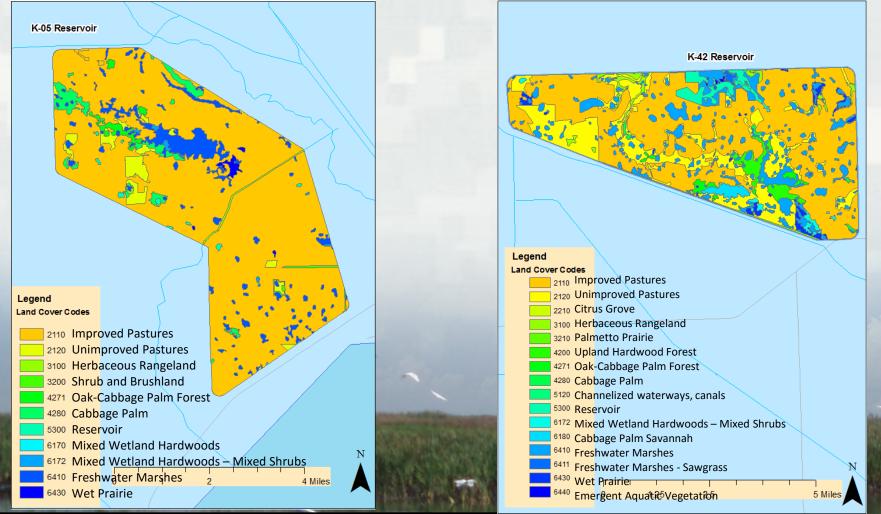
BUILDING STRONG



Potential for 1 or 2 caracara home ranges in Kiss Central, 1 or 2 in Kiss South and 2+ in Paradise

Florida Grasshopper Sparrow

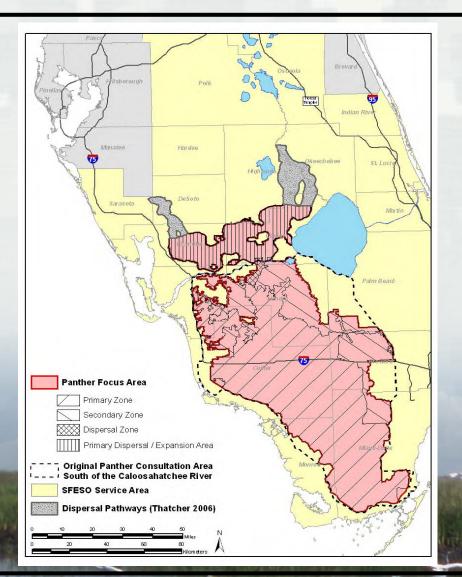
Florida Bonneted Bat


BUILDING STRONG

Eastern Indigo Snake

BUILDING STRONG Assumed to be present in any upland habitat with any cover taller than short grass

Snail Kite Critical Habitat



Florida Panther Critical Habitat

BUILDING STRONG

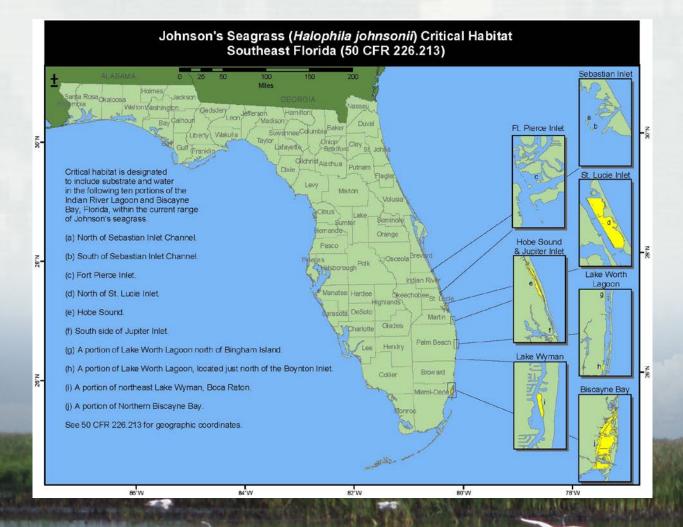
Trusted Partners Delivering Value Today for a Better Tomorrow

20

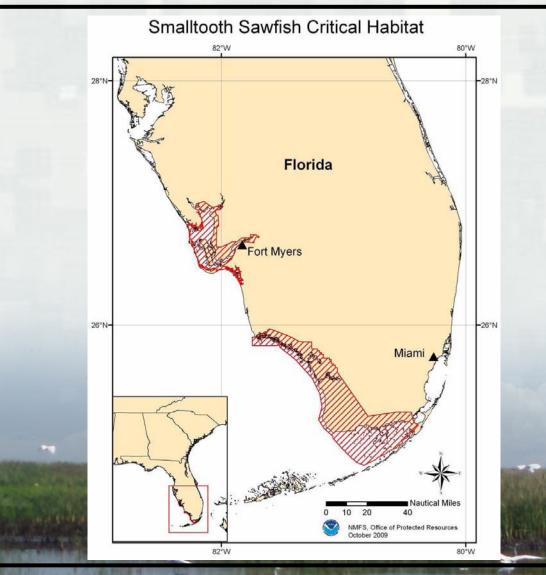
52

Manatee Critical Habitat

BUILDING STRONG

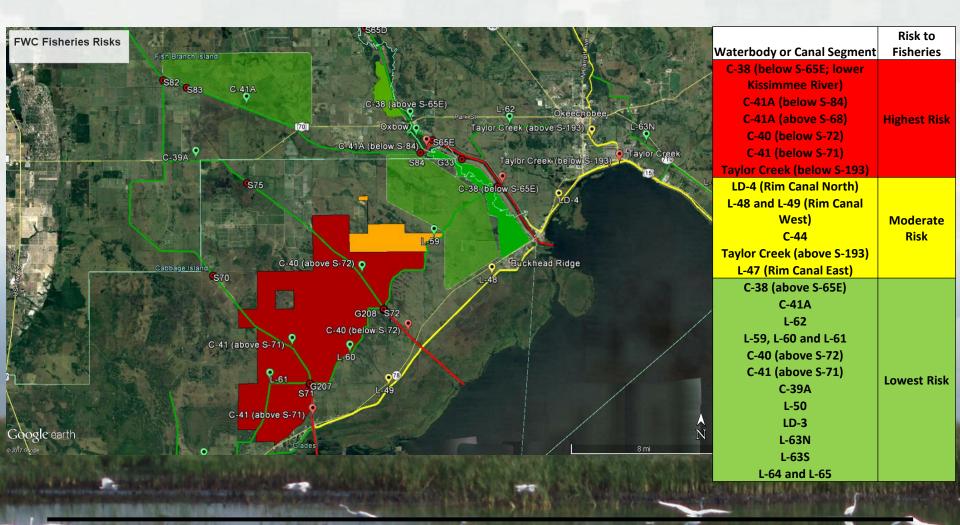

Trusted Partners Delivering Value Today for a Better Tomorrow

Johnson's Seagrass Critical Habitat


BUILDING STRONG

Smalltooth Sawfish Critical Habitat

BUILDING STRONG



Fisheries Risks

BUILDING STRONG

LAKE OKEECHOBEE WATERSHED INTEGRATED FEASIBILITY STUDY & ENVIRONMENTAL IMPACT STATEMENT

Economic Considerations

BUILDING STRONG

 "the plan that meets planning objectives and constraints and reasonably maximizes environmental benefits while passing tests of cost effectiveness and incremental cost analyses, significance of outputs, acceptability, completeness, efficiency, and effectiveness." (ER-1105-2-100 Appendix E, E-41)

"The selected plan <u>must</u> be shown to be cost effective and justified to achieve the desired level of output"

How a National Ecosystem Restoration Project is Identified

BUILDING STRONG

- Screen out plans that are not cost effective from further consideration.
- Incremental cost analysis reveals changes in cost for increasing levels of environmental output.
- Help decision makers allocate limited resources more efficiently and avoid selection of economically irrational plans.
- Incremental cost analysis reveals changes in costs as levels of environmental outputs increase, assisting in answering the question of whether selecting a more costly alternative is "worth it"

BUILDING STRONG

- >An alternative is defined as non-cost effective if:
 - 1. The *same output* level could be produced by another plan at less cost;
 - 2. A *larger output* level could be produced at the same cost; or
 - 3. A larger output level could be produced at less cost.

Simply Speaking: DON'T SPEND MORE FOR LESS! (Defining the output is the hard part)

BUILDING STRONG

- A common misconception is that the plan and the output level which minimizes average costs should be selected
- Incremental cost analysis is useful in determining if the extra level of output is "worth it".
- How do we determine if the increase in costs is worth the increase in benefits?
 - This may relate to acceptability, completeness, efficiency and significance of an alternative or scarcity of a resource

Incremental Cost Analysis – Storage Alternative 1B is the alternative that costs the least per unit of output. Is there a benefit to a larger plan

62

BUILDING STRONG

				ALTERN	ATI	VES		
		2C-R		1B-R		2B		2A
	K-42	Revised		K-05 Revised		K-05 North		K-05 Original
						K-42 Original		K-42 Original
	6	5 ASR		80 ASR		70 ASR		110 ASR
Total Implementation Cost	\$ 1	,713,952,000	\$	1,787,220,000	\$	2,393,416,000	\$	3,191,295,000
Average Annual Implementation Cost	\$ <u></u>	65,041,000		67,822,000		90,826,000		121,104,000
Average Annual Miplementation Cost	ې \$	11,624,000		14,407,000		13,749,000	-	20,537,000
Average Annual Cost	\$	76,665,000	ې \$	82,229,000		104,575,000		141,641,000
Lake O Benefits		5,091		5,374	-	6,668	-	8,179
Estuary Benefits		3,164		4,939		4,654		5,367
Total Benefits	5	3,255		10,313		11,322		13,545
Cost Effective		YES		YES	YES		YES	
AAC per AAHU	\$	9,290	\$	7,970	\$	9,240	\$	10,460
Increase in Cost Compared	to 1B-R	(\$)			\$	22,346,000	Ś	59,412,000
Increase in Cost Compared					•	27.2%	•	72%
Increase in Ecological Benefits Con	mpared t	o 1B-R (\$)				1,008		3,232
Increase in Ecological Benefits Cor	mpared to	o 1B-R (%)				9.8%		31.3%
Incremental Cost per Unit of Outpu	ut Compai	red to 1B-R			\$	22,160	\$	18,380
Best Buy		NO		YES		NO		YES
Incremental Cost Per Unit of Output				\$7,970				\$18,380
			i des	<i>,,,,,,</i>		Contraction of the Institution of	-	\$10,000

Incremental Cost Analysis – Storage Comparison of 2C-R (K-42) to IB-R

BUILDING STRONG

*While a "Best Buy" plan is typically recommended, a smaller or larger plan could also be recommended as long as they are cost effective.

	ALTERNATIVES										
	2C-R	1B-R	2B	2A							
	K-42 Revised	K-05 Revised	K-05 North	K-05 Original							
			K-42 Original	K-42 Original							
	65 ASR	80 ASR	70 ASR	110 ASR							
AAHU	8,255	10,313	11,322	13,545							
AAC	\$76,665,000	\$82,229,000	\$104,575,000	\$141,641,000							
Net ∆ AAHU vs 2C-R		2,058	3,067	5,291							
% Δ AAHU vs 2C-R		24.9%	37.2%	64.1%							
Net ∆ AAC vs 2C-R		\$ 5,564,000	\$ 27,910,000	\$ 64,976,000							
% Δ AAC vs 2C-R		7.3%	36.4%	84.8%							