

BUILDING STRONG

- Welcome to the 23 June 2017 PDT meeting for the Lake Okeechobee Watershed Restoration Project (LOWRP)
- Attendance CERP Team and Public
- Housekeeping Items:
 - Callers, please keep phones on mute unless you are talking
 - Attendees in the room, please place your phones on mute
 - Please state your name and who you are representing before making a statement or asking a question
 - REMINDER: This is a CERP PDT meeting and follows FACA Requirements as outlined in CGM 011.02. A Public Comment period has been established at the end of our agenda.
 - Restroom location
- Agenda Overview

AGENDA

BUILDING STRONG

Introduction (Tim Gysan, USACE and Matt Morrison, SFWMD)	10:00 - 10:10
90 day look ahead and upcoming engagement opportunities (Tim Gysan, USACE)	10:10 - 10:20
Summary of What We've Heard from Stakeholders (Lisa Aley, USACE)	10:20 - 10:50
Deep Injection Well Updates (Lisa Aley, USACE)	10:50 - 11:10
Initial Round 2 Modeling Results (Walter Wilcox, SFWMD)	11:10 - 11:45
Public Comment Period	11:45 - 12:00
BREAK for lunch	12:00 - 1:00
Water Supply Update (Chris Graham, USACE)	1:00 - 1:15
NEPA Analysis (Gretchen Ehlinger, USACE)	1:15 – 1:45
Habitat Unit Calculations (Gretchen Ehlinger, USACE and Steve Schubert, USFWS)	1:45 – 2:15
Adaptive management monitoring plan (Gretchen Ehlinger, USACE)	2:15 – 2:30
Geotechnical Survey Overview (Joel Gaillard, USACE)	2:30 - 2:40
Cultural Resources Survey Overview (Robin Moore, USACE)	2:40 - 2:50
Tribal Perspectives - Open forum for comments and statements	2:50 - 3:05
Government/Agency Perspectives - Open forum for comments and statements	3:05 - 3:25
Public Comment Period	3:25 – 3:55
Closing remarks and Adjourn	3:55 - 4:00

Upcoming Engagement Opportunities

BUILDING STRONG

- SFWMD Governing Board West Palm Beach July 13, 9am
- LOWRP Planning Workshop Okeechobee July 27, 1 4pm
- LOWRP Planning Workshop West Palm Beach July 28, 9am 12pm
- SFWMD Governing Board West Palm Beach August 3, 9am
- Water Resources Advisory Commission West Palm Beach August 3, 9am
- LOWRP PDT TSP Selection Meeting Okeechobee August 16, TBD

WHAT WE'VE HEARD

BUILDING STRONG

Summary of comments received from letters, emails, sub-team coordination, and public comment from stakeholders

Include water supply for agriculture, industrial, municipal and tribal use as a project objective

- Florida Department of Agriculture and Consumer Services (FDACS)
- Seminole Tribe of Florida (STOF)
- Department of Interior (DOI)
- Florida Wildlife Federation
- United States Sugar Corporation (USCS)
- Florida Crystals Corporation

*NGOs- support water supply as an ancillary project benefit

Minimize private agricultural land taken out of production and maximize use of publicly owned lands

- Local landowners
- FDACS
- Florida Wildlife Federation
- Florida Farm Bureau Federation

Minimize impacts to fisheries at intake structures

- Florida Fish and Wildlife Conservation Commission (FWC)
- U.S. Fish and Wildlife Service (USFWS)

Include water quality treatment features

- Miccosukee Tribe of Indians
- Florida Wildlife Federation
- Public stakeholders via public comments and email

Support for Paradise Run Restoration

- Florida Wildlife Federation
- FWC

*National Parks Conservation Association, Conservancy of Southwest Florida, Friends of the Everglades, Audubon Florida, Florida Oceanographic Society, Everglades Law Center, Sierra Club, Everglades Foundation, Sanibel Captiva Conservation Foundation

WHAT WE'VE HEARD Stakeholders, Agencies Public Comments

BUILDING STRONG

Operational Considerations

- Optimize Lake Okeechobee Regulation Schedule to improve operational flexibility of the water management system with proposed LOWRP features
 - FDACS
 - Florida Crystals Corporation
- Concerns with lake level excursions above 17.25 feet shown in initial modeling results
 - *NGOs

*National Parks Conservation Association, Conservancy of Southwest Florida, Friends of the Everglades, Audubon Florida, Florida Oceanographic Society, Everglades Law Center, Sierra Club, Everglades Foundation, Sanibel Captiva Conservation Foundation

of the Atar and a marked

WHAT WE'VE HEARD Seminole Tribe of Florida

BUILDING STRONG

Water entitlements need to be met

- Want to consult on operational criteria assumptions in modeling
- Fewer cutbacks during drought operations

Concerns with all reservoir locations, especially K05 North and K05 South (directly adjacent to tribal lands)

- Concern with impacts to water entitlement
- Potential seepage from reservoirs and flooding of adjacent lands
- Concern over environmental impacts: displacement of endangered species from reservoir areas onto tribal lands, decrease in ecological connectivity, wetland impacts
- THPO -potential for cultural resources in project area
- Impacts to cultural activities (including hunting, fishing, and frogging)
- Look at other locations besides current proposed locations that are in close proximity of Brighton Reservation

Cumulative impacts with the LOWRP and other water storage projects

• Changes in habitat, land use, displacement of T&E species, entitlement, flood protection Concerns with success of ASR within the project area and potential effects to biota Water quality impacts

WHAT WE'VE HEARD

BUILDING STRONG

Input from Miccosukee Tribe of Indians during Government to Government Consultation

- Do not support underground storage including ASR wells or Deep Injection Wells
- Supportive of above-ground water storage
- Water quality concerns
- Maximize wetland restoration
- Potential for cultural resources in project area

WHAT WE'VE HEARD Stakeholder Comments

BUILDING STRONG

Deep Injection Wells (DIWs)

Remove from Consideration

- Audubon Florida
- Everglades Foundation
- Florida Wildlife Federation
- National Parks Conservation
 Association
- Sanibel Captiva Conservation
 Foundation
- Florida Wildlife Federation
- Florida Oceanographic Society
- Everglades Law Center
- Sierra Club
- Public comments in PDTs and via email

Support Inclusion

- Florida Crystals Corporation
- Florida Farm Bureau Federation
- Florida Department of Agriculture and Consumer Services (FDACS)
- United States Sugar Corporation (USCS)
- Florida Fruit & Vegetable Association

BUILDING STRONG

- DIWs were not a component in the evaluation in the 1999 Comprehensive Everglades Restoration Plan (CERP) PIR/EIS
- In order to evaluate the potential effects of DIWs within CERP and potential effects on other CERP Projects, a comprehensive regional analysis needs to be performed.
- This comprehensive regional analysis cannot be undertaken within the constraints of the LOWRP scope, schedule or budget to meet the Corps planning milestones.
- Due to these reasons as well as the need to understand how DIWs may perform within the context of ecosystem restoration, the Corps screened DIWs from further consideration within LOWRP.

LAKE OKEECHOBEE WATERSHED RESTORATION PROJECT

Modeling Sub-Team

Second Round Alternative Array June 23, 2017

and the stand of the second state of the second

US Army Corps of Engineers BUILDING STRONG®

BUILDING STRONG

- The Lake Okeechobee Watershed Restoration Project (LOWRP) performed extensive screening-level modeling using RESOPS in late 2016 to identify feasible features and sizes that could meet project objectives of improving Lake Okeechobee, L.O. watershed and Northern Estuary conditions.
- Detailed hydrologic modeling using RSMBN is currently underway in support of LOWRP.
- Detailed RSMBN model baseline scenarios representing the Existing Condition (ECB) and Future Without LOWRP (FWO) were released on February 2, 2017.
- A first round of three alternatives with potential LOWRP project features modeled in RSMBN was released on March 8, 2017 and a summary presentation made to the Project Delivery Team (PDT) on March 15, 2017.
- A second round of four alternatives with potential LOWRP project features modeled in RSMBN was released on June 21, 2017 and a summary presentation made to the Project Delivery Team (PDT) on June 23, 2017 (today's presentation).
- It is anticipated that review and ecological & economic evaluation of these outcomes will help to inform identification of a Tentatively Selected Plan (TSP) by August.

Background: **Regional Modeling Approach**

BUILDING STRONG

• Climatic Input - Rainfall - ET • Boundary **Conditions** Period of record: 1965-2005

 Project Features • Operating Criteria **Model Output**

- Daily time series of water levels, flows
- Demands not met

Evaluation (Environmental, Water Supply, etc...)

Model Assumptions & Setup

INITIAL ARRAY OF ALTERNATIVES

1st round of modeling and benefits calculation to optimize water storage and recovery for improvement in high and low lake stages and estuary releases, 2nd round of modeling and benefits calculation to optimize water management measures for improvement in undesirable regulatory discharges to northern estuaries along with wetland restoration measures

BUILDING STRONG

Alternative	Reservoir Component		ASR Component	DIW Component			(issimmee Rive	1
	Reservoir (s)	Storage Capacity (acre-feet)	# of ASR wells (assuming 5 mgd capacity)	# of DIWs (assuming 15 mgd capacity)	Compatable Wetland Components	K-42		
No Action (FWO)						R	X	
Alternative 1	K05 (North and South)	258K	110	30-90	Kissimmee River Paradise Run		K05 North	
Alternative 2	K-05 (North and South) and K-42	408K	110	0	Kissimmee River Paradise Run Lake O West IP-10			Paradise Run
Alternative 2b	K-05 North and K-42	264K	110	30-90	Kissimmee River Paradise Run Lake O West IP-10	Brighton Reservati	on	K05 South Lake O West
Alternative 3	K-42 and I-01	254K	112	30-90	Kissimmee River Paradise Run Laire O Wast		I-01 IP-10	
		•				rearth		
							and the second	A COLORINA IN

Second Round OF ALTERNATIVES

BUILDING STRONG

2nd round of modeling and benefits calculation to optimize water management measures for improvement in undesirable regulatory discharges to northern estuaries along with wetland restoration measures

2ND ROUND OF MODELING

	Reservoir Compo	onent	ASR Component		
Alternative	Reservoir (s)	Storage Capacity (acre- feet)	# of ASR wells [UFA:APPZ]	Storage Capacity (acre-feet/yr)	
No Action (FWO)					
Alternative 1b	Revised K-05 (North and South)	190K	80 [50:30]	448K	
Alternative 2a	Revised K-05 (North and South) and K-42	361K	110 [60:50]	616K	
Alternative 2b	Revised K-05 North and K-42	276K	70 [50:20]	392K	
Alternative 2c	K-42	171K	50 [40:10]	280K	

ALT2c Assumes: 171 kac-ft storage at K42 Reservoir location + 50 ASR as shown

K42 11,339 ac /

Reservoirs assumed 15 ft maximum depth

Reservoir capacity accounts for site topography

Example Modeling Detail Showing Assumed Lower Kissimmee Basin & Lake Okeechobee Inflow Routing for ALT1B Scenario/

BUILDING STRONG

- In addition to infrastructure assumptions, there is a need to define rules for diverting water to and recovering water from reservoir and ASR storage.
- Also, as storage is added and system infrastructure capability is increased, it makes sense to develop optimized Lake Okeechobee schedule rules that work with storage and focus on the events beyond what storage or conveyance south can handle.
- Approximately 30 parameters affecting the Lake Okeechobee decision outcomes (e.g. "up-to" limits, classification of tributary conditions, etc...) along with a variety of storage diversion and recovery lines were analyzed.
- Constrained and unconstrained Latin Hypercube sampling techniques were used to explore 10,000 unique operational strategies per ALT.
- Selected operations were identified using acceptable performance criteria (e.g. Lake O and Estuary PMs) and Pareto analysis.

Model Results Summary

Examples of Available Water Budget Maps

BUILDING STRONG

Number of times Salinity Envelope Criteria NOT Met for the St. Lucie Estuary (mean monthly flows 1965 - 2005)

Run date: 06/05/17 10:31:58 RSMBN Script used: estuary.scr, ID498 Filename: stluc_salinity_flow_bar.out.agr

57 Total

Note: In the FWO, a combined 37 Events are a Result of Basin Runoff

46 Total

41 Total

Improvements Observed in Both

"High" and "Extremely High" Discharge Events

47 Total

51 Total

Note: In the FWO, a combined 47 Events are a Result of Basin Runoff Meaningful reduction in Events Caused by Lake Okeechobee

Events from Lake Okeechobee

Events from Caloos Basin Runoff

Events that Do Occur are Shorter in Duration

Number of Times Caloosahatchee Estuary High Discharge Criteria Exceeded (mean monthly flows > 2800 & 4500 cfs from 1965 - 2005)

Run date: 06/05/17 10:31:59 RSMBN Script used: estuary.scr, ID496 Filename: caloos_2800_4500_flow_bar.out.agr

RECOVER Performance Measure

Improved Lake ecology and generally improved high and low lake stages; brief excursions during extreme high stages allowable with expected HHD improvements and additional LOWRP infrastructure capacity

Note: A score of 0% is the worst score. The stage exceeds the envelope by 1 ft or more on average. A score of 100% is the best score. The stage never exceeds the envelope. Run Date: Wed Jun 7 10:22:22 2017 RSMBN Script Used: lo_generator.scr (D386) Filename: lo3_weekly_high_annualized.agr

Note: A score of 0% is the worst score. The stage falls below the envelope by 1 ft or more on average. A score of 100% is the best score. The stage never falls below the envelope. Run Date: Wed Jun 7 10:22:22 2017 RSMBN Script Used: lo_generator.scr (ID386) Filename: lo3_weekly_low_annualized.agr Higher Scores = Improved Lake O. Ecology

a the start of a start

Note: A score of 0% is the worst score. The stage falls below 10 feet for an average of 15 weeks per year or more. A score of 100% is the best score. The stage never falls below 10 feet. Script Used: Io generator.scr (ID386

Script Used: lo_generator.scr (ID386) Filename: lo1_weekly_low_lake_annualized.agr

Year

Additional Detail: Examining a Generally Wetter Period

Higher Eco Scores = Improved Lake O. Ecology

Model: RSMBN Run Date: June 2, 2017

Water Year (Oct-Sep) LOSA Demand Cutback Volumes

for the 8 Years in Simulation Period with Largest Cutbacks

Filename: losa cutback yrs bar.agr

Different Storage Features are Providing Different Benefits (Example)

BUILDING STRONG

K05, K42, Regional / Reservoir ASR and UFA/APPZ Wells All

Demonstrate Varying

Performance

- 1.5 million ac-ft

How to Access Model Data

BUILDING STRONG

June 21st Release of LOWRP 2nd round Alternatives Array

- FWO vs ALT1b vs ALT2a vs ALT2b vs ALT2c Performance Measures for RSMBN (e.g. Lake O., Northern Estuaries, LOSA)
- Other Indicators (e.g. water budgets, hydrographs, etc...) for RSMBN
- ALT1b, ALT2a, ALT2b, ALT2c model output for RSMBN
- Spreadsheets summarizing operations optimization

BUILDING STRONG

- LOWRP Modeling data is permanently archived and available on the CERPZone Data Archival Storage and Recovery (DASR) system.
 - Step by step instructions previously provided to PDT or available upon request.
- For a short time, data is also available via ftp at:

ftp://ftp.sfwmd.gov/pub/LOWP/

	IMC_Final_Modeling_Results					×
	🚱 ◯ マ 🎉 ▼ Computer ▼ projects (\\c	erp) (P:) 🔻 IMC_Final_Modeling_Results 💌	👻 🛃 Se	earch IMC_Final_Mode	ling_Results	- 2
	Organize 👻 演 Open 🛛 New folder					?
	E Pictures	Name 🔺	Date modified	Туре	Size	
	📑 Videos	LERP MMS Documents	7/1/2013 1:35 PM	File folder		_
	Construction	Feasibility Studies and Plans	7/1/2013 1:35 PM	File folder		
	r Local Dick (C)	🐌 Models	7/1/2013 1:34 PM	File folder		
	A CD Drive (D:)	퉬 non-CERP Projects	7/1/2013 1:34 PM	File folder		
	CD Drive (E:)	鷆 Pro Regs - Programmatic Regulations	7/1/2013 1:35 PM	File folder		
and the second data and	CD Drive (F:)	🔒 PROJ 01 - Lake Okeechobee Watershed	11/9/2016 10:30 AM	File folder		
And the second s	🖵 H\$ (\\Client) (H:)	퉬 PROJ 02 - Lake Istokpoga Regulation Sch	7/1/2013 1:34 PM	File folder		_
	projects (\\cerp) (P:)	🍌 PROJ 03 - Lake Okeechobee Aquifer Stor	7/1/2013 1:34 PM	File folder		
A DESCRIPTION OF THE PARTY OF	Data	퉬 PROJ 04 a - Caloosahatchee River C-43 W	7/1/2013 1:34 PM	File folder		
KARLAND STATES	🐌 ESRI	퉬 PROJ 05 - C-43 Basin Aquifer Storage and	7/1/2013 2:18 PM	File folder		
	👌 GIS	鷆 PROJ 06 - Caloosahatchee Back-pumpin	7/1/2013 1:34 PM	File folder		
A DESCRIPTION OF A DESC	IMC_Final_Modeling_Results	鷆 PROJ 07 - Indian River Lagoon - South	7/1/2013 2:18 PM	File folder		
A ANTI IN THE REAL PROPERTY OF	MC_Modelers_Space	鷆 PROJ 08 - Everglades Agricultural Area St	7/1/2013 1:34 PM	File folder		
of the second second second	Model_Resource_Area	퉬 PROJ 10 - Big Cypress - L-28 Interceptor	7/1/2013 1:34 PM	File folder		
A REAL PROPERTY OF	Monitoring_Assessment_Data	PROJ 11 - Flows to NW and Central WCA	7/1/2013 1:34 PM	File folder		

Acknowledgements: LOWRP Hydrologic Modeling Team

BUILDING STRONG

- Alaa Ali
- Clay Brown
- Sandeep Dabral
- Jaime Graulau-Santiago
- Harold Hennessey-Correa
- Veera Karri
- Fahmida Khatun

- Kenneth Konyha
- Cal Neidrauer
- Raul Novoa
- Randy VanZee
- Naiming Wang
- Walter Wilcox

Discussion

ROUCE

LAKE OKEECHOBEE WATERSHED RESTORATION PROJECT

Ecological Subteam Update NEPA Environmental Quality Evaluation Project Delivery Team Meeting June 23, 2017

All a tradition of a site of the second second

Robust Public Process

Project Delivery Team Meetings

Working Group Sponsored Public Workshops

- Enhance opportunities for meaningful public engagement
- Topic meetings to address particular issues

Regular Briefings

- SFWMD Governing Board
- Water Resources Advisory Commission
- SFWMD Projects and Lands Meeting
- Task Force
- Working Group/Science Coordination Group
- Quarterly Executive Team (QET) Meetings

NEPA Public Meetings

- Scoping
- Draft Project Implementation Report/Environmental Impact Statement

Environmental Coordination

- Non-Federal Sponsor South Florida Water Management District (SFWMD)
- Cooperating Agencies
 - Seminole Tribe of Florida
 - Bureau of Indian Affairs
- The following agencies act as members of the PDT, including informal reviews in advance of the public review period
- USFWS
- NPS
- DOI
- USGS
- USEPA

- NMFS
- NRCS
- FDEP
- FWC
- FDACS

- Seminole Tribe of Florida
- Miccosukee Tribe of Indians of Florida

 Okeechobee, Glades, Martin, Lee, Highlands, and St. Lucie Counties

BUILDING STRONG

- Existing Condition Baseline (ECB)
- Future Without Project (FWO) Condition No Action Alternative
 - Action alternatives will be compared to and evaluated against the FWO
- Assessment of Environmental Effects
 - Describe changes to existing conditions with implementation of each LOWRP action alternative

BUILDING STRONG

- Intensity will be rated as follows:
 - Negligible-effect to the resource or discipline is barely perceptible and not measurable and con-fined to a small area
 - Minor-effect to the resource or discipline is perceptible and measurable and is localized
 - Moderate-effect is clearly detectable and could have appreciable effect on the resource or discipline; or the effect is perceptible and measurable throughout the project area
 - Major-effect would have a substantial, highly noticeable influence on the resource or discipline on a regional scale

BUILDING STRONG

- Duration: The duration of the effects in this analysis is defined as follows:
 - Short term-when effects last less than one year
 - Long term-effects that last longer than one year
 - No duration no effect

BUILDING STRONG

- Climate
- Geology & Soils
- Hydrology
- Water Quality
- Flood Control
- Wetlands
- Vegetation
- Fish & Wildlife
- Protected Species
- Air Quality
- Noise
- AestheticsRecreation

- Land Use
- Socioeconomics
- Agriculture
- Hazardous, Toxic & Radioactive Waste
- Cultural Resources
- Cumulative Effects
- Unavoidable Adverse Impacts
- Irreversible & Irretrievable
 Commitments of Resources

ATTACK OF A DECEMBER OF A

 Energy Requirements & Conservation Potential

Water Quality Analysis

BUILDING STRONG

Model Objectives

- Keep it simple
- Evaluate the effect of the project on TP loads to Lake Okeechobee
- To maximize the likelihood that observed loads from the features to Lake Okeechobee will be less than predicted by this simple model conservative estimates will be used for
 - TP concentrations in ASR recovery water
 - Net settling in reservoirs
 - Minimum TP concentration in reservoir

Reservoir Modeling (TP)

BUILDING STRONG

Reservoir Modeling

BUILDING STRONG

- Keep it simple and conservative
- Daily time step
- Baseline concentration
 - Will compare results using a range of values from 40 to 100 µg TP L-1
- Concentration of water in reservoir cannot go below 16 µg
 L-1
 - 75th percentile of aerobic Equilibrium Phosphorus Concentration estimates reported in Belmont et al. 2009
- Settling rate 1 m/yr (accounts for sediment resuspension)

Existing Environmental Conditions

BUILDING STRONG

- Threatened and Endangered (T&E) Species
 - 8 Federally listed T&E species under NMFS purview
 - 24 Federally listed T&E species under USFWS purview
- Critical Habitat
 - Everglades snail kite
 - Florida Manatee
 - Johnson's Seagrass
 - Smalltooth Sawfish

Environmental Compliance

BUILDING STRONG

- Endangered Species Act Consultation
 - NMFS Programmatic Biological Assessment (BA)
 - USFWS BA
- Essential Fish Habitat (EFH)
 - Draft EFH Assessment
- Coastal Zone Management Act, Magnuson-Stevens Act, Marine Mammal Protection Act

BUILDING STRONG

Trusted Partners Delivering Value Today for a Better Tomorrow

a the star Mattelland and the star

LAKE OKEECHOBEE WATERSHED RESTORATION PROJECT (LOWRP)

Ecological Subteam Update Calculation of Habitat Units Project Delivery Team Meeting June 23, 2017

and the set of the set of the set of the set of the

LOWRP Performance Measures (PM)

BUILDING STRONG

LOWRP Objective	PM 1 – Wetland Restoration	PM 2 – Lake Okeechobee Stage	PM 3 – Caloosahatchee Estuary Salinity	PM 4 – St. Lucie Estuary Salinity
1. Improve timing and distribution of flows into Lake Okeechobee to maintain ecologically desired lake stage ranges		٧		
2. Reduce discharges from Lake Okeechobee to improve the salinity regime and the quality of oyster, SAV, and other estuarine community habitats in the northern estuaries			V	V
3. Increase spatial extent and functionality of aquatic and wildlife habitat within Lake Okeechobee and surrounding watershed	V			

BUILDING STRONG

Wetland Restoration PMs (for initial screening) Northern Estuaries PMs (RECOVER Approved)

PM 1.1 Wading Bird SupportPM 1.2 ConnectivityPM 1.3 Surface Water ConnectionPM 1.4 Restoration PotentialPM 1.5 Public Access

Lake Okeechobee PMs (RECOVER Approved)

PM 2.1 Stage Envelope PM 2.2 Ecological Indicator **Caloosahatchee Estuary** PM 3.1 Low Flow Targets PM 3.2 High Flow Targets

St. Lucie Estuary PM 4.1 Low Flow Targets PM 4.2 High flow Targets

Calculation of Ecosystem Benefits

BUILDING STRONG

Step 1 Normalize Performance Measures to Common Scale

Step 3 Calculate Zone HUs for Wetlands, Lake Okeechobee and Northern Estuaries

Step 1:

 Raw performance measure sub-metrics are linearly rescaled between 0 and 100.

Step 2:

 Within each zone, performance measure sub-metrics are combined for each project alternative to produce a net zone benefits score [Habitat Suitability Index (HSI)] between 0 and 1.

Step 3:

- The 0 to 1 benefits score for each zone is then multiplied by the acreage of the zone to generate a habitat unit (HU) value for the zone.
 - Wetlands
 - Lake Okeechobee
 - Northern Estuaries (2 zones)

Step 4:

 HU Lift = Alternative – Future Without Project (FWO) Condition

Compare HU lift (Alternative HUs – FWO HUs) of Alternatives

Wetland Habitat Unit Calculations

BUILDING STRONG

- The 5 wetland performance measures were used to screen the top 4 wetland restoration sites
- Habitat Unit Calculation Methodology
 - 1. For all habitat types within the potential restoration sites we assign a quality factor (Restoration Potential Score) based on land use or land cover code (Land Use/Land Cover (LULC); from the 2015 SFWMD shapefile and Florida Land Use, Cover and Forms Classification System (FLUCCS)) using best professional judgment, supplemented by limited field evaluations
 - 2. LULCs that are more ecologically degraded receive lower scores, but more native or natural habitats receive higher scores (on a scale of 0.0 to 0.5)
 - For Existing Conditions Baseline (ECB), using ArcGIS, the size of each LULC polygon was measured (acres) and multiplied by its quality factor to arrive at a HU for that polygon Habitat Units = Restoration Potential Score (0-1) * Acreage
 - 4. All polygons inside the wetland restoration site were then summed to calculate the total HUs for each wetland site
 - 5. For the Future With Project (FWP), all sites will be fully restored so the quality score will be 1 and the habitat units will be equal to the acreage of the wetland site

Wetland Design Overview

BUILDING STRONG

LOWRP Wetlands (green):

- 1) Kissimmee River 2,556 or 2,275 acres
 - a) North (KR-N) 537 acres
 - b) Center (KR-C) 1,477 or 1,196 acres
 - c) South (KR-S) 542 acres
- 2) Paradise Run 4,083 acres
 - a) North (PR-N) 1,547 acres
 - b) South (PR-S) 2,537 acres
- 3) IP-10 3,533 acres
- 4) Lake O West (LO-W) 2,761 acres

Wetland Design Overview

BUULDINGGSTRONG

Kissimmee River - North

General:

- Area: 537 acres
- Land: 0% land acquisition, 100% publicly owned lands

Proposed features:

- Degrade spoil mound (approx. 225 acres)
- Install submerged weir within C-38 canal to divert water to the eastern bank

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results							
	Reach 106 (ac-ft/mo)	Reach 108 (ac-ft/mo)	Subtotal (ac-ft/mo)	Depth (inch)			
Mon Avg	222.6	221.1	443.7	3.4			
Ann Avg	2,671.2	2,653.3	5,324.5	41.2			
Avg Wet Season	2,125.2	2,085.8	4,211.0	32.6			
Avg Dry Season	545.9	567.5	1,113.4	8.6			

Kissimmee River North HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

FLUCCS Level 4		ECB Restoration Potential			
Code	FLUCCS Code Description	Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	0.63	0.13	0.63
3100	Herbaceous Rangeland	0.3	169.66	50.90	169.66
4200	Upland Hardwood Forest	0.4	6.93	2.77	6.93
4340	Hardwood Conifer Mixed	0.4	13.60	5.44	13.60
5110	Streams and Waterways	0.5	3.83	1.92	3.83
5120	Channelized waterways, canals	0.3	0.02	0.01	0.02
5600	Slough Waters	0.5	1.25	0.63	1.25
6170	Mixed Wetland Hardwoods	0.5	25.95	12.98	25.95
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	177.73	88.86	177.73
6180	Cabbage Palm Savannah	0.5	137.57	68.78	137.57
	TOTALS			232.41	537.16

Wetland Design Overview

BUULDINGGSTRONG

Kissimmee River – Center #1

General:

- Area: 1,477 acres
- Land: 97% land acquisition, 3% (50 acres) publicly owned lands

Proposed features:

- Degrade spoil mound (approx. 226 acres)
- Install submerged weir within C-38 canal to divert water to the western bank
- New river through the site to imitate historical water flow (21,500 Linear Feet (LF))

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results								
Reach 95 Reach 98 Subtotal								
	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(inch)				
Mon Avg	17.5	211.4	228.9	2.4				
Ann Avg	210.1	2,537.3	2,747.4	28.8				
Avg Wet Season	169.2	1,982.0	2,151.2	22.5				
Avg Dry Season	40.9	555.2	596.2	6.2				

Trusted Paraness Peliessinghas wakang tong Batter Temorrow

Wetland Design Overview

BUULDINGSSTRONG

Kissimmee River – Center #2

General:

10

- Area: 1,196 acres
- Land: 96% land acquisition, 4% (50 acres) publicly owned lands

Proposed features:

- Install submerged weir within C-38 canal to divert water to the western bank
- New river through the site to imitate historical water flow (16,939 LF)

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results								
Reach 95 Reach 98 Subtotal [(ac-ft/mo) (ac-ft/mo) (ac-ft/mo) (
Mon Avg	17.5	211.4	228.9	2.4				
Ann Avg	210.1	2,537.3	2,747.4	28.8				
Avg Wet Season	169.2	1,982.0	2,151.2	22.5				
Avg Dry Season	40.9	555.2	596.2	6.2				

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

FLUCCS Level 4		ECB Restoration Potential			
Code	FLUCCS Code Description	Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	795.96	159.19	795.96
2120	Unimproved Pastures	0.3	63.68	19.10	63.68
3100	Herbaceous Rangeland	0.3	3.40	1.02	3.40
4200	Upland Hardwood Forest	0.4	3.57	1.43	3.57
4270	Live Oak	0.4	3.05	1.22	3.05
4271	Oak - Cabbage Palm Forest	0.4	1.35	0.54	1.35
5110	Streams and Waterways	0.5	18.50	9.25	18.50
5120	Channelized waterways, canals	0.3	2.69	0.81	2.69
5300	Reservoirs	0.3	4.51	1.35	4.51
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	159.45	79.73	159.45
6180	Cabbage Palm Savannah	0.5	4.00	2.00	4.00
6410	Freshwater Marshes	0.5	55.21	27.60	55.21
6430	Wet Prairies	0.5	40.88	20.44	40.88
6440	Emergent Aquatic Vegetation	0.5	39.61	19.80	39.61
	TOTALS	1		343.49	1195.86

Kissimmee River Center Extra Piece HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

FLUCCS Level 4 Code	FLUCCS Code Description	ECB Restoration Potential Score	Area (acres)	ECB HUs	FWP HUs
2120	Unimproved Pastures	0.3	6.70	2.01	6.70
3100	Herbaceous Rangeland	0.3	118.94	35.68	118.94
5120	Channelized waterways, canals	0.3	0.02	0.01	0.02
6170	Mixed Wetland Hardwoods	0.5	35.09	17.55	35.09
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	54.09	27.05	54.09
7430	Spoil Areas	0.1	58.04	5.80	58.04
	TOTALS			88.10	272.89

Wetland Design Overview

BUUDINGSSTRONG

Kissimmee River – South #1

General:

- Area: 542 acres
- Land: 0% land acquisition, 100% publicly owned lands

Proposed features:

- Install submerged weir within C-38 canal to divert water to the western bank
- New river within the southern portion of the easement to tie into C-38 canal (5,300 LF)

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results								
	Reach 89 (ac-ft/mo)	Depth (inch)						
Mon Avg	64.5	1.2						
Ann Avg	774.1	14.8						
Avg Wet Season	620.6	11.9						
Avg Dry Season	153.6	2.9						

As of: POC:

Wetland Design Overview

BUUDINGSERRONG

Kissimmee River – South #2

General:

- Area: 542 acres
- Land: 0% land acquisition, 100% publicly owned lands

Proposed features:

- Install submerged weir within C-38 canal to divert water to the western bank
- New culvert through HHD with gates to tie into C-41A canal

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results					
	Reach 89 (ac-ft/mo)	Depth (inch)			
Mon Avg	64.5	1.2			
Ann Avg	774.1	14.8			
Avg Wet Season	620.6	11.9			
Avg Dry Season	153.6	2.9			

ding Mertholite said and

Trusted Paranets Peliessinghals Makenggyton on Battentemorrow

As of: POC:

Kissimmee River South HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

FLUCCS Level 4 Code	FLUCCS Code Description	ECB Restoration Potential Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	19.14	3.83	19.14
3100	Herbaceous Rangeland	0.3	0.28	0.08	0.28
5110	Streams and Waterways	0.5	41.94	20.97	41.94
6170	Mixed Wetland Hardwoods	0.5	23.60	11.80	23.60
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	41.34	20.67	41.34
6410	Freshwater Marshes	0.5	418.00	209.00	418.00
7430	Spoil Areas	0.1	8.86	0.89	8.86
	TOTALS			267.24	553.17

Wetland Design Overview

BUILDING STRONG

Paradise Run – North & South

General:

- Area: PRN-1,547 acres; PRS- 2,537 acres
- Land: PRN- 23% land acquisition, 77% (1,186 acres) publicly owned lands; PRS- 69% land acquisition, 31% (779 acres) publicly owned lands

Proposed features:

- New pump station to direct flow from C-41A into the wetland footprint
- New river through the site to imitate historical water flow (73,500 LF)
- Construct overflow/step weir (levee notch) to transport water from PR-north to PR-south
- New culvert through HHD with gates to tie into C-38 canal

Paradise Run Nor	th					Paradise Run South				
Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results				Wate	Watershed Assessmer	ent Model (WA	M) Results			
	Reach 10	Reach 28	Reach 29	Subtotal	Depth		Reach 4	Reach 13	Subtotal	Depth
and the second	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(inch)	and the second second second second	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(inch)
Mon Avg	85.2	81.6	41.0	207.8	1.6	Mon Avg	185.5	54.9	240.5	1.1
Ann Avg	1,022.2	978.9	492.4	2,493.6	19.3	Ann Avg	2,226.4	659.3	2,885.7	13.7
Avg Wet Season	769.9	743.9	362.5	1,876.2	14.6	Avg Wet Season	1,427.7	517.8	1,945.5	9.2
Avg Dry Season	252.4	235.0	129.9	617.3	4.8	Avg Dry Season	798.7	141.4	940.1	4.4
						THE R. LEWIS CO., LANSING, MICH.				

Paradise Run North HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

		ECB			
FLUCCS		Restoration			
Level 4	Darte Marine States	Potential			
Code	FLUCCS Code Description	Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	56.49	11.30	56.49
3100	Herbaceous Rangeland	0.3	16.31	4.89	16.31
3300	Mixed Rangeland	0.3	40.46	12.14	40.46
4200	Upland Hardwood Forest	0.4	35.31	14.12	35.31
4280	Cabbage Palm	0.4	3.50	1.40	3.50
5110	Streams and Waterways	0.5	76.33	38.17	76.33
5600	Slough Waters	0.5	48.14	24.07	48.14
6170	Mixed Wetland Hardwoods	0.5	31.64	15.82	31.64
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	11.98	5.99	11.98
6180	Cabbage Palm Savannah	0.5	1.29	0.65	1.29
6410	Freshwater Marshes	0.5	86.60	43.30	86.60
6430	Wet Prairies	0.5	243.44	121.72	243.44
6440	Emergent Aquatic Vegetation	0.5	885.09	442.55	885.09
7430	Spoil Areas	0.1	10.03	1.00	10.03
TOTALS			737.11	1546.61	

Paradise Run South HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

		ECB			
FLUCCS Level 4		Restoration Potential			
Code	FLUCCS Code Description	Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	1229.51	245.90	1229.51
3100	Herbaceous Rangeland	0.3	2.95	0.88	2.95
3200	Shrub and Brushland	0.3	16.55	4.97	16.55
5120	Channelized waterways, canals	0.3	1.56	0.47	1.56
5600	Slough Waters	0.5	97.40	48.70	97.40
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	172.09	86.05	172.09
6180	Cabbage Palm Savannah	0.5	14.09	7.05	14.09
6410	Freshwater Marshes	0.5	406.23	203.12	406.23
6430	Wet Prairies	0.5	596.31	298.16	596.31
7430	Spoil Areas	0.1	0.08	0.01	0.08
	ΤΟΤΑΙ	S		895.29	2536.78

Wetland Design Overview

BBULLDINGGSTRRDIGG

Lake O West

General:

- Area: 2,761 acres
- Land: 100% land acquisition, 0% publicly owned lands

Proposed features:

- New perimeter berm along the northern and eastern boundaries (43,000 LF) and install two culverts with gates
- Land smoothing to remove agricultural landscaping (700 ac)
- Install new above water weir to limit the flow of water in L-48 needed to inundate the wetland area

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results										
And the second	Reach 36 Reach 47 Subtotal Depth									
	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(inch)						
Mon Avg	109.3	200.5	309.8	1.3						
Ann Avg	1,311.7	2,405.6	3,717.3	15.9						
Avg Wet Season	1,027.8	1,889.3	2,917.1	12.5						
Avg Dry Season 283.9 516.3 800.1 3.4										

Trusted Paraness Peliessinghals Making Tonon Batteettemorrow

Habitat Units = Restoration Potential Score (0-1) * Acreage

FLUCCS Level 4 Code	FLUCCS Code Description	ECB Restoration Potential Score	Area (acres)	ECB HUs	FWP HUs
2110	Improved Pastures	0.2	2515.08	503.02	2515.08
2120	Unimproved Pastures	0.3	84.06	25.22	84.06
3200	Shrub and Brushland	0.3	7.77	2.33	7.77
4200	Upland Hardwood Forest	0.4	15.04	6.02	15.04
5120	Channelized waterways, canals	0.3	4.20	1.26	4.20
5300	Reservoirs	0.3	1.84	0.55	1.84
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	3.59	1.79	3.59
6410	Freshwater Marshes	0.5	127.02	63.51	127.02
6430	Wet Prairies	0.5	33.10	16.55	33.10
	TOTALS			620.25	2791.70

Wetland Design Overview

BBULLDINGSSTRENGG

IP-10

General:

- Area: 3,533 acres
- Land: 100% land acquisition, 0% publicly owned lands

Proposed features:

- New pump station with spreader to direct flow from L-60 into the wetland footprint
- New perimeter berm along the southern, eastern, and western boundaries (36,000 LF)
- Land smoothing to remove agricultural landscaping (2,500 ac)
- New outlet structure in the eastern corner of the easement to move water offsite to L-48

Watershed Assessment Model (WAM) Water Availability: Existing Conditions Results								
	Reach 4 Reach 10 Subtotal							
and the second s	(ac-ft/mo)	(ac-ft/mo)	(ac-ft/mo)	(inch)				
Mon Avg	64.1	67.8	131.9	0.5				
Ann Avg	769.4	813.4	1,582.8	5.5				
Avg Wet Season	589.8	615.4	1,205.3	4.2				
Avg Dry Season	179.6	198.0	377.6	1.3				

Trusted Partness Peliessinghals Makengyton an Batteettemorrow

IP-10 HU Calculation

BUILDING STRONG

Habitat Units = Restoration Potential Score (0-1) * Acreage

		ECB			
FLUCCS		Restoration			
Level 4		Potential			
Code	FLUCCS Code Description	Score	Area (acres)	ECB HUs	FWP HUs
1230	Mixed Units (Fixed and mobile home units)	0.01	0.63	0.01	0.63
2110	Improved Pastures	0.2	2513.66	502.73	2513.66
2120	Unimproved Pastures	0.3	715.11	214.53	715.11
2156	Field Crops - Sugar Cane	0.01	0.22	0.00	0.22
2210	Citrus Groves	0.1	0.08	0.01	0.08
3100	Herbaceous Rangeland	0.3	1.15	0.34	1.15
4220	Brazilian Pepper	0.01	10.40	0.10	10.40
4271	Oak - Cabbage Palm Forest	0.4	51.61	20.65	51.61
4280	Cabbage Palm	0.4	72.43	28.97	72.43
4340	Hardwood Conifer Mixed	0.4	1.57	0.63	1.57
5300	Reservoirs	0.3	1.02	0.30	1.02
6172	Mixed Wetland Hardwoods - Mixed Shrubs	0.5	0.00	0.00	0.00
6180	Cabbage Palm Savannah	0.5	0.14	0.07	0.14
6410	Freshwater Marshes	0.5	142.42	71.21	142.42
6430	Wet Prairies	0.5	14.86	7.43	14.86
6440	Emergent Aquatic Vegetation	0.5	6.88	3.44	6.88
	TOTA	ALS	-	850.43	3532.18

Wetland Habitat Units

BUILDING STRONG

			FWO	
Wetland Site	Acres	ECB HUs	HUs	FWP HUs
Kissimmee River North HUs	537	232	182	537
Kissimmee River Central HUs	1,196	343	269	1,196
Kissimmee River Central - Extra Piece HUs	273	88	69	273
Kissimmee River South HUs	553	267	209	553
Paradise Run North HUs	1,547	737	577	1,547
Paradise Run South HUs	2,537	895	701	2,537
Lake Okeechobee West HUs	2,792	620	486	2,792
IP-10 HUs	3,532	850	666	3,532
Total Wetland Sites	12,966	4,034	3,158	12,966

- Florida 2070 Technical Report was used to predict what land use changes would occur under FWO conditions
 - Central Region development scenarios
 - □ Residential, Commercial, Urban will increase from 25.49% to 48.21 %
 - □ Ag lands will decrease from 35.13% to 23.67%
 - □ Protected lands will increase only slightly from 17.26% to 17.89%

Wetland Habitat Unit Lift

BUILDING STRONG

Habitat Unit Lift = FWP Habitat Units – FWO Habitat Units

			FWP HU
Wetland Site	FWO	FWP	per acre
Kissimmee River North HU Lift	0	355	0.66
Kissimmee River Central HU Lift	0	927	0.78
Kissimmee River Central - Extra Piece			
HU Lift	0	204	0.75
Kissimmee River South HU Lift	0	344	0.62
Paradise Run North HU Lift	0	970	0.63
Paradise Run South HU Lift	0	1,836	0.72
Lake Okeechobee West HU Lift	0	2,306	0.83
IP-10 HU Lift	0	2,866	0.81

Wetland Sites Next Steps

BUILDING STRONG

- Look at rough order magnitude (ROM) costs (July 7) and determine cost per habitat unit for each site
- Run the Institute of Water Resources (IWR) Plan to determine cost effectiveness
- Potential ranking of sites
 - Cost
 - Plan Formulation/Ecological Subteams to consider criteria/uncertainty
 - Proximity to reservoirs and/or ASR wells for hydrologic connections
 - Fish and Wildlife Utilization
 - Invasive/exotics
 - Type of potential wetland post-restoration
 - Topographic diversity

Lake Stage Performance Measure (PM 2.1)

- Stage Envelope -Standard Scores based on the Length of time and distance above and below the ecologically beneficial stage envelope - 12.5 ft – 15.5 ft
- Extreme Lake Stage Standard scores based on length of time and distance stage is >17 ft and <10 ft

Stage	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
19	3,5	4.0	4.5	5.0	6.0	6.5	6.5	6.0	5.0	4.0	3.5	3.5	
18.5	3.0	3.6	4.0	4.5	5.5	6.0	6.0	5.5	4.5	3.5	3.0	3.0	
18	2.5	3.0	3,5	4.0	5.0	5.5	5.5	5.0	4.0	3.0	2.5	2.5	
17.5	2.0	2.5	3.0	3.5	4.5	5.0	5.0	4.5	3.5	2.5	2.0	2.0	
17	1.5	2.0	2.5	3.0	4.0	4.5	4.5	4.0	3.0	2.0	1.5	1.5	
16.5	1.0	1.5	2.2	2.5	3.5	4.0	4.0	3.5	2.5	1.5	1.0	1.0	
16	0.5	1.0	1,5	2.0	9.0	3.5	3.5	3.0	2.0	1.0	0.5	0.5	1
15.5	0.0	0.5	1.0	1.5	25	3.0	3.0	2.5	1.5	0.5	0.0	0.0	
15	0.0	0.0	0.5	1.0	2.0	2.5	2.5	2.0	1.0	0.0	0.0	0.0	
14.5	0.0	0.0	0.0	0.5	1.5	2.0	2.0	1,5	0.5	0.0	0.0	0.0	
14	0.5	0.0	0.0	0.0	1.0	1.5	1.5	1.0	0.0	0.0	0.5	0.5	
13.5	1.0	0.5	0.0	0.0	0.5	1.0	1.0	0.5	0.0	0.0	1.0	1.0	
13	15	1.0	0.5	0.0	0.0	0.5	0.5	0.0	0.0	0,5	1.5	1.5	
12.5	2.0	15	1.0	0.5	0.0	0.0	0.0	0.0	0.0	1.0	2.0	2.0	
12	2.5	2.0	1.5	1.0	0.0	0.0	0.0	0.0	0.5	1.5	25	2.5	
11.5	3.0	2.5	2.0	1.5	0.5	0.5	0.5	0.5	1.0	2.0	3.0	3.0	
11	3.5	3.0	2.5	20	1.0	1.0	1.0	1.0	1.5	2.5	3.5	3.5	
10.5	4.0	3.5	3.0	2.5	1.5	1.5	1.5	1.5	2.0	3.0	4.0	4.0	
10	4.5	4.0	3.5	3.0	2.0	2.0	2.0	2.0	2.5	3.5	4.5	4.5	
9.5	5.0	4.5	4.0	3.5	2.5	2.5	2.5	2.5	3.0	4.0	5.0	5.0	
9	5.5	5.0	4.5	4.0	3.0	3.0	3.0	3.0	3.5	4.5	5.5	5.5	
8.5	6.0	5.5	5.0	4.5	3.5	3.5	3.5	3.5	4.0	5.0	6.0	6.0	
8	6.5	6.0	5.5	5.0	4.0	4.0	4.0	4.0	4.5	5.5	6.5	6.5	
7.5	7.0	6.5	6.0	5.5	4.5	4.5	4.5	4.5	5.0	6.0	7.0	7.0	
ALC: NOT	State of the second	A DESCRIPTION OF	C. C. B. C. C. S.	ALC: NO. OF COMPANY	OTHER DESIGNATION.	In The local Diversion of the	SOL FOR STREET	10 M	Track in such as	A LES MILLER	the second second	0100	1111

Ecological Indicator Score PM

BUILDING STRONG

- Based on strongest statistically significant correlations with Lake Stage based on long term environmental monitoring data sets
- Results used to develop indicator scoring:
 - Summer Chara : 2 pts (<12ft), 1 pt (12ft-15.5ft), 0 pt (>15.5ft)
 - Summer Cyanobacteria : 2 pts (<12ft), 1 pt (12ft-14ft), 0 pt (>14ft)
 - Epipelon Spring+Fall : 2 pts (<12ft), 1 pt (12ft-15ft), 0 pt (>15ft)
 - Epiphyte Spring+Fall : 2 pts (<14ft), 1 pt (14ft-15ft), 0 pt (>15ft)
 - Winter Panfish Creel Data: 2 pts (12ft-15ft), 1 pt (<12ft or 15ft-16ft), 0 pt (>16ft)
 - Summer Vascular SAV : 2 pts (12ft-15.5ft), 1 pt (10ft-<12ft or >15.5ft-<18ft), 0 pt (<10ft or >18ft)
- Issue of scoring when the lake is above 16 ft
 - It only scores one point because vascular SAV can start expanding in the littoral zone when the lake stage is that high
 - The other PMs would score a zero and the remaining two PM scores are based on months from the previous year, so it is not an overall positive score
 - It does not mean overall that the lake being over 16 ft will score better than being in the stage envelope

Lake Stage Habitat Unit Calculation

- Habitat Unit Calculation is Based on a Maximum Score of 1
- Scoring is apportioned as follows:
 - 45% (0.45) stage envelope PM
 - 45% (0.45) Combined Ecological PM
 - 10% > 17 ft, <10 ft PM (7.5% (0.075) for excessive high, 2.5% (0.025) excessive low).
- HU percentages based on sensitivity analysis which indicated this distribution provided the combination of the greatest number of habitat acre units and the maximum lift
- Overall score is based on 247,500 acres, the combined area of the Lake Okeechobee littoral and nearshore zones

Lake Okeechobee Habitat Suitability Index Round 2 Modeling

BUILDING STRONG

Metric							
#	PM Metric	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C
2.2	Ecological Indicator	0.69	0.68	0.70	0.72	0.71	0.69
	the second second						
2.1	Stage Envelope	0.58	0.60	0.69	0.70	0.70	0.66
2.1	Extreme Stage	0.93	0.93	0.94	0.93	0.94	0.93

20

Lake Okeechobee Habitat Units and Habitat Unit Lift Round 2 Modeling

BUILDING STRONG

Habitat Units = Habitat Suitability Index (0-1) * Acreage

Lake Okeechobee Habitat Units	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C	Max HU
Ecological PM HUs (acres)	108,675	107,100	110,250	113,400	111,825	108,675	157,500
Stage Envelope PM HUs (acres)	26,100	27,000	31,050	31,500	31,500	29,700	45,000
Extreme Stage PM HUs (acres)	41,850	41,850	42,300	41,850	42,300	41,850	45,000
Total Lake O Habitat Units (acres)	176,625	175,950	183,600	186,750	185,625	180,225	247,500

Habitat Unit Lift = Alt Habitat Units – FWO Habitat Units

Habitat Unit Lift	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C	Max Lift
Ecological PM HU Lift	1,575	0	3,150	6,300	4,725	1,575	50,400
Stage Envelope PM HU Lift	-900	0	4,050	4,500	4,500	2,700	18,000
Extreme Stage PM HU Lift	0	0	450	0	450	0	3,150
Total Lake O HU Lift	675	0	7,650	10,800	9,675	4,275	71,550

Northern Estuaries Performance Measures

BUILDING STRONG

Caloosahatchee Estuary

- PM 3.1 Low Flow Target no months during October to July when the mean monthly inflow from the Caloosahatchee watershed, as measured at S-79, falls below a low-flow limit of 450 cfs
- PM 3.2 High Flow Target no months with mean monthly flows greater than 2,800 cfs as measured at the S-79

Scoring

- Number of months flow < 450 cfs from Lake Okeechobee releases (Oct-July)
- Number of months flow > 2800 cfs from Lake Okeechobee releases (Jan Dec)

Northern Estuaries Performance Measures

BUILDING STRONG

St. Lucie Estuary

- PM 4.1 Low Flow Target 31 months where mean flow is less than 350 cubic feet per second (cfs).
- PM 4.2 High Flow Target 0 Lake Okeechobee regulatory discharge events (14 day moving averages > 2000 cfs)

Scoring

- Number of months where mean flow is less than 350 cfs
- Number of Lake Okeechobee regulatory discharge events (14 day moving averages > 2000 cfs)

- Used the percentage of target from the oyster surveys presented in the 2007 System Status Report to set the ECB value (0 to 100 Scale)
 - Set ECB re-scaled score to 14 for the St. Lucie and 4 for the Caloosahatchee.
 - Extrapolated to determine the minimum or 0 value.
 - Alternatives can still score lower than the ECB
 - ECB No longer has 0 HU value

Estuary	Existing Oyster Acres	Restoration Target (acres)	% of Target
St. Lucie	117	834	14%
Caloosahatchee	18	500	4%

Rescaled Caloosahatchee Round 2 Score

BUILDING STRONG

Caloosahatchee Normalized Scores 0-100

Metric #	PM Metric	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C
3.1	Low Flow (< 450 cfs)	4	81	81	81	81	81
3.2	High Flow (>2800 cfs)	4	29	39	39	39	32

Number of times Salinity Envelope Criteria NOT Met for the Calooshatchee Estuary (mean monthly flows 1965 - 2005)

Caloosahatchee Round 2 Habitat Units

BUILDING STRONG

Habitat Suitability Index (0-1) * Acreage = Habitat Units

Caloosahatchee Acreage = 70,979 acres

Metric							
#	PM Metric	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C
3.1	Low Flow (< 450 cfs)	0.02	0.405	0.405	0.405	0.405	0.405
3.2	High Flow (>2800 cfs)	0.02	0.145	0.195	0.195	0.195	0.16
	Total	0.04	0.55	0.6	0.6	0.6	0.57
	Caloosahatchee Habitat						
	Units	2,839	39,038	42,587	42,587	42,587	40,458

Normalized Scores 0-100

Metric #	PM Metric	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C
4.1	Low Flow (< 350 cfs)	14	31	31	31	31	31
4.2	High Flow (>2000 cfs)	14	55	73	83	73	66

St. Lucie Round 2 Habitat Units

BUILDING STRONG

Habitat Suitability Index (0-1) * Acreage = Habitat Units

St. Lucie Acreage = 14,994 acres

Metric							
#	PM Metric	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C
4.1	Low Flow (< 350 cfs)	0.07	0.155	0.155	0.155	0.155	0.155
4.2	High Flow (>2000 cfs)	0.07	0.275	0.365	0.415	0.365	0.33
	Total	0.14	0.43	0.52	0.57	0.52	0.49
	St. Lucie Habitat Units	2,099	6,447	7,797	8,547	7,797	7,347

Northern Estuaries Habitat Units Round 2 Modeling

BUILDING STRONG

Habitat Units = Habitat Suitability Index (0-1) * Acreage

Northern Estuaries PMs	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C	Max HU
Caloosahatchee Habitat							
Units (acres)	2,839	39,038	42,587	42,587	42,587	40,458	70,979
St. Lucie Habitat Units							
(acres)	2,099	6,447	7,797	8,547	7,797	7,347	14,994
Overall NE Habitat Units							
(acres)	4,938	45,485	50,384	51,134	50,384	47,805	85,973

Northern Estuaries Habitat Unit Lift Round 2 Modeling

BUILDING STRONG

Habitat Unit Lift = Alt Habitat Units – FWO Habitat Units

Northern Estuaries PMs	ECB	FWO	ALT1B	ALT2A	ALT2B	ALT2C	Max Lift
Caloosahatchee Habitat							
Unit Lift	-36,199	0	3,549	3,549	3,549	1,420	31,941
St. Lucie Habitat Unit Lift	-4,348	0	1,350	2,100	1,350	900	8,547
Total NE Habitat Unit Lift	-40,547	0	4,899	5,649	4,899	2,320	40,488

Round 2 Modeling Habitat Units

BUILDING STRONG

	ALT1B	ALT2A	ALT2B	ALT2C
Northern Estuaries				
Potential Lift	4,899	5,649	4,899	2,320
Lake O Potential Lift	7,650	10,800	9,675	4,275
Total Potential Lift	12,549	16,449	14,574	6,595

	KR-N	KR-C	KR-C Extra	KR-S	PR-N	PR-S	LO-W	IP-10
Wetland HU Lift	355	927	204	344	970	1,836	2,306	2,866

Trusted Partners Delivering Value Today for a Better Tomorrow

Discussion

BUILDING STRONG

Acknowledgements

- Andy Rodusky
- Steve Schubert
- Eco Subteam

Lake Okeechobee Watershed Restoration Project

Monitoring and Adaptive Management Plan

Introduction for the PDT

What is a Project's Monitoring and Adaptive Management Plan?

BUILDING STRONG

The Plan is a combination of two required pieces of CERP Project Implementation Reports (PIRs):

A monitoring plan specifies the data collection, analysis, and reporting that will inform project performance

An adaptive management plan guides the use of collected data to:

- Address uncertainties related to project performance
- Maximize project benefits while reducing project costs
- Help inform implementation sequencing of LOWRP
- Understand how monitoring will determine if adjustments are needed in project implementation to improve performance

Plan Organization

BUILDING STRONG

LOWRP PIR/EIS Document Main Body Annexes Appendices

Monitoring and Adaptive Management Plan

Introduction

Part 1: Adaptive Management Plan (AM Plan)

- Includes AM-relevant uncertainties, strategies, and recommendations
- Refer to other monitoring where possible

AM Monitoring will support the AM uncertainties as well as confirm the benefits of the project.

Ecological Monitoring will confirm project benefits.

Part 2: Hydrometeorological Monitoring

Part 3: Water Quality Monitoring

- Monitoring plans will be developed based on ecological, hydrological and water quality needs to determine project success
- AM plan development will be led by the Eco subteam and will coordinate with PDT, subteams (engineering, water quality, water supply, etc.), RECOVER, Science
 Coordination Group
- Starting point will include AM work already available from other projects, science programs, and LOWRP teams

AM Plan Development

BUILDING STRONG

Adaptive management steps to be coordinated with the team and groups:

- 1. Identify and prioritize LOWRP uncertainties that can be addressed
- 2. Define strategies to address key uncertainties:
 - Maximize use of existing ecosystem monitoring and that listed in other sections of the LOWRP AM and Monitoring Plan and other monitoring
 - Testing of project features
- 3. Define how incoming data will be processed and reported for maximum use by project decision-makers over time
- 4. Process for informing project implementation
- 5. Finalize AM strategies with the tentatively selected plan (TSP) and determine costs

Process for AM Plan Development

Monitoring Plan Development

BUILDING STRONG

- 1. Identify current monitoring (RECOVER, Agencies, Counties, etc.)
- 2. Identify monitoring needed for AM Strategies, Ecological Monitoring, Water Quality and Hydrometeorological
- 3. Finalize monitoring with TSP and determine costs

- Affect LOWRP's ability to meet its goals and objectives and remain within its constraints
- Be at an appropriate LOWRP-scale spatially and temporally
- Have options for adaptive management actions such as potential project or operational adjustments
- Have a combination of high importance to LOWRP and high uncertainty that could be reduced by practical adaptive management

Risk: What is the risk (high, medium, low) of not meeting LOWRP restoration goals if this uncertainty is not addressed?

Knowledge: What is the level of understanding (high, medium, low) of this uncertainty (i.e., how much is known about this uncertainty)?

Relevance to Adaptive Management for LOWRP: What is the level of confidence (high, medium, low) that anything could be done to address the uncertainty?

- Occurrence and management of invasive species and algal blooms
- Recruitment/re-establishment of wildlife populations
- Success of vegetation communities
- Effects on groundwater/drinking water supply
- Drought/severe weather events' impact to the project
- Effects of new structures and hydrologic regimes to upland species

Schedule for Monitoring and AM Plan Development

BUILDING STRONG

May 2017:

• Kick off AM and Monitoring Plan activity – complete

June 2017:

- Identify and Prioritize uncertainties in progress
- Review existing monitoring plans

July 2017:

Develop AM Strategies

August 2017:

- Review AM Plan; will need to know TSP before finalizing
- Coordination with LOWRP subteams, PDT, scientists and experts

September 2017:

- Finalize items to include in Plan based on TSP
- Finalize AM strategies, decision trees, and implementation plan
- Present costs

October 2017:

Monitoring and Adaptive Management Plan Deadline

Learn more about Adaptive Management in CERP

BUILDING STRONG

Adaptive Management Integration Guide The Comprehensive Everglades Restoration Plan March 2011 the journey to restore America's Everglades

The Adaptive Management Integration Guide http://141.232.10.32/pm/pm_docs/adaptive_m gmt/062811_am_guide_final.pdf

CERP Program-Level AM Plan http://www.saj.usace.army.mil/Portals/44/docs /Environmental/RECOVER/20151019_CERPPRO GRAMAMPLAN_DCT_APPROVED.pdf

Geotechnical Data Collection

BUILDING STRONG

Geotechnical Exploration

- Exploration expected to begin in late July
- Exploration expected to take 4 weeks
- Performed by USACE drilling crews
- Lab analysis has not been scheduled

Geotechnical Data

- Number of SPT borings: 10
- Number of companion borings for constant head tests: 15
- Number of DRIs: 20
- Testing is for seepage and foundations analysis for highhazard impoundment
- Testing is limited to publicly owned lands and rights of way within or near K-05 and K-42 proposed reservoir locations.

Trusted Partners Delivering Value Today for a Better Tomorrow

Geotechnical Test Locations

BUILDING STRONG

BUILDING STRONG

What Is NED? National Economic Development:

NED is one of the four accounts USACE employs in the Civil Works decision making process - National Economic Development, National Ecosystem Restoration, Regional Economic Development, Other Social Effects

USACE Principals and Guidelines States:

"Contributions to national economic development (NED) are increases in the net value of the national output of goods and services, expressed in monetary units..."

"A plan recommending Federal action is to be the alternative plan with the greatest net economic benefit consistent with protecting the Nation's environment (the NED plan)..."

HOWEVER...

Trusted Partners Delivering Value Today for a Better Tomorrow

BUILDING STRONG

The Lake Okeechobee Watershed project is a National Ecosystem Restoration Effort NED impacts are ancillary to the primary project purpose, NER

Water supply modification is regulated by the 'Savings Clause' of WRDA 2000

Section 601(h)(5) Savings Clause-

NO ELIMINATION OR TRANSFER- Until a new source of water supply of comparable quantity and quality as that available on the date of enactment of this Act is available to replace the water to be lost as a result of implementation of the Plan, the Secretary and the non-Federal sponsor shall not eliminate or transfer existing legal sources of water, including those for—

- (i) An agriculture or urban water supply
- (ii) Allocation or entitlement to the Seminole Indian Tribe of Florida under section 7 of the Seminole Land Claims Settlement Act of 1987
- (iii) The Miccosukee Tribe of Indians of Florida
- (iv) Water supply for ENP; or
- (v) Water supply for fish and wildlife

Trusted Partners Delivering Value Today for a Better Tomorrow

NED Impacts Resulting From Water Supply Delivery Modification

BUILDING STRONG

Proposed Process For Analyzing Water Supply Impacts in LOW

Analysis to be performed jointly between SFWMD and USACE staff

- Initial water supply impacts/benefits identified through Alternative screening will be represented using percentage change from the existing level of water supply delivered. Each Service Area will be analyzed.
- For the Tentatively Selected Plan, monetary impacts/benefits from water supply efforts will be estimated using economic post processors which utilize data from the existing water management model.
- Process will allow the PDT to see what, if any, monetary impact/benefits occur to agricultural production as well as potential impacts to M&I as a result of water supply modification
- If the Lower East Coast is included in this analysis, Municipal and Industrial impacts in the LEC will be analyzed as well, using similar methods as the analysis used in the Service Areas.

BUILDING STRONG

NED/WSP Supply Team Path Forward

Inclusion of recreation to the benefit analysis, post Tentatively Selected Plan announcement

Potential discussion of Regional Economic Development impacts of water supply modification

Questions?

Trusted Partners Delivering Value Today for a Better Tomorrov