

US Army Corps of Engineers ® Jacksonville District

Geotechnical Data Report C-44 Reservoir/STA

Contract 2 W912EP-14-R-0016

December 23, **2014**

FC

TABLE OF CONTENTS

TABLE OF CONTENTSI				
LIST OF FIGURESIV				
LIST C	OF FIGURES CONTINUED	V		
1.0	INTRODUCTION	1		
1.1	Project Description	1		
1.2	Purpose and Scope of Work	1		
1.3	Limitations and Basis for Findings	2		
2.0	SITE HISTORY AND ENVIRONMENTAL CONDITIONS	3		
2.1	Purpose	3		
2.2	Regional and Site Geology	3		
2.	2.1 Regional Physiography and Geomorphology	3		
2.	2.2 Project Area Geology	3		
2.3	Geologic Hazards Evaluation	3		
2.	3.1 Seismic Hazards	4		
2.	3.2 Karst	4		
2.4	Historical Information	5 6		
2.0		0		
3.0	HISTORY OF SITE EXPLORATIONS	7		
4.0	FIELD INVESTIGATIONS	10		
4.1	Introduction	10		
4.2	Field Exploration Methods	10		
4.	2.1 Sampling Methods	10		
4.	2.2 Rotary-Wash Borings with SPT	10		
4.	2.3 Auger Borings	13		
4.	2.4 Test Pits	13		
4.3	Cone Penetrometer Tests	13		
4.	3.1 CPTU Testing Equipment and Procedures	13		
4.	3.2 Data Analysis	14		
4.4	Geophysical Methods	15		
4.	4.1 Surface Geophysics	15		
4.	4.2 Downhole Geophysics	16		
4.5	Investigative Monitoring Wells	16		
4. 1	5.1 Shallow Suncial Aquiler Monitoring Weils	17		
4.	USGS Monitoring Wells	17		
4.0	Aquifer Testing	17		
50		19		
0.0 E 4		40		
5.1	Introduction	19 10		
5.2	2.1 Particle Size Analysis	19		
5.	2.2 Water Content	20		
5	2.3 Atterberg Limits	20		
5.	2.4 Density Tests	20		
5.	2.5 Hydraulic Conductivity Tests	21		
5.	2.6 Corrosivity Series Tests	21		
5.	2.7 Carbonate Testing	21		
	-			

5.2.	3 Triaxial Shear Strength Tests	. 22
5.2.	Consolidation Tests	. 22
5.2.	0 Visual Percent Shell Tests	. 22
5.2.	1 Geotextile Interface Resistance Tests	. 23
60 G	FOLOGIC AND HYDROGEOLOGIC SITE CONDITIONS	24
0.0		~ ~
6.1 6.2	Introduction	.24
62	General Stratigraphy Inits	. 24 24
6.2	2 Informal Stratigraphic Units	25
6.3	Site Hydrostratioranhy	. 20
6.3.	Surficial Aquifer System	. 27
6.3.	2 Surface Water	. 29
6.4	Geophysical Investigation	. 29
70 0		24
7.0 G		. 51
7.1	Introduction	.31
1.2	Engineering Properties of Subsurface Soils	.31
7.2.	Conce Penetrotion Soundings	. ວ 1 ວ ວ
7.2.	2 Cone Perietration Soundings	. JZ
7.2.	Auger Borrings	. 34
7.3 7.3	Laboratory resulting Results	.34 3⊿
7.3	Proctor Compaction Tests	. 0∓ .3⊿
7.3.	Hydraulic Conductivity	35
7.3	Triavial Strength Test Results	35
7.3	Correctivity Testing Carbonate Contant, and Organia Contant	35
	Y COMUNIVITY LENION CANODIALE COMENT AND COMANIC COMENT	
7.3	Atterberg Limit Testing	35
7.3.	Atterberg Limit Testing	. 35
7.3. 8.0 T	Solution Content, and Organic Content. Solution Atterberg Limit Testing EST CELL PROGRAM DATA	. 35 . 36
7.3. 8.0 T 8.1	Sourcesting, Carbonate Content, and Organic Content. Sourcesting Limit Testing	. 35 . 36 . 36
7.3. 8.0 T 8.1 8.2	Corrosivity resting, Carbonate Content, and Organic Content. Atterberg Limit Testing EST CELL PROGRAM DATA Introduction Construction Field and Laboratory Test Program	. 35 . 36 . 36 . 36
7.3. 8.0 T 8.1 8.2 8.2.	Atterberg Limit Testing	. 35 . 36 . 36 . 36 . 36
7.3. 8.0 T 8.1 8.2 8.2. 8.2.	Social Stress	. 35 . 36 . 36 . 36 . 36 . 36
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2.	Source Contenting resting, Carbonate Content, and Organic Content. Source Atterberg Limit Testing	. 35 . 36 . 36 . 36 . 36 . 36 . 36 . 37
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2.	S Atterberg Limit Testing S Atterberg Limit Testing EST CELL PROGRAM DATA Introduction Construction Field and Laboratory Test Program Construction Field and Laboratory Test Program Earthwork S Shell-Rock S Soil-Cement Geotextile	. 35 . 36 . 36 . 36 . 36 . 36 . 36 . 37 . 38
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3	S Corrosivity Festing, Carbonate Content, and Organic Content S Atterberg Limit Testing EST CELL PROGRAM DATA Introduction Construction Field and Laboratory Test Program Construction Field and Laboratory Test Program <i>Earthwork</i> Shell-Rock <i>Soli-Cement</i> Geotextile Site Instrumentation	. 35 . 36 . 36 . 36 . 36 . 36 . 36 . 37 . 38 . 38
7.3. 8.0 T 8.1 8.2 8.2. 8.3. 8.5.	Sectors willy resting, Carbonate Content, and Organic Content. Sectors willy resting. Sectors will resting	. 35 . 36 . 36 . 36 . 36 . 36 . 36 . 37 . 38 . 38 . 38 . 38
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3.	Sectors willy resting, Carbonate Content, and Organic Content. Sectors willy resting, Carbonate Content, and Organic Content. Sectors for the string	.35 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3.	Sectors willy resting, Carbonate Content, and Organic Content. Sectors Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction. Construction Field and Laboratory Test Program <i>Earthwork</i> . 2 Shell-Rock 3 Soil-Cement. Geotextile. Site Instrumentation Paperless Recorders 2 Piezometers 3 Vibrating Wire Piezometers	. 35 . 36 . 36 . 36 . 36 . 36 . 36 . 36 . 38 . 38 . 38 . 38 . 38 . 38
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3. 8.3.	Sectors will resting, carbonate content, and organic content. Sectors will resting	.35 .36 .36 .36 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .38 .39 .39
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4	Secondstripty resting, Carbonate Content, and Organic Content. S Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction Construction Field and Laboratory Test Program Image: Earthwork Shell-Rock Soil-Cement Geotextile Site Instrumentation Paperless Recorders Piezometers Vibrating Wire Piezometers Settlement Gauges Test Cell Operations and Monitoring Program	.35 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4.	6 Contosivity Testing, Carbonate Content, and Organic Content. 6 Atterberg Limit Testing EST CELL PROGRAM DATA	.35 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .38 .38 .39 .39 .39
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4.	Sector Solving Testing, Carbonate Content, and Organic Content. Sterberg Limit Testing EST CELL PROGRAM DATA. Introduction. Construction Field and Laboratory Test Program. Earthwork. 2 Shell-Rock 3 Soil-Cement. 4 Geotextile. Site Instrumentation Paperless Recorders Piezometers. 3 Vibrating Wire Piezometers 4 Settlement Gauges Test Cell Operations and Monitoring Program. Reservoir Test Cells Flow and Stages 2 3 3 3 4 5 4 5 5 6 6 7 7 8 8 9 9 9 9 9 9 9 9 9 9	.35 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .39 .39 .39 .39 .39 .39
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.4 8.4.	 Atterberg Limit Testing. Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction. Construction Field and Laboratory Test Program. Earthwork. Shell-Rock Soil-Cement. Geotextile. Site Instrumentation Paperless Recorders. Piezometers. Vibrating Wire Piezometers. Vibrating Wire Piezometers. Settlement Gauges. Test Cell Operations and Monitoring Program. Reservoir Test Cells Flow and Stages. STA Test Cells Flow and Stages. Groundwater and Embankment Water Levels	.35 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .39 .39 .39 .39 .39 .40
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3. 8.4.	3 Atterberg Limit Testing. 3 Atterberg Limit Testing. EST CELL PROGRAM DATA . Introduction. Construction Field and Laboratory Test Program. Construction Field and Laboratory Test Program. <i>Earthwork</i> . Shell-Rock 3 Soil-Cement. 4 Geotextile. Site Instrumentation Paperless Recorders. 2 Piezometers. 3 Vibrating Wire Piezometers. 4 Settlement Gauges. Test Cell Operations and Monitoring Program. Reservoir Test Cells Flow and Stages. 2 STA Test Cells Flow and Stages. 3 Groundwater and Embankment Water Levels . 4 Seepage Canal Drawdown Test. 5 Seepage Extinctes	.35 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .38 .39 .39 .39 .39 .40 .40 .42
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5	3 Atterberg Limit Testing, Carbonate Content, and Organic Content. 3 Atterberg Limit Testing EST CELL PROGRAM DATA	.35 .36 .36 .36 .36 .36 .37 .38 .38 .38 .38 .38 .39 .39 .39 .39 .40 .40 .42 .42
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 8.6. 8.5	Atterberg Limit Testing, Carbonate Content, and Organic Content. Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction. Construction Field and Laboratory Test Program Earthwork. Shell-Rock Soil-Cement. Geotextile. Site Instrumentation Paperless Recorders. Piezometers. Vibrating Wire Piezometers Settlement Gauges Test Cell Operations and Monitoring Program. Reservoir Test Cells Flow and Stages Strates Cells Flow and Stages Groundwater and Embankment Water Levels Seepage Canal Drawdown Test. Seepage Estimates Groundwater Quality Overwash Test	.35 .36 .36 .36 .36 .36 .37 .38 .38 .38 .38 .39 .39 .39 .39 .39 .40 .40 .42 .42 .43
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 8.6. 0	Control String Testing, Carbonate Content, and Organic Content. Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction. Construction Field and Laboratory Test Program Earthwork. 2 Shell-Rock 3 Soil-Cement. 4 Geotextile. Site Instrumentation Paperless Recorders Piezometers. 3 Vibrating Wire Piezometers 4 Settlement Gauges Test Cell Operations and Monitoring Program. Reservoir Test Cells Flow and Stages 2 STA Test Cells Flow and Stages 3 Groundwater and Embankment Water Levels 4 Seepage Canal Drawdown Test. 5 Seepage Estimates Groundwater Quality Overwash Test	.35 .36 .36 .36 .36 .36 .36 .38 .38 .38 .38 .38 .39 .39 .39 .39 .39 .39 .40 .42 .42 .42 .43 .46
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 8.6 9.0 S	Control of Control of Control of Control of Control of Control of Construction EST CELL PROGRAM DATA	.35 .36 .36 .36 .36 .36 .37 .38 .38 .38 .38 .38 .38 .39 .39 .39 .39 .39 .40 .42 .42 .42 .43 .46 .47
7.3. 8.0 T 8.1 8.2 8.2. 8.2. 8.2. 8.2. 8.3 8.3. 8.3. 8.3. 8.3. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.4. 8.5. 8.6 9.0 S 9.1	Atterberg Limit Testing Atterberg Limit Testing EST CELL PROGRAM DATA. Introduction Construction Field and Laboratory Test Program Earthwork. 2 Shell-Rock 3 Soil-Cement 4 Geotextile 5 StellerRock 9 Soil-Cement 4 Geotextile 9 StellerRock 9 Soil-Cement 9 Geotextile 9 StellerRock 9 StellerRock 9 Soil-Cement 9 Geotextile 9 Geotextile 9 StellerRock 9 Vibrating Wire Piezometers 9 Vibrating Wire Piezometers 9 Settlement Gauges 10 Test Cells Flow and Stages 11 Reservoir Test Cells Flow and Stages 12 Stepage Canal Drawdown Test 13 Seepage Canal Drawdown Test 14 Seepage Canal Drawdown Test 15 Seepage Estimates 16 Groundwater Quality	.35 .36 .36 .36 .36 .36 .37 .38 .38 .38 .38 .38 .39 .39 .39 .39 .39 .39 .40 .42 .42 .43 .46 .47

9.3	AMEC 2013 Study	47
9.3	3.1 Chemical Analyses of Water Samples	47
9.3	3.2 Chemical Analyses of Soil Samples	48
9.3	3.3 Water Source Verification Testing	48
9.3	3.4 Soil-Cement Mix Design Testing	49
9.4	AMEC 2014 Study	49
10.0	REFERENCES	51

List of Figures

Section 1.0

- Figure 1.1 Project Vicinity Map
- Figure 1.2 C-44 Project and Vicinity Features Map
- Figure 1.3 Contract 2 Project Features

Section 2.0

- Figure 2.1 Geomorphic Features of the South Florida Water Management District
- Figure 2.2 Earthquake Probability: Magnitude 5.0 Within 100 Years
- Figure 2.3 Earthquake Probability: Magnitude 6.5 Within 100 Years
- Figure 2.4 USGS Map of Peak Acceleration
- Figure 2.5 Sinkhole Types and Probabilities in Florida
- Figure 2.6 Reported New Sinkholes in Florida
- Figure 2.7 1940 Aerial Photograph
- Figure 2.8 1952 Aerial Photograph
- Figure 2.9 1958 Aerial Photograph
- Figure 2.10 1970 Aerial Photograph
- Figure 2.11 1981 Aerial Photograph
- Figure 2.12 1999 Aerial Photograph
- Figure 2.13 Recognized Environmental Conditions (REC) Locations

Section 3.0

- Figure 3.1 Previous Geotechnical Explorations
- Figure 3.2 Reservoir Vicinity Explorations
- Figure 3.3 Project Site Explorations
- Figure 3.4 Monitoring Well Locations

Section 4.0

- Figure 4.1 USGS Surficial Aquifer Monitoring Wells in the Project Area
- Section 5.0 No Figures

Section 6.0

- Figure 6.1 Soils Map of Project Area
- Figure 6.2 Resistivity Map of Soil at Depth 1.4 feet
- Figure 6.3 Resistivity Map of Soil at Depth 4.4 feet
- Figure 6.4 Resistivity Map of Soil at Depth 7.6 feet
- Figure 6.5 Resistivity Map of Soil at Depth 10.2 feet
- Figure 6.6 Resistivity Map of Soil at Depth 13.4 feet
- Figure 6.7 Resistivity Map of Soil at Depth 17.3 feet
- Figure 6.8 Resistivity Map of Soil at Depth 22.0 feet

Section 7.0

- Figure 7.1 SPT (N1)₆₀ vs. Elevation
- Figure 7.2 Statistical Evaluation of (N1)₆₀ Data
- Figure 7.3 Average SPT (N1)₆₀: 0 to 10 ft Deep
- Figure 7.4 Average SPT (N1)₆₀: 10 to 20 ft Deep
- Figure 7.5 Average SPT (N1)₆₀: 20 to 40 ft Deep
- Figure 7.6 Average SPT (N1)₆₀: >40 ft Deep
- Figure 7.7 Occurrence of SPT $(N1)_{60} \le 10$: 0 to 10 ft Deep
- Figure 7.8 Occurrence of SPT $(N1)_{60} \le 10$: 10 to 20 ft Deep

List of Figures continued

- Figure 7.9 Occurrence of SPT $(N1)_{60} \le 10$: 20 to 40 ft Deep
- Figure 7.10 Occurrence of SPT $(N1)_{60} \le 10$: >40 ft Deep
- Figure 7.11 Reservoir Area CPT Tip Resistance vs. Elevation
- Figure 7.12 Reservoir Area Undrained Shear Strength Estimated from CPT Tip Resistance vs. Elevation
- Figure 7.13 Reservoir Area CPT Estimated N-Value vs. Elevation
- Figure 7.14 Reservoir Area Friction Angle Estimated from CPT Tip Resistance vs. Elevation
- Figure 7.15 Reservoir Area Secant Young's Modulus Estimated from CPT Tip Resistance vs. Elevation
- Figure 7.16 Fines Content vs. Elevation
- Figure 7.17 Fines Content by Soil Unit
- Figure 7.18 Fines by Quadrant: 0 to 5 ft Deep
- Figure 7.19 Fines by Quadrant: 5 to 10 ft Deep
- Figure 7.20 Fines by Quadrant: 10 to 15 ft Deep
- Figure 7.21 Fines by Quadrant: 15 to 40 ft Deep
- Figure 7.22 USCS Classifications by Depth Interval
- Figure 7.23 Laboratory Grain Size Analysis Test Results Auger Borings, Depths 0 to 3 ft
- Figure 7.24 Laboratory Grain Size Analysis Test Results Auger Borings, Depths 4 to 7 ft
- Figure 7.25 Laboratory Grain Size Analysis Test Results Auger Borings, Depths 8 to 20 ft
- Figure 7.26 Modified Proctor Maximum Dry Density vs. Percent Fines
- Figure 7.27 Remolded Laboratory Hydraulic Conductivity vs. Elevation
- Figure 7.28 Undisturbed Laboratory Hydraulic Conductivity vs. Percent Fines Content Test Results
- Figure 7.29 Remolded Laboratory Hydraulic Conductivity vs. Percent Fines Content Test Results
- Figure 7.30 Fines Content vs. Friction Angle for Remolded Samples, 0 to 7 ft Depth
- Figure 7.31 Atterberg Limits, Liquid Limit vs. Plasticity Index

Section 8.0

- Figure 8.1 Test Cell Layout
- Figure 8.2 Soil Cement Placement Details
- Figure 8.3 Site Monitoring Points
- Figure 8.4 Piezometer Configuration at Reservoir Test Cells
- Figure 8.5 Test Cell 1 Layout
- Figure 8.6 Test Cell 2 Layout
- Figure 8.7 Surficial Aquifer Water Levels After Approximately Two Months of Test Cell Operation RTC1
- Figure 8.8 Shallow Piezometer Water Levels After Approximately Two Months of Test Cell Operation - RTC2
- Figure 8.9 Surficial Aquifer Water Levels RTC1 North Transect
- Figure 8.10 Surficial Aquifer Water Levels RTC1 East Transect
- Figure 8.11 Comparison of Rainfall to Test Cell and Background Water Levels
- Figure 8.12 Seepage Canal SCC1 Drawdown vs. Daily Pumped Volume
- Figure 8.13 Seepage Canal SCC1 and Piezometer Water Levels During Drawdown Test
- Section 9.0 No Figures

List of Tables

Section 1.0 No Tables

Section 2.0

 Table 2.1
 Summary of Contaminants Detected in REC Areas

Section 3.0

Table 3.1Summary of Site Explorations

Section 4.0

- Table 4.1Summary of Boring Logs
- Table 4.2 Summary of CPT Logs
- Table 4.3Summary of Test Pits
- Table 4.4Summary of Monitoring Wells
- Table 4.5Monitoring Well Nomenclature and Status
- Table 4.6Pore Pressure Decay from CPTU Soundings
- Table 4.7Falling Head Permeability Field Test Results
- Table 4.8 Field Permeability Test Results
- Table 4.9Field Slug Test Results
- Table 4.10Aquifer Performance Test Results
- Table 4.11Slug Test Results Site Wells

Section 5.0

- Table 5.1Specific Gravity Test Results
- Table 5.2
 Lab and In-Situ Density Test Results Remolded Samples from Auger Borings
- Table 5.3
 Standard Proctor Test Results Remolded Samples from Auger Borings
- Table 5.4
 Hydraulic Conductivity Test Results Remolded Samples
- Table 5.5
 Hydraulic Conductivity Test Results Undisturbed Samples
- Table 5.6
 Organic Content and Corrosivity Test Results Auger Boring and Test Pit Samples
- Table 5.7 Additional Carbonate Content Testing Test Pits
- Table 5.8 Triaxial Test Results Remolded Samples
- Table 5.9
 Triaxial Test Results Undisturbed Samples

Section 6.0

- Table 6.1Generalized Geology and Hydrogeology of Project Area
- Table 6.2 Hydraulic Conductivity Test Data
- Table 6.3
 Summary of Groundwater Elevations at Project Site
- Table 6.4
 Groundwater Elevation Ranges in Monitoring Wells
- Table 6.5Depth to Groundwater in Borings
- Table 6.6Depth to Groundwater in Test Pits
- Table 6.7
 Summary of Surficial Aquifer Water Quality in the Project Area
- Table 6.8
 Typical Soil Types by Resistivity for CCR surveys in Florida
- Section 7.0 No Tables

Section 8.0

- Table 8.1
 Average Percent Compaction and Deviation from Optimum Moisture Content
- Table 8.2
 Soil-Cement Borrow Materials Test Results
- Table 8.3
 Comparison of 28-Day Compressive Strength, Soil Type 1 vs. Soil Type 2 Soil-Cement
- Table 8.4
 Soil-Cement Field Production Compressive Strength Test Results vs. Laboratory Mix Design Results
- Table 8.5Test Cell Operations and Monitoring Data Points
- Table 8.6Test Cell Piezometer Details

List of Tables continued

- Table 8.7Test Cell Operations Summary
- Table 8.8
 Test Cell Seepage Canal Drawdown Test Volume Pumped
- Table 8.9
 Groundwater Quality Monitoring Summary Test Cells

Section 9.0

- Table 9.1Soil-Cement Strength Testing
- Table 9.2Water Analysis Parameters
- Table 9.3Soil Aggregate Parameters
- Table 9.4 Summary of Water Source Testing
- Table 9.5
 Summary of Soil-Cement Mix Design Testing

List of Appendices (On Disc Only, not printed)

Appendix A	Boring Logs A-1 – Boring Logs (HDR Investigation) A-2 – Boring Logs (AMEC Investigation)
Appendix B	Laboratory Data B-1 – Laboratory Testing Results (HDR Investigation) B-2 – Laboratory Testing Results (AMEC Investigation)
Appendix C	CPT Data
Appendix D	Geophysics Data
Appendix E	Test Pit Photos
Appendix F	Test Cell Program Data
Appendix G	Soil-Cement Design Data
Appendix H	Ardaman Report (2003)
Appendix I	CDM Report (2004)
Appendix J	Well Rehabilitation Report CDM Smith 2012

List of Abbreviations

- AB Rotary-Auger
- AMEC AMEC Environment and Infrastructure Inc.
- APT aquifer performance test
- ASTM American Standard Testing Methods
- BODR Basis of Design Report
- CB Rotary-Wash Borings
- CCR Capacitively Coupled Resistivity
- CERP Comprehensive Everglades Restoration Plan
- CDM Camp, Dresser, and McGee
- CL low plasticity clay
- CM centimeters
- CPT Cone Penetrometer Tests
- CPTU Cone Penetrometer Tests with pore pressure measurements
- DCM Design Criteria Memorandum
- DDE Dichlorodiphenyldichloroethylene
- DDT Dichlorodiphenyltrichloroethane
- EAA Everglades Agricultural Area
- EOP end of primary
- EPA Environmental Protection Agency
- EPZ embankment piezometer
- ESA Environmental Site Assessment
- FAC Florida Administrative Code
- FAS Florida Aquifer System
- FDEP Florida Department of Environmental Protection
- FDOT Florida Department of Transportation
- FGS Florida Geological Survey
- FM Florida Method
- GDR Geotechnical Data Report
- GPS Global Positioning System
- HDR HDR Engineering Inc.
- ID inside diameter
- IHSS International Humic Substances Society
- IRL-S Indian River Lagoon South Project
- KG kilogram
- KSF kilopounds per square foot
- LL Liquid Limit
- MCL maximum contamination level
- MG milligram
- NAD North American Datum
- NAVD North American Vertical Datum
- NAVFAC Naval Facilities Command
- NE northeast
- NFSL Normal full storage level
- NGVD National Geodetic Vertical Datum
- NRCS Natural Resources Conservation Service

NTU – Nephelometric Turbidity Unit NW – northwest OD – outside diameter PCU – Platinum-Cobalt Units PEC – probable effects concentration PI – Plasticity Index

- PL Plastic Limit
- PSHA probabilistic seismic hazards analyses
- PSI pounds per square inch
- PVC polyvinyl chloride
- PZ piezometer
- RCV dipole receivers
- REC recognized environmental condition
- RQD Rock Quality Designation
- RTC reservoir test cells
- SAS Surficial Aquifer System
- SC clayey sand
- SCC Seepage collection canals
- SE southeast
- SEI Subsurface Evaluations, Inc.
- SFWMD South Florida Water Management District
- SM silty sand
- SP spontaneous potential
- SP-SC poorly graded clean to clayey sands
- SP-SM poorly graded clean to silty sand
- SPT Standard Penetration Test
- SQAG sediment quality assessment guideline
- SSSA Soil Science Society of America
- STA stormwater treatment area
- SW southwest
- TDS Total dissolved solids
- TEC threshold effect concentration
- TKN Total Kjeldahl Nitrogen
- TM Technical Memoranda
- TON Threshold Odor Number
- TP Test Pits
- TSF tons per square foot
- TX dipole transmitter
- UFA Upper Floridian Aquifer
- USACE U. S. Army Corps of Engineers
- USCS Unified Soil Classification System
- USDA U.S. Department of Agriculture
- USFWS U.S. Fish and Wildlife Service
- USGS U.S. Geological Survey
- VWP vibrating wire piezometer
- WES Williams Earth Sciences, Inc.

1.0 INTRODUCTION

1.1 **Project Description**

The C-44 Reservoir/Stormwater Treatment Area Project (Project) is included in the Comprehensive Everglades Restoration Plan (CERP) as part of the Indian River Lagoon South (IRL-S) Project. The Project will attenuate the freshwater flow and improve the water quality of flow into the St. Lucie Estuary. The C-44 Basin has a contributing drainage area of approximately 202 square miles located in Martin County, Florida. The C-44 Canal is the primary conveyance that serves the C-44 Basin. The project site is located approximately 1 mile east of Indiantown, Florida and encompasses an area adjacent to and 7 miles to the north of the existing C-44 Canal (see Figure 1.1).

The recommended plan for the Project includes a reservoir to capture local runoff and flow from the C-44 Canal, and a stormwater treatment area (STA) to treat the flow from the reservoir before it is returned to the C-44 Canal. Inflow to the proposed reservoir from the C-44 Canal will be through an intake canal and a 1,100-cubic-feet-per-second pump station. The pump station will be located near the southeast portion of the reservoir. Water will be discharged by gravity from the reservoir through a discharge structure located in the northeast corner of the reservoir to a distribution canal that will deliver water to the STA cells. Water will then be discharged from the STA cells to the STA collection canals and from there to the C-44 Canal through a system of discharge structures. The Project configuration, as shown on Figure 1.2, was prepared by the US Army Corps of Engineers (USACE). The Project is split into separate contracts as follows:

- Contract 1 Intake Canal, Project Access road, and C-133A and C-133 Canals.
- Contract 2 Reservoir with appurtenant features.
- System Discharge Canal and Spillway
- STAs with appurtenant features (culverts, etc.).
- Pump Station and appurtenant features

Construction/bid documents have been completed for Contract 1 and that portion of the Project is currently under construction. Contract 1 and Contract 2 will be constructed by contractors working for the US Army Corps of Engineers (USACE). The System Discharge Canal and Spillway, the STAs and the Pump Station will be constructed by contractors working for the South Florida Water Management District (SFWMD).

1.2 Purpose and Scope of Work

The purpose of this Geotechnical Data Report (GDR) is to present historical and recent data obtained by HDR Engineering Inc. (HDR) and by others that describes the existing site and subsurface conditions related to Contract 2 of this Project. Contract 2 Project features are shown on Figure 1.3. This report contains field investigation data, laboratory and field test results, results of an environmental site assessment, and a characterization of the subsurface site conditions. This report may contain information pertaining to the project site that lies outside of the Contract 2 construction limits for reference purposes only. The following reports or investigations were utilized to prepare the GDR:

• <u>2003</u> Investigation - Subsurface Exploration and Preliminary Geotechnical Engineering Evaluation, Troup Indiantown Water Control District Reservoir and Stormwater Treatment Area Project, Ardaman & Associates, Inc. (Ardaman), December 2003. (included as Appendix H)

- <u>2004 Geotechnical Investigation</u> *Preliminary Subsurface Investigations and Geotechnical Analyses, C-44 Water Management Project,* Camp, Dresser, and McGee (CDM), April 2004. (included as Appendix I)
- <u>2004 Environmental Investigation</u> Consolidated Citrus LP and Gardinier Florida Citrus, Inc. Properties, Martin County, Florida – Proposed C-44 Reservoir/Stormwater Treatment Area Phase I/II Environmental Site Assessment, CDM, December 2004.
- <u>2005 Investigation</u> SEI, 2 September 2005, "Capacitively Coupled Resistivity Report." (included as Appendix D)
- <u>2006 Site Characterization Report</u> *Site Characterization Report*, HDR, 2006.
- <u>2007 Test Cell Investigation</u> *Final Test Cell Analytical Report for Construction and Operations,* HDR, July 2007.
- <u>2012 Investigation</u> *Final Report of Geotechnical Exploration, Volume I,* AMEC Environment and Infrastructure Inc. (AMEC), December 2012; and *Final Report of Geotechnical Exploration, Volume II,* AMEC, January 2013.
- <u>2012 Well Rehab Report</u> –CDM Smith, Inc., 2012. Well Rehabilitation, C-44 Reservoir and Stormwater Treatment Area Groundwater Monitoring Project, Final Completion Report. Report prepared for the USACE, Jacksonville District dated June 2012, 13 p. plus figures, tables, and appendices.
- <u>2012 TM 6&7</u> Technical Memoranda 6 & 7: Geotechnical Evaluation, HDR, 2012.

1.3 Limitations and Basis for Findings

The professional services of HDR have been performed and findings have been made in accordance with generally acceptable principles and practices for the respective professional disciplines.

The scope of the investigation is outlined in Section 1.2 and was intended to describe site and subsurface conditions for the proposed Project. The evaluations submitted in this report are based upon the geotechnical data obtained at the locations indicated at the date of exploration. Regardless of the thoroughness of a site exploration program, conditions between exploration locations may be different from those at specific exploration locations and there is the possibility that soil and groundwater conditions will not be as anticipated by the designers or by the contractors. In addition, the construction process itself may alter soil and groundwater conditions.

2.0 SITE HISTORY AND ENVIRONMENTAL CONDITIONS

2.1 Purpose

The purpose of this Section is to provide a summary of the known site history for the property associated with the Project.

2.2 Regional and Site Geology

2.2.1 Regional Physiography and Geomorphology

The IRL-S study area includes coastal lowlands formed during the inundation and subsidence of recent ice ages. The relatively uniform soils and groundwater characteristics in the IRL-S watershed are a product of these periods of oceanic submergence and emergence that shaped the region.

The soils in the area can be grouped into five major categories based on hydrologic and physical characteristics: 1) soils of the sand ridges and coastal islands, 2) soils of low ridges and knolls, 3) soils of the flatwoods, 4) soils of sloughs and freshwater marshes, and 5) soils of the tidal swamps. The St. Lucie Estuary watershed is dominated by pine flatwood, slough, and freshwater marsh soils. The remaining three categories comprise minor soil associations that occur in regions of major topographic change such as riverbeds. Each individual soil can be further classified into a hydrological soil group based on surface water runoff or infiltration characteristics (Florida Soil Survey Staff, 1992). The numerous land alterations in the area are chiefly due to erosion, and resulted in the accumulation of fine, organic rich sediments, commonly called "muck," in the estuary. Construction and operation of major canals discharging into the estuary, starting in the late 1800's, accelerated the natural process of muck formation at the fresh-water/salt-water interface.

2.2.2 Project Area Geology

Martin County lies within the Coastal Plain province of the southeastern United States, and includes three physiographic subdivisions: The Eastern Valley, the Osceola Plain to the northwest, the Atlantic Coastal ridge at the northeastern coastline, and a narrow extension of the Everglades marsh adjacent to Lake Okeechobee (White, W.A., 1970) as shown in Figure 2.1. The Eastern Valley consists of a broad, flat relict beach ridge plain. The Osceola Plain is a narrow terrace in Martin County, and appears to have been a narrow peninsula or a series of islands and shoals at one time (Adams, 1992).

More specific site geology based on the previous site subsurface investigations is discussed in Section 6.0, Geologic and Hydrogeologic Site Conditions.

2.3 Geologic Hazards Evaluation

Geologic hazards, or natural hazards, include all of those hazards that arise independent from human activity. Examples of hazards that affect Florida include sinkhole collapse, storms (hurricanes), floods, and less probably, earthquakes (Upchurch and Randazzo, 1997). A natural hazards screening evaluation was performed to determine whether a significant potential exists for seismic geologic hazards to affect the Project. Seismic hazards are associated with earthquake activity. The potential hazards associated with karst activity at the Project site were also evaluated. The intent of the screening evaluation is to utilize readily available data and criteria to ascertain the existence of a potential geologic hazard at the Project site.

2.3.1 Seismic Hazards

Earthquakes occur in Florida, however, none have been hazardous or caused significant damage. Florida is one of the few low-risk areas for earthquakes in the coterminous United States, and there is no evidence to suggest that Florida will ever suffer a major earthquake. Studies of the basement structure of Florida indicate that the region was faulted during the breakup of Pangaea. The surface traces of faults on land surface in Florida are minor, and there is little evidence of stress accumulation or slippage along these faults at present, however, earthquakes focused outside of the state have caused minor damage in Florida (Upchurch, S.B., and A.F. Randazzo, 1997).

The USACE has established guideline procedures for the evaluation of seismic geologic hazards. These hazards include: (a) surface fault rupture along an active fault, (b) soil liquefaction due to strong earthquake ground shaking, (c) soil differential compaction due to strong earthquake ground shaking, and (e) flooding due to earthquake activity. There are two screening procedures outlined by USACE. 1) A check is made as to whether a hazard has previously occurred at the site (or in the near vicinity) during historical earthquakes. This check may involve a review of published reports, or discussions with geologists knowledgeable of the prior earthquake performance of an area. 2) A check is made as to whether the site is included in an area for which a regional earthquake hazard map has been prepared by a federal or state agency.

Since the seismic hazards listed above are associated with earthquake activity, the screening process for the Project site included evaluating the former and probable future occurrence of earthquakes at or near the site, the U.S. Geological Survey (USGS) probabilistic seismic hazards analyses (PSHA) web site was utilized to evaluate the probability of a future earthquake at the site. For southern Florida, including the Project site, the PSHA probability of a magnitude >5.0 earthquake within 100 years and 50 kilometers of the site is between 0.005 and 0.01 (Figure 2.2). The probability of a magnitude >6.5 earthquake within 100 years and 50 kilometers of the site is between 0.00 and 0.001 (Figure 2.3). The maps indicate a very low to no likelihood of earthquakes in the Project area.

The USGS has developed maps showing earthquake ground acceleration for the United States. The peak acceleration with 2% probability of exceedance in 50 years (2475 year return interval) is approximately 2% to 3.6% gravity (g) (Figure 2.4). The most conservative value of 3.6 was chosen by the CERP for use in liquefaction analysis per Design Criteria Memorandum 6 (DCM-6).

A list of known earthquakes and tremors felt in Florida from 1727 to 1991 was compiled by Lane (1991). A total of twenty-seven were identified, with the foci of many being out of the state.

2.3.2 Karst

Dissolution of limestone and dolostone can create a landscape known as karst. Sinkholes, the most widely known karst feature, are funnel-shaped depressions that form as a result of dissolution of underlying fractured rock (Upchurch and Randazzo, 1997).

Sinclair, W.C., J.W. Stewart, 1985, produced a sinkhole development map for the state of Florida (Figure 2.5). The map places Martin County, including the Project site, in an area where sinkholes are few, shallow, of small diameter, and dominated by cover subsidence sinkholes. Sinkholes develop by subsidence in areas where the limestone is covered by materials that are relatively non-cohesive and permeable. In areas where the sand cover is 50 to 100 feet thick, as in the case of the Project site, few sinkholes generally occur. Subsidence sinkholes form when

rainwater percolates through the non-cohesive sediments to underlying limestone, which dissolves. Under these conditions, individual grains of sand move downward in sequence replacing limestone that has dissolved. Since the sand is replacing the limestone in sequence, cavities in the limestone cannot develop to appreciable size, thus the sinkholes are generally of small diameter (Sinclair, W.C., J.W. Stewart, R.L. Knutilla, A.E. Gilboy, and R.L. Miller, 1985).

In order to determine if modern sinkholes have been reported in the vicinity of the Project site, the sinkhole database developed by the Florida Sinkhole Research Institute at the University of Central Florida, Orlando. (SEI, 1998) was queried. This database is available from the Florida Geological Survey and from Subsurface Evaluations, Inc. (SEI). The database includes locations (by Township and Range) and dates of occurrence of nearly 2,000 sinkholes that were reported in Florida between 1964 and 1992, with some more recent updates by Subsurface Evaluations, Inc. A survey of this database for occurrences at the Project site sections indicates no reported occurrences. No sinkholes were reported in Martin County as of 2004, as shown on Figure 2.6.

Upchurch and Littlefield (Upchurch, S.B. & Littlefield, J.R. 1988) developed a method for assigning risk of sinkhole activity to geographic areas. Sinkhole risk was measured by quantifying the number of modern (1964-1985) sinkholes reported per unit area per year. In terms of modern sinkhole reporting, the lowest risk was 0.003 square miles per year (mi²/yr) and the highest was 0.083/mi²/yr. Paleosinkholes were found to occur in proportion to modern sinkhole occurrences. Sinkhole risk was based on the percentage of an area occupied by ancient sinkholes. Low risk was found to exist where no paleosinkholes were reported, and highest risk was found to be where 10% or more of the area is occupied by ancient sinkholes. Through the efforts of several government agencies, a sinkhole risk map has been produced, which show the possibility of sinkhole development in Florida (Figure 2.5). The map shows that the Project site is located in an area of lowest sinkhole probability in the state.

2.4 Historical Information

A series of aerial photographs, dated 1940, 1952, 1958, 1970, 1981, and 1999 were obtained from the USGS, USACE, and the U.S Department of Agriculture (USDA). The following is a review of the available historical aerial photographs which include coverage of the Project site.

<u>1940</u> – The site appears undeveloped and covered with numerous wetlands. The C-44 Canal is visible to the south of the site. (See Figure 2.7 for 1940 aerial)

1952 – Numerous wetland areas are present across the site. Some row crop farming practices are present on the central and southern portions of the site. The C-44 Canal is visible to the south of the site, and the town of Indiantown is present to the southwest of the site. (See Figure 2.8 for 1952 aerial)

<u>1958</u> – The site appears much the same as in the 1952 aerial photograph with the exception of further development (ditches/canals and roads) on the west-central portion of the site. The C-44 Canal is visible to the south of the site. (See Figure 2.9 for 1958 aerial)

<u>1970</u> – The numerous wetland areas which appeared on the 1952 and 1958 aerial photographs are no longer visible on the 1970 aerial. Roads and ditches/canals are apparent across the entire site. The site appears to have been drained and occupied primarily by citrus groves. A set of buildings is evident on the west central portion of the site in a location believed to be the "existing maintenance area" and also there appears to be a building to the south of the "existing maintenance area." This building is referred to by CDM in the Phase I/II Environmental Site Assessment (ESA) report as the former Pole Barn area. The existing Florida Power and Light

transmission line easement appears to be present. Citrus Boulevard and the C-44 Canal are visible to the south of the site. (See Figure 2.10 for 1970 aerial)

<u>1981</u> – The site appears much the same as in the 1970 aerial photograph. A structure or structures appear to be visible in the east-central portion of the site in the approximate location referred to in the previously referenced Phase I/II ESA report as the "former Coca-Cola maintenance shop or area". (See Figure 2.11 for 1981 aerial)

<u>1999</u> – The site appears much the same as in the 1981 aerial photograph. However, the structure or structures which appeared in the approximate location of the "former Coca-Cola maintenance area" on the 1981 aerial photograph are no longer visible. (See Figure 2.12 for 1999 aerial)

The review of historical aerial photographs indicates that the Project area was occupied by numerous wetland features prior to the development as farmland. Based on the aerial review, it appears that the site was undeveloped until at least 1952, and occupied by numerous wetland features. Sometime between 1952 and 1970, the site was drained by ditching, and citrus operations began.

2.5 Environmental Site Assessments

The Phase I/II ESA report (December 2004) prepared by CDM includes the current proposed property configuration. The purpose of the Phase I ESA was to identify any "recognized environmental conditions" (RECs) at the site, which are defined in American Society for Testing and Materials (ASTM) E1527-00 as "the presence or likely presence of any hazardous substances or petroleum products into structures on the property or into the ground, groundwater, or surface water of the property." Phase I identified 11 REC areas for further investigation. The information provided in this Section was previously submitted to the South Florida Water Management District (SFWMD) as a separate Technical Memorandum entitled "Documentation of Existing Information, Site Conditions and Site History" dated August 1, 2005, under Work Order 6, Task 1.

An initial Phase II ESA investigation was conducted in the REC areas in December of 2003. Based on the results of the initial Phase II ESA investigation, additional sampling was required to address constituents of potential concern and to allow application of the District, the U.S. Fish and Wildlife Service (USFWS) and the Florida Department of Environmental Protection (FDEP) protocols for evaluating properties with current and/or historical agricultural activities (with reported significant agrochemical use) that eventually will be inundated or partially inundated, either as components of regional water attenuation reservoirs, STAs, or restored wetlands.

All assessment sampling results were compared to the soil and groundwater cleanup target levels specified in Chapter 62-777 F.A.C. (generally human health standards), SQAGs (ecological risk), and ecological restoration targets established by FWS. Groundwater monitoring wells were installed in the cultivated areas of each property and sampled for the same agrochemical parameters sampled in cultivated area soils to assess potential for leaching from the soil to groundwater. There were no exceedances of groundwater cleanup target levels (Chapter 62-777 F.A.C) in the cultivated area within the C-44 RSTA footprint.

The results of the Phase I/II ESA are summarized in Table 2.1 and the locations of the RECs are shown on Figure 2.13. Additional detailed information can be found in "*Consolidated Citrus LP and Gardinier Florida Citrus, Inc. Properties, Martin County, Florida – Proposed C-44 Reservoir/Stormwater Treatment Area Phase I/II Environmental Site Assessment*" dated December 2004, prepared by CDM.

3.0 HISTORY OF SITE EXPLORATIONS

Beginning in 2005, the site characterization effort for the Project began under the direction of the SFWMD. This effort included review of the previously collected information (Ardaman, 2003 and CDM, 2004), as well as completion of new site explorations, collection and evaluation of ground water monitoring data, and laboratory testing. On-site explorations completed during the 2005 effort included: rotary-wash borings with Standard Penetration Test (SPT) sampling; cone penetrometer test soundings with pore pressure measurements; rotary-auger borings; bulk sample test pits; resistivity surveys to delineate the continuity and composition of shallow soil layers; monitoring wells; laboratory testing; and aquifer testing. Following is a summary of the 2003 and 2004 geotechnical investigations. The reports from these investigations are included as Appendix H and Appendix I, respectively. Figure 3.1 shows the location of the Ardaman and CDM investigations performed at the Project site.

- 1) The Ardaman subsurface investigation was conducted in Fall of 2003 and consisted of the following:
 - 41 SPTs conducted on mud rotary borings
 - 8 test borings were drilled to a depth of 100 feet below ground surface;
 - o 33 test borings were drilled to a depth of 45 feet below ground surface.
 - 68 exploratory solid stem auger borings Borings drilled to a depth of 10 feet below ground surface for continuous sampling of the soil strata close to the ground surface.
 - 16 monitoring wells installed in clusters of 3 to 4 wells Wells were installed with 5 foot screens with the bottom of screened interval depth ranging from 7.8 to 80 to feet below ground surface.
- 2) The CDM supplemental subsurface investigation was conducted from January through April of 2004 to identify the thickness of the surficial aquifer (i.e. depth to the Hawthorn Confining Zone), to further develop the hydraulic conductivity parameters of the subsurface strata and to investigate potential borrow materials. The CDM supplemental subsurface investigation consisted of the following:
 - 4 SPT borings by mud-rotary method
 - SPT samples collected continuously from ground surface to 10 feet, and on 5 foot intervals from 10 feet to the final depth of boring
 - Depths ranged from 135 to 150 feet below ground surface.
 - 4 undisturbed Shelby Tube samples collected in the clayey san layer at 7 to 11 feet below ground surface.
 - 3 aquifer performance test wells 4 inch diameter wells constructed with 100 foot screens, and the bottom of the screened interval depth ranged from 130 to 136 feet below ground surface. The aquifer performance tests were conducted by pumping each fully penetrating aquifer performance test for approximately 24 hours and measuring the drawdown level in the companion 2 inch diameter monitoring well.
 - 11 monitoring wells of 2 inch diameter installed by mud-rotary
 - 3 monitoring wells constructed using a 100 foot screen with the bottom of the screen interval depth ranging from 135 to 137.5 feet below ground surface
 - 23 test pits ranging in depth from 10 to 16 feet below ground surface

- 2 grab soil samples collected from each strata layer and analyzed for gradation, specific gravity, Atterberg Limits, moisture content, organic content, hydraulic conductivity, consolidated-undrained triaxial compressive strength (on remolded samples), and Unified Soil Classification System (USCS) classification
- Undisturbed soil samples Testing of split barrel and undisturbed soil samples
 - gradation, unit weight, specific gravity, Atterberg limits, moisture content, organic content, and soil classification by the (USCS),
 - o hydraulic conductivity,
 - consolidated undrained triaxial compressive strength (of remolded samples).

The information obtained during the 2005 phase of the Project was documented in the *Final Geotechnical and Geologic Site Characterization Report*, dated March 2006 (HDR 2006, referred to herein as either the Site Characterization Report or Site Characterization). The purpose of the Site Characterization Report was to evaluate the existing site and subsurface conditions to delineate the availability and distribution of soils for design and construction considerations, and to determine the geotechnical properties of these materials for engineering analyses. The report also focused on the lithologic engineering properties and hydrogeologic regime at the site to fully evaluate the design, construction and operational considerations for SFWMD.

Subsequent to the completion of the Site Characterization Report, additional site investigations and geotechnical laboratory testing were conducted in late 2006 and early 2007; to collect information related to modified Project features and to further investigate subsurface conditions at target locations. This series of explorations, referred to in this GDR as "post site characterization" included rotary-wash and auger borings, and laboratory tests. A formal report for this investigation was not issued but the data was presented in *TM 6 and 7 – Reservoir Vicinity Updated Geotechnical Evaluation* (HDR, 2012).

The construction and the results of one year of operations of the test cells are summarized in the *Final Test Cell Analytical Report for Construction and Operations* (HDR, July 2007). This information includes reservoir seepage rates, soil-cement lab and field production testing results, and evaluation of constructability issues and lessons learned. Additional geotechnical information came from the Test Cell Program construction and operation. In order to provide a large scale field test of the construction and operation of the Project, a test cell program was designed and constructed on a 475 acre portion of the reservoir at the location shown on Figure 3.2. The test cells were constructed between February and June of 2006 and operated through June 2007. The purpose of the Test Cell Program was to evaluate various aspects of the design, construction and operation of the Project, including:

- Availability, distribution, and suitability of on-site soil materials for various project components;
- Dewatering;
- Excavation methods and stability;
- Verification of the site characterization;
- Grading of the STAs; and
- Production/placement of soil-cement.

Test Cell Program operation also provided the opportunity to collect and evaluate piezometer (monitoring well) data to verify seepage models and confirm estimates of reservoir seepage. Information related to the Test Cell Program is discussed further in Section 8.0.

The most recent geotechnical information came from an investigation conducted in 2012 by AMEC. Four (4) additional borings were drilled and twenty-five (25) additional test pits were excavated. The data was used to further evaluate settlement concerns associated with the deeper foundation clay layer at the northern section of the embankment alignment and also to evaluate the suitability of target foundation soils and water sources for use in the soil-cement. The AMEC investigations are summarized in the reports *Final Report of Geotechnical Exploration*, Volumes I and II, dated December 2012 and January 2013, respectively.

This GDR presents results of all the previously collected exploration information, lab data, and field testing results from the Project site collected since 2005.

Table 3.1 includes a summary of the various types of explorations conducted at the site for each of the studies. The locations of the explorations conducted in the reservoir vicinity are shown on Figure 3.2. The locations of the explorations conducted in the Project site are shown on Figure 3.3. The locations of monitoring wells at the site are shown in Figure 3.4

4.0 FIELD INVESTIGATIONS

4.1 Introduction

This Section describes the exploration methods used to investigate the subsurface conditions at the Project site. Boring locations referenced throughout this Section are presented in Figures 3.1 through 3.3; the associated boring logs and lab results are included in Appendix A and Appendix B, respectively.

The contractor should read the boring logs with great care. Some of the boring logs show materials classified as sand or gravel but have in the description "sandstone pieces" or "sandstone" or "limestone" noted. However, the sand sized or gravel sized sandstone or limestone pieces recorded on the logs actually represent a coherent sandstone or limestone layer which was broken into pieces through the SPT procedure.

4.2 Field Exploration Methods

4.2.1 Sampling Methods

Field exploration programs were developed and performed by HDR and AMEC to supplement and verify previous investigations performed at the Project site. The field exploration programs were conducted between 2005 and 2012. HDR field activities were coordinated and observed by the HDR's field engineer, with support from geologists and engineers from Williams Earth Sciences, Inc. (WES) or Ardaman. Tables 4.1 through 4.4 list all of the explorations and their locations. The locations of field explorations are shown on Figures 3.2 and 3.3.

The following soil sampling methods were used in conjunction with the exploratory borings:

Boring Type	Sampling Method
Rotary-Wash Borings (CB)	SPT Thin-walled tube sampling
Rotary-Auger (AB) and Test Pits (TP)	Disturbed grab sampling

4.2.2 Rotary-Wash Borings with SPT

HDR Investigation

The rotary-wash soil borings (CBs) with SPT, along with thin-walled tube (Shelby tube) samples were used primarily to evaluate the soil material beneath the proposed reservoir embankment and throughout the Project site. The boring program consisted of a total of 219 CBs. The soil samples from the CBs were logged in the field and then the soil samples were examined by a geologist in the laboratory after completion of the laboratory testing program in order to verify and refine the field classifications. The locations of the CBs are shown on Figures 3.2 and 3.3. Copies of the boring logs are included in Appendix A-1.

Borings were conducted by WES and Ardaman. The borings were drilled using truck-mounted Central Mine Equipment 45 or 55 drill rigs. All drill rigs were equipped with a 140 pound manual SPT hammer. Both automatic and rope-cathead systems were used.

The borings were advanced to depth using mud-rotary drilling to form a 3 inch-diameter borehole. Split barrel samples with SPT were collected continuously from the ground surface to a depth of 10 feet and at 2.5 foot intervals thereafter until the final depth of the boring. The SPT procedure conformed to the methods described in ASTM D1568.

Two borings were performed at the site specifically to evaluate liquefaction potential following the District's guidelines on Geotechnical Seismic Evaluation of CERP Dam Foundations (DCM-6). The drill rig SPT sampling equipment was instrumented to measure transferred energy in conjunction with the performance of these borings. The results of the measurements testing can be found in Appendix A-1.

SPT split barrel sampling was accomplished with a 2.0 inch (outside diameter), 1-3/8 inch (inside diameter) standard split-barrel sampler and "N" size drilling rod. The sampler was typically driven 24 inches into the soils with a 140 pound hammer freely falling 30 inches. The number of blows required to drive the sampler one foot after seating it six inches in the soil provides the SPT resistance or N-value unless 50 blows or greater occurred for a 6 inch interval; this was considered "refusal". The sampler was driven an additional 6 inches, for a total of 24 inches, to obtain additional soil sample if refusal did not occur.

The SPT sampling was performed in general accordance with ASTM D1586. A representative portion of each soil sample recovered in the split barrel was placed in a labeled, wide-mouth, airtight clean plastic jar with a Teflon-faced screw top.

The borings were drilled with bentonite drilling mud and/or casing to support the borehole. After the planned depth interval was reached at each CB location, the open borehole was tremie grouted from the bottom up to the ground surface with a Portland cement mixture consisting of approximately one 94 pound bag of Portland cement and 3 pounds of bentonite per 6 gallons of water.

AMEC Investigation

In 2012, four additional CBs were drilled along the northern reservoir embankment location. The SPT borings were advanced by mud rotary drilling techniques using a combination of fish tail drag bits and tri-cone roller bits utilizing a bentonite drilling mud mixture as a borehole stabilizer and drilling aid. The drilling services incorporated traditional continuous sampling methods using standard penetration testing throughout the entire length of the borings. Four (4) inch diameter rock coring was performed for two consecutive 2 foot core runs (core depths ranged from approximately 14.25 feet to 18.25 feet) within core boring CB-472. The other field services were performed in general accordance with the Project contract. An All Terrain Vehicle-mounted drill rig was used to access all boring locations due to the low bearing and relatively loose surface soil conditions.

At the direction of the USACE representative, companion borings were performed at boring locations CB-473 and CB-474. The purpose of these companion borings was to obtain intact thin-wall samples, in accordance with ASTM D1587, of clays encountered within the SPT borings. Intact thin-wall samples were not collected at the request of the USACE's on-site representative for borings CB-471 and CB-472 due to the lack of cohesive material or due to an abundance of shell content within these boring profiles.

The boring locations were selected by USACE. AMEC was provided with State Plane Coordinates for each field test location. State Plane Coordinates were converted into Latitude/Longitude coordinates for use with hand-held Global Positioning System (GPS) device. The borings were located in the field by AMEC's survey personnel. The SPT borings were drilled by drilling subcontractor AMDRILL, Inc.

The approximate boring locations are shown on Figures 3.2 and 3.3. These locations were subsequently surveyed by AMEC's Orlando-based survey crew. Ground surface elevations in North American Vertical Datum (NAVD) 1988 and State Plane FL East NAD 1983/2007 northing and easting coordinates were also determined for each boring location by the Orlando office, and a survey report was provided, as presented in Appendix A-2. The coordinates are also presented on each drilling log in Appendix A-2 and in Table 4.1.

The drilling logs present the penetration resistances and the soil and rock descriptions for each SPT boring. The stratification lines and depth designations on the boring records represent the approximate boundaries between soil and rock types. In some instances, the transition between soil and rock types may be gradual.

<u>SPT Borings</u> – The SPT borings were performed in general accordance with ASTM D1586, "Penetration Test and Split-Barrel Sampling of Soils." The borings were advanced using a rotary drilling process and bentonite drilling fluid was circulated in the boreholes beyond the caprock to stabilize the sides and flush the cuttings. At the specified intervals (every 18 inches or at a 5 foot center to center spacing), the drilling tools were removed and soil and rock samples were obtained with a standard 1.4 inch inside diameter (ID), 2.0-inch outside diameter (OD), splittube, unlined sampler. The sampler was first seated 6 inches and then driven an additional foot with blows of a 140 pound automatically tripped hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is designated the "Penetration Resistance." The length of each sample recovered in the split-tube sampler was measured for the determination of the percent recovery.

The samples were examined and classified by a professional geologist in the field during the drilling operations. Representative portions of the soil and rock samples, obtained from the sampler, were placed in plastic jars and transported to our laboratory.

Thin-Wall Tube Sampling – The relatively intact samples were obtained by pushing a section of 5 inch OD, 16 gauge steel tubing (Shelby tube) into the soil at the desired sampling level. The sampling procedure is described by ASTM D1587. The tube, together with the encased soil, was carefully brought up to the surface and the sleeve removed. Recovery of loose/soft soil was sometimes not achievable in the field. When this occurred, the tubes were not sealed.

<u>Rock Coring</u> – At varying elevations within the limestone, the standard drilling tools were removed from the borehole and a rock barrel was inserted. The limestone was cored using a diamond-studded bit fastened to the end of a hollow, 4 inch by 5½ inch double-tube core barrel. The coring procedure employed was similar to that described by ASTM D2113. The core barrel is rotated at high speeds and is capable of cutting the hardest rock. Core samples of the material penetrated are protected and retained in the swivel-mounted inner tube. Upon completion of each drill run, the core barrel is brought to the surface and the samples removed and placed in wooden boxes.

The rock was identified and the recovery determined by a professional geologist in the field. The recovery is the ratio of the sample length obtained to the depth drilled, expressed as a percent. The percent recovery is related to the rock soundness and continuity. In addition, the Rock Quality Designation (RQD) was determined. The RQD is defined as the sum of the lengths of recovered pieces equal to or larger than 4 inches divided by the length of rock cored, expressed as a percentage. The rock description, percent recovery, and RQD are shown on the appropriate drilling log in Appendix A-2. It should be noted that where hydraulic pressure for rock cores equates to zero, the pressure was not recorded.

4.2.3 Auger Borings

Rotary-auger borings (ABs) were performed at selected locations throughout the site to a depth of approximately 10 feet below ground surface to obtain bulk soil samples.

The borings were advanced to depth using 4 inch diameter continuous flight helical solid stem augers by rotating the auger into the ground at a relatively uniform rate of penetration at 3 foot intervals. Samples were recovered from the boring by withdrawing the auger out of the ground without rotating it and collecting the soil on the auger. This testing procedure closely conforms to the methods recommended in ASTM D1452.

This process was utilized to obtain representative soil samples for each approximate 3 foot interval, thus reducing the potential for soil mixing between intervals to occur. The soils encountered were identified in the field from cuttings brought to the surface on the auger flights. The entire auger was then placed back in the open hole and the process was repeated until the desired depth was reached. A soil sample for each 3 foot interval was placed in 5 gallon plastic buckets and stored on site prior to transport to the laboratory. Because of the relatively shallow depth of these explorations, the borings were backfilled with surficial soil and tamped with the auger.

A total of 111 auger borings were performed as summarized in Table 4.1. The locations of the ABs are shown on Figures 3.2 and 3.3. Copies of the boring logs are included in Appendix A-1.

4.2.4 Test Pits

Thirty-six test pits were excavated as part of the 2012 Investigation. Eleven were completed as part of the Site Characterization and twenty-five were completed by AMEC in 2012. Logs were not completed for the Site Characterization test pits. Logs for the AMEC test pits are provided in Appendix A-2. A list of the test pits completed is provided in Table 4.3. The locations of the test pits are shown on Figures 3.2 and 3.3.

4.3 Cone Penetrometer Tests

The boring program was supplemented with the use of Cone Penetrometer Tests with pore pressure measurements (CPTU) to provide better definition of the overburden soils beneath the Project site. A series of CPTU soundings were performed within the reservoir interior and along the reservoir alignment by Ardaman and Associates, and consisted of 65 soundings at the locations shown on Figures 3.2 and 3.3, and as summarized in Table 4.2. Logs of the soundings are included in Appendix C.

The CPTU is used to determine the tip resistance and sleeve friction, the components of penetration resistance that are developed during the steady penetration (2 centimeters per second) of the instrument into the soil. The CPTUs for this Project were performed in general accordance with ASTM D3441.

4.3.1 CPTU Testing Equipment and Procedures

The piezocone is a subtraction cone that measures the pore water pressure at the point, the tip resistance, and the sleeve friction 127 times during each meter of penetration (a reading each 3.2 inches of penetration). The penetration rate is 2 centimeters per second. At the end of each 1 meter section of rod, the data logger continues to collect pore pressure decay data. The decay data is read 3 times per second from 0 to 10 seconds, 2 times per second from 10 to 20 seconds, 1 time per second from 20 to 30 seconds, and 1 time every 5 seconds out to 1,000

seconds. Since a minimum of 30 seconds is required to add the next rod and prepare for the next push, at least 30 seconds of decay is obtained on each meter pushed.

The tip and sleeve sensors are designed for a maximum load of 4,000 kilograms (kg). The tip area is about 10.2 square centimeters (cm^2), and the sleeve area is about 150 cm^2 . Area correction for the tip stress is calculated and is within 6% of the standard area (10 cm^2). At zero stress, the standard deviation on sensor signal is five microvolts or less. Using five times this standard deviation, the precision for each sensor is approximately as follows:

- Pore water pressure 0.3 feet water (0.0084 tons/feet², tsf)
- Tip 0.03 tsf
- Sleeve same as tip because sleeve stress is calculated after subtraction of the tip load

A de-aired, porous, stainless steel element with a 7 micron pore size is used to obtain pore pressure data. Measuring pore pressure at the point of the cone makes for detection of small material changes prior to the soil disturbance produced by the tip and the sleeve.

4.3.2 Data Analysis

Corrected Tip Resistance (q_t)

The corrected tip resistance, q_t , accounts for the unbalanced pore water pressures acting on the cone tip and is equal to the sum of the measured tip resistance, q_c , and the product of the area ratio, A_r , and the measured penetration pore water pressure, u (i.e., $q_t = q_c + A_p * u$). The area ratio is the ratio of the area of backside of the tip and the face of the tip. A_p is less than 6% of the piezocone.

Friction Sleeve Resistance (f_s)

The friction sleeve resistance, f_s measured by the piezocone, is the difference between the resistance measured at the sleeve sensor and the corrected tip resistance. Higher values of f_s , generally indicate the presence of clayey soils while lower values are indicative of silty to sandy material.

Friction Ratio (R_f)

The friction ratio, R_{f_t} is the ratio of the friction sleeve resistance to the corrected tip resistance ($R_f = f/q_t$, * 100%). The friction ratio is an index ratio commonly used to provide a preliminary estimate of the subsurface stratigraphy. Higher friction ratios are generally indicative of clayey soil types, while lower values generally indicate the presence of silty and sandy soils.

Pore Pressure (u)

Pore pressure is measured using a porous element connected to a pressure transducer located at the apex of the 60° piezocone.

A-factor (Du/q_t)

The A-factor is the ratio of excess pore pressure to the corrected tip resistance, where the excess pore water pressure is equal to the measured penetration pore water pressure, \mathbf{u} , less the equilibrium pore water pressure, u_o . The A-factor is also an index value used to provide a preliminary assessment of the subsurface stratigraphy. Higher A-factors are generally indicative of normally consolidated clays, while the presence of over-consolidated clay, silt, and sand layers are generally indicated by progressively lower A-factors.

Soil Type Number

The soil type number is an index value developed by Robertson, et. al. (1986) used to determine the subsurface stratigraphy. A chart based on the tip resistance and friction ratio, divides soils into 12 regions ranging from sensitive fine grained soils (Region 1; low q_t , low R_f) to cemented sands and clayey sands (Region 12; high q_t medium R_f).

Equivalent SPT N-Value

An equivalent SPT N-value relationship was also developed by Robertson, et. al. (1986) and is used in conjunction with the soil type number. Soil type numbers are assigned experimentally from determined ratios of the tip resistance and N-values (q/N) ranging from one (organic matter or clay) to six (gravelly sand to sand). These ratios are divided by the uncorrected tip resistance to determine the equivalent SPT N-value.

Hydraulic Conductivity

CPTU pore pressure dissipation tests were performed to estimate the hydraulic conductivity values of the soils. To obtain an estimate of the coefficient of horizontal consolidation (c_h), an analytical solution developed by Levadoux and Baligh (1983) is used. Levadoux and Baligh present a graph of normalized pore pressure and the time factor, T, for the 60° piezocone tip where:

$$T = c_h t/R^2$$

where:

 $\begin{array}{l} T = time \mbox{ factor (non-dimensional)} \\ c_h = \mbox{ coefficient of horizontal consolidation (cm/second)} \\ t = time \mbox{ (seconds)} \\ R = \mbox{ cone penetrometer radius (cm)} \end{array}$

Knowing the radius of the 60° piezocone tip is approximately 1.8 cm, c_h can be back calculated. Permeability was estimated using an empirical relationship developed by Schmertmann (Schmertmann, J.H. 1978), who presents a graph of dissipation time vs. permeability for 50% and 90% dissipation. The pore pressure dissipation test data is provided in Appendix C. Permeability (hydraulic conductivity) values obtained from the dissipation tests are presented in Table 4.6. Hydraulic conductivity was also calculated utilizing methods described in Robertson, et al. (1986).

4.4 Geophysical Methods

4.4.1 Surface Geophysics

A Capacitively Coupled Resistivity (CCR) analysis was performed onsite in March and July-August of 2005 by Subsurface Evaluations, Inc (SEI). CCR is a geophysical method of obtaining a virtual cross-section of subsurface soil layers, and consists of two separate steps: 1) measuring the apparent (weighted average) electrical resistivity of the ground along a continuous survey line using a dipole-dipole array, and 2) computerized processing of apparent resistivity data to obtain a virtual cross-section of estimated true resistivity values.

In the field, an electric current is capacitively coupled to the earth by towing a cable array consisting of a dipole transmitter (TX) and a series of dipole receivers (RCV) spaced at successively greater distances from the transmitter along the cable array. The longer the dipole and spacing configuration, the greater the depth of the survey as the depth from which data is collected is equal to about 15 to 20% of the total array length. The ungrounded transmitter induces an alternating current in the ground at a particular frequency. The receivers measure the resulting voltage potential as the array is towed along the survey line. Data is collected

continuously at a rate of 2 readings per second at four different depths corresponding to TX-RCV separations of 5, 10, 15, and 20 meters as the array is towed along the ground at a constant rate of speed. An apparent resistivity profile is produced and then processed by inverse modeling software to yield a true resistivity profile along the line (SEI, 2005).

Resistivity measurements were made along 267 transects covering a linear distance of approximately 233,165 feet. The location of the transects were along and adjacent to the proposed embankment centerline. The transects were kept to maximum lengths of approximately 100 feet. Where canals were encountered, transects were stopped and new transects began on the other side. Transects on the north and south embankments were run where continuous linear paths were available. The location of the transects, and the output maps and profiles as generated by SEI are included in Appendix D.

4.4.2 Downhole Geophysics

Downhole geophysical logs were run by Technos Inc. in 3 deep geologic borings on site, GL-272, GL-274, and GL-275, the locations for which are illustrated in Appendix D. Logs consisted of natural gamma, spontaneous potential (SP), single point resistance, resistivity, and electromagnetic induction. A 2 inch diameter polyvinyl chloride (PVC) well screen was placed in each of the boreholes to prevent caving while logging, and were grouted to land surface following completion of the logging. The well screens were flushed with clean water prior to logging to remove drilling mud. Copies of the logs are included in Appendix D.

4.5 Investigative Monitoring Wells

Monitoring wells at the Project site were installed between 2005 and 2008. In 2005, Ardaman installed 9 wells during the Site Characterization phase and each consisted of a single surficial aquifer monitoring wells and well nests with a variety of depths. These wells are identified as MW-272, MW-273, MW-274, MW-275, MW-289, MW-290, MW-338, MW-343, and MW-344. These monitoring wells were used to evaluate performance of Project features as part of the Test Cell Program. Data from the year-long operations of the Test Cell Program is presented in Section 8.0 of this report. The construction details for one additional monitoring well, MW-406, are not available. Monitoring well logs for the 2005 wells are provided in Appendix A-1.

There are also two former irrigation wells (Well A1 and Well A2) located along the Bar-B-Ranch access road which were plugged and abandoned in 2012.

Monitoring wells installed within the surficial aquifer include shallow (water table), shallow intermediate, deep intermediate and deep portions of the surficial aquifer. All of the wells are constructed of 2 inch diameter schedule 40 PVC pipe and well screen. SFWMD also has a Regional Floridan Aquifer Well (MF-52), which was constructed in 2001. Construction details for the wells are provided in Table 4.4. Several wells have been rehabilitated or plugged and abandoned (CDM Smith, 2012). The Well Rehabilitation Report is provided in Appendix J. Table 4.5 gives a list of the monitoring wells, their well nomenclature in the SFWMD Database DBHydro (which is further discussed in Section 6.3.1.2), the general location of the wells, and the current status of the wells. Monitoring Well locations are shown in previously referenced Figure 3.4.

4.5.1 Shallow Surficial Aquifer Monitoring Wells

Nine single surficial aquifer monitoring wells were installed around the site perimeter (target depth approximately 15 to 20 feet) as shown on Figures 3.2 and 3.3. Water level data collection methods included water level readings utilizing a pressure transducer (Insitu Level Troll[™] 500).

The Level Troll[™] 500 contains a level and temperature sensor, a data logger, and internal power in a 18.3 millimeter titanium housing. The transducer collects long-term data on a user-specified interval from 1 minute to 49 days. A discussion of the water level data is included in Section 6.0 of this report.

4.5.2 Well Nests

In addition to the 9 single surficial aquifer wells discussed above, 4 different types of well nests were installed at nine locations for a total of thirty-four wells as shown on Figures 3.2 and 3.3. Two of the well nests consist of four wells, including a shallow surficial (target depth approximately 15 to 20 feet), shallow intermediate (target depth approximately 40 to 60 feet), deep intermediate (target depth approximately 80 to 120 feet) and deep surficial monitoring wells (target depth approximately 140 to 150 feet). The target depths are the same for all well nests and these depths were confirmed in the field by a hydrogeologist prior to installation of the wells. Three of the nests consist of three wells, including a shallow surficial, shallow intermediate and deep intermediate well. Four nests consist of two wells, including a shallow surficial aquifer, which extends to a depth of approximately 150 feet below ground surface at the site. No Floridan Aquifer wells were proposed because of the significant depth. The well nests are equipped with pressure transducers (Insitu Level TrollTM 500). A discussion of the water level data is included in Section 6.0 of this report.

4.6 USGS Monitoring Wells

The USGS website was reviewed (<u>http://waterdata.usgs.gov</u>) to determine if USGS monitoring wells are present within approximately 5 miles of the Project property boundary. The USGS website provided a listing of 64 monitoring wells from both the surficial and the Floridan aquifer systems. Twenty of the wells were identified as being screened in the surficial aquifer and ranged in depth from 7.3 to 160 feet below ground surface. Four of the wells were identified as being screened in the Floridan aquifer and ranged in depth from 880 to 1250 feet below ground surface. Other wells listed were not identified as being screened in the surficial or Floridan aquifer. Figure 4.1 shows the USGS wells in the vicinity of the Project site.

4.7 Aquifer Testing

The previous subsurface investigation by Ardaman (2003) and CDM (2004) included field hydraulic conductivity tests in well clusters to measure the in-situ hydraulic conductivity (K_h) of various subsurface layers, and aquifer performance testing to determine the hydraulic properties of the surficial aquifer. The hydraulic testing consisted of variable head hydraulic conductivity tests and slug tests in discrete soil layers.

Falling head hydraulic conductivity tests were performed in the clayey sand layer at depths ranging from about 5 to 7 feet below ground surface. These tests were conducted using a 10 foot length of casing installed 2 feet into the clayey sand layer next to wells W-104, W-105, W-106 and W-107 (shown on Figure 3.4). For the test, the casing was filled with water and the time and depth to the water surface was recorded as the water dissipated. The test was

analyzed in accordance with the Department of the Navy, Naval Facilities Engineering Command NAVFAC 7.1, and the results are summarized in Table 4.7.

Borehole conductivity tests were performed by Ardaman (2003) that consisted of advancing an SPT boring to the desired depth interval, installing a temporary casing, drilling 5 feet below the bottom of casing, and performing an in-situ rising head hydraulic conductivity test in the open borehole. This test was completed by first evacuating standing water from the casing and then monitoring the rise in the water level over time. The boreholes used for these tests were W-1, W-2, W-3, W-4 and W-5 and are shown on Figure 3.4. The results of the borehole hydraulic conductivity tests are summarized in Table 4.8.

Slug tests were conducted in monitoring wells W-104A, W-104B, W-105A, W-105B, W-106A, W-106B, W-107A and W-107B (shown on Figure 3.4) by Ardaman (2003). The wells ranged in depth from 23 to 80 feet below ground surface. Each well was tested twice by performing a slug-in test and a slug-out test on each well. The tests were analyzed utilizing the Hvorslev method. Results of the slug testing are included in Table 4.9.

Three aquifer performance tests (APTs) were performed by CDM, and consisted of pumping a fully penetrating 4 inch diameter well (full penetration of surfical aquifer) for approximately 24 hours and measuring the drawdown in a companion 2-inch observation well. One of the three tests could not be analyzed due to insufficient drawdown in the observation well. The results of the APTs are summarized in Table 4.10. The APT wells used were APT-101, APT-102 and APT -103, and the observation wells used were W-101, W-102 and W-103, respectively. The locations of the wells are shown on Figure 3.4.

Additional site-specific horizontal hydraulic conductivity values for the surficial aquifer were obtained from slug tests performed at the Project site at all new monitoring wells to supplement the existing data. Results of these slug tests are presented in Table 4.11.

5.0 LABORATORY TESTING

5.1 Introduction

An extensive laboratory testing program was completed during the 2005–2007 site characterization effort. The laboratory testing was conducted by Ardaman and included particle size distribution including percent fines (fraction of materials that are smaller than the No. 200 sieve); specific gravity; Atterberg limits; standard and modified proctor compaction tests; permeability for both remolded and undisturbed samples; corrosivity; carbonate content; soil-cement durability and compressive strength; and interface direct shear for the geomembrane. Additionally, isotropically consolidated-undrained triaxial compression tests with pore pressure measurements were performed. Additional laboratory testing was performed in conjunction with the explorations performed after the Site Characterization Report was issued in 2006. This testing included particle size distribution and fines content; modified and standard proctor tests on bulk samples for soil-cement, and Atterberg limits testing for the clay at depth on the northern portion of the reservoir. The laboratory data for the Site Characterization and post site characterization are included in Appendix B-1.

As part of the 2012 AMEC investigation, additional laboratory classification tests were performed on representative soil and rock samples obtained from the SPT borings and test pits. The laboratory classification testing performed for this Project included sieve analysis; hydrometer analysis; visual percent shell classifications; geotechnical laboratory carbonate content; Atterberg limits; moisture content; specific gravity; and consolidation tests on undisturbed samples. The laboratory data for the AMEC investigation is included in Appendix B-2.

Soil-cement mix design, durability and compressive strength testing were completed as part of the Test Cell Program. The testing on bulk samples for soil-cement included carbonate content, fines content and calcium absorption. The Test Cell Program is discussed further in Section 8.0.

All tests were performed in accordance with the applicable ASTM test methods. Sample types obtained included both undisturbed using Shelby tubes, and disturbed samples from AB, CB and TP samples. Undisturbed samples were used for grain size, permeability, triaxial and Atterberg limit testing. Disturbed samples were remolded and used for proctor, permeability, organic and carbonate content, triaxial, direct shear, specific gravity, density, and soil-cement testing.

It should be noted that some of the samples used for laboratory tests as part of the Site Characterization were mislabeled. Many of the samples are labeled as TP samples and should have been AB samples. There were only eleven test pits excavated as part of the Site Characterization and they range from TP-354 to TP-364 as provided on Table 4.3. Any other samples labeled as TP that are not within this range were collected from AB borings. The results have been corrected to reflect the proper boring designation.

5.2 Testing Methods

5.2.1 Particle Size Analysis

Grain size distribution tests were performed in accordance with ASTM D422 to determine the particle sizes and distribution of each sample tested. Sieve analyses and hydrometer analyses were performed on a total of 55 Shelby tube and bulk samples of subsurface soils at various depths as part of HDR's investigation. The results of percent fines tests performed and grain size distribution curves for HDR's investigation are provided in Appendix B-1. Fifty-six (56) sieve

analyses and 32 hydrometer analyses were performed as part of AMEC's investigation and are provided in Appendix B-2.

5.2.2 Water Content

The water content is the ratio, expressed as a percentage, of the weight of water in a given mass of soil to the weight of the solid particles. This test was conducted in general accordance with ASTM D2216. Water content test results are provided in Appendix B-1 and B-2.

5.2.3 Atterberg Limits

The Plasticity Index (PI) of the soil is bracketed by the Liquid Limit (LL) and the Plastic Limit (PL). The LL is the moisture content at which the soil will flow as a heavy viscous fluid. The PI is the moisture content at which the soil begins to crumble when rolled into a 1/8 inch diameter thread. These tests were performed in accordance with ASTM D4318. The results of all Atterberg limit tests are provided in Appendix B-1 for the HDR investigation and in the summary tables in Appendix B-2 for the AMEC Investigation.

5.2.4 Density Tests

5.2.4.1 Specific Gravity Tests

The specific gravity of soil solids is the ratio of the weight in air of a given volume of soil particles to the weight in air of an equal volume of water. This test was conducted in accordance with ASTM D854. The HDR investigation specific gravity test results are provided in Appendix B-1, and are summarized in Table 5.1. The AMEC investigation specific gravity test results are provided in the summary tables in Appendix B-2.

5.2.4.2 Moisture-Density Relationship (Compaction) Tests

Standard Proctor and Modified Proctor compaction tests were performed on bulk samples to determine the moisture density relationships of the borrow materials to be used for the embankment construction. The Standard and Modified Proctor tests were performed in accordance with ASTM D698 and D1557, respectively. Specific parameters obtained in the test include the maximum dry density and optimum moisture content. Results of Proctor tests are presented in Appendix B-1, and are summarized in Table 5.2 and 5.3.

5.2.4.3 In-Situ Dry Density Tests

The in-situ dry density, moisture content, and fines content of various soil samples obtained by WES along the proposed embankment alignment and inside of the reservoir interior were determined from relatively undisturbed Shelby tube samples. The dry density is plotted on an arithmetic scale versus moisture content. The data are presented in Appendix B-1. An additional 70 in-situ density tests were performed by Ardaman in February 2006. Test results are summarized in Table 5.2. The density tests were completed at 1 foot and 3 feet below the existing ground surface in general accordance with ASTM Standard D2937.

5.2.4.4 One-Point Proctor Tests

In addition to the in-situ, modified and standard proctor tests, one-point proctor tests were also performed on 39 of the previously discussed samples by Ardaman. These results are also summarized in Table 5.2.

5.2.5 Hydraulic Conductivity Tests

The hydraulic conductivity, *K*, of selected soil samples was obtained in the laboratory using a flexible wall permeameter in accordance with ASTM D5084. The test samples were selected from portions of silty and clayey soil samples obtained from the Shelby tube samples, and remolded samples obtained from the auger borings. The test samples were encased in rubber membranes, placed in a chamber, consolidated by a confining pressure varying from about 5 to 55 pounds per square inch (psi), and then saturated. All samples were back pressure saturated prior to testing to achieve a B-coefficient of at least 0.95. Both the constant head and falling head test methods were utilized in accordance with ASTM D5084 test method A and test method B, respectively.

During hydraulic conductivity testing, a head differential was maintained on the sample in order to cause the water to flow through the test sample. After performing the test for a sufficient time period, the hydraulic conductivity was calculated as follows:

where:

K = hydraulic conductivity

- Q = quantity of water discharged
- L = test sample length
- A = cross-sectional area of specimen
- t = total time of discharge
- h = water head differential between sample ends

The results of the hydraulic conductivity tests are presented in Appendix B-1 for tests performed on undisturbed and remolded samples. The results are summarized in Table 5.4 for remolded samples and Table 5.5 for undisturbed samples.

5.2.6 Corrosivity Series Tests

Corrosivity series testing was performed in accordance with the Florida Department of Transportation (FDOT) standards and included the following tests: 1) pH in soil and water according to FM 5-550/E-70, 2) resistivity in soil and water according to FM 5-551, 3) chloride in soil and water according to FM 5-552, and 4) sulphate in soil and water according to FM 5-553. The corrosivity series testing results are provided in Appendix B-1, and are summarized in Table 5.6.

5.2.7 Carbonate Testing

Carbonate and organic content tests were determined for the surficial sand samples according to ASTM D4373 and D2974, respectively.

As part of HDR's investigation, carbonate content tests were run on materials obtained from bulk samples from the TPs at a depth of approximately 8 to 10 feet below ground surface and from bulk samples from the AB's. Results from the AB testing are included in Table 5.6. Results from the TP testing are included in Table 5.7.

Additional carbonate content testing was performed as part of AMEC's investigation. This test is conducted in accordance with a modified "insoluble residue" analysis using the 1941 method described by Twenhofel Tyler. The sample is oven dried to a constant weight and then washed over a No. 200 sieve. After drying to a constant weight, the sand-sized or greater portion of the sample is sieved and visual shell noted. The sample is then placed in a glass beaker and a

diluted hydrochloric acid solution is slowly added. The sample is stirred and more acid solution added until there is no reaction, indicating that all carbonate matter has been digested. After digestion, the sample is washed over a #200 sieve to remove all residual acid, and dried to a constant weight. The percent loss (percent carbonate) is determined by subtracting the post acid weight from the dried, washed weight (after sieving), divided by the dried, washed weight. The results of the carbonate content tests are provided on the gradation curves in Appendix B-2.

5.2.8 Triaxial Shear Strength Tests

Shear strengths of the undisturbed and remolded soil samples were determined using triaxial compression tests on samples taken from TP-90, TP-91, TP-106, TP-108, TP112, TP-113, TP-118, TP-119, TP-124, TP-126, TP-129, TP-130, TP-133, TP-135, TP-138, CB-198, CB-201, CB-253, CB-256, CB-276, CB-281, and CB-283. Sixteen isotropically consolidated-undrained triaxial compression tests with pore pressure measurements were performed in accordance with ASTM D4767. The samples were remolded to 95% of their respective maximum dry densities and +0 to +2% of their optimum moisture contents, as determined by the Standard or Modified Proctor compaction test. Eight triaxial tests were also performed on relatively undisturbed Shelby tube soil samples obtained along the proposed reservoir embankment alignment.

An effective consolidation pressure of 0.72 kips per square foot (ksf) (0.35 kg/cm²) was selected for the triaxial tests based on the expected range of in-situ pressures in the field. Where back pressure was required to achieve complete saturation to measure pore pressures, a value of approximately 24.5 ksf (12 kg/cm²) was used prior to shear. Pore pressures were measured with a rigid, flush-mounted diaphragm pressure transducer. The signal from the pressure transducer was measured with a digital voltmeter. The samples were sheared, undrained at a constant rate of axial deformation of 0.0004 inches/minute (corresponding to a strain rate of about 1% per hour), and the load, axial deformation, shear induced excess pore pressure, and cell pressure were monitored with time. Upon completion of testing, particle-size analyses were performed on each specimen.

The triaxial test results from the remolded and undisturbed samples are presented in Appendix B-1, and summarized in Tables 5.8 and 5.9, respectively.

5.2.9 Consolidation Tests

Two consolidation tests were performed on undisturbed samples from CB-473 at Elevation 48-49.92 and from CB-474 at El. 56.5-57.6 as part of AMEC's investigation. A section of the undisturbed sample was extruded from sampling tubes for consolidation testing. The section was trimmed into a disc 2.8 inches in diameter and ³/₄ inch thick. The disc was confined in a stainless steel ring and sandwiched between porous plates. The sample was then subjected to incrementally increasing vertical loads of 0.063, 0.125, 0.25, 0.5, 1.0, 0.5, 0.25, and 0.125 tons per square foot (tsf), and the resulting deformations were measured with a micrometer dial gauge. The test results are presented in the form of a pressure-versus-void ratio curve, pressure-versus-percent strain curve, along with dial reading versus time curves and square root of time. It should be noted that all time rate values are based on end of primary (EOP) consolidation. This test was conducted in general accordance with ASTM D2435. Results for the tests are provided in Appendix B-2.

5.2.10 Visual Percent Shell Tests

The visual percent shell is a weighted average of the estimated percent shell retained on each individual sieve for a single sample and rounded to the nearest 5% for tests conducted in

conjunction with a sieve analysis. For stand-alone estimates, the visual percent shell is a visual estimate of the shell content present in the sample, rounded to the nearest 5%. Visual percent shell test results are provided in the summary tables in Appendix B-2.

5.2.11 Geotextile Interface Resistance Tests

Three direct shear tests were performed to measure the interface resistance between a sample of sand and non-woven geotextile. The test results are provided in Appendix B-1.

6.0 GEOLOGIC AND HYDROGEOLOGIC SITE CONDITIONS

6.1 Introduction

HDR has updated the geologic site characterization based on all site exploration data. This Section describes the current understanding of the geologic and hydrogeologic conditions at the site.

6.2 Site Stratigraphy

Southern Florida, including Martin County and the Project area, is underlain by a thick sequence of unconsolidated to semiconsolidated Coastal Plain sedimentary rocks/sediments that range in age from Jurassic to Holocene. In southern Florida, the maximum thickness penetrated is approximately 18,600 feet. Coastal Plain sediments can be separated into two general facies: 1) predominantly clastic rocks/sediments containing minor amounts of limestone, and 2) a thick, continuous sequence of shallow-water platform rocks. Miocene and younger rocks comprise a clastic facies that, except where it has been removed by erosion, covers the older carbonate rocks (Miller, J.A., 1986).

The distribution of Pleistocene sediments on the Florida platform indicate that sea level did not rise higher than approximately 65 feet above the present level, and the Pleistocene seas did not inundate the entire Florida Platform. Low-lying parts of the platform, including most of southern Florida, were covered by shallow marine waters during transgressions of the sea. Pleistocene sediments in Florida once were included in "terrace formations" deposited in response to widely fluctuating sea levels; these terrace formations are no longer considered proper stratigraphic units. Due to the paucity of distinguishing features other than elevation, the sediments forming the terraces are often referred to as "undifferentiated sediments." In areas where these sediments are fossiliferous, the fossil assemblages can be used to distinguish stratigraphic units (Scott, T.M., 1997).

The recognized siliclastic to mixed siliclastic-carbonate Pleistocene stratigraphic units in the Project area include the upper part of the Caloosahatchee Formation, and the Fort Thompson Formation. The Caloosahatchee contains well preserved, diverse fossil assemblages. The Anastasia formation is a multicyclic deposit consisting of a variably sandy coquinoid limestone, with a sand and shell facies farther inland, that formed during several transgressions of the sea (Scott, T.M., 1997) and outcrops in coastal areas of Martin County. The Anastasia is believed to pinch out approximately 20 to 30 miles inland from the coast (Lovejoy, 1998).

Following the late Pleistocene regression, sea level has risen during the Holocene to its present position. Holocene sediments form the present coastline of the state, and represent beach, dune, marsh, lagoon, fluvial environments, or are derived from the weathering of older rocks (Scott, T.M., 1997).

6.2.1 General Stratigraphic Units

The upper 25 feet of sediment is most relevant to the construction of the Project. These sediments range in age from Holocene-Pleistocene to Pliocene, or from present to about 4.2 million years. Holocene soils and undifferentiated Pleistocene sands and clayey sands occur at the top of the section, and are underlain by quartz sand, shell, and a few minor limestones within the late Pleistocene Fort Thompson Formation.
Undifferentiated Pleistocene/Holocene

The predominant Holocene process at the site is soil formation. Rainfall and meteoric water leach the uppermost sediments, resulting in decomposition of organic matter and leaching of soluble minerals. The soils are primarily mineral sands and fine sands, with Gator muck (an organic soil) being the principal exception. A small amount of excavated/redeposited soils (Arents series) is also present. Many of the soils are underlain at varying depths by finer textured materials (loamy fine sands and clayey loams). Pineda is the principal soil series represented on site (covering nearly 40% of the site), followed by Wabasso, Winder, Floridana, Oldsmar, and Riviera series. Eight other soils –Jupiter, Malabar, Waveland, Placid, Okeelanta, Sanibel, Chobee, and Samsula- have limited occurrence. Poorly drained soils predominate (63% site coverage), followed by somewhat poorly drained (18.7%), very poorly drained (17.7%), and well drained (0.7%). Hydric soils (comprising the very poorly drained and most of the poorly drained series) cover an estimated two-thirds of the site. All of these soils have been developed primarily by weathering of the shallow Pleistocene deposits. Figure 6.1 shows the distribution of various soil types in the Project area. Detailed descriptions of the soil series present on site, including variation by depth, drainage class, permeability, color and appearance description, can be found in the "Technical Resources" section of the Natural Resources Conservation Service (NRCS) website:

(http://www.mo15.nrcs.usda.gov/technical/tuds/tuds-intro.html).

Numerous wetlands were present on the site prior to being developed for farming. Wetlands form in depressions, where organic-rich Holocene sediments are deposited. As a result of the standing water and predominance of emergent vegetation, these features accumulate peat and muck. Data obtained during drilling shows organic-rich sediments are present in some areas of the Project site, although they do not appear to be widespread based on soil sample data.

A summary of generalized geology and hydrogeology of project area is provided in Table 6.1.

6.2.2 Informal Stratigraphic Units

Since the site formations above the Hawthorn Group are largely undifferentiated, a series of informal stratigraphic units were adopted for the Project site investigation. Stratigraphic units A through C were identified on the basis of predominant composition. The following summarizes the general composition of each of the site-specific informal units:

- Informal Unit A is predominantly brown to gray sand and silty sand;
- Informal Unit B is interfingering layers of sand with varying percentages of silt, clay and shell, and also cemented sand layers, limestone layers, and clay layers.
- Informal Unit C is predominantly a mixture of gray fine sand and/or silty sand with variable shell content, with some intervals being mostly shell, and with some cemented fragments and limestone.

The sediments of informal Units A and B extend approximately to a depth of 8 to 18 feet below ground surface. The predominantly shelly sand sediments of informal Unit C extend down to the maximum depth drilled over most of the site (30 to 50 feet below ground surface),. Some interbedded clayey sands, sandy limestones, and cemented sands are present within Unit C.

Three deep borings (CB-272, CB-274, CB-275) drilled at the site indicate that an olive-gray slightly clayey, silty fine sand with phosphate is present at depths of approximately 115 to 125 feet below ground surface, and represents the top of the Hawthorn Group confining layer.

Borings logs are included in Appendix A. A detailed discussion of the informal stratigraphic units is included in the following sub-sections.

6.2.2.1 Shallow Sand, Silty Sand, Clayey Sand (Units A and B)

Informal Stratigraphic Units A and B are predominantly light to dark brown, or tan in color and have a minimum fines content as low as about 7 percent and an average fines content of over 10 percent. They typically classify as sands with silt/clay (SP-SM/SP-SC), to silty and/or clayey sands (SM and/or SC) and may occasionally classify as low to high plasticity clays (CL to CH). The descriptions above are general and may vary in the field.

Unit A is primarily a dark brown to dark gray silty fine sand, with roots and a trace of clay in places. The predominant USCS classification for Unit A is silty sand (SM), and in some cases poorly graded clean to silty sand (SP-SM). Unit B consists predominately of brown to light grayish brown to gray clayey sand (SC) with clay inclusions and some shell, to light gray clay. The predominant USCS classification for Unit B is SC and occasionally CL (low plasticity clay).

6.2.2.2 Sand and Shell (Unit C)

The most critical delineation of subsurface materials remains the interface between the predominantly sandy, silty and clayey soils of Units A and B, and the more shelly sand material of Unit C. At the site, the clayey sand layer (Unit B), where present, is underlain by either silty sand with little to no shell content, or silty sand to poorly graded sand with some shell to mostly shell, or silty sand with cemented fragments. The predominantly shelly sand sediments extend down to the maximum depth drilled over most of the site (30 to 50 feet below ground surface), and are grouped as Informal Unit C. Some inter-bedded clayey sands, sandy limestones, and cemented sands are present within Unit C. The predominant USCS classification for Unit C materials is SM, SP-SM or SP with an average fines content of less than 10 percent.

In addition, a layer of clayey material was encountered in most borings and in CPTs completed in the northern half of the reservoir site. This clay layer occurs approximately 43 to 62 feet below the ground surface, ranges in thickness from 2 to 8 feet and varies from clayey sand to sandy clay to clay.

The CPTUs performed at the Project site indicate the presence of Unit C by an observed increase in the tip resistance. The silty and clayey sand (Unit A and B) has typical tip resistance values of less than 100 tons per square foot (tsf), while the shelly sand (Unit C) has typical tip resistances of approximately 100 to 500 tsf. The CPTUs show the increase in tip resistance at depths ranging from approximately 5 to 29 feet below ground surface, with an average depth of 13 feet below ground surface, which corresponds to the top of the shelly sand material as indicated by soil borings. The CPTU logs are included in Appendix C.

The deep borings drilled at the site indicate that the base of Unit C (top of Hawthorn Group sediments) is encountered at depths ranging from 110 to 125 feet below ground surface. Downhole geophysical logs were run by Technos Inc. in the three deep borings on site, and consisted of natural gamma, spontaneous potential, single point resistance, resistivity, and electromagnetic induction. A copy of the logging report is included in Appendix D. The natural gamma log indicates that Unit C is generally sandy (10 to 30 counts per second), with silty/clayey intervals noted throughout. The unit appears to become more silty/clayey in all borings below a depth of 120 feet below ground surface, which may indicate the top of the Hawthorn Group sediments. The spontaneous potential and resistance logs are largely affected by the presence of the screen and do not provide any significant data. The induction log shows

variation in conductivity with the highest conductivity at depth, which are likely due to changes in water quality.

6.3 Site Hydrostratigraphy

Martin County, including the Project area, is underlain by two aquifer systems, the SAS and the Florida Aquifer System (FAS). A description of these aquifer systems in the Project area, and their relevance to the design of the C-44 reservoir and STAs is provided in the following subsections.

6.3.1 Surficial Aquifer System

The SAS in Martin County provides most of the potable water used in the county, and generally consists of a sand/soil zone (thickness ~20 to 50 feet) of low to medium permeability, underlain by a producing zone (thickness ~40 to 50 feet) capable of providing relatively large quantities of water (Butler and Padgett, 1995; Adams, 1992). The producing zone is underlain by a slightly lower permeability layer of calcareous mud, mudstone, sandstone and some limestone (thickness ~30 to 60 feet) (Adams, 1992).

The SAS at the Project site is consistent with the literature, and consists of an upper soil/sand to clayey sand (informal stratigraphic Units A and B) with a thickness of approximately 4 to 25 feet, underlain by a higher permeability sand and shell zone (informal stratigraphic Unit C) with a thickness of approximately 100 feet. The lower portion of the sand and shell units appear more clayey, and could represent the lower permeability portion of the production zone as reported by Adams (1992).

6.3.1.1 Hydraulic Properties

Based on aquifer testing performed throughout Martin County, the hydraulic conductivity of the upper sand/soil zone of the SAS ranges from approximately 10 to 20 feet per day (feet/day) in western Martin County, and the hydraulic conductivity of the producing zone ranges from approximately 30 to 90 feet/day (Butler and Padgett, 1995; Adams, 1992). The hydraulic properties of the SAS at the Project site, based on site-specific testing, are discussed below.

Table 6.2 summarizes the hydraulic conductivity testing performed at the Project site within various depth intervals of approximately 0 to 12 feet, 13 to 30 feet, and 40 to 80 feet below ground surface.

Hydraulic Conductivity-Units A and B

Falling head permeability tests were performed by Ardaman in 2003 and the results are provided in Table 4.7 and Table 4.8. The results show that the horizontal hydraulic conductivity (k_h) ranges from 0.10 to 4 feet/day and the vertical hydraulic conductivity (k_v) ranges from 0.02 to 0.04 feet/day for the depths specified.

Undisturbed (Shelby tube) samples were collected at various depth intervals within informal stratigraphic Units A + B at depths ranging from 0 to 12 feet below ground surface and tested for vertical hydraulic conductivity. Laboratory permeability test methods are summarized in Section 5.2.5. Results are provided in Table 5.5. The results show that vertical hydraulic conductivity ranges from 0.0003 to 1.2 feet/day; however, values lower than 0.003 feet/day are not considered to be representative of actual conditions.

Hydraulic Conductivity-Unit C

The field permeability tests performed by Ardaman in 2003 of the approximately 13 to 30 feet below ground surface show hydraulic conductivity ranging from approximately 7 to 17 feet/day. The hydraulic conductivity of the lower portion of Unit C (40 to 80 feet below ground surface) ranges from approximately 0.6 to 18 feet/day. The results of these tests are provided in Table 4.8.

Slug testing performed at the Project site (Ardaman, 2003) show the hydraulic conductivity in wells completed at depths from approximately 22 to 35 feet below ground surface ranges from 12 to 225 feet/day. Wells completed at depths from approximately 59 to 80 feet below ground surface show hydraulic conductivity ranging from 0.5 to 128 feet/day. The results from these tests are provided in Table 4.9.

CPTU pore pressure dissipation tests were performed to estimate the hydraulic conductivity values of the soils as described in Section 4.3 and summarized in Table 4.6. The depth range of the CPTU pore pressure tests were from approximately 12 to 25 feet below ground surface. The hydraulic conductivity was estimated using both the Baligh and Levadoux (1986) method and the Robertson (1990) method. The K values range from 0.002 to 0.28 feet/day (Robertson method), and 0.43 to 57 feet/day (Baligh and Levadoux method).

Slug testing was also performed by Ardaman as part of the 2003 Site Characterization as discussed in Section 4.8. The results are provided in Table 4.9. The hydraulic conductivity ranges from 2 to 27 feet/day for the depth interval of 13 to 30 feet below ground surface, and 2 to 30 feet/day for the depth interval of 38 to 58 feet below ground surface.

Aquifer performance tests performed at the site (CDM, 2004) show a calculated transmissivity of the entire thickness of the SAS ranging from 19,100 to 26,000 gallons per day per foot. The horizontal hydraulic conductivity was estimated at 20 to 28 feet/day, and the vertical hydraulic conductivity was estimated at 0.35 to 1 feet/day. The results of these tests are provided in Table 4.10.

6.3.1.2 Groundwater

Groundwater level data from on-site monitoring wells was obtained between August 2005 and February 2006 for the wells described in Table 4.4, with the exception of MW-406. The groundwater elevation data collected during this time period is provided in Table 6.3. Table 6.4 provides the range of groundwater elevations recorded for each well between August 2005 and February 2006. As shown on the table, the groundwater elevation may fluctuate as much as 5.7 feet, as is the case with MW-275S.

Additional data was collected from these wells since 2006 and is continually updated. The data is stored at the following website:

<u>http://www.sfwmd.gov/dbhydroplsql/show_dbkey_info.main_menu</u>. To access the data, click on "by Site Name," and enter in C-44. Note that the datum for these elevations is NGVD 29.

The nomenclature for the monitoring wells within DBHydro is different than the names of the wells as listed on Table 4.4. Table 4.5 gives the correlation between these different names.

Groundwater readings were taken at each boring location. Following completion of each boring, the groundwater level was measured with a tape prior to grouting. The measured groundwater readings are included on the boring logs in Appendix A-1 and A-2, and are summarized in

Table 6.5. It should be noted that these readings may not represent the stabilized conditions of the groundwater surface.

Groundwater readings were also taken at each of the test pits excavated as part of the 2012 AMEC Investigation. The measured groundwater readings are included on the test pit logs in Appendix A-2 and are summarized in Table 6.6. Again, it should be noted that these readings may not represent the stabilized conditions of the groundwater surface. Photos of the excavated test pits are provided in Appendix E.

As part of the Test Cell Program, new piezometers were installed and groundwater data was collected during operation of the test cells. Details of the Test Cell Program are discussed further in Section 8.0.

6.3.1.3 Groundwater Quality

Water quality of the surficial aquifer in Martin County varies, but is generally of potable quality except near tidally affected streams or where saltwater intrusion has taken place. HDR had implemented a "Pre-Basis of Design Report" (BODR) water quality monitoring program at the site, as described in the Pre-BODR Monitoring Plan submitted under Work Order 6, Task 2.2, which included two rounds of groundwater sampling at the Project site well nest locations. Sampling was performed in October and December 2005. A summary of the analytical results is provided in Table 6.7.

A discussion of the deeper site hydrostratigraphy is included in Attachment 5 of the DDR.

6.3.2 Surface Water

Surface water will be encountered at the site and localized inundation can be expected. Existing ditches, irrigation canals, drainage swales and low-lying features may contain surface water at different times of the year. The locations and typical cross sections of these features are shown on Volume I Drawings G0019 through G0032.

6.4 Geophysical Investigation

The surface geophysical investigation of the site was performed as described in Section 4.4. SEI has identified typical soil types per resistivity values from their experience in Florida, these soil types are presented in Table 6.8. A further discussion of methods and results can be found in the geophysical investigation report, including maps and profiles, which is included as Appendix D. Please note the vertical axis of geophysical survey profiles is in meters while the horizontal axis is in feet. The capacitively coupled resistivity (CCR) profiles generally show low resistivity soils with resistivity values typically less than 100 Ohm-meters, consistent with clays to clay/sand mixtures. The resistivities of the site soils are consistent with and support the soil types observed in borings drilled on site.

The CCR results were compiled and plotted for seven different depth intervals along or near to the proposed Reservoir embankment. The depth intervals include 1.4, 4.4, 7.6, 10.2, 13.4, 17.3, and 22.0 feet below ground surface. The plots are shown on Figures 6.2 through 6.8, respectively. A review of the resistivity maps indicate that the lowest soil resistivities are generally observed along the southwestern embankment alignment. Resistivities in this area appear to be predominantly below 30 Ohm-meters.

The CCR profiles near the northern embankment generally show relatively low resistivity soils (less that 100 Ohm-meters); soils with lower resistivity values are consistent with clay to clay/sand mixtures. The soils in the associated profiles generally show there to be resistivity

values ranging from approximately 20 to 50 Ohm-meters. There are two tracts of approximately 1,000 and 2,000 feet near Easting of 839000 and 841000 (State Plane 1983 Coordinate System) respectively, where CCR tests were not run. There are several isolated locations with resistivity values greater than 100 Ohm-meters.

The CCR profiles along the eastern embankment generally show relatively low resistivity soils (less that 100 Ohm-meters). The soils in the associated profiles generally show resistivity values ranging from approximately 20 to 60 Ohm-meters. There are several isolated locations with resistivity values greater than 100 Ohm-meters representing sandier intervals. There is an approximately 1,000 foot tract near the northing 1001000 (State Plane 1983 Coordinate System) where resistivity values are consistently above 100 Ohm-meters. There is an approximately 800-foot tract near the northing of 997500 (State Plane 1983 Coordinate System) that shows resistivity values higher or near to 100 Ohm-meters, consistently, from the ground surface to approximately 7.6 feet below ground surface. Higher resistivity values (30-60 Ohm-meters) generally occur toward the northern limit of the eastern embankment.

The CCR profiles near the southern embankment in the associated profiles generally show there to be resistivity values ranging from approximately 20 to 50 Ohm-meters. There are several isolated locations with resistivity values greater that 100 Ohm-meters.

The CCR profiles along the western embankment generally show resistivity values ranging from approximately 20 to 60 Ohm-meters. There are several isolated locations with resistivity values greater than 100 Ohm-meters. There is an approximately 1,400 foot tract of soil near to the Northing of 1006000 (State Plane 1983 Coordinate System) with resistivity values higher or close to 100 Ohm-meters with significant variability between 0 and 5 ft of depth. Higher resistivity values (30 to 60 Ohm-meters) generally occur near the northern limit of the western embankment.

The geophysical survey confirms information obtained from borings that the shallow subsurface soils are predominantly silty and clayey. The survey did not show evidence of anomalous features that would indicate near surface karst activity in the area of the proposed reservoir embankment centerline.

7.0 GEOTECHNICAL SITE CONDITIONS

7.1 Introduction

This Section summarizes the geotechnical properties of the subsurface materials at the Project site. As discussed in Section 6.0, the most obvious delineation of subsurface materials is the presence of the predominantly sandy, silty and clayey soils, Units A and B, above the more shelly sand material, Unit C.

The purpose of this Section is to provide information used by the designers for the embankment design, evaluation of borrow material to be used as structural fill, and foundation characteristics for the support of structures. HDR has reviewed the information obtained during all site investigations to develop a range of representative engineering properties for the embankment foundation materials for use in seepage, stability, and soil-cement armor analysis. The soil-cement data is discussed in Section 9.0 of this report.

7.2 Engineering Properties of Subsurface Soils

As discussed in Section 6.0, Holocene and Pleistocene sediments mantle the Project site. These sediments were designated as Informal Stratigraphic Units A and B (A+B) and are predominantly sand with varying percentages of silt and clay. The USCS designation for soils encountered in Units A+B are: SP, SP-SM, SP-SC, SM, SC and CL. Underlying the silty and clayey sand sediments is a shelly sand material of Pleistocene and Pliocene age designated as Informal Stratigraphic Unit C. The Unit C soils are typically fine-grained sands with a low to high percentage of shell.

A geotechnical exploration and laboratory program was completed along the embankment alignment and in the reservoir interior, as well as throughout the STA areas, as discussed in Sections 5.0 and 6.0 of this report. CPTU and SPT data were evaluated to estimate the in-situ properties of the subsurface materials. Laboratory testing was performed to classify the soils, to determine the moisture-density relationship, and to determine the strength properties and hydraulic conductivity of the soils.

7.2.1 SPT Borings

Statistical analyses of SPT (ASTM D1568) data from 149 CBs were performed to evaluate uncertainty and variability associated with the data, and for use of this information in assessing the density and related strength characteristics of various types of materials considered in the engineering analyses. The four SPT borings drilled by AMEC where not included in this statistical analysis. Section 4.0 provides details of the exploration with rotary wash borings with SPT, including drilling methods and sampling procedures.

The analyses considered the statistical distribution of $(N1)_{60}$ values, spatial variation across the reservoir site, and distribution with depth. $(N1)_{60}$ values are the estimated number of SPT blows (N) required to penetrate a 1-foot interval (blows per foot) at a normalized over burden pressure of 1 ton per square foot and also corrected for hammer energy efficiency, the size of the boring, the type/size of rods used, and the type of sampler. Figure 7.1 shows the $(N1)_{60}$ values for the CB borings performed. Please note that the Site Characterization Report refers to the $(N1)_{60}$ values as N1. Additional statistical analyses on a subset of the uncorrected SPT N-values of less than 60 blows per foot indicate that 95% of the corresponding $(N1)_{60}$ values are greater than 6, with 85% greater than 11 (see Figure 7.2). The median $(N1)_{60}$ value at the site is close to 30. As shown on Figure 7.1, the lower SPT values tend to be in the upper 10 feet of the foundation and at a depth of 50 to 60 feet below ground surface.

The spatial distribution of the estimated $(N1)_{60}$ values was examined to identify any areas of the site with a potential for anomalously low or high density and corresponding strength characteristics. Plots of the average $(N1)_{60}$ values in depth intervals of 0 to 10 feet, 10 to 20 feet, 20 to 40 feet, and greater than 40 feet below ground surface, are shown on Figures 7.3 through 7.6, respectively. Note that the value plotted is the average over the entire depth interval (for example, 0 to 10 feet) for that boring and may include as few as four or as many as six $(N1)_{60}$ values.

The occurrence of $(N1)_{60}$ values that are less than or equal to 10, are shown on Figures 7.7 through 7.10. This data is summarized for the same depth intervals as the previously referenced figures. If more than one $(N1)_{60}$ value of less than or equal to 10 was measured in an interval, the value indicated on these figures is the average. For example, if $(N1)_{60}$ values of 2 and 6 were measured in the 0 to 10 foot depth interval, a value of 4 is shown on the figure. These figures show all boring locations (with the exception of the 4 AMEC borings), not just those with the occurrence of low $(N1)_{60}$ values. Boring locations where an $(N1)_{60}$ value of less than 10 was not measured in the indicated depth interval are shown with a "+" symbol.

The lower SPTs occur sporadically across the site with a slightly higher concentration in the southwest quadrant of the reservoir. In reviewing these plots, in conjunction with the boring logs, the softer clay layer at depth along the northern portion of the reservoir site also has lower blow counts. Additionally, a slightly softer zone of clayey sand exists at depth of approximately 45 feet below ground surface in the vicinity of the pump station, as evidenced by data from CB-378, CB-379, CB-380, CB-381 and CB-382.

7.2.2 Cone Penetration Soundings

The CPTU data was used to augment the SPT data with the following objectives:

- Delineate the break between the informal Units A+B and the shelly sand Unit C
- Discover presence of apparently weak soil layers
- Evaluate the undrained shear strength values based on CPTU tip resistance values
- Compare SPT N-values to N-values interpreted from the CPTU data
- Evaluate the drained friction angle based on CPTU tip resistance values, and
- Evaluate the secant modulus based on CPTU tip resistance values.

The delineation between Units A+B and the shelly sand Unit C was evaluated in the Reservoir area by grouping the CPTU soundings in the northeast (NE), northwest (NW), southeast (SE), and southwest (SW) areas of the Project reservoir. The tip resistance plots for these four areas are shown on Figure 7.11. Typically, a distinct increase in the cone tip resistance occurred at the change in materials. The silty and clayey sand (Unit A and B) has typical tip resistance values of less than 100 tons per square foot (tsf), while the shelly sand (Unit C) has typical tip resistances values of approximately 100 to 500 tsf.

As shown on Figure 7.11, the CPTU tip resistance values in the NW and NE quadrants indicates the presence of apparently weak soil at about elevation -20 to -34 feet. The CPTU plots for these soundings in Appendix C indicate the soil classification at this elevation is clay. This layer of relatively weak material (low SPT N-value) was also present in some of the soil borings along the north alignment of the reservoir. This apparently weak material was not identified by the CPTU in the soundings in the SW or SE quadrants. It should be noted that some of the soils that are classified as clay by the CPTU may not actually be clay because the CPTU determines soil classification indirectly based on force and pressure measurements not

based on laboratory testing and visual classification.

The CPTU tip resistance can also be used to estimate the undrained shear strength of clay soils. For each CPTU sounding, the undrained shear strength was calculated for material that was classified as clay using the following equation:

$$S_u = (q_c - \sigma_{vo})/N_k$$

where: $S_u =$ Undrained shear strength (tsf) $q_c =$ CPTU tip resistance (tsf)

 σ_{vo} = Effective overburden stress (tsf) N_k = Cone factor (non-dimensional)

The cone factor is a function of a number of variables including soil plasticity and stress history. A value of 15 was selected to estimate S_{μ} for this site.

The S_u values are plotted on Figure 7.12 for the four areas around the reservoir. These plots show that the soils classified as clay with the CPTU occur at a depth of about 0 to 14 feet in all four quadrants and in the lower zone for the NW and NE CPTUs as discussed above.

The estimated S_u values to a depth of about 14 feet below ground surface indicates the soils are generally firm to very stiff; however, the S_u values for the lower zone for the NE quadrant indicates that the clay soils may be normally consolidated with an undrained shear strength less than 0.5 tsf. On each plot shown on Figure 7.12, the estimated normally consolidated clay undrained shear strength line is shown as a point of reference. This line was calculated using an S_u/σ_{vo} ratio of 0.25.

The N-values interpreted from the twenty-four CPTUs in the reservoir area are plotted on Figure 7.13. The method proposed by Robertson, et. al. (1986) was used to estimate N-values based on the q_c values, overburden stress, and material classification. The measured median N-values from the soil borings in the Reservoir area are also plotted on Figure 7.13. There is a similar trend in the N-values with depth. As discussed above, near elevation -20 to -25 feet both the CPTU and measured N-values indicates a weaker material.

The drained friction angle for the sandy soils was calculated using the method proposed by Kulhawy, F. H. and Mayne, P. W. (1990) and is plotted on Figure 7.14 for each quadrant. The trend with depth is similar for each quadrant. The calculated friction angles are relatively high and are considerably greater than values calculated based on the SPT N-values. A relatively low friction angle value of 30 degrees was calculated from elevation -20 to -28 feet in the NW quadrant.

The secant Young's modulus of the sand soils was also estimated from the CPTU data using a method proposed by Robertson, P.K. (1990). The values are plotted by quadrant on Figure 7.15. The trend of the values with depth is similar to the trend of friction angle. Typically, the values are low to a depth of about 12 to 14 feet below ground surface and are relatively high in the upper part of Unit C to a depth of about 40 feet below ground surface. Below this depth, the values generally decrease. The median value is also plotted on each quadrant.

7.2.3 Auger Borings

As discussed in Section 4.0, ABs were drilled throughout the Project site. The primary purpose of the auger borings was to characterize the soils in Units A and B and to obtain bulk samples for laboratory testing, as explained in Section 5.0.

7.3 Laboratory Testing Results

Laboratory testing was conducted on soil samples from across the site collected for the 2006 Site Characterization Report,

7.3.1 Grain Size Analysis

Grain size analysis was performed on samples from all investigations. The grain size distribution curves are provided in Appendix B-1 and B-2.

A plot of the fines content versus elevation across the site is shown on Figure 7.16. This graph shows all previous data points in gray (both AB and CB), with the median shown as a dashed black line. The newer data points are shown in red (both AB and CB) with the composite median for all data shown as a blue line. In general, the data from the Site Characterization plots in the same range as the post site characterization data. The data from the AMEC investigation is not included on this plot.

A plot of fines content data by soil unit is shown on Figure 7.17. This plot confirms that the Unit B soils are typically finer than Units A and C. This same graph also shows the fines content data for the clay layer at depth on the northern portion of the site and confirms the percentage of fines in this layer is much higher than that of the shelly sand that makes up Unit C. The AMEC data is not included in Figure 7.17 but confirms that the fines content for the clay layer at depth is higher than that of the Unit C shelly sand.

As part of the effort to delineate differing foundation conditions around the reservoir footprint, several additional plots were developed to evaluate the potential for spatial variation of fines content at various depths. Figures 7.18 through 7.21 show the variation of fines content across the site for depth intervals of 0 to 5 feet, 5 to 10 feet, 10 to 15 feet, and 15 to 40 feet below ground surface, respectively.

The USCS classification was evaluated by depth interval to further confirm previously developed soil-type relationships to the three stratigraphic Units, A, B and C. The results of this evaluation are shown on Figure 7.22.

As part of the initial Site Characterization, grain size analyses on samples obtained from the auger borings at a depth of 0 to 3 feet, 4 to 7 feet, and 8 to 20 feet below ground surface are plotted on Figures 7.23 through 7.25, respectively.

7.3.2 Proctor Compaction Tests

A series of standard and modified Proctor compaction tests, as well as one-point and in-situ compaction tests were performed on bulk soil samples obtained from the Site Characterization auger borings from a depth of 0 to 15 feet below ground surface. Figure 7.26 plots the results of the modified proctor test results versus fines content.

7.3.3 Hydraulic Conductivity

Laboratory tests were performed to obtain an estimate of the hydraulic conductivity values of the remolded compacted soils from the Project site. Hydraulic conductivity test results for the remolded samples are plotted against elevation as shown on Figure 7.27.

A plot of the undisturbed and remolded k values versus percent fines is shown on Figures 7.28 and 7.29, respectively.

7.3.4 Triaxial Strength Test Results

Undrained triaxial tests with pore pressure measurements were performed on selected soil samples as described in Section 5.0. A series of tests were performed on soil samples from both auger borings (remolded) and rotary-wash (undisturbed). The angle of internal friction, assuming cohesion equal to zero, for samples remolded to 95% standard and modified Proctor are shown on Tables 5.8 and 5.9.

The effective angle of internal friction vs. percent fines content based on residual and maximum failure for remolded samples up to a depth of 7 feet below ground surface is plotted on Figure 7.30.

7.3.5 Corrosivity Testing, Carbonate Content, and Organic Content

Corrosivity testing was performed on shallow auger boring samples (1-4 foot depth interval) as described in Section 5.0 and summarized in Table 5.6. The results show chloride concentration in the soil sample ranging from 15 to 60 milligrams per liter (mg/L) and sulfate ranging from 5 to 855 mg/L. Sample pH ranged from 4.3 to 8.4 standard units. Additional chemical testing was done as part of the AMEC soil-cement investigation and is discussed further in Section 9.0.

Of the material from the Site Characterization test pits, the carbonate content ranges from 1.5 to 25.7%. Of the material from the auger borings, the carbonate content ranges from 0 to 37.3%. As part of the AMEC investigation, the carbonate content test was performed on two samples: 1) boring CB-472, sample depth 18.3 to 19.8 feet, and 2) boring CB-474, sample depth 45.0 to 46.5 feet. The results were 29% and 90%, respectively.

Organic content of samples collected during the Site Characterization ranges from 0.4 to 5.1% as shown on Table 5.6. Organic content of samples collected during the AMEC investigation ranges from 0 to 1% as shown on the gradation curves in Appendix B-2.

7.3.6 Atterberg Limit Testing

Testing for the plasticity index and liquid limit were preformed on 20 undisturbed samples. Results of this testing are plotted on Figure 7.31 along with data previously obtained by CDM. The plot shows nearly all of the data falls between the U and A lines. Testing for the plasticity index and liquid limit were also performed on 15 samples as part of the AMEC investigation. Of the samples tested, 3 are non-plastic, 10 fall between the U and A lines and are low plasticity, and 2 fall below the A line and are low plasticity.

8.0 TEST CELL PROGRAM DATA

8.1 Introduction

In order to provide a large scale field test of the construction and operation of the Project, a Test Cell Program was designed and constructed on a 475 acre portion of the 12,000 acre site (Figure 3.2). The Test Cell Program consists of two reservoir test cells (RTC) and two STA test cells. The test cell layout is shown on Figure 8.1. This report summarizes data obtained during the construction and one-year operations phase of the Test Cell Program for the Project. For a full report on the Test Cell Program refer to *Final Test Cell Analytical Report for Construction and Operations* dated July 2007. Photographs of the test cell construction are included in Appendix F.

For the purposes of the test cell construction, informal stratigraphic Units A and B were referred to as Soil Type 1, while informal Unit C was referred to as Soil Type 2. For a description of Units A, B and C refer to Section 6.0. Please note that the definitions of Soil Types 1 and 2 in the test cell program may be different than those used in the current Technical Specifications.

8.2 Construction Field and Laboratory Test Program

8.2.1 Earthwork

Soil Type 1 compacted fill was placed within the test cell embankments, the STA berms, the sedimentation pond perimeter dike, the access roads, and the access ramps. This material was to be placed at a minimum dry density of 95% of the Modified Proctor Compaction Test (ATSM D1557) maximum dry density and within 2% of the optimum moisture content. Families of curves for the compaction tests completed on site borrow materials are provided in Appendix F. The results of the in-place density tests are also provided in Appendix F. A summary of the average percent compaction and deviation from optimum moisture content is provided in Table 8.1.

In addition to the Soil Type 1 earth fill, compacted sand filter material was placed within the blanket drains and chimney drains of the two test cells. The filter sand was obtained from two borrow sources. SMI sand was used in Reservoir Test Cell 1 (RTC-1), and E.R. Jahna Industries, Inc. sand was used in Reservoir Test Cell 2 (RTC-2). Particle size analyses (ASTM D422) and minimum and maximum index density tests (ASTM D4253 and D4254) were completed on the two materials. The drain materials were to be placed and compacted to a relative density ranging from 55% to 70%. A total of 68 in-place density tests were completed on the filter sand material. The in-place relative density ranged from 21% to 96% with an average value of 74%. The fines content (percentage of soil passing the U.S. No. 200 mesh sieve) ranged from 0.2% to 2.9% with an average value of 1.0%. These results are provided in Appendix F.

8.2.2 Shell-Rock

The majority of the shell-rock material placed on the access roads, ramps, and crest roads at the site was obtained from Stewart Mining Industries. Small quantities of coquina rock and shell-rock from Palm Beach Aggregate were also placed on the north/south access road. Compliance tests were completed on the SMI borrow material by A.M Engineering and provided by the supplier. The results are provided in Appendix F. The material had a slightly lower carbonate content than the minimum acceptable value allowed by the FDOT Standard Specifications for Road and Bridge Construction Section 913A (i.e. 46.5% vs. 50%). However,

all other properties of the shell-rock met the Project specifications, and the material was approved for use.

The Project specification was modified to allow for a minimum in-place density of 98% of the Modified Proctor Compaction Test (ASTM D1557) maximum dry density, rather than a minimum dry density of 129 pounds per cubic foot. Results of the Modified Proctor tests and sieve analysis tests completed on the shell-rock and coquina rock materials are provided in Appendix F. A total of 15 in-place density tests were completed on shell-rock material. Results of these tests are provided in Appendix F. The average degree of compaction calculated from the tests was 99.5%.

8.2.3 Soil-Cement

Soil-cement was placed on the outside (downstream) slope of the north and south walls of RTC-2. Soil-cement was placed on the outside rather than the inside face slope so that the soilcement could be observed and tested during the one year operations period. Soil-cement on the north wall consisted entirely of flat plate soil-cement: while both flat plate and stair-stepped soil cement was placed on the south wall. A plan view of the limits of the soil cement is provided on Figure 8.2. After the contractor stockpiled sufficient quantities of Soil Type 1 and Soil Type 2 for use in the soil-cement, samples were obtained and shipped to the Ardaman's Tampa laboratory for mix design testing. A laboratory testing program was completed on representative samples of the two stockpiled materials (Table 8.2) to determine: 1) if the native soils were suitable for use in the soil-cement mix, with testing to determine carbonate content, fines content, and calcium absorption; 2) if moisture-density relationship of the soil-cement mixtures (ASTM D558) were completed on the two soil types after adding varying amounts of cement to the soil; 3) compressive strength (ASTM D1663) of lab-prepared soil-cement samples; and 3) the percent of material loss (ASTM D559) using wetting/drying tests of lab-prepared soil-cement samples. Samples for Soil Type 1 were prepared with 9%, 11%, and 13% cement by dry weight, while samples for Soil Type 2 were prepared with 7%, 9%, and 11% cement by dry weight. Results of the mix design tests are provided in Appendix F.

During field production, standard soil-cement proctor compaction tests (ASTM D588) were completed and 1/30 cubic foot standard compaction molded samples were prepared for each type of material being placed each day. Five samples were prepared at approximately 95% of the maximum dry density as determined from the compaction tests and shipped to the Ardaman West Palm Beach laboratory for curing and compressive strength testing. Compressive strength tests were typically completed at 3, 7, 28, and 56 days after preparation.

Results of the compaction and strength tests are provided in Appendix F for field production samples. Table 8.3 presents a comparison in 28-day compressive strength of soil-cement samples prepared as part of the mix design as well as the field production. Soil-cement field production compressive strength test results versus laboratory mix design results are provided in Table 8.4. Two of the materials tested, Sample No. 4 – Soil Type 2 with 7% cement and Sample No. 7 – Soil Type 1 with 11% cement, exhibited relatively low compressive strength values, although the sample with only 7% cement was not lower than anticipated. As a result, several six-inch diameter cores were obtained in the general vicinity of where the samples had been obtained. A total of four compressive strength tests were completed at each of the locations at 29 to 31 days after the materials had been placed. These results are summarized in Table 8.4. The cores in the vicinity of Sample No. 4 exhibited lower strengths than the 28 day strength of the laboratory samples (averaging 360 psi vs. 441 psi). In contrast, the cores in the vicinity of Sample No. 4 exhibited lower strengths than the 28 day strength of the laboratory samples (averaging 539 psi vs. 422 psi).

Additionally, wet-dry testing was performed on the mix design samples and the field production Soil Type 1 with 11% cement following the ASTM D559 test procedure (wetting and drying compacted soil-cement mixture), (presented in Appendix F). Loss results for the mix design samples indicate 0.7% and 0.0% for the Soil Type 2 and Soil Type 1 samples, respectively. Loss for the field production sample was 1%.

In-place density tests of the flat plate and stair-step soil cement are also provided in Appendix F. The soil cement was placed at an average dry density of 98.3% of the Standard Soil-Cement Proctor Compaction Test maximum dry density, and a moisture content of 1.3% below its optimum moisture content. However, the soil cement batch mixing plant had difficulty in applying sufficient water to the Soil Type 2 mix for two working days, June 20, 2006 and June 22, 2006. During this period, the soil-cement was placed at 91.4% to 107.0% compaction and 2.7% to 5.2% below its optimum moisture content.

8.2.4 Geotextile

Material conformance tests were completed on samples of the non-woven geotextile delivered to the site. A sample was cut from the end of selected rolls of the geotextile at the project site and shipped to the Ardaman and Associates Orlando laboratory for material conformance tests. A total of six rolls of geotextile were tested for mass/unit area (ASTM D5261), thickness (ASTM D5199), and grab strength/elongation (ASTM D4632). Results of the tests are provided in Appendix F. One permittivity test (ASTM D4491) was also completed on a geotextile sample.

During geotextile installation, 13 samples of the sewn geotextile seam were obtained and tested for both geotextile breaking load and seam breaking load. Results of the tests are provided in Appendix F. The ratio of seam strength to geotextile material strength ranged from 33 to 63%.

8.3 Site Instrumentation

8.3.1 Paperless Recorders

Flow and stage data are recorded by three paperless recorders installed at the site; one recorder for each RTC and one recorder for both STA cells. The paperless recorders store data on a flash memory card, and includes flow-metered inflows from the irrigation canal to the RTCs and STA cells, flow-metered inflows from the RTC internal drains to the seepage collection canal, flow-metered inflows from the seepage collection canal to the RTC, and stage data recorded by pressure-transducers for the Reservoir, STA cells, seepage collection canals, and the internal drain sumps. The locations of the paperless recorders are shown on Figure 8.3, and the data being collected at the RTC site is summarized in Table 8.5.

8.3.2 Piezometers

Piezometers were installed at the site at the locations shown on Figure 8.3 to record groundwater levels adjacent to the RTCs. Automatic data recorders (Level Trolls[™] and Geokon units) were installed in each piezometer. The piezometers were installed in groups, or nests, that include three to four wells installed at different depths. The embankment piezometer nests (EPZ#-E) were installed in the embankment crest at each RTC and consist of four wells, including a well within the RTC embankment interior, a shallow surficial well (EPZ#-A, target interval shallow Unit A sands, depth approximately 2 to 7 feet below ground surface), a shallow intermediate well (EPZ#-B, target interval shallow Unit C sand, depth approximately 15 to 25 feet below ground surface), and a deep intermediate well (EPZ#-C, target interval Unit C sands, depth approximately 40 to 55 feet below ground surface).

Nests located outside of the reservoir embankments (at varying distances from the RTC cells) consisted of three wells, a shallow surficial well (PZ#-A, target interval shallow Unit A sands, depth approximately 2 to 7 feet below ground surface), a shallow intermediate well (PZ#-B, target interval shallow Unit C sand, depth approximately 15 to 20 feet below ground surface), and a deep intermediate well (PZ#-C, target interval Unit C sands, depth approximately 40 to 50 feet below ground surface). Piezometer installation details are provided in Table 8.6, and a schematic showing the vertical placement of the piezometers is shown in Figure 8.4.

Nests located outside of the STA embankments consisted of two wells, a shallow surficial well (PZ#-A, target interval shallow Unit A sands, depth approximately 2 to 7 feet below ground surface), and a shallow intermediate well (PZ#-B, target interval shallow Unit C sand, depth approximately 15 to 20 feet below ground surface).

8.3.3 Vibrating Wire Piezometers

Piezometers identified as "VWP" consisting of a Geokon model 4500 AL vibrating wire device were embedded directly into the subsurface beneath the embankment prior to embankment construction at the locations shown on Figures 8.5 and 8.6. Five VWPs were embedded in a shallow trench every 30 feet in a line beneath the embankment. Between each piezometer, a 1 foot wide layer of ½ inch bentonite pellets was installed in the excavated trench. The VWP cables for each transect of five were routed to a single data logger located at the downstream toe of the embankment as shown on Figures 8.5 and 8.6.

8.3.4 Settlement Gauges

One settlement gauge was installed with the vibrating wire piezometers (in the same trench) at each RTC at the locations shown on Figure 8.3. The settlement gauges consisted of Geokon vibrating wire settlement gauges.

8.4 Test Cell Operations and Monitoring Program

Following the completion of construction and the installation of all site instrumentation, the RTCs were filled, and the STA test cells were filled to allow the planned planting and seeding, thus beginning the operations phase of the Project. This Section provides a summary of the site monitoring activities performed during the start-up and the operations period of the test cells from May 2006 to June 2007.

8.4.1 Reservoir Test Cells Flow and Stages

Flow and stage data from the paperless recorders were downloaded monthly. Average monthly inflows and stages for both RTCs for May 2006 through June 2007 are included in Table 8.7 and stage vs. volume curves for the RTCs are included in Appendix F. The inflows to RTC-1 in May 2006 and RTC-2 in June 2006 represent the volumes required to fill each RTC. The average stage for RTC-1 over the operations period was 40.70 feet, while the average stage at RTC-2 over the operations period was 40.33 feet. The stage at RTC-1 was increased to 42 feet in January 2007 to evaluate the performance of the embankment and drains at a stage above what would be considered normal full storage level. The maximum stage recorded at RTC-1 for the test period was 40.93 in December 2006.

The data show that the average monthly inflows required to maintain the stage at the target elevations over the test period was approximately 5,321,000 gallons per month (approximately 177,400 gallons per day) for RTC-1 and 7,952,000 gallons per month (approximately 265,000

gallons per day) for RTC-2. Total inflow to RTC-1 over the test period was approximately 75,343,300 gallons, and total inflow to RTC-2 was approximately 87,417,215 gallons. The flows are approximate since there were periods of recorder malfunction during the test program.

Seepage collection canals (SCC) were constructed around the perimeter of each RTC to intercept some of the seepage water that was lost from the cells. The average stage of the seepage collection canal at RTC-1 (SCC-1) during the operations period was 19.40 feet, and the average stage at seepage collection canal at RTC-2 (SCC-2) over the operations period was 19.41 feet.

A pump was installed in each seepage canal to allow water to be pumped from the canal to the reservoir cell at each RTC. Flow meters recorded the flows that were diverted to the RTCs during the test program. The data indicates that an average of approximately 26,300 gallons per day was diverted from SCC-1 to RTC-1 during the test program, and an average of approximately 20,300 gallons per day was diverted from SCC-2 to RTC-2 during the program. The total flows from the seepage canals represent about 10% of the total inflows to RTC-1 and about 6% of the total inflows to RTC-2.

Minimal flow was recorded at the drain sump pumps at either RTC during the operations period, indicating that the phreatic surface had only reached the bottom level of the drains during the test program. Further discussion of the phreatic surface is included in Section 8.4.3.

8.4.2 STA Test Cells Flow and Stages

The STA stages were dictated by the observed plant growth in the STAs. STA-1 was initially inundated to an elevation of approximately 23.5 feet to saturate the soils for planting. STA-2 was initially inundated to an elevation of approximately 25 feet to fill the existing irrigation ditches and slightly inundate the plateaus for seeding. The water level in STA-1 was increased in August 2006 to an elevation of approximately 24.3 feet. The water level in STA-2 was increased in August 2006 to an elevation of approximately 25.5 feet. The average elevation of STA-1 over the test period was 23.9 feet, and the average stage for STA-2 was 24.6 feet (Table 8.7).

The flow data show that average monthly inflow required to maintain the pool elevation in STA-1 during the operation period was approximately 4,839,745 gallons (approximately 161,000 gallons per day). The average monthly inflow required to maintain the pool elevation at STA-2 over the test period was approximately 9,495,413 gallons (approximately 316,500 gallons per day). The flow data show that inflows to STA-2 exceeded the inflows to STA-1, or the RTCs. The water losses at STA-2 are possibly due to vertical seepage losses through the spreader ditches and existing irrigation ditches which could be hydraulically connected to the shelly sand unit (Unit C) of the surficial aquifer at STA-2. A layer of low hydraulic conductivity Unit B material was placed in the west spreader swale at STA-2 on June 21, 2006 in an attempt to reduce the seepage losses. Stage/volume plots (Appendix F) do not indicate a decrease in the inflow to STA-2 due to this layer.

8.4.3 Groundwater and Embankment Water Levels

Water levels in the site piezometers were recorded hourly and downloaded monthly. At RTC-1, transects of piezometer nests are located in a line from the embankment and extend to the north and west (Figure 8.3). At RTC-2, transects of piezometer nests are located in a line from the embankment and extend to the north and east (Figure 8.3).

The RTCs were filled and the depth maintained over the test period. RTC-1 was at normal full storage level (NFSL) of 40 feet on May 18, 2006, and RTC-2 was at NFSL on June 15, 2006. Water level data collection from the test cell piezometers began on June 1, 2006. Figures 8.7 and 8.8 show the water levels in piezometer transects at RTC-1 - North and RTC-2 - East for the first 2 to 2½ months of the operations period. Figures 8.9 and 8.10 show the hydrographs for transects RTC-1 - North and RTC-2 - East for the full operations period, and Figure 8.11 shows the rainfall hydrograph as compared to PZ-7B and PZ-24B at RTC-2, and background well PZ-383S for the full operations period. PZ-383S is located approximately 4,000 feet north of the test cell site, and is part of the site-wide background monitoring program. Additional hydrographs are included in Appendix F.

Generally, water levels in the "B" and "C" piezometers (shallow and intermediate portion of the surficial aquifer) show a strong increasing trend in water levels beginning in June and reaching peak levels in mid July 2006. In addition to filling the test cells, 8.5 inches of rainfall fell at the test cell site during this time frame. A 2 to 3 foot rise in groundwater elevation was observed at all of the site background monitoring wells in response to the increased rainfall as illustrated in Figure 8.11. A groundwater rise of approximately 3 feet was observed in the piezometers at RTC-1 during this initial operations period; however RTC-1 was full for about 13 days before data was collected. A groundwater rise of approximately 4 to over 6 feet was observed in the piezometers at RTC-2. The highest rise in water level was in piezometers located beneath the embankment, and those closest to the downstream toe (within 100 feet) as would be expected. The far-field piezometer nest located about 1,200 feet east of RTC-2 (PZ-24B and PZ-24C, Figure 8.6) showed a groundwater rise of approximately 3 feet during this initial operations period, which is equivalent to the site-wide response to rainfall.

After mid-July the water levels at the test cell site appeared to stabilize and begin to follow area rainfall patterns. The groundwater levels decline from the end of July through mid-August 2006. A slight increase in water levels was observed in late August 2006, apparently in response to increased rainfall at this time due to tropical storm Ernesto. A similar pattern in water level response was observed at RTC-2. A rise in the groundwater levels was also observed in mid-September 2006, which coincides with a rain event of about 1.6 inches. In October 2006, water levels generally decreased but showed a slight increase in late October apparently in response to a rain event. Groundwater levels in November 2006 continued to show an overall decrease consistent with decreasing rainfall from September to November 2006. As shown on the hydrographs, groundwater levels at RTC-1 decreased in response to the drawdown test at SCC-1 performed from November 27 to December 29, 2006 (drawdown test discussed in Section 8.4.4). The water levels recovered from the drawdown test in January and February 2007 although they remained at levels that were slightly lower than the pre-test levels, likely due to low rainfall in the area. Water levels generally continued to decline from March to June 2007, partially due to a decline in the stage at each of the RTCs. By June 2, 2007, water levels increased in response to an increase in rainfall.

Groundwater elevation contour maps of the surficial aquifer at the test cell site are included in Appendix F. The contour maps represent the months of June, August, October, and December 2006, and March and May 2007. The contour maps show the formation of a groundwater mound (as indicated by the hydrographs) beneath the test cell site due to seepage from the test cells. At RTC-1, the groundwater levels on the west side of the test cells were affected by the irrigation canal water levels that were used as a source of water to the test cells.

Phreatic Surface

The vibrating wire transects were utilized to generate phreatic surface cross-section plots along each RTC vibrating wire transect. The plots generated during the test cell program are included

in Appendix F. The plots show that the phreatic surface was generally highest near the upstream end of the embankment, and decreases near the downstream toe. The plots also indicate that the phreatic surface levels were near the bottom or below the drain at both RTCs, as confirmed by the minimal flow from the drain sumps to the seepage collection canals over the test period. Increasing the stage of RTC-1 to 42+ feet did not significantly affect the level of the phreatic surface.

8.4.4 Seepage Canal Drawdown Test

A deviation from the normal operating condition was implemented as a test, and included lowering the level of the SCC at RTC-1 to allow observations of seepage effects on the Reservoir embankment and canals under this condition. SCC-1 was lowered from the normal operating elevation of approximately 21 feet to elevation 15 feet. The seepage canal water level was maintained at an elevation of approximately 15 feet for 33 days, and then lowered to elevation of 12 feet for the last 2 days of the test. The test began on November 27, 2006 and was run until December 29, 2006. All water pumped from the seepage canal was measured and quantified to the extent possible for the duration of the testing period.

Table 8.8 shows the pumped volumes and canal elevations for the duration of the test. As shown on the table, the average daily volume pumped from SCC-1 during the test was approximately 1,800,000 gallons. Figure 8.12 shows the daily volume pumped vs. the stage in SCC-1. The total volume pumped from SCC-1 during the drawdown test was approximately 65,646,277 gallons. The average pumping rate over the test period was approximately 1,400 gallons per minute, although the exact pumping rate could not be determined since some of the flow was not metered but estimated based on pumping time.

The visual observations during the drawdown test focused on the seepage canal and any evidence of potential piping that could compromise the integrity of the embankment. As the water level was reduced in the canal, a daily inspection of the embankment and seepage canal was performed. The daily inspection revealed the formation of erosion gullies on the banks of the seepage canal due to rainfall runoff (see photos in Appendix F). No evidence of piping of embankment material was observed during the test.

Hydrographs of water level data from the piezometer transects for RTC-1 are included in Appendix F. As shown on the hydrographs, groundwater levels at RTC-1 decreased in response to the drawdown test at SCC-1. Figure 8.13 shows the response of two piezometers on the north side of RTC-1. PZ-16B is located about 70 feet north of SCC-1, and PZ-25B is located about 400 feet north of SCC-1. As shown on the figure, the drawdown in both wells generally follows the canal drawdown with a lag time of 1 to 2 days. The groundwater elevation contours for December 2006 (Appendix F) show the response of the shallow surficial aquifer to the drawdown test.

8.4.5 Seepage Estimates

Although the pumped quantities provide an indication of the seepage losses from RTCs, a water budget model was constructed for each reservoir and STA cell to estimate the actual seepage being lost from the reservoirs during the operations period. The water budget models were developed using the data generated during the monitoring program. Seepage losses for this purpose are defined as the total water losses by both horizontal and/or vertical flow to the subsurface. Only minimal flow was being intercepted by the embankment chimney/blanket drains during the operations period. An analytical approach was developed using daily values of reservoir stage, reservoir inflow quantity, evaporation (from the EAA STA 1-W), and rainfall data for the site.

A water budget equation was developed that included inflow and outflow components as follows:

 $Rainfall + Pumped Inflows = Evaporation + Seepage + Pumped Outflows = \frac{Change in Volume}{Stage in Reservoir}$

Outflow included evaporation, seepage, and change in the volume of water (storage) within the cells. Evaporation data utilized in the model was obtained from STA 1-W (in DBHYDRO). Since seepage is the unknown variable, the seepage coefficient was adjusted as a calibration parameter until the actual vs. modeled reservoir or STA volume and stages were comparable. The water budgets were assessed on a daily basis for the operations period during which water was being pumped to the cells. The RTC water budget models were run utilizing data from June 2006 to April 2007. The STA cell water budget models utilized data from October 2006 to December 2006, representing a period of maximum water levels in the STA cells. Stage-area relationships were used to determine the final reservoir stage resulting from the addition of a volume of rainfall and/or pumped inflows and the subtraction of a volume of evaporation and seepage water.

The model shows that seepage losses at RTC-1 had generally stabilized as of August 2006 at an average rate of approximately 163,000 gallons per day. The maximum seepage observed during the operations period was during the drawdown test when seepage losses increased at RTC-1 to approximately 200,000 gallons per day.

At RTC-2, the calculated seepage over the operations period with a full reservoir was estimated at approximately 400,000 gallons per day during the first two months of operations, and then declined over the operations period with the average seepage at approximately 225,000 gallons per day.

The water budget model for STA-1 indicates that an average of 190,000 gallons per day was lost through seepage from the cell. During the drawdown test seepage losses increased at STA-1 to an average of approximately 240,000 gallons per day.

The operations summary indicates that more water had been supplied to STA-2 than any other test cell on site. In December, about 10 million gallons were supplied to STA-2 to maintain the water level. A water budget model was set up to evaluate seepage from STA-2. The model indicates that prior to the drawdown test the average seepage from STA-2 was approximately 500,000 gallons per day. Following initiation of the drawdown test, the seepage increased to approximately 780,000 gallons per day from STA-2 due to the proximity of the STA to the seepage canal at RTC-1.

8.5 Groundwater Quality

Groundwater samples were obtained from selected piezometers at the test cell site in July, September, and December 2006, and in March 2007. The results are summarized in Table 8.9 and the laboratory reports are included in Appendix F. Most of the detected parameters in the groundwater are below the established maximum contaminant level (MCL, per 62-550 FAC) or groundwater cleanup target level (per 62-777 FAC). Total dissolved solids (TDS) and chloride are typically above the secondary MCLs. The results are summarized below.

Field Parameters

The temperature of the groundwater samples ranged from 24.62° C to 25.66 ° C. Conductivity of the samples ranged from 1131 to 1705 umhos per centimeter (umhos/cm), and pH ranged from 6.81 to 7.56 standard units. Dissolved oxygen levels ranged from 0.24 to 0.41 mg/L.

Color, Odor Turbidity

Color in the groundwater samples typically ranged between 15 to 60 PCU. There are isolated occurrences of 100 PCU and 150 PCU. Odor typically ranged between U to 8.0 T.O.N. PZ-16C has decreased in value from 132 to 4 T.O.N. between July 2006 and December 2006. Turbidity at well PZ-16C ranges from 0.19 to 64 NTU while all others range from 0.7 to 44 NTU. The turbidity in both PZ-12C and PZ-16C decreased between July 2006 and September 2006.

<u>Nutrients</u>

The nitrite-nitrate concentrations ranged from below detection limits to 0.048 mg/L. There were two samples in March 2007 where the concentration was 0.11 mg/L (PZ-21B) and 0.13 mg/L (PZ-24C). The ammonia concentration in the groundwater samples ranged from 0.21 to 1.0 mg/L, and TKN ranged from 0.25 to 1.5 mg/L.

The phosphorus concentration ranged from 0.043 to 0.81 mg/L. An increase in concentration was observed at PZ-5C from 0.079 mg/L in September 2006 to 0.77 mg/L in December 2006. Dissolved phosphorus ranged from 0.025 to 0.62 mg/L, and soluble reactive phosphorus ranged from 0.013 to 0.54 mg/L.

<u>Metals</u>

<u>Arsenic</u>

The arsenic concentration ranged from below detection limits to 0.0079 mg/L. The maximum contamination level (MCL) for arsenic of 0.010 mg/L was not exceeded in the groundwater samples.

<u>Barium</u>

The barium has ranged from 0.0067 to 0.096 mg/L. These levels are well below the MCL of 2 mg/L, but still above the MDL of 0.00014 mg/L.

<u>Beryllium</u>

Beryllium was not detected during the test program.

<u>Cadmium</u>

Cadmium was not detected during the test program.

<u>Chromium</u>

The chromium level has ranged from below detection limits to 0.0086 mg/L. The last reported detection of chromium was in December 2006 in PZ-12C, PZ-16C, and PZ-26C. The levels that were reported in those wells were below the MCL of 0.1 mg/L.

<u>Copper</u>

The copper concentrations ranged from below detection limits to 0.0041 mg/L. All of the most recent data show that the copper content is below detectable levels.

<u>Cyanide</u>

Only one detection of cyanide occurred at PZ-26B in December 2006. The reported level was 0.009 mg/L, which is below the MCL of 0.2 mg/L.

<u>Calcium</u>

Calcium concentrations ranged from 16 to 310 mg/L.

Lead

Lead was not detected during the test program.

Mercury

Only one detection of mercury occurred at PZ-24C in July 2006. The reported level was 0.000072 mg/L, which is below the MCL of 0.002 mg/L.

<u>Nickel</u>

Nickel concentrations have ranged from below detection limits to 0.024 mg/L. Since December 2006, nickel has not been above detectable levels in the groundwater samples.

<u>Silver</u>

Silver was not detected during the test program.

Iron

Iron concentration ranged from below detection limits to 4.3 mg/L. Eight of the 15 wells have had an iron content that meets the MCL of 0.3 mg/L.

<u>Sulfate</u>

Sulfate concentrations ranged from 25 to 270 mg/L. All of the most recent data is below the MCL of 250 mg/L.

<u>Zinc</u>

The level of zinc ranged from below detection limits to 0.0093 mg/L. All of the wells meet the MCL of 5.0 mg/L.

Total Dissolved Solids

Total dissolved solids concentrations have ranged from 420 to 2000 mg/L. Most wells exceeded the MCL of 500 mg/L.

<u>Chloride</u>

Chloride concentrations ranged from 42 to 570 mg/L. PZ-16C had concentrations of 530 mg/L and higher. The MCL is 250 mg/L. PZ-16C, PZ-12C and PZ-26C have exceeded the MCL of 250 mg/L.

8.6 Overwash Test

An overwash test program was performed at the test cell site in February 2007 to evaluate the potential impact of waves overtopping the Reservoir embankment. The focus of the test was to evaluate the effects of wave overtopping on the downstream slope of the embankment, and the effectiveness of dense groundcover (sod) as slope protection. The test was designed and implemented by the SFWMD Acceler8 program staff. A full report on the overwash test is included in Appendix F.

9.0 SOIL-CEMENT INVESTIGATION DATA

Tests for the soil-cement armoring system were conducted as part of the investigations for this Project. Following is a summary of the investigations and the data collected.

9.1 Site Characterization Study

As part of the initial Site Characterization, test pit samples were selected for soil-cement testing. These test pit samples were obtained primarily in the reservoir area and along the intake canal. Compressive strength, density, and percent compaction tests were run on material from the test pit locations, as well as pH, carbonate content, and corrosivity. The cement content was varied on the tests from 5%, 7%, 9%, and 11%. Results of the testing are provided in Appendix G and are summarized in Table 9.1.

9.2 Soil Cement Test Cell Program

Soil-cement testing was also done as part of the Test Cell Program. The testing and results are discussed in detail in Section 8.2.3 of this report. The data collected is provided in the Soil-Cement Laboratory and Field Test Results in Appendix F.

9.3 AMEC 2013 Study

Another source of data for the soil-cement testing came from the AMEC investigation conducted in 2012. AMEC issued a report to the USACE Jacksonville District titled *Final Report of Geotechnical Exploration*, Volume II on January 18, 2013. The investigation involved test pit soil sampling, test pit groundwater sampling, well-water sampling and tap water sampling. Laboratory testing included: geotechnical testing of test pit samples, chemical analyses of the water samples, chemical analyses of soil samples, water source verification testing for soil-cement, and soil-cement mix design testing. Geotechnical testing of test pit samples is discussed in Section 5.0. The remaining laboratory testing is discussed below.

9.3.1 Chemical Analyses of Water Samples

As discussed in the AMEC report, chemical analyses were performed on Water Source Verification samples collected from test pits TP-475, TP-478, TP-491, and TP-498, the potable well-water source at the on-site Area Office, and a tap water source from the Martin County Sheriff's Office located in Indiantown, Florida. Test Pit 475-D was selected as a duplicate water source resulting in seven total samples. The following Water Analysis Parameters were performed on the well-water and groundwater samples to Environmental Protection Agency (EPA) standards:

- 7 EPA SW-8469040B pH
- 7 EPA 413.2 oils & grease
- 7 EPA 305.2 acidity
- 7 EPA 200.7 sodium
- 7 EPA 310.1 alkalinity
- 7 EPA 415.1 total organic matter
- 7 EPA 300 sulfate
- 7 EPA 200.7 iron
- 7 EPA 200.7 potassium
- 7 EPA 300 chlorides
- 7 EPA 300 nitrates

- 7 EPA 200.7 selenium
- 7 EPA 200.7 zinc
- 7 EPA 200.7 lead
- 7 EPA 8081 pp DDE
- 7 EPA 8081 chlordane
- 7 EPA 200.7 copper
- 7 EPA 200.7 pp DDT
- 7 EPA 8081 heptachlor
- 7 ASTM C1603 Water Density

The laboratory reports are provided in Appendix G. A summary of the results is provided in Table 9.2.

9.3.2 Chemical Analyses of Soil Samples

The following parameters were analyzed on composite "Unit C" material collected from the test pits. Test Pits 475-D and TP-498-D, were selected for duplicate sampling (one at each test pit) using EPA, Soil Science Society of America (SSSA), and the International Humic Substances Society (IHSS) standards.

- 25 EPA SW-846 9045C pH
- 25 EPA 9060 A total organic carbon
- 25 EPA SW-846 6010C calcium
- 25 EPA SW-846 6010C sodium
- 25 EPA SW-846 6010C potassium
- 25 EPA SW-846 6010C magnesium
- 25 SSSA sulfate
- 25 EPA SW-846 6010C iron
- 25 EPA 325.2 chlorides
- 25 SSSA nitrates
- 25 EPA 160.3 percent moisture
- 25 IHSS Method humic substance
- 25 EPA SW-846 6010C lead
- 25 EPA SW-846 6010C copper
- 25 EPA SW-846 6010C zinc
- 25 EPA SW-846 8081 chlordane
- 25 EPA SW-846 8081 selenium
- 25 EPA SW-846 8081 pp DDT
- 25 EPA SW-846 8081 pp DDE
- 25 EPA SW-846 8081 heptachlor

The laboratory reports are provided in Appendix G. A summary of the results is provided in Table 9.3.

9.3.3 Water Source Verification Testing

To evaluate water source impacts on strength testing, Water Source Verification testing consisted of strength testing and results comparison for soil-cement samples produced using various water sources. Testing was performed using 3 water sources: potable water from the Area Office water-well, groundwater from 4 test pits (TP-475, TP-478, TP-491, and TP-498), and tap water. Water samples were mixed with "Unit C" borrow soil collected from the same 4

test pits where ground water samples were taken. A total of 72 soil-cement test specimens were prepared using cement content with 8%, 10%, and 12% of the dry weight of soil aggregate. The specimens were prepared at or near 95 percent of the standard proctor maximum dry density. soil-cement time of set and unconfined compressive strength testing were performed on the prepared specimens.

The test results are provided in Table 9.4. The Compaction Test Reports are presented in Appendix G.

9.3.4 Soil-Cement Mix Design Testing

Based on the results of the Water Source Verification testing, the Site Well Water was selected as the mixing water for the Soil Cement Design Phase. In addition, due to the relatively low compressive strength values achieved by the 8% cement content samples, the scope of the Soil Cement Design Testing was changed to include 16 test pits plus two duplicate test samples at two cement contents (10% and 12%), resulting in the same number of test samples for each test type. The selected test pit samples were:

TP-476	TP-479	TP-480
TP-481	TP-482	TP-483
TP-484	TP-484D*	TP-485
TP-486	TP-488	TP-489
TP-489D*	TP-490	TP-492
TP-494	TP-495	TP-497
* Duplicate		

For the soil cement design phase, three specimens of each pit sample (plus duplicates) were prepared at each of the two cement contents. The specimens were prepared at or near 95 percent of the Standard Proctor (ASTM D 558) maximum dry density. Unconfined compressive strength testing – three samples per specimen (ASTM D 1633) and wetting and drying testing – one test, two specimens were performed on the prepared specimen.

The results of these tests are provided in Table 9.5. The Compaction Test Reports are presented in Appendix G.

9.4 AMEC 2014 Study

In 2013 and 2014 AMEC completed an additional evaluation of potential soil aggregate borrow sources for soil cement production on behalf of the USACE. The results are summarized in the report titled "DRAFT Report of Geotechnical Exploration and Laboratory Testing, Phase V, Test Pits, Water Sampling, and Laboratory Testing, C-44 Reservoir and Stormwater Treatment Area" (AMEC 2014). This report is provided in Appendix G.

Field explorations completed by AMEC consisted of 12 test pits excavated within the designated soil cement borrow area. In general, the test pits were excavated to a maximum depth of approximately 18 feet. Soil samples were obtained from three depth intervals. Samples were collected at approximate depths of 6, 10, and 16 feet below existing grade. A total of 58 soil samples (includes each depth interval, composite pit sample, as well as washed/unwashed composite samples) were to be prepared and tested for geotechnical index properties and compressive strength soil-cement mix design.

Cement contents of 10% and 12% of dry weight soil aggregate were mixed with the site well water and were to be used for the stratum composite samples at depths of approximately 6, 10,

and 16 feet below existing grade. Cement contents of 10%, 12% and 14% were to be used for the pit composite samples at a depth range of approximately 5 to 18 feet below existing grade. Cement contents of 14%, 16% and 18% were to be used for the washed/unwashed pit composite samples at a depth range of approximately 5 to 11 feet below existing grade utilizing both public water supply and well water, as specified.

In the case of the washed composite samples, the samples were to be washed with a public water source from AMEC's Jacksonville laboratory over a #230 sieve, to remove all particle sizes smaller than the #230 sieve from the testing material.

Total of 918 soil cement samples were prepared and tested for unconfined compressive strength at 7 days and 28 days from the date of preparation. The samples were tested in accordance with ASTM D1633, Test Method A. All specimens were to be prepared to a target density of 95% of the maximum dry density as determined by ASTM D 558.

10.0 REFERENCES

Following is the list of documents which were utilized to prepare the GDR.

- Adams, Karin, 1992, "A Three-dimensional Finite Difference Groundwater Flow Model of the Surficial Aquifer in Martin County, Florida. South Florida Water Management District Technical Publication 92-02.
- AMEC, December 2012, "Final Report of Geotechnical Exploration, Volumes I."
- AMEC, 18 January 2013, "Final Report of Geotechnical Exploration, Volume II."
- AMEC, 11 August 2014, "DRAFT Report of Geotechnical Exploration and Laboratory Testing Phase V, Test Pits, Water Sampling, and Laboratory Testing, C-44 Reservoir and Stormwater Treatment Area"
- American Society for Testing and Materials, Annual Book of ASTM Standards, Volume 04.08, 2005.
- Ardaman & Associates, Inc., December 2003, "Subsurface Exploration and Preliminary Geotechnical Engineering Evaluation, Troup Indiantown Water Control District Reservoir and Stormwater Treatment Area Project."
- Butler, D. and D. Padgett, 1995, "A Three-Dimensional Ground Water Flow Model of the Surficial Aquifer System in St. Lucie County, Florida," South Florida Water Management District, Technical Publication 95-01, pp. 314.
- CDM, June 2004, "Preliminary Subsurface Investigations and Geotechnical Analyses, C-44 Water Management Project."
- CDM, December 2004, "Consolidated Citrus LP and Gardinier Florida Citrus, Inc. Properties, Martin County, Florida – Proposed C-44 Reservoir/Stormwater Treatment Area Phase I/II Environmental Site Assessment"
- CDM, Inc., 2004. Preliminary Geotechnical Engineering Evaluation for the C-44 Water Management Project. Report prepared for Aquacalma, West Palm Beach FL, 76 p. plus appendices.
- CDM, August 2005, "Documentation of Existing Information, Site Conditions and Site History"
- CDM Smith, Inc., 2012. Well Rehabilitation, C-44 Reservoir and Stormwater Treatment Area Groundwater Monitoring Project, Final Completion Report. Report prepared for the USACE, Jacksonville District dated June 2012, 13 p. plus figures, tables, and appendices.

Florida Geological Survey (FGS), 1991.

- Florida Soil Survey Staff, 1992, "Soil & Water Relationships of Florida's Ecological Communities." 2nd edition.
- HDR, March 2006, "Final Geotechnical and Geologic Site Characterization Report."

HDR, April 2006, "Basis of Design Report."

- HDR, July 2007, "Final Test Cell Analytical Report for Construction and Operations."
- HDR, April 2012, "TM 6 and 7 Reservoir Vicinity Updated Geotechnical Evaluation."
- HDR., 2013, "Design Documentation Report."
- Jones, D.S., 1997, "The Marine Invertebrate Fossil Record of Florida," <u>The Geology of Florida</u>, Chapter 7, pp. 89-118, University Press of Florida, Gainesville. A.F. Randazzo and D.S. Jones, eds.,
- Kulhawy, F. H. and Mayne, P. W., 1990, "Manual on estimating soil properties for foundation design", Report EL-6800, Research Project 1493-6, Electric Power Research Institute, Palo Alto, Calif., U.S.A., 1990.
- Lane, E., 1991, "Earthquakes and Seismic History of Florida," Florida Geologic Survey, Open File Report No. 40.
- Lee, C. R., T. C Sturgis, B. W. Bunch, and J. Miller, 1997, "Evaluation of the Environmental Effects of Muck Removal from St. Lucie Estuary and the Potential for Beneficial Uses of the Muck," Miscellaneous Paper, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- Lovejoy, D.W., 7 November 1998, "Classic Exposures of the Anastasia Formation in Martin and Palm Beach Counties, Florida," Miami Geological Society Field Trip Report.
- Levadoux, J.N. and Baligh, M.M., 1986, "Consolidation after Undrained Piezocone Penetration I: Prediction," ASCE Journal of Geotechnical Engineering, July 1986.
- Miller, J.A., 1986, "Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina," U.S. Geological Survey, Professional Paper 1403-B.
- MacDonald, D.D., C.G. Ingersoll, D.E. Smorong, R.A. Lindskoog, G. Sloane, and T. Biernacki, January 2003, "Development and Evaluation of Numerical Sediment Quality Assessment Guidelines for Florida Inland Waters", Technical Report, Florida Department of Environmental Protection.
- Reese, R.S., and Memberg, S.J., 2000, "Hydrogeology and the Distribution of Salinity in the Florida Aquifer System, Palm Beach County, Florida." U.S. Geological Survey Water Resources Investigation Report 99-4061, pp. 52.
- Reese, R.S., 2004, "Hydrogeology, Water Quality, and Distribution and Sources of Salinity in the Florida Aquifer System, Martin and St. Lucie Counties, Florida." U.S. Geological Survey Water Resources Investigation Report 03-4242, pp. 96.
- Robertson, et. al., 1986, "Use of the Piezocone Cone Data", Proceedings In-Situ '86, ASCE Specialty Conference GSP No. 6, ASCE, pp. 1263-1280
- Robertson, P.K. 1990. Soil Classification Using the Cone Penetration Test. Canadian Geotech. J. 27: pp. 151-158.

- Russell, R. J., 1967, "Origins of estuaries In: Estuaries," Am. Assoc. Adv. Sci. Publ. 893, pp.93-100. Edited by Lauff.Schmertmann, J.H. 1978. *Guidelines for Cone Penetration: Performance and Design*, U.S. Department of Transportation, Washington, D.C.
- Schmertmann, J.H., 1978, "The Statistics and Dynamics of the Standard Penetration Test," Proceedings FHWA Symposium on Site Exploration in Soft Ground using In-situ Techniques, FHWA TS-80-202, pp. 145-205
- Scott, T.M., 1988, "The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida," Florida Geological Survey Bulletin No. 59.
- Scott, T.M., 1997, "Environmental Geology of Florida," <u>The Geology of Florida</u>, Chapter 5, pp. 57-67, University Press of Florida, Gainesville. A.F. Randazzo and D.S. Jones, eds.
- Sinclair, W.C., J.W. Stewart, R.L. Knutilla, A.E. Gilboy, and R.L. Miller, 1985, "Types, Features, and Occurrence of Sinkholes in the Karst of West-Central Florida," U.S. Geological Survey, Water-Resources Investigations Report 85-4126.
- Sinclair, W.C., J.W. Stewart, 1985, "Sinkhole Type, Development, and Distribution in Florida," U.S. Geological Survey, Map Series No. 110.
- SEI, 1998, *Sinkhole Database*, Florida Sinkhole Research Institute, University of Central Florida, Orlando.
- SEI, 2004, "Locations of Reported New Sinkholes in the State of Florida."
- SEI, 2 September 2005, "Capacitively Coupled Resistivity Report."
- Twenhofel, W. H., and Tyler, S. A., 1941, Methods of Study of Sediments. McGraw-Hill Book Co. pp. 183.
- Upchurch, S.B. & Littlefield, J.R. 1988. Evaluation of data for sinkhole development risk models. *Environmental Geology and Water Science.*
- Upchurch, S.B., and A.F. Randazzo, 1997, "Environmental Geology of Florida," Chapter 13, pages 221-231 in A.F. Randazzo and D.S. Jones, eds., <u>The Geology of Florida</u>, University Press of Florida, Gainesville.
- White, W.A., 1970, "The Geomorphology of the Florida Peninsula," Florida Bureau of Geology, Geological Bulletin No. 51.

FIGURES

Figure 1.1 Project Vicinity Map Geotechnical Data Report

Note: This figure prints full size at 11"x17"

US Army Corps of Engineers ®

Water Management District Geotechnical Data Report

ĨŦĬ

US Army Corps of Engineers ®

Figure 2.2 Earthquake Probability: Magnitude 5.0 Within 100 Years Geotechnical Data Report

Reference: Upchurch and Randazzo, 1997 Source: Site Characterization Report, 2006, Figure 5.28

Figure 2.5 Sinkhole Types and Probabilities in Florida Geotechnical Data Report

Locations of Reported New Sinkholes in the State of Florida

US Army Corps of Engineers @

Figure 2.6 **Reported New Sinkholes in Florida** Geotechnical Data Report

Notes: Approximate Property Boundary has changed since the production of this figure. Reference: U.S. Army Corps of Engineers, 1940 Aerial Source: Site Characterization Report, 2006, Figure 2.2

Figure 2.7 1940 Aerial Photograph Geotechnical Data Report

Reference: U.S. Department of Agriculture Source: Site Characterization Report, 2006, Figure 2.3

Figure 2.8 1952 Aerial Photograph Geotechnical Data Report

Reference: U.S. Department of Agriculture Source: Site Characterization Report, 2006, Figure 2.4

Figure 2.9 1958 Aerial Photograph Geotechnical Data Report

Reference: Aerial photograph obtained from the State University System of Florida PALMM Project, 1970 Aerial Source: Site Characterization Report, 2006, Figure 2.5

Figure 2.10 1970 Aerial Photograph Geotechnical Data Report

Reference: Aerial photograph obtained from the State University of Florida PALMM Project, 1981 Source: Site Characterization Report, 2006, Figure 2.6

Figure 2.11 1981 Aerial Photograph Geotechnical Data Report

Reference: Aerial Photograph obtained from the State University System of Florida PALMM Project, 1999 Aerial Source: Site Characterization Report, 2006, Figure 2.7

Figure 2.12 1999 Aerial Photograph Geotechnical Data Report

Reference: CDM Phase I/II ESA, December 2004 Source: Site Characterization Report, 2006, Figure 2.10

Figure 2.13 Recognized Environmental Conditions (REC) Locations Geotechnical Data Report

Legend: A - Auger Borings B - Core Borings APT - Aquifer Performance Tests W - Monitor Well

US Army Corps of Engineers ®	Figure 3.1 Previous Geotechnical Explorations Geotechnical Data Report	FDR C-44 Reservoir/STA Project
---------------------------------	--	--

<u>LEGEND</u>

- MONITORING WELL(S) (DATA COLLECTION ONGOING)
- MONITORING WELL(S) (PLUGGED AND ABANDONED OR DESTROYED)
- $\ensuremath{\ast}$ $\ensuremath{}$ Monitoring well(S) (used for aquifer testing by ardaman & assoc. 2003 or CDm 2004)

Note: This figure prints full size at 22"x34

Figure 3.4Formula 1Monitoring Well Locations
Geotechnical Data ReportC-44 Reservoir/STA Project

les effor ENData2tampa\C44_IRLSvmap_decs/working/arcmap/map_a_p_location_map_fig1_woreov_no_border.mxd Note: This figure prints full size at 11"x17".

Reference: USGS Source: Site Characterization Report, 2006, Figure 3.7 Note: Th		is figure prints full size at 11"x17".	
US Army Corps of Engineers ®	Figure 4.1 USGS Surficial Aquifer Monitoring Wells in the Project Area Geotechnical Data Report	FDR C-44 Reservoir/STA Project	

Reference: USDA SCS, 1981 Source: Site Characterization Report, 2006, Figure 5.2

Note: This figure prints full size at 11"x17".

H	Figure 6.1	FCH
US Army Corps of Engineers ®	Soils Map of Project Area Geotechnical Data Report	C-44 Reservoir/STA Project

US Army Corps	Figu Resistivity Map of S Geotechnic	re 6.6 Soil at Depth 13.4 f cal Data Report	eet	C-44 Reservoir/STA	A Project
Source: Site Characterization Repor	t, 2006, Figure 6		Note: Thi	s figure prints full size a	at 11"x17".
Propose	ed Reservoir Embankment	>20 & <=30	>50 & <=6	30 >80 & <=100	

US Army Corps of Engineers ® Figure 7.1 SPT (N1)₆₀ vs. Elevation Geotechnical Data Report

Statistical distribution of $(N1)_{60}$ values across the reservoir site based on 150 borings. Total number of data points in the analysis is 2,689. Data points with an uncorrected SPT N value of greater than 60 (approximately 7% of total) are excluded from the statistical analysis

Source: Site Characterization Report, 2006, Figure 2.12

US Army Corps of Engineers ® Figure 7.2 Statistical Evaluation of (N1)₆₀ Data **FDR** C-44 Reservoir/STA Project

Geotechnical Data Report

Note: site characterization phase data is approximately 88% of total data set. The post-site characterization data is approximately 12% of the total.

Source: Site Characterization Report, 2006, Figure 2.4

Figure 7.16 Fines Content vs. Elevation Geotechnical Data Report

Source: Site Characterization Report, 2006, Figure 3.1

Test Cell Layout Geotechnical Data Report

Source: Site Characterization Report, 2006, Figure 3.2

Note: This figure prints full size at 11"x17".

US Army Corps of Engineers ®	Figure 8.2	FC
	Soil Cement Placement Details Geotechnical Data Report	C-44 Reservoir/STA Project

US Army Corps of Engineers ®

Test Cell 1 Layout Geotechnical Data Report

C-44Reservoir/STA Test Cells **RESERVOIR TEST CELL 1**

C-44 Reservoir/STA Test Cells RESERVOIR TEST CELL 2 East Transect-Through July 2006

Source: Site Characterization Report, 2006, Figure 4.6

Figure 8.8 Shallow Piezometer Water Levels After Approximately Two Months of Test Cell Operation – RTC2 Geotechnical Data Report Note: This figure prints full size at 11"x17"

C-44Reservoir/STA Test Cells **RESERVOIR TEST CELL 1 North Piezometer Transect**

US Army Corps of Engineers ®

C-44 Reservoir/STA Test Cells **RESERVOIR TEST CELL 2**

Source: Site Characterization Report, 2006, Figure 4.8

Surficial Aquifer Water Levels – RTC1 East Transect Geotechnical Data Report

Source: Site Characterization Report, 2006, Figure 4.9

C-44 Reservoir/STA Project Teast Cells Drawdown Test-Canal Stage vs Daily Volume Pumped

Source: Site Characterization Report, 2006, Figure 4.10

Figure 8.12 Seepage Canal SCC1 Drawdown vs. Daily Pumped Volume Geotechnical Data Report Note: This figure prints full size at 11"x17"

Source: Site Characterization Report, 2006, Figure 4.11

TABLES
Table 2.1
Summary of Contaminants Detected in REC Areas
Geotechnical Data Report

Contaminant	Significance	TEC	PEC	REC Affected	Exceeds TEC	Remedial Action	Remediation Suggested
				1	Y	Recommended	
				2	Ŷ	Recommended	
				3	N	Not Recommended	
				4	Y	Recommended	
	Strongly attaches to organic matter and minerals in			5	Y	Recommended	Soil Inversion Technology
	soils. Travels easily in surface waters. Copper rich	00	150 mg/kg	6	Y	Recommended	OR
Copper (Cu)	solis limit the number of plants surviving. Copper	32 mg/kg	85 mg/kg *	7	Y	Recommended	Use contaminated soil in
	earthworms in soil.			8	Y	Recommended	berm construction
				9	Y	Not Recommended	
				10	Y	Recommended	
				11	Y	Necessary	
				Canals & Ditches	Y	Recommended	
				1	Ν	Not Recommended	
	Inorganic arsenic can cause genetic alterations in			5	Ν	Not Recommended	Soil Inversion Technology
Arsenic	the fish of the surface waters. Birds die from eating	0.0 mm///m		7	Ν	Not Recommended	OR
	contaminated fish. Human exposure to inorganic arsenic can cause various health effects from stomach and intestine irritation to damage of DNA.	9.8 mg/kg	33 mg/kg	8	Ν	Not Recommended	Use contaminated soil in
				10	Ν	Not Recommended	berm construction
				11	Ν	Not Recommended	
	Figh accumulating zing in their badies it is able to			2	Y	Combined w/ Cu Remediation	
	bio magnify up the food chain. Water-soluble zinc can contaminate groundwater. Zinc rich soils have limited plant survival and negatively effect microorganisms and earthworms in the soil.	120 mg/kg	460 mg/kg	4	Y	Recommended	Soil Inversion Technology
Zinc				5	Y	Recommended	OR Lice contaminated soil in
				8	Y	Recommended	berm construction
				11	Y	Recommended	
	Water-soluble barium may cause breathing		60 mg/kg	7	Y	Not Recommended	Soil Inversion Technology
	difficulties, increased blood pressures, heart rhythm			8	Y	Not Recommended	OR
Barium	changes, stomach irritation, swelling of brain and	20 mg/kg		10	Y	Not Recommended	Use contaminated soil in
	liver, of kidney and heart damage.			Canals & Ditches	Y	Not Recommended	berm construction
Cadmium	Causes various human health concerns and negative effects on earthworms at low	1 mg/kg	5 mg/kg	8	Y	Recommended	
	concentrations.						Soil Inversion Technology
Lead	Lead poisoning of water and soil organisms, effecting the health of the entire system. Negative human impact.	36 mg/kg	130 mg/kg	8	Y	Recommended	OR Use contaminated soil in berm construction
Silver	Numerous human health damages possible.	1 mg/kg	2.2 mg/kg	1	Ν	Not Recommended	
Acenaphthene Napthalene 1-methylnapthalene o-Xylene 1,2,4 Trimethylbenzene 1,3,5 Trimethylbenzene m&p Xylenes TRPH	liver nasal nasal neurological none specified neurological multiple endpoints - mixed contaminants	GWLC=2100 mg/kg GWLC=1700 mg/kg GWLC=2200 mg/kg GWLC=200 mg/kg GWLC=300 mg/kg GWLC=300 mg/kg GWLC=200 mg/kg GWLC=340 mg/kg	FWLC=700 mg/kg FWLC=2,200 mg/kg FWLC=10,000 mg/kg FWLC=3900 mg/kg FWLC=7200 mg/kg FWLC=6700 mg/kg FWLC=3900 mg/kg FWLC=340 mg/kg	8 (R8-S1, R8-S6, R8-S12, R8-S18, R8-S19, R8-S22)	GWLC or FWLC exceeded	Recommended	Soil Removal

Note: This table prints full size at 11"x17".

Geotechnical Data Report							
Contaminant	Significance	TEC	PEC	REC Affected	Exceeds TEC	Remedial Action	Remediation Suggested
Acenaphthene (in GW) Anthracene (in GW) Naphthalene (in GW) 1-Methylnaphthalene (in GW) 1,2,4 Trimethylbenzene (in GW)	liver none specified nasal nasal none specified	GWC=20 ug/L GWC=2100 ug/L GWC=14 ug/L GWC=28 ug/L GWC=10 ug/L	SWC=3 ug/L SWC=0.3 ug/L SWC=26 ug/L SWC=95 ug/L SWC=220 ug/L	8	GWC exceeded GWC exceeded GWC exceeded GWC exceeded GWC exceeded	Recommended at R8-MW1 & R8-MW8	Excavate to GW level for atmospheric exposure
	neurological			0	GWC exceeded		
Anthracene Fluoranthene Chrysene Fluorene Phenanthrene Pyrene	blood-kidney-liver carcinogen blood-kidney-liver kidney liver	GWLC=2500 mg/kg GWLC=1200 mg/kg GWLC=160 mg/kg GWLC=250 mg/kg GWLC=880 mg/kg	FWLC=0.4 FWLC=1.3 mg/kg NS FWLC=17 mg/kg NS FWLC=1.3 mg/kg	3 (PS 808, PS 816, PS 818, PS 822 & Gardinier PS-1)	FWLC exceeded	Recommended	Soil Removal
Chlordane	carcinogen - liver	3.2 μg/kg	18 µg/kg	5	Y	Recommended	Excavation and Off-site disposal
Anthracene (in GW)	none specified	GWC=2100 ug/L	SWC=0.3 ug/L	3 (PS 806)	GWC exceeded	No Recommendation stated	No recommendation stated
		GWLC	FWLC	5 (R5-S14)	GWLC exceeded	No recommendation stated	No recommendation stated
TRPH	multiple endpoints - mixed contaminants	340 mg/kg	340 mg/kg	7	GWLC exceeded	Recommended	Excavation and Off-site
		TEC not established		10	GWLC exceeded	Recommended	disposal
Naphthalene	nasal	180 ug/kg FWLC 2200 μg/kg	560 ug/kg GWLC 1200 μg/kg	2 (R2-S1 & R2-S8)	Y	No recommendation stated	No recommendation stated
Endosulfan II	cardiovascular - kidney	FWLC 5 μg/kg	GWLC 3800 μg/kg	4	GWLC exceeded	Recommended at R4-S2	Excavation and Off-site disposal
4,4-DDE	carcinogen	3.2 μg/kg (sum DDE)	31 μg/kg (sum DDE)	4 8	Y Y	Recommended at REC4D Recommended	Excavation and Off-site disposal

 Table 2.1 (continued)

 Summary of Contaminants Detected in REC Areas

 Geotechnical Data Report

Source: Site Characterization Report, 2006

Note: This table prints full size at 11"x17".

SOIL IMPACT				EXCAVATION
AREA†	POINT	NORTHING (FT)	EASTING (FT)	DEPTH (IN)
C1*	1	1011217	836331	18
	2	1011217	836375	
	3	1011180	836375	
	4	1011180	836331	
C2	5	1012584	836666	12
	6	1012584	837992	
	7	1010959	837992	
	8	1010959	836666	
C3*	9	1011143	831636	12
	10	1011143	831827	
	11	1011074	831827	
	12	1011074	831636	
C4*	13	1011154	833527	18
	14	1011154	833732	
	15	1011073	833732	
	16	1011073	833527	
C5*	17	1010959	831359	12
	18	1010958	832686	
	19	1009333	832686	
	20	1009333	831359	
C6	21	1010958	834013	12
	22	1010958	835339	
	23	1009333	835339	
	24	1009333	834012	
C7	25	1010958	839319	12
	26	1010957	840646	
	27	1009332	840645	
	28	1009332	839319	
C8*	29	1008696	830865	12
	30	1008696	830928	
	31	1008600	830928	
	32	1008600	830865	
C9	33	1008583	831627	24
	34	1008583	831840	
	35	1008503	831840	
	36	1008503	831627	

Table 2.2 Impacted Soil Area Coordinates Geotechnical Data Report

* This impacted soil area cannot be remediated with Remedial Method Type E.

C10	37	1008661	832901	12
	38	1008661	832981	
	39	1008599	832981	
	40	1008599	832901	
C11	41	1008700	834498	18
	42	1008700	834551	
	43	1008603	834551	
	44	1008603	834498	
C12	45	1008649	835047	12
	46	1008649	835101	
	47	1008603	835101	
	48	1008603	835047	
C13	49	1005938	837018	18
	50	1005937	837238	
	51	1005871	837229	
	52	1005876	837017	
C14	53	1009334	837992	12
	54	1009334	839319	
	55	1007708	839319	
	56	1007708	837992	
C15*	57	1007708	834012	12
	58	1007708	835339	
	59	1006083	835339	
	60	1006083	834013	
C16	61	1007275	840645	12
	62	1007275	842575	
	63	1006166	842575	
	64	1006166	840645	
C17	65	1006083	830032	12
	66	1006083	831359	
	67	1004457	831359	
	68	1004457	834012	
	69	1002831	834012	
	70	1002830	832686	
	71	1001205	832686	
	72	1001206	831359	
	73	1002830	831359	
	74	1002831	830032	
C18	75	1005942	831610	12
	76	1005942	831823	
	77	1005862	831823	
	78	1005862	831610	

C19*	79	1006007	835818	18
	80	1006007	835905	
	81	1005944	835905	
	82	1005944	835818	
C20*	83	1006022	838257	24
	84	1006022	838343	
	85	1005949	838343	
	86	1005949	838257	
C21	87	1005934	838783	12
	88	1005934	838996	
	89	1005854	838996	
	90	1005854	838783	
C22	91	1003394	834271	12
	92	1003394	834348	
	93	1003314	834348	
	94	1003314	834271	
C23*	95	1003297	837008	24
	96	1003297	837220	
	97	1003217	837220	
	98	1003217	837008	
C24	99	1003289	838782	24
	100	1003289	839235	
	101	1003125	839235	
	102	1003125	838782	
C25	103	1002830	834012	12
	104	1002830	835339	
	105	1001205	835339	
	106	1001205	834013	
C26	107	997991	836980	24
	108	997991	837193	
	109	997911	837193	
	110	997911	836980	
C27	111	997954	837193	12
	112	997954	838750	
	113	997899	838750	
	114	997899	838877	
	115	996713	838877	
	116	996713	837108	
	117	997911	837108	
	118	997911	837193	
C28	119	997979	838750	12
	120	997979	838963	
	121	997899	838963	
	122	997899	838750	

			-	
C29	123	1005056	840646	12
	124	1005056	842575	
	125	1003947	842575	
	126	1003947	840646	
C30	127	1004612	843311	24
	128	1004612	843375	
	129	1004569	843375	
	130	1004569	843311	
C31*	131	1004612	844240	24
	132	1004612	844472	
	133	1004542	844472	
	134	1004542	844240	
C32	135	1004622	845729	12
	136	1004622	845864	
	137	1004566	845864	
	138	1004566	845729	
C33	139	1006166	846434	12
	140	1006166	848364	
	141	1005056	848364	
	142	1005056	846434	
C34*	143	1004697	847480	24
	144	1004697	847563	
	145	1004641	847563	
	146	1004641	847480	
C35	147	1004699	848018	12
	148	1004699	848094	
	149	1004645	848094	
	150	1004645	848018	
C36	151	1001953	844216	12
	152	1001953	844429	
	153	1001873	844429	
	154	1001873	844216	
C37	155	1002032	845195	12
	156	1002032	845275	
	157	1001970	845275	
	158	1001970	845195	
C38	159	1001962	846368	12
	160	1001962	846493	
	161	1001910	846493	
	162	1001910	846368	
C39	163	1002092	847885	18
	164	1002092	848016	1
	165	1001989	848016	1
	166	1001989	847885	
H			ł	

C40	167	999290	842330	24
	168	999290	842543	
	169	999210	842543	
	170	999210	842330	
C41	171	1000617	844505	12
	172	1000617	846435	
	173	999507	846435	
	174	999507	844505	
C42	175	996657	844215	18
	176	996657	844452	
	177	996597	844452	
	178	996597	844215	
C43*	179	996740	846665	24
	180	996740	846731	
	181	996680	846731	
	182	996680	846665	
C44	183	996733	847731	18
	184	996733	847858	
	185	996682	847858	
	186	996682	847731	
C45*	187	994005	842331	18
	188	994005	842544	
	189	993925	842544	
	190	993925	842331	
C46*	191	994007	844225	24
	192	994007	844432	
	193	993932	844432	
	194	993932	844225	
C47*	195	994011	845178	18
	196	994011	845261	
	197	993930	845261	
	198	993930	845178	
C48	199	994712	846792	18
	200	994712	846885	
	201	994630	846885	
	202	994630	846792	
C49*	203	994707	847327	12
	204	994707	847416	
	205	994629	847416	
	206	994629	847327	
C50	207	991351	842329	18
	208	991351	842542	1
	209	991271	842542	
	210	991271	842329	1

-			-	
C51	211	992387	843221	12
	212	992387	844507	
	213	990741	844507	
	214	990741	843221	
C52*	215	991445	847455	24
	216	991445	847525	
	217	991375	847525	
	218	991375	847455	
C53	219	984939	846589	12
	220	984939	848367	
	221	985269	848367	
	222	985270	852967	
	223	986684	852967	
	224	986684	856034	
	225	985270	856034	
	226	983244	850061	
	227	984284	850059	
	228	984284	848365	
	229	983807	848365	
	230	983807	847364	
C54*	231	1009905	841540	18
	232	1009905	843320	
	233	1007275	843320	
	234	1007275	841540	
	235	1008330	841540	
	236	1008330	840645	
	237	1008855	840645	
	238	1008855	841540	
C55	239	1009380	843765	18
	240	1009380	844210	
	241	1009905	844210	
	242	1009905	845100	
	243	1007275	845100	
	244	1007275	844210	
	245	1008855	844210	
	246	1008855	843765	

	- 1 1			1
C56*	247	1011480	844655	18
	248	1011480	845545	
	249	1012005	845545	
	250	1012005	845100	
	251	1012530	845100	
	252	1012530	845990	
	253	1008855	845990	
	254	1008855	845545	
	255	1010430	845545	
	256	1010430	845100	
	257	1010955	845100	
	258	1010955	844655	
C59*	259	1002857	840316	24
	260	1002857	840492	
	261	1002697	840492	
	262	1002697	840366	
	263	1002445	840366	
	264	1002445	840416	
	265	1002395	840416	
	266	1002395	840316	
	267	1002445	840316	
	268	1002445	840266	
	269	1002642	840266	
	270	1002642	840216	
	271	1002757	840216	
	272	1002757	840266	
	273	1002807	840266	
	274	1002807	840316	
C60	275	993916	845991	12
	276	993916	846211	
	277	993586	846211	
	278	993586	845991	
C61	279	1003585	834790	12
	280	1003585	835215	
	281	1003410	835215	
	282	1003410	834910	
	283	1003495	834910	
	284	1003495	834790	
C62	285	1003325	834682	12
	286	1003325	834762	
	287	1003225	834762	
	288	1003225	834682	

C63	289	1012551	841985	12
	290	1012558	846131	
	291	1012537	846131	
	292	1012526	841985	
C64	293	1007276	840607	12
	294	1007276	840639	
	295	1006577	840645	
	296	1006166	840645	
	297	1006166	840649	
	298	1005056	840659	
	299	1005056	840646	
	300	1003947	840646	
	301	1003947	840669	
	302	1001945	840687	
	303	1001944	840654	
C65	304	1004664	848519	12
	305	1004664	848529	
	306	998010	848513	
	307	998006	848471	
C66*	308	1012509	847792	24
	309	1012509	847828	
	310	1012497	847828	
	311	1012497	847792	
C67*	312	1012475	847801	24
	313	1012475	847825	
	314	1012457	847825	
	315	1012457	847801	
C68*	316	1011182	839772	24
	317	1011178	839838	
	318	1011135	839842	
	319	1011139	839769	
C69*	320	1003320	830819	24
	321	1003317	830957	
	322	1003223	830949	
	323	1003233	830809	
C70	324	1000624	838744	18
	325	1000623	838971	
	326	1000564	838965	
	327	1000568	838742	
C71	328	990741	843221	18
	329	990741	844507	
	330	989422	844507	
	331	989420	843221	

C72	332	990741	844507	12
	333	990741	848365	
	334	989094	848365	
	335	989093	845999	
	336	989425	845999	
	337	989422	844507	
C73*	338	1004601	841412	24
	339	1004601	841495	
	340	1004550	841495	
	341	1004550	841412	
C74	342	1008590	835844	18
	343	1008588	835918	
	344	1008554	835916	
	345	1008553	835842	
C75	346	996652	842257	18
	347	996657	842513	
	348	996598	842509	
	349	996621	842242	
C76	350	996674	845866	24
	351	996673	845927	
	352	996611	845933	
	353	996616	845865	
SPMI-1	342	1007334	841402	12
SPMI-2	343	1007327	843150	12
SPMI-3	344	1007333	845248	12
SPMI-4	345	1009938	843138	12
SPMI-5	346	1002969	835136	12

Notes:

1. The term "structural fill" here means that it can be used for construction of the embankment provided it meets all of the requirements for embankment fill in the specifications.

* This impacted soil area cannot be remediated with Remedial Method Type E.

	Site Characterization	Post-Site Characterization	AMEC 2012	Total
Cone Penetrometer (CPT)	65	0	0	65
Rotary Wash (CB)	149	70	4	223
Auger Boring (AB)	89	22	0	111
Monitoring Well (MW)	18	1	0	19
Test Pits (TP)	11	0	25	36

Table 3.1 Summary of Site Explorations Geotechnical Data Report

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
AB	085	847,285	990,086	27.13	10	Site Characterization
AB	086	847,338	991,618	23.58	10	Site Characterization
AB	087	847,345	993,935	24.11	10	Site Characterization
AB	088	847,351	996,626	26.05	10	Site Characterization
AB	089	847,326	998,032	26.54	10	Site Characterization
AB	090	847,188	1,001,995	26.81	10	Site Characterization
AB	091	847,123	1,004,658	27.63	10	Site Characterization
AB	092	847,135	1,007,246	26.96	10	Site Characterization
AB	093	845,168	1,004,648	28.70	10	Site Characterization
AB	094	845,121	1,001,951	27.56	10	Site Characterization
AB	095	845,236	999,343	27.24	10	Site Characterization
AB	096	845,062	997,785	25.70	10	Site Characterization
AB	097	844,279	995,856	24.89	10	Site Characterization
AB	098	842,110	995,516	24.78	10	Site Characterization
AB	099	841,685	997,616	26.29	10	Site Characterization
AB	100	841,946	994,038	24.41	10	Site Characterization
AB	101	844,329	993,976	26.92	10	Site Characterization
AB	102	841,941	992,817	24.51	10	Site Characterization
AB	103	842,101	990,565	24.60	10	Site Characterization
AB	104	844,395	992,055	25.17	10	Site Characterization
AB	105	844,414	990,068	25.99	10	Site Characterization
AB	106	843,236	1,000,608	24.91	10	Site Characterization
AB	107	843,215	1,003,834	24.00	10	Site Characterization
AB	108	840,591	1,011,726	28.24	10	Site Characterization
AB	109	839,218	1,010,424	27.04	10	Site Characterization
AB	110	837,872	1,011,440	25.52	10	Site Characterization
AB	111	836,680	1,010,376	24.10	10	Site Characterization
AB	112	835,580	1,011,533	24.84	10	Site Characterization
AB	113	834,110	1,010,076	24.08	10	Site Characterization
AB	114	833,016	1,011,514	24.61	10	Site Characterization
AB	115	832,622	1,010,213	23.78	10	Site Characterization
AB	116	830,987	1,011,633	24.90	10	Site Characterization
AB	117	831,109	1,008,623	24.23	10	Site Characterization
AB	118	837,225	1,007,979	24.92	10	Site Characterization
AB	119	839.912	1.007.836	26.68	10	Site Characterization

Table 4.1Summary of Boring LogsGeotechnical Data Report

Evo	oration	Feeting	N a utila ina ar	Flouration	Douth	Dhaaa
Слр			Northing		Depth	Phase
		(NAD83)	(NAD83)	(π-ΝΑνΔ88)	(π)	
AB	121	832,336	1,007,695	20.39	10	Site Characterization
AB	122	834,769	1,006,331	24.13	10	Site Characterization
AB	123	834,767	1,005,334	24.40	10	Site Characterization
AB	124	832,734	1,006,317	23.63	10	Site Characterization
AB	125	832,730	1,005,365	23.39	10	Site Characterization
AB	126	831,233	1,005,827	24.56	10	Site Characterization
AB	127	834,720	999,892	24.52	10	Site Characterization
AB	128	837,620	1,001,173	24.24	10	Site Characterization
AB	129	834,716	997,577	24.91	10	Site Characterization
AB	130	837,851	998,880	24.61	10	Site Characterization
AB	131	839,180	996,958	19.77	10	Site Characterization
AB	132	838,509	1,002,445	23.06	10	Site Characterization
AB	133	831,982	997,593	25.23	10	Site Characterization
AB	134	831,076	999,288	22.86	10	Site Characterization
AB	135	831,078	1,001,962	25.75	10	Site Characterization
AB	136	832,435	1,001,272	23.88	10	Site Characterization
AB	137	832,828	999,524	24.57	10	Site Characterization
AB	138	831,225	1,003,384	23.42	10	Site Characterization
AB	139	833,273	1,002,508	25.09	10	Site Characterization
AB	140	834,620	1,002,584	23.87	10	Site Characterization
AB	141	837,340	1,005,236	25.47	10	Site Characterization
AB	142	839,222	1,005,234	25.57	10	Site Characterization
AB	143	843,185	1,005,921	29.17	10	Site Characterization
AB	302	835,139	997,532	23.26	15	Site Characterization
AB	303	833,794	997,547	24.62	15	Site Characterization
AB	304	832,415	997,590	23.80	15	Site Characterization
AB	305	831,045	997,610	23.14	15	Site Characterization
AB	306	830.801	998.855	23.21	15	Site Characterization
AB	307	836.604	997.576	24.32	15	Site Characterization
AB	308	837,981	997.531	23.28	15	Site Characterization
AB	309	839.337	997.517	23,80	15	Site Characterization
AR	310	830 810	1.000.321	23.70	15	Site Characterization
AR	311	830 813	1.001 691	24.42	15	Site Characterization
AR	312	830 813	1 003 097	23.24	15	Site Characterization
AB	313	830.824	1,004.465	23.95	15	Site Characterization

Evo	oration		N <i>A</i> ·	-	D (1	
схр		Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
AB	314	830,830	1,005,833	24.02	15	Site Characterization
AB	315	830,835	1,007,292	27.07	15	Site Characterization
AB	316	830,838	1,008,616	25.42	15	Site Characterization
AB	317	839,089	1,011,797	25.48	15	Site Characterization
AB	318	837,633	1,011,804	25.80	15	Site Characterization
AB	319	836,256	1,011,721	25.70	15	Site Characterization
AB	320	830,841	1,009,880	27.00	15	Site Characterization
AB	321	834,901	1,011,779	25.48	15	Site Characterization
AB	322	833,436	1,011,783	24.21	15	Site Characterization
AB	323	832,092	1,011,748	23.12	15	Site Characterization
AB	324	830,874	1,011,352	25.29	15	Site Characterization
AB	334	832,337	998,235	24.37	8	Site Characterization
AB	335	836,876	998,218	24.48	8	Site Characterization
AB	336	837,016	999,562	25.23	8	Site Characterization
AB	337	831,535	1,000,466	22.32	8	Site Characterization
AB	339	831,152	1,010,498	24.34	8	Site Characterization
AB	340	839,656	1,009,735	26.52	8	Site Characterization
AB	341	846,618	1,004,657	28.15	8	Site Characterization
AB	342	840,026	1,002,598	24.50	8	Site Characterization
AB	408	847,427	1,011,210	26.76	15.0	Post Site Characterization
AB	409	847,584	1,008,819	26.25	15.0	Post Site Characterization
AB	410	847,487	1,007,479	26.91	15.0	Post Site Characterization
AB	414	842,124	1,011,199	27.31	15.0	Post Site Characterization
AB	415	842,262	1,007,292	27.75	15.0	Post Site Characterization
AB	416	845,818	1,007,307	25.62	15.0	Post Site Characterization
AB	417	845,619	1,009,980	25.57	15.0	Post Site Characterization
AB	418	842,305	1,009,086	23.94	15.0	Post Site Characterization
AB	424	840,882	998,787	26.0	5.0	Post Site Characterization
AB	425	841,038	999,619	26.0	5.0	Post Site Characterization
AB	426	841,138	1,000,492	26.0	5.0	Post Site Characterization
AB	427	841,075	1,001,686	26.0	5.0	Post Site Characterization
AB	428	841,111	1,003,098	26.0	3.0	Post Site Characterization
AB	429	841,484	1,003,662	26.0	5.0	Post Site Characterization
AB	430	841,500	1,004,805	26.0	5.0	Post Site Characterization
AB	441	840,692	1,005,868	26.0	5	Post Site Characterization

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
AB	442	841,545	1,006,045	26.0	5.0	Post Site Characterization
AB	444	841,423	1,008,037	26.0	5.0	Post Site Characterization
AB	445	841,030	1,008,857	26.0	5.0	Post Site Characterization
AB	446	841,387	1,009,820	26.0	5.0	Post Site Characterization
AB	447	841,393	1,010,764	26.0	5.0	Post Site Characterization
AB	448	840,472	1,011,558	26.0	5.0	Post Site Characterization
СВ	042	830,006	999,497	27.68	30	Site Characterization
СВ	043	830,023	1,001,832	26.92	30	Site Characterization
СВ	044	830,043	1,006,159	26.46	30	Site Characterization
СВ	045	831,084	1,009,010	25.27	30	Site Characterization
СВ	046	834,085	1,009,006	23.75	30	Site Characterization
СВ	047	834,062	1,003,981	24.22	30	Site Characterization
СВ	048	834,051	1,001,228	24.03	30	Site Characterization
СВ	049	834,041	998,912	24.18	30	Site Characterization
СВ	050	836,617	998,916	23.66	30	Site Characterization
СВ	051	836,622	1,001,250	23.35	30	Site Characterization
СВ	052	834,104	1,006,631	24.80	30	Site Characterization
СВ	053	832,472	996,875	24.91	30	Site Characterization
СВ	054	839,212	1,001,244	24.11	30	Site Characterization
СВ	055	836,524	1,003,923	23.46	30	Site Characterization
СВ	056	839,219	1,003,958	24.74	30	Site Characterization
СВ	057	836,644	1,006,618	25.23	30	Site Characterization
СВ	058	839,335	1,006,635	25.68	30	Site Characterization
СВ	059	837,767	1,012,347	25.71	30	Site Characterization
СВ	060	836,657	1,009,596	25.42	30	Site Characterization
СВ	061	839,222	1,009,601	27.41	30	Site Characterization
СВ	062	837,952	996,871	21.65	30	Site Characterization
СВ	063	839,202	998,915	25.18	30	Site Characterization
СВ	064	840,004	997,690	24.79	30	Site Characterization
СВ	065	841,939	998,930	26.58	30	Site Characterization
СВ	066	847,172	999,344	26.22	30	Site Characterization
СВ	067	848,401	999,334	26.96	30	Site Characterization
СВ	068	847,160	1,000,628	27.37	30	Site Characterization
СВ	069	847,135	1,003,351	28.01	30	Site Characterization

Ехрі	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
CB	070	845,131	1,003,331	28.05	30	Site Characterization
СВ	071	847,155	1,005,990	27.16	30	Site Characterization
СВ	072	841,864	1,003,973	26.18	30	Site Characterization
СВ	073	841,883	1,001,228	26.64	30	Site Characterization
СВ	074	843,173	997,676	24.78	30	Site Characterization
СВ	075	840,786	994,544	24.75	30	Site Characterization
СВ	076	843,156	992,710	25.63	30	Site Characterization
СВ	077	840,787	992,067	26.05	30	Site Characterization
СВ	078	848,439	994,060	28.82	30	Site Characterization
СВ	079	848,434	996,526	27.38	30	Site Characterization
СВ	080	843,157	995,308	25.54	30	Site Characterization
СВ	081	832,879	1,012,292	23.97	30	Site Characterization
СВ	082	848,412	990,104	27.97	30	Site Characterization
СВ	083	841,897	1,006,593	27.84	30	Site Characterization
СВ	084	848,395	985,809	27.85	30	Site Characterization
СВ	144	834,847	998,220	24.91	50	Site Characterization
СВ	145	833,366	998,246	25.62	50	Site Characterization
СВ	146	831,880	998,237	24.64	50	Site Characterization
СВ	147	831,512	999,406	24.79	50	Site Characterization
СВ	148	831,510	1,000,916	24.43	50	Site Characterization
СВ	149	831,634	1,002,457	23.87	50	Site Characterization
СВ	150	831,631	1,003,921	23.32	50	Site Characterization
СВ	151	836,369	998,219	25.42	50	Site Characterization
СВ	152	831,610	1,005,448	25.19	50	Site Characterization
СВ	153	831,646	1,006,942	23.83	50	Site Characterization
СВ	154	831,624	1,008,453	24.21	50	Site Characterization
СВ	155	837,851	998,200	24.36	50	Site Characterization
СВ	156	839,335	998,201	23.66	50	Site Characterization
СВ	157	844,842	998,154	24.40	50	Site Characterization
СВ	158	843,842	998,150	24.51	50	Site Characterization
СВ	159	843,332	998,157	25.89	50	Site Characterization
СВ	160	842,337	998,167	26.99	50	Site Characterization
СВ	161	841,843	998,171	26.11	50	Site Characterization
СВ	186	845,344	998,142	24.54	50	Site Characterization
СВ	195	835,449	1,011,566	25.41	50	Site Characterization

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
CB	196	836,254	1,011,576	25.15	50	Site Characterization
CB	197	837,739	1,011,565	25.94	50	Site Characterization
СВ	198	838,412	1,011,581	25.74	50	Site Characterization
СВ	199	839,653	1,011,197	26.17	50	Site Characterization
СВ	200	839,651	1,010,452	26.62	50	Site Characterization
СВ	201	833,959	1,011,545	25.25	50	Site Characterization
СВ	202	833,168	1,011,540	24.70	50	Site Characterization
СВ	203	831,682	1,011,531	24.15	50	Site Characterization
СВ	204	831,144	1,011,228	25.78	50	Site Characterization
СВ	206	844,648	984,095	24.35	30	Site Characterization
СВ	207	842,328	985,177	22.92	30	Site Characterization
СВ	208	844,632	986,091	23.55	30	Site Characterization
СВ	209	846,516	986,089	23.81	30	Site Characterization
СВ	210	848,402	986,100	27.24	30	Site Characterization
СВ	211	848,413	984,110	28.03	30	Site Characterization
СВ	212	846,546	988,090	25.11	30	Site Characterization
СВ	213	844,661	988,131	22.81	30	Site Characterization
СВ	214	842,335	988,076	24.63	30	Site Characterization
СВ	215	844,670	990,090	25.55	30	Site Characterization
СВ	216	844,670	992,099	22.59	30	Site Characterization
СВ	217	848,413	988,106	28.30	30	Site Characterization
СВ	221	854,157	1,000,190	26.45	30	Site Characterization
СВ	222	851,111	1,000,109	26.62	30	Site Characterization
СВ	224	854,153	997,167	27.34	30	Site Characterization
СВ	227	851,014	997,101	26.85	30	Site Characterization
СВ	229	854,142	994,170	27.09	30	Site Characterization
СВ	231	851,099	994,092	29.09	30	Site Characterization
СВ	232	853,858	991,170	27.89	30	Site Characterization
СВ	233	850,811	991,130	26.86	30	Site Characterization
СВ	234	853,847	988,165	26.45	30	Site Characterization
СВ	235	850,801	988,113	26.99	30	Site Characterization
СВ	236	850,794	985,084	26.57	30	Site Characterization
СВ	252	831,139	1,009,790	24.87	50	Site Characterization
СВ	253	842,443	999,444	26.34	50	Site Characterization
СВ	254	842,439	1,000,222	26.98	50	Site Characterization

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
CB	255	842,395	1,001,729	24.71	50	Site Characterization
CB	256	842,399	1,002,480	24.60	50	Site Characterization
СВ	268	842,401	1,004,000	25.90	50	Site Characterization
СВ	269	842,408	1,004,696	25.00	50	Site Characterization
СВ	270	845,108	1,005,929	27.26	30	Site Characterization
СВ	271	844,649	994,292	24.48	30	Site Characterization
СВ	276	840,112	997,756	25.18	50	Site Characterization
СВ	277	839,332	997,758	23.90	50	Site Characterization
СВ	278	837,819	997,758	23.59	50	Site Characterization
СВ	279	837,149	997,754	23.96	50	Site Characterization
СВ	280	835,633	997,746	24.11	50	Site Characterization
СВ	281	834,846	997,776	24.72	50	Site Characterization
СВ	282	833,390	997,812	25.27	50	Site Characterization
СВ	283	832,582	997,795	25.02	50	Site Characterization
СВ	284	831,096	997,871	23.74	50	Site Characterization
СВ	285	831,096	998,487	23.96	50	Site Characterization
СВ	286	831,071	999,981	23.84	50	Site Characterization
СВ	287	831,073	1,000,738	24.12	50	Site Characterization
СВ	288	831,090	1,002,228	23.81	50	Site Characterization
СВ	289	831,085	1,002,957	23.53	50	Site Characterization
СВ	291	839,760	1,008,935	26.22	50	Site Characterization
СВ	292	839,755	1,008,221	25.94	50	Site Characterization
СВ	293	839,746	1,006,722	24.06	50	Site Characterization
СВ	294	840,048	1,006,209	26.07	50	Site Characterization
СВ	295	841,580	997,751	24.10	50	Site Characterization
СВ	296	842,254	997,914	25.50	50	Site Characterization
СВ	297	831,097	1,004,559	23.54	50	Site Characterization
СВ	298	831,110	1,005,324	25.70	50	Site Characterization
СВ	299	831,104	1,006,761	23.88	50	Site Characterization
СВ	300	831,083	1,007,557	24.11	50	Site Characterization
СВ	301	831,104	1,009,028	24.40	50	Site Characterization
СВ	325	841,542	1,006,229	27.51	50	Site Characterization
СВ	326	842,216	1,006,187	28.50	50	Site Characterization
СВ	327	834,203	998,651	24.27	50	Site Characterization
СВ	328	833,666	998,703	26.06	20	Site Characterization

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
СВ	329	833,669	999,262	25.87	20	Site Characterization
СВ	330	833,073	998,649	25.60	20	Site Characterization
СВ	331	832,206	998,623	24.63	20	Site Characterization
СВ	332	831,645	998,646	24.10	20	Site Characterization
СВ	333	831,635	998,091	24.27	20	Site Characterization
СВ	345	830,058	1,008,498	27.17	20	Site Characterization
СВ	346	835,445	1,012,454	29.41	20	Site Characterization
СВ	347	840,758	996,682	27.41	20	Site Characterization
СВ	348	840,704	987,847	27.00	20	Site Characterization
СВ	349	848,859	983,455	27.17	20	Site Characterization
СВ	350	848,581	1,001,974	29.96	20	Site Characterization
СВ	351	856,049	985,994	28.00	20	Site Characterization
СВ	352	856,055	994,072	27.17	20	Site Characterization
СВ	353	853,156	1,002,000	25.20	20	Site Characterization
СВ	365	835,171	997,781	23.71	50	Site Characterization
СВ	366	831,081	1,002,218	24.22	50	Site Characterization
СВ	367	832,078	1,011,988	21.88	75.0	Post Site Characterization
СВ	367 B	832,078	1,011,988	21.88	75.5	Post Site Characterization
СВ	368	834,117	1,011,987	24.79	75.0	Post Site Characterization
СВ	368 B	834,117	1,011,987	24.79	75.5	Post Site Characterization
СВ	369	837,230	1,011,943	25.84	75.0	Post Site Characterization
СВ	369 B	837,230	1,011,943	25.84	75.5	Post Site Characterization
СВ	370	840,336	1,011,960	25.41	75.0	Post Site Characterization
СВ	370 B	840,336	1,011,960	25.41	75.5	Post Site Characterization
СВ	371	841,491	999,673	26.55	75.0	Post Site Characterization
СВ	372	841,454	1,000,700	25.77	50.0	Post Site Characterization
СВ	373	841,454	1,001,685	25.63	75.0	Post Site Characterization
СВ	374	841,453	1,002,702	25.87	50.0	Post Site Characterization
СВ	375	841,481	1,003,675	26.78	75.0	Post Site Characterization
СВ	376	841,482	1,004,695	26.45	50.0	Post Site Characterization
СВ	377	841,517	1,005,734	26.64	75.0	Post Site Characterization
СВ	378	840,726	998,081	27.15	75.0	Post Site Characterization
СВ	379	840,794	998,011	25.90	75.0	Post Site Characterization
СВ	380	840,888	998,125	25.36	75.0	Post Site Characterization
CB	381	840.836	998.204	25.66	75.0	Post Site Characterization

Expl	oration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
СВ	382	840,591	998,312	27.12	75.0	Post Site Characterization
СВ	383	840,584	978,341	29.62	75.0	Post Site Characterization
СВ	384	840,771	978,486	28.22	110.0	Post Site Characterization
СВ	385	840,733	986,033	26.93	50.0	Post Site Characterization
СВ	386	840,757	984,189	24.94	50.0	Post Site Characterization
СВ	387	840,693	982,369	27.22	50.0	Post Site Characterization
СВ	388	840,761	980,529	24.46	50.0	Post Site Characterization
СВ	389	844,032	1,007,180	27.52	30.0	Post Site Characterization
СВ	390	841,420	1,007,673	29.72	75.0	Post Site Characterization
СВ	391	841,444	1,008,631	30.53	50.0	Post Site Characterization
СВ	392	841,429	1,009,648	26.71	75.0	Post Site Characterization
СВ	393	841,084	1,010,825	27.09	110.0	Post Site Characterization
СВ	394	841,392	1,011,697	27.42	50.0	Post Site Characterization
СВ	395	843,142	1,012,056	29.02	30.0	Post Site Characterization
СВ	396	845,584	1,012,064	28.62	30.0	Post Site Characterization
СВ	397	842,822	1,009,770	28.26	30.0	Post Site Characterization
СВ	398	844,180	1,010,714	29.50	30.0	Post Site Characterization
СВ	399	845,928	1,009,315	27.59	30.0	Post Site Characterization
СВ	400	844,216	1,008,194	26.81	30.0	Post Site Characterization
СВ	401	847,213	1,012,034	27.61	30.0	Post Site Characterization
СВ	402	846,332	1,011,225	27.21	30.0	Post Site Characterization
СВ	403	848,393	1,010,944	26.61	30.0	Post Site Characterization
СВ	404	848,237	1,007,486	26.00	30.0	Post Site Characterization
СВ	405	846,438	1,007,474	27.31	30.0	Post Site Characterization
СВ	407	847,785	1,012,475	27.50	30.0	Post Site Characterization
СВ	411	850,193	982,206	28.87	75.0	Post Site Characterization
СВ	412	840,874	997,884	24.71	50.0	Post Site Characterization
СВ	413	840,789	998,117	25.08	110.0	Post Site Characterization
СВ	419	841,382	1,010,833	24.77	75.0	Post Site Characterization
СВ	422	856,053	984,489	26.00	75	Post Site Characterization
СВ	423	848,204	982,865	25.20	75.0	Post Site Characterization
СВ	424	850,273	1,012,523	24.33	110.0	Post Site Characterization
СВ	431	840,669	978,537	26.00	30	Post Site Characterization
СВ	432	840,687	980,742	26.00	30	Post Site Characterization
СВ	433	840.691	982,949	26.00	30	Post Site Characterization

٦

Г

Expl	oration I.D.	Easting (NAD83)	Northing (NAD83)	Elevation (ft-NAVD88)	Depth (ft)	Phase
СВ	434	840,692	986,152	26.00	30	Post Site Characterization
СВ	435	840,709	988,321	26.00	30	Post Site Characterization
СВ	436	840,716	990,391	26.00	30	Post Site Characterization
СВ	437	840,721	992,603	26.00	30	Post Site Characterization
СВ	438	840,728	994,795	26.00	30	Post Site Characterization
СВ	452	840,647	978,417	29.66	80	Post Site Characterization
СВ	453	840,657	978,451	29.21	50	Post Site Characterization
СВ	454	840,774	978,514	27.49	50	Post Site Characterization
СВ	458	840,710	978,402	30.07	80	Post Site Characterization
СВ	464	841,413	998,014	26.00	100	Post Site Characterization
СВ	466	856,061	988,475	26.00	30	Post Site Characterization
СВ	467	856,066	992,257	26.00	30	Post Site Characterization
СВ	468	856,072	998,679	26.00	30	Post Site Characterization
СВ	469	856,086	1,001,464	26.00	30	Post Site Characterization
СВ	470	853,493	984,421	26.00	30	Post Site Characterization
СВ	471	855,942	984,493	26.00	16	Post Site Characterization
СВ	471*	830,919	1,011,227	27.40	70.5	AMEC Investigation
СВ	472	832,118	1,011,983	24.70	70.75	AMEC Investigation
СВ	473	834,117	1,011,983	24.80	70.5	AMEC Investigation
СВ	474	836,436	1,011,983	25.80	70.5	AMEC Investigation

Evel	- voti - v					
Explo	Dration	Easting	Northing	Elevation	Depth	Phase
I.	.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
CPT	162	840,028	1,002,587	24.57	51	Site Characterization
CPT	163	833,905	998,225	24.45	53	Site Characterization
CPT	164	832,336	998,230	24.50	53	Site Characterization
CPT	165	831,535	998,958	25.02	53	Site Characterization
CPT	166	831,539	1,000,465	23.72	52	Site Characterization
CPT	167	831,538	1,001,926	25.15	52	Site Characterization
CPT	168	837,058	1,002,590	23.84	40	Site Characterization
CPT	170	837,017	999,575	25.23	6	Site Characterization
CPT	171	838,360	998,195	25.03	27	Site Characterization
CPT	172	840,018	999,573	25.42	20	Site Characterization
CPT	173	836,876	998,206	24.60	53	Site Characterization
CPT	174	834,040	999,593	22.73	53	Site Characterization
CPT	175	835,397	998,227	24.45	51	Site Characterization
CPT	176	844,395	998,142	24.09	15	Site Characterization
CPT	177	842,836	998,165	25.75	26	Site Characterization
CPT	178	841,337	998,169	26.90	26	Site Characterization
CPT	179	831,145	1,010,453	23.57	78	Site Characterization
CPT	180	832,472	1,011,561	24.89	88	Site Characterization
CPT	181	834,660	1,011,555	26.06	23	Site Characterization
CPT	182	836,931	1,011,576	23.92	86	Site Characterization
CPT	183	839,225	1,011,578	26.17	14	Site Characterization
CPT	184	837,176	1,008,577	27.43	94	Site Characterization
CPT	185	839,652	1,009,708	26.65	135	Site Characterization
CPT	187	840,095	1,005,601	27.16	52	Site Characterization
CPT	188	837,095	1,005,594	26.17	21	Site Characterization
CPT	189	843,484	1,004,638	27.83	52	Site Characterization
CPT	190	846,584	1,004,650	28.00	15	Site Characterization
CPT	191	842,403	1,003,243	26.61	52	Site Characterization
CPT	192	842,396	1,000,960	25.95	25	Site Characterization
CPT	193	843,448	1,001,661	26.83	15	Site Characterization
CPT	194	846,556	1,001,654	25.52	51	Site Characterization
CPT	195	842,407	1,005,501	27.45	11	Site Characterization
CPT	205	839,647	1,007,443	24.80	91	Site Characterization
CPT	218	842,301	983,677	25.49	45	Site Characterization
CPT	219	846,512	984,101	24.25	46	Site Characterization

Table 4.2Summary of CPT LogsGeotechnical Data Report

Exploration	Easting	Northing	Elevation	Depth	Phase
I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
CPT 220	842,357	986,667	23.91	52	Site Characterization
CPT 223	855,543	998,687	26.61	52	Site Characterization
CPT 225	852,502	998,717	26.76	24	Site Characterization
CPT 226	849,516	998,690	25.62	52	Site Characterization
CPT 228	855,503	995,715	27.62	29	Site Characterization
CPT 230	852,488	995,603	27.09	52	Site Characterization
CPT 237	849,448	995,630	26.33	53	Site Characterization
CPT 238	855,490	992,687	26.14	9	Site Characterization
CPT 239	852,481	992,698	27.67	52	Site Characterization
CPT 240	849,466	992,701	25.00	52	Site Characterization
CPT 241	855,507	989,709	24.02	52	Site Characterization
CPT 242	852,463	989,684	27.71	52	Site Characterization
CPT 243	849,452	989,681	26.93	53	Site Characterization
CPT 244	855,525	986,714	27.67	29	Site Characterization
CPT 245	852,421	986,696	24.24	52	Site Characterization
CPT 246	849,403	986,653	25.25	52	Site Characterization
CPT 247	834,081	1,002,552	24.21	52	Site Characterization
CPT 248	831,083	1,002,981	23.59	28	Site Characterization
CPT 250	831,119	1,004,657	24.94	32	Site Characterization
CPT 257	831,077	1,007,687	24.57	32	Site Characterization
CPT 258	834,128	1,008,566	26.14	52	Site Characterization
CPT 259	842,435	998,694	26.70	17	Site Characterization
CPT 260	846,482	998,697	27.00	16	Site Characterization
CPT 261	842,384	995,609	24.97	16	Site Characterization
CPT 262	846,518	995,641	24.67	21	Site Characterization
CPT 263	842,393	992,718	26.15	21	Site Characterization
CPT 264	846,466	992,722	26.10	52	Site Characterization
CPT 265	842,364	989,708	24.91	52	Site Characterization
CPT 266	846,417	989,670	24.70	53	Site Characterization
CPT 267	840,765	1,006,194	27.00	15	Site Characterization

Exp	loration	Easting	Northing	Elevation	Depth	Phase
	I.D.	(NAD83)	(NAD83)	(ft-NAVD88)	(ft)	
TP	354	832,563	1,001,317	24.62*	10	Site Characterization
TP	355	837,592	1,001,201	24.09*	10	Site Characterization
TP	356	837,874	1,011,368	26.38*	10	Site Characterization
TP	357	832,625	1,010,119	24.23*	10	Site Characterization
TP	358	830,579	1,009,944	25.56*	10	Site Characterization
TP	359	840,303	1,011,223	25.76*	10	Site Characterization
TP	360	830,208	998,877	25.39*	10	Site Characterization
ΤP	361	839,340	997,254	23.64*	10	Site Characterization
TP	362	840,764	994,521	24.67*	10	Site Characterization
TP	363	840,747	987,841	25.48*	10	Site Characterization
TP	364	840,699	981,465	26.98*	10	Site Characterization
TP	475	838,196	1,010,777	24.90	13	AMEC Investigation
TP	476	836,174	1,009,786	26.10	16	AMEC Investigation
ΤP	477	838,226	1,009,765	25.80	16	AMEC Investigation
TP	478	832,146	1,008,273	23.60	16	AMEC Investigation
TP	479	834,170	1,008,286	27.90	16	AMEC Investigation
TP	480	836,174	1,008,286	28.00	21	AMEC Investigation
TP	481	836,174	1,006,781	26.50	22	AMEC Investigation
TP	482	838,231	1,006,799	25.60	17	AMEC Investigation
TP	483	840,106	1,006,761	27.40	20	AMEC Investigation
TP	484	832,152	1,005,452	25.40	24	AMEC Investigation
TP	485	834,175	1,005,889	24.50	18	AMEC Investigation
TP	486	836,174	1,004,786	25.90	15	AMEC Investigation
TP	487	838,165	1,004,786	26.50	16	AMEC Investigation
TP	488	840,106	1,004,770	25.30	16	AMEC Investigation
TP	489	836,184	1,002,796	25.60	25	AMEC Investigation
TP	490	838,169	1,002,796	26.50	17	AMEC Investigation
TP	491	832,147	1,000,786	23.70	20	AMEC Investigation
TP	492	834,172	1,000,786	24.70	23	AMEC Investigation
TP	493	836,174	1,000,786	25.80	12	AMEC Investigation
TP	494	838,176	1,000,786	26.80	16	AMEC Investigation
TP	495	840,178	1,000,786	26.60	20	AMEC Investigation
TP	496	834,174	998,786	24.50	24	AMEC Investigation
TP	497	836,174	998,781	25.80	24	AMEC Investigation
TP	498	838,174	998,786	26.80	20	AMEC Investigation
TP	499	840,174	998,786	26.30	18	AMEC Investigation

Table 4.3Summary of Test PitsGeotechnical Data Report

*Note: Elevation not surveyed; interpolated from topographic contours.

Exploration I.D.		Easting	Northing	Ground Surface Elevation	Screen Interval (BGS)		
		(NAD83)	(NAD83)	(ft-NAVD88)	From	То	Phase
	S				13	23	
MW 272	SI	829,996	997,130	26.95	48	58	Site Characterization
	DI				92.5	102.5	
	S				13	23	
MW 273	SI	830,080	1,012,350	27.75	38	48	Site Characterization
	DI				84	94	
	S				21	31	
	SI	848 402	1 007 240	28.27	41	51	Site Characterization
10100 274	DI	040,432	1,007,240	20.27	90	100	
	D				144	154	
	S				15	25	
M/M/ 275	SI	8/1 503	078 00/	27 53	50	60	Site Characterization
10100 275	DI	0-1,000	370,334	27.00	75	85	One Characterization
	DI				133	143	
M/M/ 280	S	840 746	001 / 16	27.06	17.5	27.5	Site Characterization
10100 209	SI	040,740	331,410	27.00	40	50	Sile Characterization
M/M 290	S	840 601	1 012 473	31.84	20	30	Site Characterization
	SI	040,001	1,012,470	01.04	40	50	
M/M/ 338	S	830 039	1 003 455	27 55	20	25	Site Characterization
	SI	000,000	1,000,400	27.00	40	50	
MW 343	S	856 428	999 298	28.88	20	25	Site Characterization
	SI	000,420	000,200	20.00	45	50	
	S				15	25	
MW 344	SI	856,440	990,090	24.42	45	55	Site Characterization
	DI				90	100	
MW 346	S	835,445	1,012,454	29.41	10	20	Site Characterization
MW 347	S	840,758	996,682	27.41	14	24	Site Characterization
MW 348	S	840,704	987,847	27.00	10	20	Site Characterization
MW 349	S	848,859	983,455	27.17	9.5	19.5	Site Characterization
MW 350	S	848,581	1,001,974	29.96	9.4	19.4	Site Characterization
MW 351	S	856,049	985,994	28.00	7	17	Site Characterization
MW 352	S	856,055	994,072	27.17	9.2	19.2	Site Characterization
MW 353	S	853,156	1,002,000	25.20	9	19	Site Characterization
MW 406		848,551	1,012,523	26.00	NA	NA	Post Site Characterization
MF 52		856,075	1,000,605	31.60 (x on flange)	400	1320	2001

Table 4.4Summary of Monitoring WellsGeotechnical Data Report

Informal	Well Nomenclature	e in SFWMD		Status of Wall Condition and
Well ID	Station ID in	Well DB	General Location	Data Collection (Reference)
	DBHydro	Key		
	-	SURFIC	IAL AQUIFER MONITOR WELLS	
MW272DI	C44B8D3	88240	Reservoir	Data collection ongoing
MW272S	C44B8D1	88241	Reservoir	Data collection ongoing
MW272SI	C44B8D2	88242	Reservoir	Data collection ongoing
MW273DI	C44B8A3	88249	Reservoir	Data collection ongoing
MW273S	C44B8A1	88250	Reservoir	Data collection ongoing
MW273SI	C44B8A2	88251	Reservoir	Data collection ongoing
	C44B2A4	88252	STA	Data collection ongoing
MW/274DI	C44B2A3	00200 88255	STA	Data collection ongoing
MW274SI	C44B2A2	88254	STA	Data collection ongoing
MW275D	C44B5A4	88256	STA inflow canal	Plugged and abandoned 2012
MW275DI	C44B5A3	88257	STA inflow canal	Plugged and abandoned 2012
MW275S	C44B5A1	88258	STA, inflow canal	Plugged and abandoned 2012
MW275SI	C44B5A2	88259	STA, inflow canal	Plugged and abandoned 2012
MW289S	C44B6B1	88260	STA, inflow canal	Plugged and abandoned 2012
MW289SI	C44B6B2	88261	STA, inflow canal	Plugged and abandoned 2012
MW290S	C44B1B1	88262	Reservoir	Data collection ongoing
MW290SI	C44B1B2	88263	Reservoir	Data collection ongoing
MW338S	C44B8C1	88264	Reservoir	Data collection ongoing
MW338SI	C44B8C2	88265	Reservoir	Data collection ongoing
MW343S	C44B4A1	88266	STA, outflow canal	Plugged and abandoned 2012
MW343SI	C44B4A2	88267	STA, outflow canal	Plugged and abandoned 2012
MW344DI	C44B4C3	88268	STA, outflow canal	Plugged and abandoned 2012
MW244S		88269	STA, outflow canal	Plugged and abandoned 2012
MW34431	C44B4C2 C44B8B1	88271	Beservoir	Destroyed 2012
MW346S	C44B1A1	88272	Reservoir	Data collection ongoing
MW347S	C44B6A1	88273	STA inflow canal	Plugged and abandoned 2012
MW348S	C44B6C1	88274	STA, inflow canal	Plugged and abandoned 2012
MW349S	C44B5B1	88275	STA	Destroyed 2012
MW350S	C44B3A1	88276	STA	Data collection ongoing
MW351S	C44B4D1	88277	STA, outflow canal	Data collection ongoing
MW352S	C44B4B1	88278	STA, outflow canal	Data collection ongoing
MW353S	C44B3C1	88279	STA	Data collection ongoing
W-101	NONE	NONE	APT, Reservoir area	Well near APT-101; CDM, 2004
W-104A	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
W-104B	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
W-105A	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
W 102	NONE	NONE		Well poor APT 102: CDM 2004
W-102	NONE	NONE		Well near APT-102, CDM, 2004 Well near APT-103: CDM, 2004
W-106A	NONE	NONE	Slug Test Reservoir area	CDM 2004
W-106B	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
W-107A	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
W-107B	NONE	NONE	Slug Test, Reservoir area	CDM, 2004
MW406S	NONE	NONE	STA, Background	None
MW406SI	NONE	NONE	STA, Background	None
W-1	NONE	NONE	Slug tests at well cluster, Reservoir area	Ardaman & Associates, 2003
W-2	NONE	NONE	Slug tests at well cluster, STA	Ardaman & Associates, 2003
W-3	NONE	NONE	Slug tests at well cluster, STA	Ardaman & Associates, 2003
W-4	NONE	NONE	Slug tests at well cluster, STA	Ardaman & Associates, 2003
W-5	NONE	NONE	Slug tests at well cluster, STA	Ardaman & Associates, 2003
ME 52	ME 52	FL	NE born STA	Data collection ongoing
Notos: DPLIN	ivii02 dro is the groundwater of	vv Jyjz	Antabase maintained by SEW/MD Datab	
http://www.sfv and quality da using "Information we	wmd.gov/portal/page/port ata from each well by sea al Well ID". Aquifer perfo ells with "MW-XXX" nome	rching for the DE rmance test (AP	ronmental%20monitoring/dbhydro%20app 8 key. Well locations are identified on Figs T) results also are available on DBHydro und on on Table 4.4 of this GDR Wells with "	Jace accessed at <u>blication</u> . Access groundwater level s. 3.1, 3.2, 3.3, and 3.4 of this GDR under "C44 basin". Screened intervals <i>N</i> -X" nomenclature are found on Table
4.8. Screene	d intervals for monitor we	ells with" W-10X"	nomenclature are found on Tables 4.9 an	d 4.10 of this GDR.

Table 4.5Monitoring Well Nomenclature and StatusGeotechnical Data Report

Source: USACE

C-44 RESERVOIR/STA PROJECT

Table 4.6 Pore Pressure Decay from CPTU Soundings Geotechnical Data Report

		ļ			Å		
CPTILID	Denth	Elevation	Based on I	Robertson	Based on Baligh	ו and Levadoux	Soil
(CP)	(ft)	NAVD88)	(cm/sec)	(ft/d)	(cm/sec)	(ft/d)	Unit
CP05-IR44-CP-226	15.5	10.12	8.00E-06	0.023	1.60E-03	4.528	U
CP05-IR44-CP-228	0.6	18.62	2.00E-05	0.057	7.10E-03	20.126	A+B
CP05-IR44-CP-240	25.5	-0.50	2.00E-05	0.057	3.00E-03	8.504	U
CP05-IR44-CP-258	22.1	4.04	2.20E-05	0.062	2.60E-03	7.370	U
CP05-IR44-CP-259	15.6	11.10	6.00E-06	0.017	1.20E-03	3.402	C
CP05-IR44-CP-267	12.0	15.00	6.00E-07	0.002	1.50E-04	0.425	C
CP05-IR44-CP-194	11.8	13.72	6.00E-06	0.017	1.60E-03	4.535	С
CP05-IR44-CP-162	15.4	9.17	2.00E-05	0.057	4.81E-03	13.635	C
CP05-IR44-CP-164	15.6	8.90	6.00E-06	0.017	2.49E-04	0.706	C
CP05-IR44-CP-165	19.0	6.02	1.00E-05	0.028	1.35E-03	3.827	С
CP05-IR44-CP-168	18.6	5.24	1.00E-05	0.028	1.55E-03	4.394	С
CP05-IR44-CP-172	15.1	10.32	2.00E-06	0.006	4.67E-04	1.324	С
CP05-IR44-CP-174	22.1	0.63	3.50E-05	0.099	5.30E-03	15.024	С
CP05-IR44-CP-177	18.7	7.05	1.00E-04	0.283	2.00E-02	56.693	C
CP05-IR44-CP-178	22.4	4.50	5.00E-05	0.142	6.80E-03	19.276	С
CP05-IR44-CP-181	12.4	13.66	6.00E-06	0.017	1.70E-03	4.819	C
		L					

Source: Ardaman and Associates, 2005

			Falling Head Permeability			
Depth (ft)	Test Boring	Stratum	kavg (ft/day)	kh (ft/day)	kv (ft/day)	
5.00	W-104	SC	0.066	0.208	0.021	
7.17	W-105	SC	0.077	0.243	0.024	
6.33	W-106	SC	0.033	0.104	0.04	
6.33	W-107	SC	0.066	0.208	0.021	

Table 4.7Falling Head Permeability Field Test ResultsGeotechnical Data Report

Source: Ardaman and Associates, 2003

Table 4.8Field Permeability Test ResultsGeotechnical Data Report

	Screened Donth	Permeability (cm/s)						
Well Cluster	(ft)	Constant Head	Falling Head	Falling Head	Average			
	2.8 - 7.8	na	na	na	na			
W-1	20 - 25	3.86E-03	3.67E-03	4.00E-03	3.84E-03			
	48 - 53	na	2.15E-04	2.18E-04	2.17E-04			
	4.5 -9.5	na	7.97E-05	7.35E-05	7.66E-05			
W-2	24 - 29	4.40E-03	3.46E-03	na	3.93E-03			
	60 - 65	1.32E-03	1.25E-03	1.35E-03	1.31E-03			
	7 - 12	na	7.20E-05	7.03E-05	7.12E-05			
\M/_2	25 - 30	5.56E-03	5.55E-03	6.06E-03	5.72E-03			
VV-5	50 - 55	1.78E-03	2.08E-03	1.93E-03	1.93E-03			
	75 - 80	2.18E-03	1.57E-03	1.26E-03	1.67E-03			
	4.6 - 9.6	1.50E-03	1.37E-03	1.49E-03	1.45E-03			
W-4	25 - 30	7.35E-03	4.58E-03	na	5.97E-03			
	65 - 70	3.44E-03	3.30E-03	na	3.37E-03			
	4.85 - 9.85	na	8.67E-05	na	8.67E-05			
W-5	24.7 - 29.7	2.66E-03	2.05E-03	na	2.36E-03			
	64.8 - 69.8	4.88E-03	8.09E-03	na	6.49E-03			

Source: Ardaman and Associates, 2003

Test Depth (ft)	Test Boring Number	Stratum	Slug-In k(ft/day)	Slug-Out k(ft/day)
22.83-27.83	W-104A	silty fine sand & shell	12.4	11.8
59-64	W-104B	fine sand & shell	128.4	120.4
24-29	W-105A	fine sand & shell	38.5	47
59-64	W-105B	unknown	67.4	60.6
30-35	W-106A	fine sand & shell	31.7	31.7
75-80	W-106B	silty fine sand & shell	< 0.5	< 0.5
24-29	W-107A	fine sand & shell	224.6	214.1
64-69	W-107B	fine sand & shell	79.3	62

Table 4.9Field Slug Test ResultsGeotechnical Data Report

Source: Ardaman and Associates, 2003

Table 4.10Aquifer Performance Test ResultsGeotechnical Data Report

Test		Distance toApproximateTestingMonitoringSaturated		Approximate Saturated	Transmissivity (opd/ft)	Hydraulic Conductivity	
Boring Number	Discharge (gpm)	Depth (ft)	Well (ft)	Thickness (ft)	(3)	kh (ft/day)	kv (ft/day)
W-101	100	37.5-137.5	60.4	125	19,100	20.0	0.35
W-102	23	35-135	63.4	125	26,000	28.0	1
W-103	14	35-135	49.7	125	ND	ND	ND

Source: CDM, 2004

	Screen Interval	Screen Interval Elevation	Screened Interval Soil	K _{h,} Falling Head	K _{h,} Rising Head
Well Number	Depth		Classifications	ft/day	ft/day
MW-272 S	13 - 23	13.95 – 3.95	SP-SM, SW	26.76	20.60
MW-272 SI*	48 - 58	-21.05 – -31.05	SP, SW	-	-
MW-273 S	13 - 23	14.75 – 4.75	SW, SP	6.90	16.60
MW-273 SI	38 - 48	-10.25 – -20.25	SP, SM	5.51	1.78
MW-274 S	20 - 30	8.27 – -1.73	SC, SM	2.87	1.76
MW-274SI*	40 - 50	-11.73 – -21.73	SW	-	-
MW-275 S	14 - 24	-22.47 – 3.53	SP, SP-SM	6.25	8.67
MW-289 S*	15 - 25	13.06 – 2.06	SP, SW, SM	-	-
MW-289 SI	39 - 49	-11.94	SW, SP-SM, SP	14.80	8.71
MW-290 S*	20 - 30	11.84 – -21.94	SW, SP-SM	-	-
MW-290 SI	39 - 49	-7.16 – 1.84	SP, SP-SM	21.50	20.90
MW-338 S	20 - 25	7.55 – 2.55	SP-SM, SP	5.21	9.52
MW-338 SI	38 - 48	-10.45 – -20.45	SP-SM, SW	30.10	30.24
MW-343 S	20 - 25	8.88 – 3.88	SM, SP-SM	6.88	12.89
MW-343 SI*	45 - 50	-16.12 – -21.12	SW, SP, SM	-	-
MW-344 S*	15 - 25	9.420.58	SW	-	-
MW-344 SI	45 - 55	-20.5830.58	SP, SP-SM	14.55	14.02

Table 4.11 Slug Test Results - Site Wells Geotechnical Data Report

*Note: Elevation not surveyed; interpolated from topographic contours.

Source: Ardaman and Associates, 2005

	Depth	Interval	Elevation	n Interval		
Auger Boring ID AB)	From (ft)	To (ft)	From (ft)	To (ft)	Specific Gravity (@ Test Temp)	Specific Gravity (@ 20 Deg)
CP05-IR44-AB-106	1	3	23.91	21.91	2.635	2.634
CP05-IR44-AB-106	4	7	20.91	17.91	2.785	2.784
CP05-IR44-AB-108	4	7	24.24	21.24	2.739	2.738
CP05-IR44-AB-112	1	3	23.84	21.84	2.783	2.782
CP05-IR44-AB-113	1	3	23.08	21.08	2.742	2.741
CP05-IR44-AB-115	1	3	22.78	20.78	2.802	2.801
CP05-IR44-AB-118	4	7	20.92	17.92	2.701	2.699
CP05-IR44-AB-119	1	3	25.68	23.68	2.687	2.685
CP05-IR44-AB-119	4	7	22.68	19.68	2.670	2.668
CP05-IR44-AB-124	1	3	22.63	20.63	2.619	2.617
CP05-IR44-AB-129	1	3	23.91	21.91	2.696	2.694
CP05-IR44-AB-130	4	7	20.61	17.61	2.644	2.643
CP05-IR44-AB-131	1	3	18.77	16.77	2.722	2.721
CP05-IR44-AB-133	1	3	24.23	22.23	2.678	2.676
CP05-IR44-AB-135	4	7	21.75	18.75	2.700	2.698
CP05-IR44-AB-138	1	3	22.42	20.42	2.682	2.681
CP05-IR44-AB-138	4	7	19.42	16.42	2.660	2.658
CP05-IR44-AB-143	4	7	25.17	22.17	2.649	2.648
CP05-IR44-AB-126	4	7	20.56	17.56	2.691	2.690
CP05-IR44-AB-133	4	7	21.23	18.23	2.676	2.675
CP05-IR44-AB-143	1	3	28.17	26.17	2.667	2.666

Table 5.1Specific Gravity Test ResultsGeotechnical Data Report

Table 5.2	Lab and In-Situ Density Test Results – Remolded Samples from Auger Borings	Geotechnical Data Report
-----------	--	--------------------------

	Depth	Interval	Eleva Inter	ation rval		In-Situ	Density T	est		One-P	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-99	0	-	26.29	25.29	Very Light Brown Sand	14.2%	107.7	2.0%	1	ł	1	ł	7.9%	111.9	96.3%	6.3%
CP05-IR44- AB-99	0	т	26.29	23.29	Light Brown Sand	16.9%	109.2	9.9%	1	1	1	1	7.9%	111.9	97.5%	9.0%
CP05-IR44- AB-106	0	-	24.91	23.91	Dark Gray Sand with Light Brown Clayey Sand & Organics	17.8%	97.4	18.4%	1	1	1	I	14.0%	110.5	88.1%	3.8%
CP05-IR44- AB-106	0	3	24.91	21.91	Dark Gray Sand with Light Brown Clayey Sand & Organics	23.2%	86.2	17.5%	1	1	1	ł	14.0%	110.5	78.0%	9.2%
CP05-IR44- AB-106	-	3	23.91	21.91	Dark Gray Sand with Light Brown Clayey Sand & Organics	1	1	1	1	1	1	1	14.0	110.5	-	1
CP05-IR44- AB-106	4	7	20.91	17.91	Gray Clayey Sand	ł	ł	1	ł	1	ł	I	11.0	119.5		ł
CP05-IR44- AB-107	0	۲	24.00	23.00	Light Gray Sand	14.7%	104.1	2.9%	1	ł	1	ł	10.7%	117.1	88.9%	4.0%
CP05-IR44- AB-107	0	3	24.00	21.00	Light Brown to Light Gray Sand	16.0%	106.5	3.0%	1	1	1	ł	10.7%	117.1	%6.06	5.3%
CP05-IR44- AB-108	0	-	28.24	27.24	Brown to Dark Brown Sand with Clayey Sand	11.0%	109.1	12.2%	10.1%	118.5	11.0%	118.9	I	1	91.8%	0.0%
CP05-IR44- AB-108	0	3	28.24	25.24	Light Brown Sand with Clayey Sand	13.2%	110.6	17.6%	10.1%	118.5	11.0%	118.9	1	ł	93.1%	2.2%
CP05-IR44- AB-108	4	7	24.24	21.24	Brown Clayey Sand	1	1	1	1	1	1	I	10.0	114.5		1
CP05-IR44- AB-109	0	4	27.04	26.04	Light Brown Sand with Clayey Sand	6.9%	97.6	5.2%	8.8%	115.5	10.5%	116.2	1	1	84.0%	-0.6%
CP05-IR44- AB-109	0	ю	27.04	24.04	Light Brown Sand with Clayey Sand	9.7%	101.7	5.2%	7.9%	120.1	10.0%	122.1	I	1	83.3%	-0.3%
CP05-IR44- AB-110	0	-	25.52	24.52	Dark Brown Sand with some Clayey Sand	15.2%	103.2	6.1%	9.6%	120.9	10.3%	121.2	1	1	85.2%	4.9%
CP05-IR44- AB-110	0	3	25.52	22.52	Light Brown Sand with Clayey Sand	32.5%	92.8	14.6%	9.6%	120.9	10.3%	121.2	1	1	76.6%	22.2%
CP05-IR44- AB-112	0	1	24.84	23.84	Brown Sand with Clayey Sand	15.7%	103.3	13.8%	ł	1	I	I	9.5%	122.7	84.2%	6.2%

Note: This table prints full size at 11"x17".

Table 5.2 (Continued)Lab and In-Situ Density Test Results – Remolded Samples from Auger BoringsGeotechnical Data Report

	Depth I	nterval	Eleva Inter	ttion rval		In-Situ	Density T	est		One-P	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-112	0	£	24.84	21.84	Light Brown Sand with Clayey Sand	12.7%	109.9	6.8%	1	:			9.5%	122.7	%9.68	3.2%
CP05-IR44- AB-112	-	e	23.84	21.84	Brown Clayey Sand	ł	ł	ł	1	1	1	ł	10.0	114.5	1	1
CP05-IR44- AB-113	-	с	23.08	21.08	Brown Clayey Sand	1	1	ł	1	1	1	1	10.0	122.0	1	1
CP05-IR44- AB-115	0	~	23.78	22.78	Mixed Brown to Orange Sand with Clayey Sand	14.2%	6.99	19.8%	1	1	ł	1	9.2%	127.3	78.5%	5.0%
CP05-IR44- AB-115	0	с	23.78	20.78	Mixed Brown to Orange Sand with Clayey Sand	13.3%	104.4	18.4%	1	:	1	1	9.2%	127.3	82.0%	4.1%
CP05-IR44- AB-115	-	e	22.78	20.78	Tan Sandy Clay	ł	1	ł	1	1	1	1	9.5	127.0	1	1
CP05-IR44- AB-117	0	-	24.23	23.23	Dark Brown Sand with Clayey Sand	15.7%	100.1	14.3%	1	:	ł	1	10.8%	123.8	80.9%	4.9%
CP05-IR44- AB-117	0	с	24.23	21.23	Dark Brown Sand with Clayey Sand	16.7%	102.9	14.5%	1	:	1	1	10.8%	123.8	83.1%	5.9%
CP05-IR44- AB-118	4	7	20.92	17.92	Gray Clayey Sand	1	ł	1	1	ł	1	ł	10.5	124.0	1	ł
CP05-IR44- AB-119	0	~	26.68	25.68	Dark Brown Sand with Clayey Sand	29.3%	86.6	13.0%	1	1	1	ł	10.3%	117.5	73.7%	19.0%
CP05-IR44- AB-119	0	3	26.68	23.68	Dark Brown Clayey Sand	33.2%	87.2	18.9%	1	ł	1	1	10.3%	117.5	74.2%	22.9%
CP05-IR44- AB-119	-	3	25.68	23.68	Gray Clayey Sand		1		1	ł	-	-	10.0	117.5	-	ł
CP05-IR44- AB-119	4	7	22.68	19.68	Brown and Gray Clayey Sand	1	1	-	1	ł	-	-	10.5	122.0	1	ł
CP05-IR44- AB-124	-	3	22.63	20.63	Brown Clayey Sand	ł	ł	1	-	ł	ł		11.0	118.5	ł	ł
CP05-IR44- AB-126	4	7	20.56	17.56	Brown Clayey Sand	-	1		-	ł	1		8.5	130.5	ł	ł
CP05-IR44- AB-129	-	3	23.91	21.91	Brown Sandy Clay	-	1		1	ł	-	-	10.5	112.0	-	ł
I mittering to the second states and second													 	-		

Note: This table prints full size at 11"x17".

Table 5.2 (Continued)Lab and In-Situ Density Test Results – Remolded Samples from Auger BoringsGeotechnical Data Report

	Depth I	nterval	Eleva	ation rval		In-Situ	u Density T	Fest		One-F	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-130	4	2	20.61	17.61	Brown Sandy Clay	1	ł	1	1	1	1	1	9.6	126.0		
CP05-IR44- AB-131	0	-	19.77	18.77	Light Brown to Brown Sand	12.9%	104.9	4.7%	1	ł	I	ł	%0.01	108.5	%9 [.] 96	2.9%
CP05-IR44- AB-131	0	3	19.77	16.77	Light Brown Sand	18.8%	106.5	2.7%	1	1	I	ł	10.0%	108.5	98.2%	8.8%
CP05-IR44- AB-131	-	3	18.77	16.77	Brown and Gray Sandy Clay	1	ł	1	1	1	1	ł	10.0	108.5		-
CP05-IR44- AB-133	-	3	24.23	22.23	Gray Clayey Sand	1	ł	ł	1	1	ł	ł	10.5	114.5	ł	ł
CP05-IR44- AB-133	4	2	21.23	18.23	Gray Sandy Clay	!	ł	1	1	1	1	ł	8.5	129.0	-	
CP05-IR44- AB-134	0	-	22.86	21.86	Brown Clayey Sand	12.8%	106.5	26.5%	9.9%	122.6	9.9%	122.6		-	86.9%	2.9%
CP05-IR44- AB-134	0	3	22.86	19.86	Brown Clayey Sand	10.6%	113.7	24.4%	9.9%	122.6	9.9%	122.6	ł	ł	92.8%	0.7%
CP05-IR44- AB-135	4	7	21.75	18.75	Brown Clayey Sand	1	ł		1	1	1	ł	9.6	126.0	-	
CP05-IR44- AB-138	0	4	23.42	22.42	Brown Sand with Clayey Sand	18.0%	109.7	13.5%	1	-	I	ł	9.5%	123.2	89.1%	8.5%
CP05-IR44- AB-138	0	3	23.42	20.42	Brown Sand with Cemented Sand	17.6%	110.4	12.0%	1	-	1	1	9.5%	123.2	89.6%	8.1%
CP05-IR44- AB-138	1	3	22.42	20.42	Gray Clayey Sand	1	ł	-	1	-	1	ł	10.0	123.5		-
CP05-IR44- AB-138	4	7	19.42	16.42	Gray Clayey Sand	1	ł	1	1	-	1	ł	0.6	124.5		1
CP05-IR44- AB-143	0	-	29.17	28.17	Light Gray Sand	8.4%	88.8	3.0%	ł	1	I	ł	10.0%	111.8	79.4%	-1.6%
CP05-IR44- AB-143	0	3	29.17	26.17	Light Gray Silty Sand	8.1%	92.9	18.4%	1	-	1	1	10.0%	111.8	83.1%	-1.9%
CP05-IR44- AB-143	-	3	28.17	26.17	Brown and Gray Fine Sand	-	-	-	1	;	1	;	9.5	112.0	1	ł

Note: This table prints full size at 11"x17".

Table 5.2 (Continued) Lab and In-Situ Density Test Results – Remolded Samples from Auger Borings Geotechnical Data Report

		ſ														
	Depth	nterval	Elevá Intei	ation rval		In-Situ	ı Density 1	Fest		One-P	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-143	4	2	25.17	22.17	Brown and Gray Clayey Sand	-	1	1	-	1		-	8.5	120.5	-	1
CP05-IR44- AB-303	0	-	24.62	23.62	Bark Brown Sand with Clayey Sand	15.8%	94.7	8.0%	10.2%	118.7	10.9%	119.1	ł	ł	79.5%	4.9%
CP05-IR44- AB-303	0	3	24.62	21.62	Bark Brown Sand with Clayey Sand	14.5%	100.7	7.0%	10.2%	118.7	10.9%	119.1	ł	1	84.6%	3.6%
CP05-IR44- AB-304	0	-	23.80	22.80	Dark Brown Sand with Clayey Sand	17.0%	93.3	8.7%	9.6%	115.2	11.7%	116.5	ł	ł	80.1%	5.3%
CP05-IR44- AB-304	0	ю	23.80	20.80	Dark Brown Sand with Clayey Sand	16.6%	98.5	8.9%	9.9%	118.2	11.1%	118.8	ł	ł	82.9%	5.5%
CP05-IR44- AB-305	0	-	23.14	22.14	Dark Brown Sand with Clayey Sand	12.1%	98.8	18.3%	1	1	1	ł	14.3%	111.5	88.6%	-2.2%
CP05-IR44- AB-305	0	с	23.14	20.14	Dark Brown Sand with Clayey Sand	12.9%	103.1	18.9%	1	I	1	ł	14.3%	111.5	92.4%	-1.4%
CP05-IR44- AB-306	0	1	23.21	22.21	Dark Brown Sand with Clayey Sand	15.5%	96.9	8.8%	10.7%	121.4	10.2%	121.4	ł	1	%8.62	5.3%
CP05-IR44- AB-306	0	3	23.21	20.21	Dark Brown Sand with Clayey Sand	17.8%	99.7	10.9%	10.7%	121.4	10.2%	121.4		1	82.2%	7.6%
CP05-IR44- AB-307	0	-	24.32	23.32	Light Brown Sand with Clayey Sand	17.4%	99.2	16.5%	10.0%	124.1	%9.6	124.1		ł	%6.67	7.9%
CP05-IR44- AB-307	0	3	24.32	21.32	Mixed Brown to Orange Sand with Clayey Sand	14.5%	106.6	27.2%	9.2%	123.9	9.6%	123.9	ł	1	86.0%	4.9%
CP05-IR44- AB-308	0	-	23.28	22.28	Mixed Brown Sand with Clayey Sand	13.9%	111.7	17.4%	9.8%	110.1	10.2%	110.3	ł	ł	101.3%	3.7%
CP05-IR44- AB-308	0	3	23.28	20.28	Light Brown to Orange Clayey Sand	15.3%	114.9	20.1%	9.8%	110.1	10.2%	110.3	I	1	104.2%	5.1%
CP05-IR44- AB-309	0	-	23.80	22.80	Very Light Brown Sand	15.6%	105.3	2.0%	10.6%	123.7	10.2%	123.8	1	1	85.1%	5.4%
CP05-IR44- AB-309	0	3	23.80	20.80	Very Light Brown Sand	18.6%	109.5	2.4%	10.6%	123.7	10.2%	123.8	ł	ł	88.4%	8.4%
CP05-IR44- AB-310	0	-	23.70	22.70	Light Brown Sand	11.6%	108.4	2.7%	9.2%	121.4	10.1%	121.9	-	1	89.0%	1.5%

Note: This table prints full size at 11"x17".
Table 5.2 (Continued)Lab and In-Situ Density Test Results – Remolded Samples from Auger BoringsGeotechnical Data Report

	Depth I	nterval	Eleva	ation rval		In-Situ	l Density T	est		One-P	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ff)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-310	0	3	23.70	20.70	Very Light Brown Clayey Sand	19.2%	108.0	11.8%	1	1		ł	10.2%	122.9	%6`28	%0.6
CP05-IR44- AB-311	0	-	24.42	23.42	Mixed Light Brown Sand	7.9%	109.1	6.4%	9.2%	120.3	10.4%	120.8	ł	ł	90.3%	-2.5%
CP05-IR44- AB-311	0	3	24.42	21.42	Light Brown to Yellow Clayey Fine Sand	17.6%	111.4	25.7%	1	1	-	ł	6.9%	135.8	82.0%	10.7%
CP05-IR44- AB-312	0	-	23.24	22.24	Brown Sand with Clayey Sand	12.0%	107.9	8.6%	1	1	1	1	11.1%	120.9	89.2%	%6.0
CP05-IR44- AB-312	0	с	23.24	20.24	Gray Brown Sand with Clayey Sand and Rocks	15.9%	105.7	17.6%	1	1	1	ł	11.1%	120.9	87.4%	4.8%
CP05-IR44- AB-313	0	-	23.95	22.95	Light Brown Sand	8.4%	108.2	5.2%	9.0%	116.9	10.4%	117.2	I	ł	92.3%	-2.0%
CP05-IR44- AB-313	0	с	23.95	20.95	Very Light Brown Clayey Sand	19.5%	110.6	14.0%	ł	1	1	ł	7.4%	129.9	85.1%	12.1%
CP05-IR44- AB-314	0	+	24.02	23.02	Light Brown Sand	12.8%	108.1	6.5%	9.0%	115.9	10.5%	116.4	-	ł	%6.26	2.3%
CP05-IR44- AB-314	0	3	24.02	21.02	Light Brown to White Clayey Sand	15.8%	109.5	32.4%	1	1	-	ł	8.4%	129.2	84.7%	7.4%
CP05-IR44- AB-316	ο	-	25.42	24.42	Dark Brown Clayey Sand	11.0%	113.3	36.2%	9.8%	124.3	9.9%	124.4	ł	ł	91.0%	1.1%
CP05-IR44- AB-316	0	3	25.42	22.42	Dark Brown Clayey Sand	11.4%	116.5	36.4%	9.8%	124.3	%6.6	124.4	-	ł	%2`£6	1.5%
CP05-IR44- AB-317	ο	-	25.48	24.48	Light Brown Sand	13.0%	105.6	2.9%	1	1	1	ł	11.5%	114.5	92.3%	1.5%
CP05-IR44- AB-317	0	3	25.48	22.48	Light Brown Sand	12.7%	109.8	3.2%	1	1	-	ł	11.5%	114.5	%6:56	1.2%
CP05-IR44- AB-319	0	+	25.70	24.70	Brown Sand with some Silt	9.5%	110.3	10.7%	8.9%	121.2	10.1%	121.9	-	1	%9.06	-0.6%
CP05-IR44- AB-319	0	3	25.70	22.70	Light Brown to Orange Clayey Sand	17.3%	110.3	17.4%	9.3%	123.2	%2.6	123.3	-	ł	%†.68	7.6%
CP05-IR44- AB-320	ο	-	27.00	26.00	Dark Brown Sand with Clayey Sand & Silt	9.5%	105.8	14.6%	10.3%	124.0	10.0%	124.1	ł	ł	85.2%	-0.5%

Note: This table prints full size at 11"x17".

Table 5.2 (Continued)Lab and In-Situ Density Test Results – Remolded Samples from Auger BoringsGeotechnical Data Report

						Geolecii	IIICAI DAU	a Nepul								
	Depth Ir	ıterval	Eleva Intei	ation rval		In-Situ	I Density 1	Test		One-P	t. Proctor		Modified	Proctor		Difference Between
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)	Moisture Content (%)	Dry Density (PCF)	Estimated Opt. Moisture Content (%)	Estimated Max. Dry Density (PCF)	Opt. Moisture Content (%)	Max. Dry Density (PCF)	In-Situ Percent Compaction	In-Situ and Optimum Moisture Content
CP05-IR44- AB-320	0	3	27.00	24.00	Light Brown Sand with Clayey Sand	8.6%	110.4	12.7%	10.3%	124.0	10.0%	124.1	ł	ł	%0.68	-1.4%
CP05-IR44- AB-321	0	Ļ	25.48	24.48	Light Brown Sand	13.2%	109.3	3.1%	11.4%	120.6	10.5%	120.6	ł	1	%9.06	2.7%
CP05-IR44- AB-321	0	3	25.48	22.48	Light Brown Sand	12.9%	113.2	4.1%	11.4%	120.6	10.5%	120.6	ł	ł	%6`£6	2.4%
CP05-IR44- AB-322	0	-	24.21	23.21	Mixed Brown to Orange Sand with Clayey Sand	11.6%	115.1	12.8%	9.8%	126.8	9.3%	127.3	ł	ł	90.4%	2.3%
CP05-IR44- AB-322	0	3	24.21	21.21	Mixed Brown to Orange Sand with Clayey Sand	11.8%	118.7	13.3%	9.8%	126.8	9.3%	127.3	ł	ł	93.2%	2.5%
CP05-IR44- AB-337	0	Ţ	22.32	21.32	Dark Brown Sand with Clayey Sand	17.6%	103.3	9.9%	1	ł	ł	-	12.8%	116.6	88.6%	4.8%
CP05-IR44- AB-337	0	3	22.32	19.32	Brown Sand with Clayey Sand	15.0%	110.3	10.6%	27.7%	78.5	I	I	ł	1	I	ı
CP05-IR44- AB-339	0	Ł	24.34	23.34	Dark Brown Sand with Clayey Sand	26.8%	82.2	7.6%	9.0%	118.6	10.8%	119.5	ł	1	68.7%	16.0%
CP05-IR44- AB-339	0	3	24.34	21.34	Dark Brown Sand with Clayey Sand	28.6%	84.3	8.6%	12.3%	115.7	12.0%	115.8	ł	ł	72.8%	16.6%
CP05-IR44- AB-340	0	~	26.52	25.52	Light Gray Sand	12.7%	94.6	3.1%	9.0%	110.6	10.3%	111.2	ł	ł	85.1%	2.4%
CP05-IR44- AB-340	0	З	26.52	23.52	Dark Brown Sand with Silt	21.0%	91.6	11.4%	9.4%	111.9	13.7%	113.5	ł	ł	80.7%	7.3%

Note: This table prints full size at 11"x17".

Table 5.3 Standard Proctor Test Results – Remolded Samples from Auger Borings Geotechnical Data Report

	Depth I	nterval	Elevatior	ו Interval			Standard Proctor	
Test No.	From (ft)	To (ft)	From (ft)	To (ft)	Soil Description	Moisture Content (%)	Dry Density (PCF)	Fines (%)
CP05-IR44- AB-90	1	4	25.81	22.81	WS-SM	11.2	117.1	9.5
CP05-IR44- AB-90	4	7	22.81	19.81	sc	11.2	117.1	19.8
CP05-IR44- AB-91	1	4	26.63	23.63	WS-SM	11.8	110.8	8.8
CP05-IR44- AB-91	4	7	23.63	20.63	SC	12.0	116.3	16.8
CP05-IR44- AB-94	1	4	26.56	23.56	WS-SM	11.6	109.1	6.6
CP05-IR44- AB-95	1	4	26.24	23.24	SP-SM	11.6	109.2	3.2
CP05-IR44- AB-96	4	7	21.70	18.70	sc	11.0	122.9	24.0

C-44 RESERVOIR/STA PROJECT

Table 5.4Hydraulic Conductivity Test Results – Remolded SamplesGeotechnical Data Report

	Dep Inter	ith val	Elev: Intel	ation rval		:		Optimum				
	from	to	from	to	Hydra Condue	aulic ctivity	Type of	Moisture Content	Dry Densitv	%	nscs	Sample
Auger Boring ID	(ft)	(ft)	(ft)	(ft)	(cm/s)	(ft/d)	Test	(%)	(%)	Fines	Classification	Description
CP05-IR44- AB-91 *	~	4	26.63	23.63	3.00E-04	0.8504	U	11.8	106	6.8	SP-SM	Dark Brown SAND with some Silt
CP05-IR44- A-95 *	-	4	26.24	23.24	2.40E-03	6.8031	ш	11.6	103.6	9	SP-SM	Dark Brown SAND with some Silt
CP05-IR44- AB-106	4	7	20.91	17.91	3.50E-05	0.0992	C	11	112.9	13.5	sc	Dark Brown Clayey SAND
CP05-IR44-AB108	4	7	24.24	21.24	5.20E-04	1.474	ш	10	107.9	6.4	SP-SM	Brown SAND with some Silt
CP05-IR44- AB-115	-	4	22.78	19.78	4.90E-08	0.0001	C	9.5	121.5	32.7	SC	Yellowish Brown Clayey SAND
CP05-IR44- AB-118	4	7	20.92	17.92	1.10E-05	0.0312	C	10.5	118.2	21.6	SC	Yellowish Brown Clayey SAND
CP05-IR44- AB-126	4	7	20.56	17.56	1.50E-08	0	c	8.5	124.6	35.2	sc	Brown Clayey SAND
CP05-IR44- AB-129	-	4	23.91	20.91	2.90E-03	8.2205	L	10.5	106.1	7.1	SP-SM	Dark Brown SAND with some Silt
CP05-IR44- AB-130	4	7	20.61	17.61	7.30E-05	0.2069	С	9.5	119.2	16.3	SC	Brown Clayey SAND
CP05-IR44- AB-131	٢	4	18.77	15.77	4.20E-03	11.9055	ш	10	102.6	5.1	SP	Brown SAND with little Silt
CP05-IR44- AB-133	4	7	21.23	18.23	7.90E-05	0.2239	С	8.5	122.7	35.3	SC	Brown Clayey SAND with some Shells
CP05-IR44- AB-135	4	7	21.75	18.75	1.00E-04	0.2835	U	9.5	119	20.3	sc	Brown Clayey SAND with some Shells

Table 5.4 (Continued) Hydraulic Conductivity Test Results – Remolded Samples Geotechnical Data Report

	Dep Inter	th val	Elev: Intel	ation rval		:		Optimum				
	from	to	from	to	Hydra Condue	aulic ctivity	Type of	Moisture Content	Dry Density	%	nscs	Sample
Auger Boring ID	(ft)	(ft)	(ft)	(ft)	(cm/s)	(ft/d)	Test	(%)	(%)	Fines	Classification	Description
CP05-IR44- AB-138	Ļ	4	22.42	19.42	2.50E-04	0.7087	ပ	10	116.9	17.8	SC	Brown Clayey SAND
CP05-IR44- AB-138	4	7	19.42	16.42	2.50E-04	0.7087	С	0	116.9	17.8	SC	Brown Clayey SAND
CP05-IR44- AB-143	4	7	25.17	22.17	3.80E-04	1.0772	ပ	8.5	114.4	12.6	SM	Dark Brown Silty SAND
CP05-IR44- AB-112	-	4	23.84	20.84	4.60E-04	1.3039	ပ	10	108.7	16	sc	Light Brown Clayey SAND
CP05-IR44- AB-113	1	4	23.08	20.08	3.90E-05	0.1106	С	10	115.9	23.5	SC	Brown Clayey SAND

Source: Site Characterization Report, 2006

Notes: C = Constant Head Test F = Falling Head Test

Table 5.5Hydraulic Conductivity Test Results – Undisturbed SamplesGeotechnical Data Report

	Dep	ţ	Eleva	ation	Hydra	ulic							
	Inter	val	Inte	rval	Conduc	stivity	Type	%			USCS	Dry	
	From	То	То	From			oť	Fines		Р.І.	Classifica	Density	
Core Boring ID	(ft)	(ft)	(ft)	(ft)	(cm/s)	(ft/d)	Test		Ľ.		tion	(pcf)	Sample Description
CP05-IR44- CB-46	5	7	18.75	16.75	2.30E-05	0.0652	U	19.2	ı	ı	SC	110.2	Grayish Brown Clayey SAND
CP05-IR44- CB-47	5	7	19.22	17.22	1.40E-05	0.0397	U	20.5	26	12	sc	120.1	Grayish Brown Clayey SAND with Shell
CP05-IR44- CB-48	1	3	23.03	21.03	1.50E-05	0.0425	ပ	22.3	ı	ı	sc	114.1	Grayish Brown Clayey SAND with Shell
CP05-IR44- CB-49	8	11	16.18	13.18	1.90E-05	0.0539	υ	17.8	ı	ı	sc	111.5	Gray Clayey SAND
CP05-IR44- CB-51	9	80	17.35	15.35	4.30E-04	1.2189	U	9.3	ı	ı	SP-SM	105.7	Gray SAND with some Silt and Shell
CP05-IR44- CB-52	5	7	19.80	17.80	1.40E-06	0.004	C	20.9	I	ı	sc	110.7	Grayish Brown Clayey SAND
CP05-IR44- CB-54	4	9	20.11	18.11	2.00E-05	0.0567	υ	14.4	ı	I	SC	111.7	Gray Clayey SAND
CP05-IR44- CB-55	3	5	20.46	18.46	2.20E-06	0.0062	U	13.4	ı	ı	SC	94	Dark Brown Clayey SAND
CP05-IR44- CB-56	9	80	18.74	16.74	1.40E-05	0.0397	U	38.2	ı	ı	sc	120.2	Greenish Gray Clayey SAND
CP05-IR44- CB-57	2	4	23.23	21.23	3.00E-07	0.0009	U	21.6	ı	ı	SC	112.3	Orangish Gray Clayey SAND
CP05-IR44- CB-58	2	4	23.68	21.68	1.70E-06	0.0048	U	19.2	ı	ı	sc	115.3	Grayish Brown Clayey SAND
CP05-IR44- CB-60	9	80	19.42	17.42	5.20E-07	0.0015	U	20.7	28	13	sc	116.3	Grayish Brown Clayey SAND
CP05-IR44- CB-61	ø	10	19.41	17.41	1.00E-05	0.0283	U	14.1	ЧN	NP	sc	112.4	Grayish Brown Clayey SAND
CP05-IR44- CB-63	4	9	21.18	19.18	9.80E-06	0.0278	ပ	22.2	NP	NP	sc	120.3	Yellowish Brown Clayey SAND
CP05-IR44- CB-65	10	12	16.58	14.58	1.40E-05	0.0397	υ	14.2	ı	I	SC	124	Light Brown Clayey SAND
Source: Site Characteriza	ttion Repo	rt, 200	9										

Table 5.5 (Continued) Hydraulic Conductivity Test Results – Undisturbed Samples Geotechnical Data Report

	Dep	th	Eleva	ation	Hydra	ulic 415 ct 1	I	1					
	Erom		To	Erom	Colland		Type of	Einge		0	USCS	Dry	
Core Boring ID	(ft)	(ft)	(ft)	(ft)	(cm/s)	(ft/d)	Test	0	L.L.	:	tion	(pcf)	Sample Description
CP05-IR44- CB-72	7	6	19.18	17.18	1.70E-05	0.0482	C	16.3	-	1	sc	113.9	Greenish Gray Clayey SAND
CP05-IR44- CB-73	8	10	18.64	16.64	1.80E-06	0.0051	c	23.8	41	25	sc	118.3	Gray Clayey SAND
CP05-IR44- CB-83	8	10	19.84	17.84	9.70E-07	0.0027	С	22.3	I	ı	sc	116.6	Greenish Gray Clayey SAND
CP05-IR44- CB-198	4	9	21.74	19.74	9.60E-07	0.0027	c	25.9	47	32	SC	116.7	Brown Clayey SAND
CP05-IR44- CB-201	2	4	23.25	21.25	9.40E-08	0.0003	U	21.7	ı	ı	sc	98.6	Gray Clayey SAND
CP05-IR44- CB-252	4	9	20.87	18.87	4.30E-05	0.1219	ပ	18.5	ı	ı	sc	108.5	Brownish Gray Clayey SAND
CP05-IR44- CB-253	4	9	22.34	20.34	1.50E-07	0.0004	ပ	23.2	23	7.8	sc	108.4	Grayish Brown Clayey SAND
CP05-IR44- CB-256	2	4	22.60	20.60	2.10E-04	0.5953	С	9.6	ı	ı	SP-SC	104.7	Brown SAND with some Clayey Fines
CP05-IR44- CB-276	8	10	17.18	15.18	1.10E-04	0.3118	Ľ.	9.8	ı	1	SP-SM	101	Brown SAND with SHELLS and some Silty Fines
CP05-IR44- CB-281	0	2	24.72	22.72	3.10E-07	0.0009	ပ	17.8	35.4	22.	sc	110.2	Brownish Gray Clayey SAND
CP05-IR44- CB-283	9	8	19.02	17.02	9.70E-07	0.0027	C	92.1		ı	СН	111.5	Light Brown Sandy CLAY
					Data fr	om Previc	ous Work	k (Ardam	an, 200:	3)			
CP05-IR44- B-104	7	6	I	I	3.00E-08	0.0001	ပ	94	21	10	CL	I	ı
CP05-IR44- B-106	-	Э	ı	ı	7.50E-03	21.26	ш	2			SP-SM	I	
CP05-IR44- B-107	5	7	1	ı	1.00E-08	0.0000 3	ပ	22	28	11	CL	I	

Source: Site Characterization Report, 2006 Notes: C = Constant Head Test F = Falling Head Test

Table 5.6Organic Content and Corrosivity Test Results – Auger Boring and Test Pit SamplesGeotechnical Data Report

ger Boring D (ii) (ii) (ii) (ii) (ii) (iii) (iiii) (iii) (iiii)		Dep	th val	Eleve Inter from	ation rval		Decictivity	Sulfate	Chlorida	Organic Content	Carbonate Content	Bridge Substructure Environmental	Bridge Substructure Environmental
HR4-AB 85 1 4 2613 213 7.8 8200 10 15 0.6 0 SA SA HR4-AB 82 1 4 25.4 25.4 7.5 3.800 10 15 0.6 0.5 SA SA SA HR4-AB 12 1 4 25.8 25.9 2.08 6.5 17000 5 15 0.1 DA DA </th <th>Jer Boring ID</th> <th>(ft)</th> <th>(ft)</th> <th>(ft)</th> <th>(tt)</th> <th>Нd</th> <th>(Ohm-cm)</th> <th>ounate (mg/L)</th> <th>(mg/L)</th> <th>(%)</th> <th>CUITEIL</th> <th>Concrete</th> <th>Steel</th>	Jer Boring ID	(ft)	(ft)	(ft)	(tt)	Нd	(Ohm-cm)	ounate (mg/L)	(mg/L)	(%)	CUITEIL	Concrete	Steel
IR44 AB9A 1 4 25.54 7.5 3.800 10 15 0.4 0.2 SA SA IR44 AB92 1 4 25.96 22.96 8.2 11000 5 15 0.5 0.1 SA SA IR44 AB102 1 4 23.51 20.91 6.6 5.000 103 30 0.7 0.0 MA MA MA IR44 AB102 1 4 23.91 20.91 7.6 1700 276 30 5.1 0.1 MA MA MA IR44 AB103 1 4 23.91 20.91 7.7 2.000 114 30 1.2 0.1 MA MA MA MA IR44 AB103 1 4 23.02 20.90 6.4 1400 47 60 3 0.1 MA MA MA IR44 AB116 1 4 23.02 20.90 6.4 1400 47	5-IR44-AB 85	٢	4	26.13	23.13	7.8	8,200	10	15	0.6	0	SA	SA
FIR4-AB 92 1 4 25.96 8.2 11.000 5 15 0.5 0.1 SA SA FIR4-AB 97 1 4 23.96 6.6 4,300 88 15 0.7 0.1 SA SA SA FIR4-AB 17 1 4 23.51 20.91 7.7 1,700 275 300 5.1 0.1 MA MA MA FIR4-AB 108 1 4 2.30 20.00 7.7 2.000 114 30 0.1 MA MA MA FIR4-AB 108 1 4 2.34 5.9 2.600 12 45 12 0.1 MA MA MA FIR4-AB 103 1 4 2.30 2.09 6.4 1,400 47 6.0 12 0.1 MA MA MA FIR4-AB 113 1 4 2.30 2.09 6.4 1,400 47 6.0 12 0.1	5-IR44- AB 89A	٢	4	25.54	22.54	7.5	3,800	10	15	0.4	0.2	SA	SA
IR44-AB 97 1 4 2389 20.89 6.6 4,300 88 15 - - MA MA MA IR44-AB 102 1 4 2351 2051 6.4 5,000 103 30 0.7 0 MA MA MA JR44-AB 106 1 4 2330 2030 7.7 2,000 12 15 0.1 MA MA MA JR44-AB 108 1 4 2334 2084 7.9 2,000 12 15 0.1 MA MA MA JR44-AB 113 1 4 2334 2084 7.9 2,000 12 15 0.1 MA MA MA JR44-AB 113 1 4 2334 2084 7.9 2,000 12 45 2.1 0.4 MA MA MA JR44-AB 113 1 4 2331 2013 8 2.500 30 12 0.	5-IR44- AB 92	٢	4	25.96	22.96	8.2	11,000	5	15	0.5	0.1	SA	SA
FIR44 B 102 1 4 2351 2051 6.4 5,000 103 30 0.7 0 Ma Ma FIR44 AB 107 1 4 2331 2031 7.6 1,700 275 30 5.1 0.1 Ma Ma Ma FIR44 AB 107 1 4 23.00 20.00 7.7 2.000 114 30 1.9 0.1 Ma Ma Ma FIR44 AB 112 1 4 27.24 24.24 6.5 7.900 7.6 172 0.1 Ma Ma Ma 51R44 AB 113 1 4 23.84 7.9 2.600 120 475 2.1 0.4 Ma Ma 51R44 AB 115 1 4 23.20 20.91 6.4 1,400 470 50 30 6.5 - Ma Ma Ma 51R44 AB 115 1 4 2.350 8.2 1,700 40 20 <td< td=""><td>5-IR44 - AB 97</td><td>٢</td><td>4</td><td>23.89</td><td>20.89</td><td>6.6</td><td>4,300</td><td>88</td><td>15</td><td>I</td><td>I</td><td>MA</td><td>MA</td></td<>	5-IR44 - AB 97	٢	4	23.89	20.89	6.6	4,300	88	15	I	I	MA	MA
S-IR44-RB 106 1 4 2.3.91 2.0.91 7.6 1,700 275 300 5.1 0.1 MA MA MA S-IR44-RB 107 1 4 2.3.00 20.00 7.7 2.000 114 30 1.9 0.1 MA MA MA S-IR44-RB 107 1 4 2.3.02 20.00 7.7 2.000 124 152 0.1 MA MA MA S-IR44-RB 112 1 4 2.3.84 20.84 7.9 2.600 125 155 - - MA MA MA MA S-IR44-RB 115 1 4 2.3.02 20.90 6.4 1,400 47 60 37 0.4 MA MA MA MA S-IR44-RB 116 1 4 2.3.02 20.90 6.4 1,50 3.7 1,700 40 2.7 0.4 MA MA MA MA MA MA MA	5-IR44- AB 102	٢	4	23.51	20.51	6.4	5,000	103	30	0.7	0	MA	MA
5-IR44-RB 107 1 4 23:00 20:00 7.7 2,000 114 30 19 0.1 MA MA MA 5-IR44-RB 108 1 4 27.24 6.5 7,900 <6	5-IR44- AB 106	٢	4	23.91	20.91	7.6	1,700	275	30	5.1	0.1	MA	MA
FIR44-RB 108 I 2 27.24 6.5 7.900 <6 15 1.2 0.1 MA MA MA FIR44-AB 112 I 4 2.3.84 2.0.84 7.9 2.600 12 15 - - MA MA MA MA FIR44-AB 113 1 4 2.3.08 2.0.84 7 8200 30 15 - - MA MA MA MA FIR44-AB 115 1 4 2.3.00 6.4 1,400 47 60 3 0 MA MA MA MA FIR44-AB 116 1 4 2.3.02 7.7 1,700 40 20 1.2 0.4 MA MA MA MA MA FIR44-AB 116 1 4 2.3.02 20.3 7.7 1,700 40 2.0 2.0 3 0 MA MA MA MA FIR44-AB 124 1	5-IR44- AB 107	٢	4	23.00	20.00	7.7	2,000	114	30	1.9	0.1	MA	MA
IR44-B112 1 2 23.84 20.84 7.9 2,600 12 15 - - MA MA MA IR44-B113 1 4 23.08 7 820 495 45 2.1 0.4 MA MA MA FIR4-B113 1 4 23.08 7.0 820 30 15 - - MA MA MA FIR4-B116 1 4 23.90 5.4 1,400 47 60 3 0 MA MA MA FIR4-B116 1 4 23.23 7.7 1,700 40 20 1.2 MA MA MA FIR4-B116 1 4 23.23 20.23 7.7 1,700 40 20 1.2 MA MA MA FIR4-B118 1 4 23.1 0.10 120 2.1 0.4 MA MA FIR44-B128 1	5-IR44- AB 108	٢	4	27.24	24.24	6.5	7,900	< 6	15	1.2	0.1	MA	MA
5-IR44-B113 1 4 23.08 7 82.0 495 45 2.1 0.4 MA MA MA 5-IR44-B115 1 4 2.7.8 19.78 8 2.500 30 15 - - MA MA MA MA 5-IR44-B116 1 4 2.2.78 19.78 8 2.500 30 15 - - MA MA MA MA 5-IR44-B117 1 4 2.33 20.33 77 1,700 40 20 1.2 MA MA MA MA 5-IR44-B118 1 4 2.33 20.33 77 1,700 40 20 30 1.2 0.4 MA	5-IR44- AB 112	٢	4	23.84	20.84	7.9	2,600	12	15	I	I	MA	MA
5-IR44-B115 1 4 22.78 19.78 8 2.500 30 15 - - MA MA MA 5-IR44-B116 1 4 23.90 5.4 1,400 47 60 3 0 MA MA MA 5-IR44-B116 1 4 23.30 5.77 1,700 40 20 1.2 0.4 MA MA MA 5-IR44-B118 1 4 23.32 20.23 7.7 1,700 40 20 1.2 0.4 MA MA MA 5-IR44-B119 1 4 23.31 20.13 7.8 1,000 144 15 2.1 0.4 MA MA MA 5-IR44-B128 1 4 23.13 20.13 7.8 1,000 276 15 2.1 0.4 MA MA MA MA 5-IR44-B128 1 4 23.1 2.190 2.14 15	5-IR44- AB 113	٢	4	23.08	20.08	7	820	495	45	2.1	0.4	MA	MA
5-IR44-BB 116 1 4 23.90 50.90 64 1,400 47 60 3 0 MA MA MA 5-IR44-AB 117 1 4 23.23 7.7 1,700 40 20 1.2 0.4 MA MA MA 5-IR44-AB 118 1 4 23.92 20.92 8.2 1,500 120 30 - 0 MA MA MA 5-IR44-AB 118 1 4 23.02 7.8 1,500 144 15 - MA MA MA MA 5-IR44-AB 124 1 4 23.13 20.13 7.8 1,000 144 15 - MA MA MA 5-IR44-AB 124 1 4 23.13 20.13 7.8 1,000 276 15 - MA MA MA 5-IR44-AB 124 1 4 23.01 2.6 15 0.1 MA MA MA	5-IR44- AB 115	٢	4	22.78	19.78	8	2,500	30	15	I	I	MA	MA
5-IR44-AB117 1 4 23.23 20.23 7.7 1,700 40 20 1.2 0.4 MA MA MA 5-IR44-AB118 1 4 23.92 20.92 8.2 1,500 120 30 - - MA MA MA 5-IR44-AB119 1 4 25.68 7.9 2,300 <6	5-IR44- AB 116	٢	4	23.90	20.90	6.4	1,400	47	60	3	0	MA	MA
5-IR44-AB 118 1 4 23.92 20.92 8.2 1,500 120 30 - - MA MA MA 5-IR44-AB 119 1 4 25.68 7.9 2,300 <6	5-IR44- AB 117	٢	4	23.23	20.23	7.7	1,700	40	20	1.2	0.4	MA	MA
5-IR44-BB 1191425.6822.687.92,300<615MAMAMA5-IR44-AB 1221423.1320.137.81,00014152.137.3MAMAMA5-IR44-AB 1241422.6319.636.11,900276152.137.3MAMA5-IR44-AB 1281423.2420.917.14,80076601.50.1MAMA5-IR44-AB 1291423.9120.917.14,80073150.1MAMAMA5-IR44-AB 1301423.6120.917.14,80073150.1MAMAMA5-IR44-AB 1311423.6120.917.14,80073150.70.1MAMA5-IR44-AB 1311423.618.42,700865150.70.1FASASA5-IR44-AB 1311421.867.52,200865150.70.1FAFAFA5-IR44-AB 1341421.867.52,20060150.70.1FAFAFA5-IR44-AB 1341421.867.52,20060150.70.1FAFAFA5-IR44-AB 1341421.867.52,20060150.70.	5-IR44- AB 118	٢	4	23.92	20.92	8.2	1,500	120	30	I	-	MA	MA
5-IR44-AB 1221423.1320.137.81,00014152.137.3MAMA5-IR44-AB 1241422.6319.636.11,90027615MAMA5-IR44-AB 1281423.2420.246.93,200<6	5-IR44- AB 119	٢	4	25.68	22.68	7.9	2,300	< 6	15	I	-	MA	MA
-IR44-AB 124 1 4 22.63 19.63 6.1 1,900 276 15 - - MA MA 5-IR44-AB 128 1 4 23.24 20.24 6.9 3,200 <6	5-IR44- AB 122	٢	4	23.13	20.13	7.8	1,000	14	15	2.1	37.3	MA	MA
-IR4- AB 128 1 4 23.24 20.24 6.9 3,200 <6 60 1.5 0.1 MA MA -IR4- AB 129 1 4 23.91 20.91 7.1 4,800 73 15 - - SA SA SA -IR44- AB 130 1 4 23.61 20.61 8.4 2,700 <6	5-IR44- AB 124	-	4	22.63	19.63	6.1	1,900	276	15	ı	ı	MA	MA
5-IR44-AB 129 1 4 23.91 7.01 4,800 73 15 - - SA SA 5-IR44-AB 130 1 4 23.61 20.61 8.4 2,700 <6	5-IR44- AB 128	-	4	23.24	20.24	6.9	3,200	< 6	60	1.5	0.1	MA	MA
5-IR44-AB 130 1 4 23.61 20.61 8.4 2,700 <6 15 - - MA MA MA 5-IR44-AB 131 1 4 18.77 15.77 4.3 1,900 855 15 0.7 0.1 EA EA 5-IR44-AB 131 1 4 21.86 7.5 2,200 60 15 0.7 0.1 EA EA 5-IR44-AB 134 1 4 21.86 7.5 2,200 60 15 0.8 1.5 MA MA 5-IR44-AB 138 1 4 22.42 13.20 21,200 60 15 0.8 1.5 MA MA	5-IR44- AB 129	٢	4	23.91	20.91	7.1	4,800	73	15	ı	I	SA	SA
5-IR44-AB 131 1 4 18.77 15.77 4.3 1,900 855 15 0.7 0.1 EA EA 5-IR44-AB 134 1 4 21.86 18.86 7.5 2,200 60 15 0.8 1.5 MA MA 5-IR44-AB 138 1 4 22.42 19.42 7.3 1,200 221 30 1.6 10.9 MA MA	5-IR44- AB 130	٢	4	23.61	20.61	8.4	2,700	< 6	15	ı	I	MA	MA
J-IR44- AB 134 1 4 21.86 1.5 2,200 60 15 0.8 1.5 MA MA J-IR44- AB 138 1 4 22.42 19.42 7.3 1,200 221 30 1.6 10.9 MA MA MA	5-IR44- AB 131	-	4	18.77	15.77	4.3	1,900	855	15	0.7	0.1	EA	EA
5-IR44-AB 138 1 4 22:42 19:42 7.3 1,200 221 30 1.6 10.9 MA MA	5-IR44- AB 134	-	4	21.86	18.86	7.5	2,200	60	15	0.8	1.5	MA	MA
	5-IR44-AB 138	٢	4	22.42	19.42	7.3	1,200	221	30	1.6	10.9	MA	MA

C-44 RESERVOIR/STA PROJECT

Table 5.6 (Continued)Organic Content and Corrosivity Test Results – Auger Boring and Test Pit SamplesGeotechnical Data Report

	Dep Inter	oth 'val	Eleva	ation rval					Organic	Carbonate	Bridge Substructure Environmental	Bridge Substructure
Auger Boring ID	from (ft)	to (ft)	from (ft)	to (ft)	Hq	Resistivity (Ohm-cm)	Sulfate (mg/L)	Chloride (mg/L)	Content (%)	Content (%)	Classification* Concrete	Environmental Steel
CP05-IR44-AB 140	٢	4	22.87	19.87	5.5	2,400	93	30	2	0.1	MA	EA
CP05-IR44- AB 142	٢	4	24.57	21.57	8.3	3,800	7	15	1.6	30.6	MA	MA
CP05-IR44- TP 352	ı	ı	ı	ı	7.4	3,000	34.8	30	2.3	-	MA	MA
CP05-IR44- TP 354	٢	4	24.62	24.62	7.6	2,100	185.1	15	1.4	-	MA	MA
CP05-IR44- TP 355	ı	ı	ı	ı	5.5	5,000	54.6	30	1.5	-	MA	MA
CP05-IR44- TP 356	1	4	26.38	26.38	7.6	3,800	< 2.4	30	2.1	I	MA	MA
CP05-IR44- TP 357	ı	ı	ı	ı	7.4	3,000	34.8	30	2.3	-	MA	MA
CP05-IR44- TP 358	9	7	25.56	25.56	7.3	1,500	792	45	1.8	ı	MA	MA
CP05-IR44- TP 359	8	6	25.76	25.76	7.7	4,000	49.5	45	1.5	-	MA	MA
CP05-IR44- TP 360	I	ı	I	ı	7.5	2,500	152.1	45	1.2	-	MA	MA
CP05-IR44- TP 361	8	6	23.64	23.64	7.3	3,300	79.2	45	1.0	ı	MA	MA
CP05-IR44- TP 362	10	11	24.67	24.67	7.3	2,900	87.9	30	1.1	-	MA	MA
CP05-IR44- TP 363	12	13	25.48	25.48	7.3	7,100	< 2.4	30	0.7	-	MA	MA
CP05-IR44- TP 364	13	14	26.98	26.98	7.6	5,500	19.5	30	1.2	-	SA	SA
CP05-IR44- TP 366	ı	ı	ı	ı	7.5	2,500	152.1	45	1.2	ı	MA	MA
CP05-IR44- TP 388	ı	ı	ı	ı	5.5	5,000	54.6	30	1.5	-	MA	EA
Source: Site Characteriza	tion Rep	ort, 200	90									

	San Inte	nple rval	Eleva Inte	ation rval	
Sample Identification	From (ft)	To (ft)	From (ft)	To (ft)	Percent Carbonates
TP-355	8	10	16.09	14.09	1.50%
TP-356	8	10	18.38	16.38	12.00%
TP-358	8	10	17.56	15.56	21.10%
TP-359	8	10	17.76	15.76	6.40%
TP-360	8	10	17.39	15.39	25.70%
TP-361	8	10	15.64	13.64	18.00%
TP-362	8	10	16.67	14.67	2.30%
TP-363	8	10	17.48	15.48	1.50%
TP-364	8	10	18.98	16.98	2.50%

Table 5.7Additional Carbonate Content Testing – Test PitsGeotechnical Data Report

Table 5.8 Triaxial Test Results – Remolded Samples Geotechnical Data Report

	Depth I	nterval	Elevation	Interval	Effective Fric	tion Angle								
Auger Boring ID (AB)	From (ft)	To (Ft)	From (ft)	To (Ft)	Ultimate (degrees)	Mohr- Coulomb (degrees)	Test Methods	Dry Density (pcf)	Maximum Proctor Density	Compaction (%)	Moisture Content (%)	(%) Fines	USCS Classification	Sample Description
CP05-IR44-AB 90	4	7	22.81	19.81	35	37	Standard	115.4	117.5	98.5	12.6	18.5	SC	
CP05-IR44- AB 91	-	4	26.63	23.63	33	35	Standard	104.3	110.8	94.1	15.6	6.9	SP-SM	Dark Brown SAND with some Silt
CP05-IR44- AB 106	~	4	23.91	20.91	37	44	Modified	6.66	110.5	90.4	14.1	16	SC	Dark Brown Clayey SAND
CP05-IR44- AB 108	4	2	24.24	21.24	33	40	Modified	106.8	114.5	93.3	10.3	7.2	SP-SM	Brown SAND with some Silt
CP05-IR44- AB 112	~	4	23.84	20.84	35	37	Modified	107.9	114.5	94.2	13.3	16.6	SC	Light Brown Clayey SAND
CP05-IR44- AB 113	-	4	23.08	20.08	34	37	Modified	117.7	112.0	96.5	6.6	23.8	SC	Brown Clayey SAND
CP05-IR44- AB 118	4	7	20.92	17.92	32	37	Modified	117.1	124.7	93.9	10.8	21.6	sc	Yellowish Brown Clayey SAND
CP05-IR44- AB 119	-	4	25.68	22.68	32	36	Modified	111.4	117.5	94.8	11.3	10.3	SP-SM	Dark Brown to Black Organically Stained SAND with Silt
CP05-IR44- AB 119	4	7	22.68	19.68	33	40	Modified	114.4	122.0	93.8	14.2	21.2	SC	Brown Clayey fine SAND
CP05-IR44- AB 124	-	4	22.63	19.63	33	40	Modified	112.0	118.5	94.5	13.5	11.8	sc	Dark Brown to Black Organically Stained SAND with Silt
CP05-IR44- AB 126	4	2	20.56	17.56	36	37	Modified	123.7	130.0	95.2	10.7	35.4	SC	Brown Clayey SAND
CP05-IR44- AB 129	~	4	23.91	20.91	34	36	Modified	103.7	112.0	92.6	15.1	6.8	SP-SM	Dark Brown SAND with some Silt
CP05-IR44- AB 130	4	7	20.61	17.61	35	39	Modified	119.0	126.0	94.4	10.2	16.3	SC	Brown Clayey SAND
CP05-IR44- AB 133	-	4	24.23	21.23	33	36	Modified	107.2	114.5	93.6	11.7	9.1	SP-SM	Brown Clayey SAND with some Shells
CP05-IR44- AB 135	4	7	21.75	18.75	35	42	Modified	119.3	126.0	94.7	10.3	20.3	SC	Brown Clayey SAND with some Shells
CP05-IR44- AB 138	4	2	19.42	16.42	36	41	Modified	117.8	124.5	94.6	9.4	19.3	SC	Brown Clayey SAND
Source: Site Characterizat	tion Report, 2	006											2	Note: This table prints full size at 11"x17".

Note: This table prints tull size at TT XT/

C-44 RESERVOIR/STA PROJECT

Table 5.9 Triaxial Test Results – Undisturbed Samples Geotechnical Data Report

	Dept	Ļ	Eleva	tion				Natural			
	Interv	/al	Inter	val	Effective	Friction Angle					
Core Boring ID	From (ft)	To (ft)	(ft)	To (ft)	Ultimate (degrees)	Mohr-Coulomb (dearees)	Dry Density (pcf)	Moisture Content (%)	% Fines	USCS Classification	Sample Description
CP05-IR44- CB-198	4	9	21.7	19.7	33	38	115.0	14.8	25.9	sc	Brown Clayey SAND
CP05-IR44- CB-201	2	4	23.3	21.3	34	36	110.4	16	9.8	SC	Gray Clayey SAND
CP05-IR44- CB-252	4	9	20.9	18.9	33	30	103.3	18.3	18.5	SC	Brownish Gray Clayey SAND
CP05-IR44- CB-253	4	9	22.3	20.3	35	39	110.2	17.3	21.0	SC	Grayish Brown Clayey SAND
CP05-IR44- CB-256	2	4	22.6	20.6	41	43	102.0	22.3	22.4	SP-SC	Brown SAND with some Clayey Fines
CP05-IR44- CB-276	8	10	17.2	15.2	36	40	100.8	22.4	9.2	WS-9S	Brown SAND with SHELLS and some Sitty Fines
CP05-IR44- CB-281	0	7	24.7	22.7	38	42	104.8	15.6	15.5	sc	Brownish Gray Clayey SAND
CP05-IR44- CB-283	9	ω	19.0	17.0	40	44	111.0	16.8	82.7	СН	Light Brown Sandy CLAY

Table 6.1
Generalized Geology and Hydrogeology of Project Area
Geotechnical Data Report

System	Series	Stratigraphic Unit		Hydrogeologic Unit	Informal Stratigrphic Unit
	Holocene	Undifferentiated sedi	ments		Unit A
Quaternary		Anastasia Format	ion	Surficial Aquifar	
Quaternary	Pleistocene	Fort Thompson Forn	nation	Sumicial Aquiter Svstem	Linit B and C
		Caloosahatchee Forr	mation		Onit D and C
	Pliocene	Tamiami Formati	on		
Tertiary	Miocene and Late Oligocene	Hawthorn Group	Peace River Formation	Intermediate	Not penetrated
			Arcadia Formation	Confining Unit	at site
	Early Oligocene	Basal Hawthorn/SuwanneeUnit	Suwanee Limestone		
		Ocala Limeston	е	Floridan Aquifer	Not penetrated
	Eocene	Avon Park Limest	one	Gystem	
		Oldsmar Formati	on		

Table 6.2 Hydraulic Conductivity Test Data Geotechnical Data Report

Unit		K	(ft/d)	K、(fi	()	Source
	From	То	Median	From	То	
Unit A+B	0.1	4	0.2	0.02	0.04	Field Permeability tests, Ardaman and Associates (2003)
(Depth 0 to					(Laboratory Hydraulic Conductivity Tests, Ardaman and
(7I∼				0.003	1.2	Associates (2005)
						Field Permeability tests, (wells), Ardaman and Associates
	7	17	11			(2003)
Unit C-Upper	12	225	35			Slug tests, Ardaman and Associates (2003)
(Depth ~13 to						CPTU, Baligh and Levadoux method (Ardaman and
30' bls)	0.4	57	5			Associates, 2005)
	0.002	0.3	0.03			CPTU, Robertson method (Ardaman and Associates, 2005)
	2	27	8			Slug tests (Ardaman and Associates, 2005)
Unit C-Lower	0.6	18	5			Field Permeability tests, (wells), Ardaman and Associates (2003)
(Depth ~40 to	0.5	128	65			Slug tests, Ardaman and Associates (2003)
	2	30	15			Slug tests, Ardaman and Associates (2005)
Unit C-(Total						
thickness)	20	28	24	0.35	1.0	APTs, CDM (2004)
Source: Site Chara	cterization R	anort 2006				

Notes: Notes: 1) Depths and units are as repor 2) This table intended only for th

) Depths and units are as reported in 2006 site characterization report

This table intended only for the sumamry of available hydraulic conductivity data and not intended for subsurface stratigraphic interpretation

Well	Screen Inte	erval (BGS)	Coord	inates	Top of Casing Elevation		-					
	From	То	х	Y	(NAVD 88)	30-Aug-05	23-Sep-05	21-Oct-05	22-Nov-05	20-Dec-05	4-Jan-06	13-Feb-06
MW272S	13	23	997130.32	829996.262	23.7	10.80	11.00	11.91	13.74	10.28	10.51	10.62
MW272SI	48	58	997130.32	829996.262	24.13	13.03	13.03	14.48	16.03	12.60	12.60	13.16
MW272DI	92.5	102.5	997130.32	829996.262	24				-	12.21	12.22	12.84
MW273S	13	23	1012350.17	830080.972	24.58	14.03	14.43	14.87	16.42	13.19	13.16	13.23
MW273SI	38	48	1012350.17	830080.972	24.95	14.68	15.05	15.53	17.11	13.89	13.86	13.93
MW273DI	84	94	1012350.17	830080.972	24.06					13.71	13.49	13.19
MW274S	21	31	1007240.24	848492.243	24.99	14.99	14.81	14.81	16.54	13.44	13.50	13.72
MW274SI	41	51	1007240.24	848492.243	25.16	16.36	16.09	16.26	17.69	14.72	14.75	15.06
MW274DI	90	100	1007240.24	848492.243	24.5					13.73	13.66	14.00
MW274D	144	154	1007240.24	848492.243	24.7					14.35	14.19	14.52
MW275S	15	25	978994.73	841503.015	27.9	15.45	15.05	16.15	19.49	20.77	20.01	19.16
MW275SI	50	60	978994.73	841503.015	27.77	14.52	14.37	14.67	17.08	18.43	18.16	17.71
MW275DI	75	85	978994.73	841503.015	27.7					18.31	17.99	17.48
MW275DI	133	143	978994.73	841503.015	27.8					22.41	17.77	17.42
MW289S	17.5	27.5	991416.762	840746.196	20.5	12.69	12.54	13.40	14.20	11.93	12.03	12.69
MW289SI	40	50	991416.762	840746.196	20.45	12.20	12.05	12.94	13.76	11.49	11.49	12.32
MW290S	20	30	1012473.27	840601.384	28.63	17.68	18.13	18.13	19.44	16.90	17.11	17.45

Table 6.3Summary of Groundwater Elevations at Project Site
Geotechnical Data Report

Well	Screen Inte	erval (BGS)	Coord	inates	Top of Casing Elevation							
	From	То	Х	Y	(NAVD 88)	30-Aug-05	23-Sep-05	21-Oct-05	22-Nov-05	20-Dec-05	4-Jan-06	13-Feb-06
MW290SI	40	50	1012473.27	840601.384	28.56	17.64	18.07	18.06	19.37	16.85	17.05	17.38
MW338S	20	25	1003455.84	830039.043	24.49	15.09	14.88	16.22	17.51	14.24	14.21	15.25
MW338SI	40	50	1003455.84	830039.043	24.81	16.11	16.05	17.40	18.39	15.40	15.30	16.10
MW343S	20	25	999298.853	856428.434	25.91	15.26	14.71	14.73	16.46	13.37	13.20	13.79
MW343SI	45	50	999298.853	856428.434	25.59	14.68	14.34	14.19	15.74	12.74	12.63	13.29
MW344S	15	25	990090.953	856440.458	21.19	14.44	13.44	14.38	15.30	12.02	11.97	12.69
MW344SI	45	55	990090.953	856440.458	21.37	14.72	13.72	14.66	15.52	12.29	12.24	13.00
MW344DI	90	100	990090.953	856440.458	21.57					12.66	12.46	13.23
MW345S	9.6	19.6	1008497.67	830058.458	23.45	13.81	13.93	15.17	16.38	13.18	13.24	13.84
MW346S	10	20	1012454.23	835445.272	25.16	13.44	13.76	13.57	15.01	11.63	11.10	11.05
MW347S	14	24	996681.783	840757.854	23.64	13.89	13.74	14.99	16.14	13.00	12.91	13.49
MW348S	10	20	987847.007	840703.768	23.12	14.47	14.42	15.03	15.68	13.50	13.63	14.17
MW349S	9.5	19.5	983454.563	848858.835	23.41	6.81	6.63	7.00	8.11	6.10	6.25	6.35
MW350S	9.4	19.4	1001974.26	848581.331	26.16	11.58	11.09	11.44	13.66	9.91	10.21	10.61
MW351S	7	17	985994.418	856049.399	24.66	10.81	9.68	10.22	12.15	8.78	8.64	9.11
MW352S	9.2	19.2	994072.472	856055.051	23.35	12.01	11.52	12.15	13.05	10.08	10.03	10.89
MW353S	9	19	1002000.13	853155.61	21.45	12.69	13.83	13.44	14.75	12.18	12.13	12.52

Table 6.3 (Continued)Summary of Groundwater Elevations at Project Site
Geotechnical Data Report

Monitoring Well I.D.	Highest Groundwater Elevation Recorded (feet) (NAVD 88)	Lowest Groundwater Elevation Recorded (feet) (NAVD 88)	Monitoring Well I.D.	Highest Groundwater Elevation Recorded (feet) (NAVD 88)	Lowest Groundwater Elevation Recorded (feet) (NAVD 88)
MW272S	13.74	10.28	MW290SI	19.37	16.85
MW272SI	16.03	12.6	MW338S	17.51	14.21
MW272DI	12.84	12.21	MW338SI	18.39	15.3
MW273S	16.42	13.16	MW343S	16.46	13.2
MW273SI	17.11	13.86	MW343SI	15.74	12.63
MW273DI	13.71	13.19	MW344S	15.3	11.97
MW274S	16.54	13.44	MW344SI	15.52	12.24
MW274SI	17.69	14.72	MW344DI	13.23	12.46
MW274DI	14	13.66	MW345S	16.38	13.18
MW274D	14.52	14.19	MW346S	15.01	11.05
MW275S	20.77	15.05	MW347S	16.14	12.91
MW275SI	18.43	14.37	MW348S	15.68	13.5
MW275DI	18.31	17.48	MW349S	8.11	6.1
MW275DI	22.41	17.42	MW350S	13.66	9.91
MW289S	14.2	11.93	MW351S	12.15	8.64
MW289SI	13.76	11.49	MW352S	13.05	10.03
MW290S	19.44	16.9	MW353S	14.75	12.13

Table 6.4Groundwater Elevation Ranges in Monitoring WellsGeotechnical Data Report

Notes: NE = Not Encountered

Explo I.	oration .D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date	Expl	loration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
AB	085	27.13	NE	3/1/05	AB	121	20.39	1.99	3/16/05
AB	086	23.58	NE	3/1/05	AB	122	24.13	7.03	3/16/05
AB	087	24.11	NE	3/7/05	AB	123	24.40	8.50	3/16/05
AB	088	26.05	NE	3/1/05	AB	124	23.63	8.03	3/16/05
AB	089	26.54	NE	3/1/05	AB	125	23.39	7.99	3/16/05
AB	090	26.81	NE	3/1/05	AB	126	24.56	2.96	3/25/05
AB	091	27.63	NE	3/7/05	AB	127	24.52	4.02	3/18/05
AB	092	26.96	NE	3/1/05	AB	128	24.24	7.54	3/18/05
AB	093	28.70	NE	3/1/05	AB	129	24.91	7.01	3/24/05
AB	094	27.56	NE	3/7/05	AB	130	24.61	NE	3/21/05
AB	095	27.24	NE	3/8/05	AB	131	19.77	NE	3/21/05
AB	096	25.70	9.00	3/8/05	AB	132	23.06	4.36	3/25/05
AB	097	24.89	NE	3/1/05	AB	133	25.23	6.03	3/21/05
AB	098	24.78	8.48	3/1/05	AB	134	22.86	4.96	3/22/05
AB	099	26.29	8.99	3/1/05	AB	135	25.75	5.95	3/25/05
AB	100	24.41	NE	3/8/05	AB	136	23.88	3.98	3/25/05
AB	101	26.92	NE	3/8/05	AB	137	24.57	3.97	3/25/05
AB	102	24.51	9.01	3/8/05	AB	138	23.42	4.02	3/25/05
AB	103	24.60	7.00	3/8/05	AB	139	25.09	3.99	3/25/05
AB	104	25.17	NE	3/8/05	AB	140	23.87	6.97	3/25/05
AB	105	25.99	8.99	3/8/05	AB	141	25.47	3.97	3/25/05
AB	106	24.91	3.01	3/22/05	AB	142	25.57	6.97	3/29/05
AB	107	24.00	8.50	3/22/05	AB	143	29.17	NE	3/22/05
AB	108	28.24	4.04	3/18/05	AB	302	23.26	4.96	7/6/05
AB	109	27.04	6.04	3/16/05	AB	303	24.62	4.52	7/6/05
AB	110	25.52	3.52	3/1/05	AB	304	23.80	4.00	7/7/05
AB	111	24.10	3.50	3/16/05	AB	305	23.14	3.54	7/7/05
AB	112	24.84	4.54	3/16/05	AB	306	23.21	4.01	7/7/05
AB	113	24.08	4.98	3/16/05	AB	307	24.32	4.52	7/6/05
AB	114	24.61	5.01	3/16/05	AB	308	23.28	4.48	7/6/05
AB	115	23.78	4.48	3/15/05	AB	309	23.80	4.50	7/6/05
AB	116	24.90	7.00	3/15/05	AB	310	23.70	4.00	7/7/05
AB	117	24.23	4.03	3/1/05	AB	311	24.42	4.02	7/7/05
AB	118	24.92	7.02	3/29/05	AB	312	23.24	NE	7/7/05
AB	119	26.68	6.98	3/29/05	AB	313	23.95	3.95	7/8/05

Table 6.5 Depth to Groundwater in Borings Geotechnical Data Report

Explo	oration D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date	Expl	loration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
AB	314	24.02	3.52	7/8/05	AB	442	26.0	NE	9/15/06
AB	315	27.07	7.97	7/8/05	AB	444	26.0	NE	9/15/06
AB	316	25.42	NE	7/8/05	AB	445	26.0	4.7	9/15/06
AB	317	25.48	3.98	7/8/05	AB	446	26.0	2.9	9/15/06
AB	318	25.80	4.00	7/8/05	AB	447	26.0	3.7	9/15/06
AB	319	25.70	4.00	7/8/05	AB	448	26.0	NR	9/15/06
AB	320	27.00	8.00	7/16/05					
AB	321	25.48	3.48	7/15/05	СВ	042	27.68	6.0	2/22/05
AB	322	24.21	3.51	7/16/05	СВ	043	26.92	6.0	2/22/05
AB	323	23.12	3.02	7/16/05	СВ	044	26.46	6.0	2/22/05
AB	324	25.29	3.99	7/16/05	СВ	045	25.27	6.0	2/22/05
AB	334	24.37	4.97	7/26/05	СВ	046	23.75	4.0	2/22/05
AB	335	24.48	4.48	7/26/05	СВ	047	24.22	7.0	2/23/05
AB	336	25.23	4.03	7/26/05	СВ	048	24.03	5.0	2/23/05
AB	337	22.32	NE	NR	СВ	049	24.18	6.0	2/22/05
AB	339	24.34	4.04	7/26/05	СВ	050	23.66	6.0	3/4/05
AB	340	26.52	4.02	7/26/05	СВ	051	23.35	5.0	NR
AB	341	28.15	4.45	7/26/05	СВ	052	24.80	4.0	NR
AB	342	24.50	4.00	7/26/05	СВ	053	24.91	7.0	2/23/05
AB	408	26.76	3.46	6/8/06	СВ	054	24.11	6.0	2/24/05
AB	409	26.25	2.95	6/8/06	СВ	055	23.46	4.0	NR
AB	410	26.91	5.01	6/13/06	СВ	056	24.74	3.0	NR
AB	414	27.31	5.01	6/15/06	СВ	057	25.23	7.0	NR
AB	415	27.75	4.95	6/13/06	СВ	058	25.68	5.0	2/28/05
AB	416	25.62	5.02	6/13/06	СВ	059	25.71	NR	3/3/05
AB	417	25.57	3.97	6/13/06	СВ	060	25.42	5.5	2/28/05
AB	418	23.94	10.04	6/14/06	СВ	061	27.41	9.7	2/28/05
AB	424	26.0	NR	9/14/06	СВ	062	21.65	4.0	3/4/05
AB	425	26.0	3.30	9/14/06	СВ	063	25.18	4.0	NR
AB	426	26.0	NR	9/14/06	СВ	064	24.79	8.0	3/4/05
AB	427	26.0	NR	9/14/06	СВ	065	26.58	5.0	2/28/05
AB	428	26.0	NE	9/15/06	СВ	066	26.22	6.0	3/1/05
AB	429	26.0	NE	9/15/06	СВ	067	26.96	8.0	NR
AB	430	26.0	2.80	9/15/06	СВ	068	27.37	8.0	NR
AB	441	26.0	NE	9/15/06	СВ	069	28.01	5.0	3/1/05

Table 6.5 (Continued) Depth to Groundwater in Borings Geotechnical Data Report

			G	n to Grou ieotechni	naw cal	Data	in Borin Report	igs		
Explo I.	oration D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date		Expl	oration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
СВ	070	28.05	4.95	3/1/05		СВ	196	25.1	6.0	5/24/05
СВ	071	27.16	5.96	3/2/05		СВ	197	25.9	6.0	5/24/05
СВ	072	26.18	8.98	3/1/05		СВ	198	25.7	6.0	5/25/05
СВ	073	26.64	5.04	2/28/05		СВ	199	26.2	6.0	5/25/05
СВ	074	24.78	4.98	3/2/05		СВ	200	26.6	NR	NR
СВ	075	24.75	4.95	3/2/05		СВ	201	25.3	NR	6/10/05
СВ	076	25.63	6.03	3/2/05		СВ	202	24.7	NR	NR
СВ	077	26.05	4.95	3/1/05		СВ	203	24.1	4.0	6/13/05
СВ	078	28.82	7.02	NR		СВ	204	25.8	5.0	6/13/05
СВ	079	27.38	7.98	3/2/05		СВ	206	24.3	5.0	5/26/05
СВ	080	25.54	5.04	3/3/05		СВ	207	22.9	4.5	5/26/05
СВ	081	23.97	4.97	3/305		СВ	208	23.6	5.0	5/26/05
СВ	082	27.97	9.97	3/3/05		СВ	209	23.8	5.0	5/26/05
СВ	083	27.84	6.04	3/3/05		СВ	210	27.2	6.0	5/27/05
СВ	084	27.85	5.05	3/3/05		СВ	211	28.0	5.0	5/27/05
СВ	144	24.91	4.01	3/28/05		СВ	212	25.1	4.0	6/2/05
СВ	145	25.62	NR	3/29/05		СВ	213	22.8	3.0	6/23/05
СВ	146	24.64	NR	3/29/05		СВ	214	24.6	3.0	6/23/05
СВ	147	24.79	5.99	3/30/05		СВ	215	25.5	5.0	6/23/05
СВ	148	24.43	5.03	3/31/05		СВ	216	22.6	4.0	6/23/05
СВ	149	23.87	4.97	3/31/05		СВ	217	28.3	5.0	6/2/05
СВ	150	23.32	5.02	3/30/05		СВ	221	26.5	5.0	6/8/05
СВ	151	25.42	5.02	4/1/05		СВ	222	26.6	5.0	6/3/05
СВ	152	25.19	4.99	4/1/05		СВ	224	27.3	5.0	6/8/05
СВ	153	23.83	4.03	3/31/05		СВ	227	26.9	NR	6/8/05
СВ	154	24.21	5.01	3/31/05		СВ	229	27.1	5.0	6/8/05
СВ	155	24.36	4.96	4/1/05		СВ	231	29.1	5.0	6/9/05
СВ	156	23.66	2.96	4/1/05		СВ	232	27.9	5.0	6/9/05
СВ	157	24.40	5.20	4/5/05		СВ	233	26.9	5.0	6/9/05
СВ	158	24.51	NR	4/4/05		СВ	234	26.5	5.0	6/10/05
СВ	159	25.89	6.99	4/6/05		СВ	235	27.0	5.0	6/10/05

4/6/05

4/6/05

4/5/05

5/24/05

CB 236

CB 252

CB 253

CB 254

26.6

24.9

26.3

27.0

5.5

5.0

4.0

4.0

6/9/05

6/14/05

6/14/05

6/20/05

6.99

7.01

5.04

6.01

CB

CB

СВ

СВ

160

161

186

195

26.99

26.11

24.54

25.41

Table 6.5 (Continued)

	Table 6.	5 (C	ontinued)	
Deptl	h to Grou	ndw	ater in Borin	gs
G	eotechni	cal I	Data Report	-

Explo I.	oration D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date	Expl	loration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
СВ	255	24.71	3.01	6/21/05	СВ	329	25.9	4.0	7/23/05
СВ	256	24.60	4.00	6/21/05	СВ	330	25.6	4.0	7/25/05
СВ	268	25.90	4.00	6/22/05	СВ	331	24.6	4.0	7/25/05
СВ	269	25.00	4.00	6/22/05	СВ	332	24.1	4.0	7/25/05
СВ	270	27.26	3.96	6/21/05	СВ	333	24.3	4.0	7/25/05
СВ	271	24.48	4.98	6/23/05	СВ	345	27.2	10.2	8/16/05
СВ	276	25.18	3.98	6/23/05	СВ	346	29.4	8.4	8/16/05
СВ	277	23.90	4.00	6/23/05	СВ	347	27.4	8.3	8/11/05
СВ	278	23.59	3.49	6/24/05	СВ	348	27.0	3.0	8/16/05
СВ	279	23.96	3.46	6/24/05	СВ	349	27.2	11.0	8/17/05
СВ	280	24.11	NR	6/20/05	СВ	350	30.0	10.0	8/17/05
СВ	281	24.72	4.02	6/27/05	СВ	351	28.0	9.5	8/17/05
СВ	282	25.27	3.97	6/27/05	СВ	352	27.2	10.2	8/17/05
CB	283	25.02	5.02	6/27/05	СВ	353	25.2	5.5	8/17/05
CB	284	23.74	4.04	6/27/05	СВ	365	23.7	5.0	10/20/05
СВ	285	23.96	3.96	6/27/05	СВ	366	24.2	4.0	10/19/05
СВ	286	23.84	3.04	6/28/05	СВ	367	21.9	3.5	5/3/06
СВ	287	24.12	NR	NR	СВ	367 B	21.9	NR	5/17/06
СВ	288	23.81	3.01	7/18/05	СВ	368	24.8	5.0	5/4/06
СВ	289	23.53	3.03	7/18/05	СВ	368 B	24.8	NR	5/18/06
СВ	291	26.22			СВ	369	25.8	7.0	5/5/06
СВ	292	25.94	3.04	7/21/05	СВ	369 B	25.8	NR	5/18/06
СВ	293	24.06	2.96	7/21/05	СВ	370	25.4	7.0	5/4/06
СВ	294	26.07	2.97	7/19/05	СВ	370 B	25.4	NR	5/22/06
СВ	295	24.10	4.00	7/5/05	СВ	371	26.5	8.9	5/10/06
СВ	296	25.50	3.00	7/19/05	СВ	372	25.8	7.0	5/10/06
СВ	297	23.54	3.04	7/18/05	СВ	373	25.6	7.0	5/10/06
СВ	298	25.70	5.00	7/19/05	СВ	374	25.9	9.0	5/10/06
CB	299	23.88	2.98	7/19/05	СВ	375	26.8	7.0	5/11/06
CB	300	24.11	3.01	7/19/05	СВ	376	26.4	6.9	5/11/06
СВ	301	24.40	3.00	7/19/05	СВ	377	26.6	7.0	5/11/06
CB	325	27.51	4.01	7/22/05	СВ	378	27.1	6.9	5/11/06
CB	326	28.50	4.00	7/22/05	СВ	379	25.9	6.0	5/12/06
СВ	327	24.27	3.97	7/23/05	СВ	380	25.4	7.0	5/12/06
СВ	328	26.06	3.96	7/23/05	СВ	381	25.7	7.0	5/15/06

Explo I.	oration .D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date	Expl	oration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
CB	382	27.12	7.02	5/15/06	СВ	419	24.77	3.97	6/14/06
СВ	383	29.62	14.02	5/22/06	СВ	422	26.00	12.00	7/3/06
СВ	384	28.22	14.02	5/22/06	СВ	423	25.20	10.00	6/20/06
СВ	385	26.93	7.03	5/15/06	СВ	424	24.33	17.03	6/21/06
СВ	386	24.94	7.04	5/15/06	СВ	431	26.00	NR	9/14/06
СВ	387	27.22	8.02	5/16/06	СВ	432	26.00	7.00	9/14/06
СВ	388	24.46	6.96	5/16/06	СВ	433	26.00	9.30	9/14/06
СВ	389	27.52	8.02	5/17/06	СВ	434	26.0	6.5	9/14/06
СВ	390	29.72	10.02	5/17/06	СВ	435	26.0	2.4	9/14/06
СВ	391	30.53	8.53	5/24/06	СВ	436	26.0	7.1	9/15/06
СВ	392	26.71	5.01	5/17/06	СВ	437	26.0	NR	9/15/06
CB	393	27.09	4.99	5/18/06	СВ	438	26.0	6.0	9/15/06
СВ	394	27.42	5.02	5/18/06	СВ	452	29.7	12.5	10/31/06
CB	395	29.02	5.02	5/19/06	СВ	453	29.2	11.6	10/31/06
CB	396	28.62	6.02	5/22/06	СВ	454	27.5	12.0	11/1/06
CB	397	28.26	5.96	5/24/06	СВ	458	30.1	13.9	11/1/06
СВ	398	29.50	6.00	5/25/06	СВ	464	26.0	6.5	1/23/07
СВ	399	27.59	5.99	5/25/06	СВ	466	26.0	9.1	2/16/07
СВ	400	26.81	6.01	5/25/06	СВ	467	26.0	10.1	2/15/07
СВ	401	27.61	5.01	5/26/05	СВ	468	26.0	7.9	2/15/07
СВ	402	27.21	5.01	6/8/06	СВ	469	26.0	8.8	2/16/07
СВ	403	26.61	4.01	5/26/05	СВ	470	26.0	9.1	2/16/07
СВ	404	26.00	2.50	5/26/05	СВ	471	26.0	11.5	4/20/07
СВ	405	27.31	NR	5/31/05	СВ	471	27.4	3.5	10/23/12
СВ	407	27.50	4.50	6/6/06	СВ	472	24.7	1.0	10/24/12
CB	411	28.87	14.97	6/9/06	СВ	473	24.8	2.0	10/24/12
СВ	412	24.71	8.01	6/12/06	СВ	474	25.8	1.5	10/16/12
CB	413	25.08	7.98	6/12/06					

Table 6.5 (Continued) Depth to Groundwater in Borings Geotechnical Data Report

Notes: NE = Not Encountered

NR = Not Recorded

Exploration I.D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date	Explo	oration .D.	Ground Surface Elevation (feet)	Depth to Groundwater (feet)	Date
TP 475	24.90	7.00	10/15/12	TP	488	25.3	11.0	10/20/12
TP 476	26.10	10.00	10/23/12	TP	489	25.6	14.0	10/18/12
TP 477	25.80	8.00	10/22/12	TP	490	26.5	10.0	10/18/12
TP 478	23.60	11.00	10/15/12	TP	491	23.7	14.0	10/16/12
TP 479	27.90	11.00	10/22/12	TP	492	24.7	9.0	10/17/12
TP 480	28.00	16.00	10/22/12	TP	493	25.8	10.0	10/17/12
TP 481	26.50	10.00	10/19/12	TP	494	26.8	11.0	10/18/12
TP 482	25.60	10.00	10/20/12	TP	495	26.6	8.0	10/18/12
TP 483	27.40	15.00	10/20/12	TP	496	24.5	19.0	10/17/12
TP 484	25.40	NE	10/22/12	TP	497	25.8	NE	10/23/12
TP 485	24.50	12.00	10/20/12	TP	498	26.8	11.0	10/16/12
TP 486	25.90	8.00	10/19/12	TP	499	26.3	10.0	10/23/12
TP 487	26.50	10.00	10/20/12					

Table 6.6 Depth to Groundwater in Test Pits Geotechnical Data Report

Notes: NE = Not Encountered

Table 6.7
Summary of Surficial Aquifer Water Quality in the Project Area
Geotechnical Data Report

Parameter	Units	*Groundwater
рН	std. units	6.8 – 7.8
Calcium	mg/l	86-320
D.O.	mg/l	0.27-1.77
Sodium	mg/l	11-1400
Copper	mg/l	BDL-0.0084
Total Iron	mg/l	0.27-11
Aluminum	mg/l	BDL-0.54
Total Sulfate	mg/l	10
Chloride	mg/l	12-1400
Ortho-Phosphate	mg/l	0.003-0.23
Total Phosphorus	mg/l	0.022-0.17
TKN	mg/l	0.37-1.6
Nitrogen	mg/l	0.2-1.6
Fluoride	mg/l	0.14-0.36
Nitrate+Nitrite	mg/l	BDL-1.2
Total Dissolved Solids	mg/l	300-6,000
Total Organic Carbon	mg/l	5-28

Source: Site Characterization Report, 2006

*BASED ON TWO ON-SITE SAMPLING EVENTS PERFORMED IN OCTOBER AND DECMEBER 2005; ANALYSES PERFORMED BY U.S. BIOSYSTEMS INC. BDL=BELOW DETECTION LIMITS

Table 6.8Typical Soil Types by Resistivity for CCR surveys in Florida

Soil Type	Resistivity Range (Ohm-meters)
High Plasticity Clay	<10
Clayey Soils	10-30
Sandy Clays	30-100
Clayey, Silty, or Organic Sands	100-500
Clean Sand or Limestone (at depth)	>500

Source: Capacitively Coupled Resistivity Report, 2005, by Subsurface Evaluations Inc.

Location	Number of Tests	Average Compaction (%)	Average Deviation from Optimum Moisture Content (%)		
Reservoir Test Cell 1	193	96.9	0.3		
Reservoir Test Cell 2	140	97.4	0.5		
STA Test Cell 1	8	95.7	0.6		
STA Test Cell 2	10	97.2	0.4		
Sedimentation Pond	4	96.0	-0.8		
Access Ramps and Roads	13	97.4	-0.1		

 Table 8.1

 Average Percent Compaction and Deviation from Optimum Moisture Content Geotechnical Data Report

Source: Test Cell Report, 2007

Table 8.2
Soil-Cement Borrow Materials Test Results
Geotechnical Data Report

Samplo	Donth	Carbonate	Fines	Calcium Absorption		
Identification	(ft) Content (%)		Content (%)	mls 0.01 M EDTA	Reacting	
Type 1	-	-	5	10.4	Normal	
Type 2	-	-	2.2	6.6	Normal	
TP-355	10 - 11	1.5	16.3	12.9	Poorly	
TP-356	1 - 4	12.0	22.8	12.8	Poorly	
TP-358	6 - 7	21.1	20.5	8.7	Normal	
TP-359	8 - 9	6.4	19.4	11.2	Poorly	
TP-360	13 - 14	25.7	18.2	9.8	Normal	
TP-361	8 - 9	18.0	18.3	11.6	Poorly	
TP-362	10 - 11	2.3	16.7	8.7	Normal	
TP-363	12 - 13	1.5	11.4	10.7	Normal	
TP-364	13 - 14	2.5	11.6	10.8	Normal	

		28 -Day Compressive Strength					
Sample Type	Cement Content	Soil Type 1 (psi)	Soil Type 2 (psi)	Increas e (%)			
ign	9%	385	550	43%			
ix Des	11%	555	835	50%			
Lab M	13%	815	1040	28%			
ield Production	9%	544 631 528 562 448	1053 730 804 982				
ш	Average =	543	892	64%			

Table 8.3
Comparison of 28-Day Compressive Strength
Soil Type 1 vs. Soil Type 2 Soil-Cement
Geotechnical Data Report

Source: Test Cell Report, 2007

Table 8.4Soil-Cement Field Production Compressive Strength Test Results
vs. Laboratory Mix Design Results
Geotechnical Data Report

Sample ID	Density (Ib/ft ³)	Compressive Strength (Ib/in ²)					
Soil Type 2, 7% cement (28-day lab strength = 441 psi)							
4A	117.58	395					
4B	119.94	375					
7A	116.94	310					
7B	120.05	360					
	Average:	360					
Soil Type 1, 11% cement (28-day lab strength = 422 psi)							
9A	123.81	455					
9B	122.84	530					
12A	127.13	615					
12B	125.20	555					
	Average:	539					

	Monitoring			No of Data	Data Collection	Instrument Reading
Site	Point	Data Type	Group	Points	Frequency	Frequency
	Becorder	Flow meter to Reservoir (FE1-1)	-	1	Bi-weekly	10 mins
		Flow meter Seepage Canal to Reservoir (FE1-2)		1	Bi-weekly	10 mins
		Flow meter to Seepage Canal (FE1- 3)		1	Bi-weekly	10 mins
		Reservoir Stage (FE-1-3)		1	Bi-weekly	10 mins
		Seepage Canal Stage (FE1-2)		1	Bi-weekly	10 mins
		Seepage Drain Culvert Stage (FE1- 3)		1	Bi-weekly	10 mins
Reservoir		EPZ-10A,B,C,D; PZ-12A,B,C; PZ- 14A,B,C; PZ-16A,B,C;, PZ-18A,B,C; PZ-25A,B,C;PZ-26A,B,C;	Group 1	22	Monthly	Hourly
Test Cell 1 (RTC1)	Level Trolls	EPZ-11A,B,C,D; PZ-13A,B,C; PZ- 15A,B,C; PZ-17A,B,C;, PZ-27A,B,C;	Group 2	16	Monthly	Hourly
<i>((((</i>) 0 <i>1)</i>)		All PZs	Group 3		Monthly	Hourly
	Geokon Units	VWP-11, VWP-12, VWP13, VWP- 14-VWP-15	Group 1	5	Monthly	Hourly
		VWP16, VWP-17, VWP-18, VWP-19, VWP-20	Group 2	5	Monthly	Hourly
	RTC1-SW1	RTC1 Water quality		1	Monthly	
	SCC1-SW1	Seepage Canal Water quality		1	Monthly	
	SCC1-SW2	Seepage CanalWater quality		1	Monthly	
	RTC1-Sed	Bottom Sediment		1	Quarterly	
	Geokon Settlement Gauge	Embankment Settlement			Monthly	
		1				
	Recorder	Flow meter to Reservoir (FE2-1)		1	Bi-weekly	10 mins
		Flow meter Seepage Canal to Reservoir (FE2-2)		1	Bi-weekly	10 mins
		3)		1		10 mins
		Reservoir Stage (FE-2-3)		1	Bi-weekly	10 mins
		Seepage Canal Stage (FE2-2)		1	Bi-weekly	10 mins
		Seepage Drain Culvert Stage (FE2- 3)		1	Bi-weekly	10 mins
		EPZ-2A,B,C,D; PZ-3A,B,C; PZ-				
Reservoir		5A,B,C; PZ-7A,B,C;, PZ-9A,B,C; PZ- 24A,B,C;	Group 1	19	Monthly	Hourly
Test Cell 2 (RTC2)	Level Trolls	EPZ-1A,B,C,D; PZ-4A,B,C; PZ- 6A.B.C: PZ-8A.B.C:	Group 2	13	Monthly	Hourly
		All PZs	Group 3	-	Monthly	Hourly
-	Geokon Units	VWP-1, VWP-2, VWP3, VWP-4- VWP-5	Group 1	5	Monthly	Hourly
		VWP6, VWP-7, VWP-8, VWP-9, VWP-10	Group 2	5	Monthly	Hourly
	RTC2-SW1	RTC1 Water quality		1	Monthly	
	SCC2-SW1	Seepage Canal Water quality		1	Monthly	
	SCC2-SW2	Seepage CanalWater quality		1	Monthly	
	Geokon Settlement Gauge	Embankment Settlement			Monthly	

Table 8.5Test Cell Operations and Monitoring Data PointsGeotechnical Data Report

	Monitoring			No of Data	Data Collection	Instrument Reading
Site	Point	Data Type	Group	Points	Frequency	Frequency
		Flow meter to STA (FE3-1)	-	1	Monthly	10 mins
	Recorder	STA1 stage 1(LT3-1)		1	Monthly	10 mins
		STA1 stage 2 (LT3-2)		1	Monthly	10 mins
STA1	Level Trolls	PZ-21A,B, PZ-22A,B		4	Monthly	Hourly
	STA1-SW1	STA1 Water Quality		1	Monthly	
	STA1-SW2	STA1 Water Quality		1	Monthly	
	STA1-SW3	STA1 Water Quality		1	Monthly	
		Flow meter to STA (FE3-2)		1	Monthly	10 mins
	Recorder	STA2 stage 1(LT3-3)		1	Monthly	10 mins
		STA2 stage 2 (LT3-4)		1	Monthly	10 mins
STA 2	Level Trolls	PZ-21A,B; PZ-22A,B		4	Monthly	hourly
	STA2-SW1	STA2 Water Quality		1	Monthly	
	STA2-SW2	STA2 Water Quality		1	Monthly	
	STA2-SW3	STA2 Water Quality		1	Monthly	
		Γ				
Intake						
Carlai	10-3441	Canal Water Quality		1		Monthly
	P7-12-B C	Groundwater Quality		2	Quarterly	
	PZ-16-B C	Groundwater Quality		2	Quarterly	
	PZ-26-B.C	Groundwater Quality		2	Quarterly	
	PZ-5-B.C	Groundwater Quality		2	Quarterly	
Wells	PZ-7-B.C	Groundwater Quality		2	Quarterly	
	PZ-24-B.C	Groundwater Quality		2	Quarterly	
	PZ-20-B	Groundwater Quality		1	Quarterly	
	PZ-21-B	Groundwater Quality		1	Quarterly	
	PZ-22-B	Groundwater Quality		1	Quarterly	
					quality	
Weather	Raingauge	Rain		1	Monthly	Hourly
vvealiter						

Table 8.5 (Continued)Test Cell Operations and Monitoring Data PointsGeotechnical Data Report

REPORT	
- DATA F	
CHNICAI	
GEOTE	

Table 8.6 Test Cell Piezometer Details Geotechnical Data Report

		RTC #1				RTC #2			S	TA's	
PZ	TOC ELV (FT)	Total Depth (FT)	Tip Elevation (NAVD 88)	PZ	TOC ELV (FT)	Total Depth (FT)	Tip Elevation (NAVD 88)	PZ	TOC ELV (FT)	Total Depth (FT)	Tip Elevation (NAVD 88)
10A	49.01	29.5	19.51	1A	49.74	27.17	22.57	19A	27.70	7.25	20.45
10B	49.05	40.65	8.40	1B	49.53	51.32	-1.79	19B	27.73	17.77	9.96
10C	49.11	75.48	-26.37	1C	49.66	80.58	-30.92	20A	28.92	7.28	21.64
10E	49.18	15.62	33.56	1E	50.01	16.80	33.21	20B	29.22	20.01	9.21
11A	49.67	30.22	19.45	2A	49.58	26.78	22.80	21A	27.96	9.38	18.58
11B	49.46	39.18	10.28	2B	49.56	46.00	3.56	21B	27.96	17.80	10.16
11C	49.38	80.16	-30.78	2C	49.52	78.07	-28.55	22A	27.35	6.78	20.57
11E	49.47	15.75	33.72	2E	50.07	17.05	33.02	22B	27.33	17.68	9.65
12A	27.89	8.8	19.09	3A	28.36	9.03	19.33				
12B	27.63	24.55	3.08	3B	28.27	29.52	-1.25				
12C	27.55	51.0	-23.45	3C	28.25	50.20	-21.95				
13A	28.00	5.05	22.95	4A	27.36	8.09	19.27				
13B	27.72	22.75	4.97	4B	27.29	26.37	0.92				
13C	27.59	59.02	-31.43	4C	27.86	50.62	-22.76				
14A	28.29	8.14	20.15	5A	28.15	8.65	19.50				
14B	27.78	22.78	5.00	5B	28.01	27.78	0.23				
14C	27.51	54.72	-27.21	5C	27.88	51.09	-23.21				
15A	27.63	8.51	19.12	6A	28.54	9.66	18.88				
15B	27.33	22.98	4.35	6B	28.32	27.56	0.76				
15C	27.19	55.55	-28.36	6C	28.33	51.10	-22.77				
16A	27.68	8.62	19.06	7A	28.68	5.67	23.01				
16B	27.73	20.16	7.57	7B	28.89	21.80	7.09				
16C	27.74	55.99	-28.25	7C	28.67	55.04	-26.37				
17A	25.12	7.89	17.23	8A	28.02	7.02	21.00				
17B	25.08	20.2	4.88	8B	27.98	23.90	4.08				
17C	24.80	55.8	-31.00	8C	27.99	60.48	-32.49				
18A	28.30	6.78	21.52	9A	28.67	5.88	22.79				
18B	28.47	56.22	-27.75	9B	28.82	21.73	7.09				
18C	28.41	20.4	8.01	9C	28.83	58.67	-29.84				
23A		7.12		24A	28.73	8.68	20.05				
23B	28.28	22.35	5.93	24B	28.57	21.59	6.98				
23C	27.97	55.21	-27.24	24C	28.67	54.01	-25.34				
25A	28.88	9.2	19.68								
25B	28.98	21.61	7.37								
25C	29.99	55.14	-25.15								
26A	28.54	8.2	20.34								
26B	28.89	21.12	7.77								
26C	29.15	55.94	-26.79								
27A	27.58	6.95	20.63								
27B	27.58	22.03	5.55								
27C	27.34	55.05	-27.71								

\mathbf{O}
- Mil
2
2
Q
Ľ
0
J
S
5
Ľ,
N
\mathcal{O}
2
Ľ
Ш
2
ňí.
œ
_
4
4
1
S C

Table 8.7 Test Cell Operations Summary Geotechnical Data Report

	:				•								:		-	
	Units	May-06	June-06	July-06	August-06	September-06	October-06	November-06	December-06	January-07	February-07	March-07	April-07	May-07 J	une-07 A	verages
Reservoir Test Cell 1 (RTC 1)															õ	ver Test Period
Reservoir		(Filling)														
Total Inflows	Gallons	17,029,721	6,627,657	4,578,997	5,894,186	4,728,700	No data	3,303,933	4,696,825	8,712,472	4,023,145	7,179,925	1,046,784	0.00	0.00 5.	,320,739
Average Daily Inflows	GPD	-	220,922	147,710	190,135	152,539	No Data	165,197	151,510	290,416	143,684	239,331	34,893	0.00	0.00	182,764
Average Stage	Feet NAVD 88	1	40.11	40.17	40.28	40.32	40.33	40.28	40.36	40.63	42.04	42.00	41.20	37.50	36.07	40.70
Seepage Collection Canal 1																
Average Stage	Feet NAVD 88	1	20.15	21.43	20.70	21.10	20.85	19.85	14.69	18.56	19.28	19.51	19.23	19.02	20.04	19.62
Sump 1																
Total Pumped Flow	Gallons	-	0.00	0.00	0.00	0.00	610.00	1,526.00	305.00	00.00	0.00	306.00	0.00	0.00	0.00	271.22
Average Daily Outflows	GPD	1	0.00	0.00	0.00	00.00	19.68	50.87	9.84	00.0	0.00	9.87	0.00	0.00	0.00	8.93
Average Stage	Feet NAVD 88	-	22.15	22.48	22.70	22.97	23.50	23.70	23.90	23.91	23.90	21.74	21.10	21.16		22.77
Reservoir Test Cell 2 (RTC 2)																
Reservoir			(Filling)													
Total Inflows	Gallons		21,350,749	18,970,304	8,117,924	7,336,650	7,788,323	6,714,073	4,333,627	4,998,938	5,352,946	2,319,406	0.00	0.00	0.00 7	,951,598
Average Daily Inflows	GPD		1	611,945	261,869	244,555	251,236	223,802	139,794	166,631	191,177	74,820	0.00	0.00	0.00	261,376
Average Stage	Feet NAVD 88		I	40.10	40.24	40.25	40.31	40.31	40.73	40.31	40.40	39.76	36.63	36.55	36.92	40.33
Seepage Collection Canal 2																
Average Stage	Feet NAVD 88		1	21.65	21.03	21.52	20.53	19.70	18.71	18.97	19.23	19.45	19.01	17.03	15.83	20.17
Sump Pump 2																
Total Pumped Flow	Gallons		0.00	0.00	0.00	0.00	6,104.00	6,103.00	6,104.00	00.00	0.00	00.0	0.00	0.00	0.00	2,289
Average Daily Outflows	GPD		0.00	0.00	0.00	0.00	197	197	197	0.00	0.00	0.00	0.00	0.00	0.00	73.83
out	Feet NAVD 88		22.31	22.50	22.69	22.88	23.27	23.34	23.34	23.62	23.67	23.52	23.14	23.26		23.13
STA Cell 1 (STA 1)			(Filling)													
Total Inflows	Gallons		7,338,481	2,208,930	6,630,451	4,892,694	6,354,982	5,933,226	3,018,188	00.00	0.00	00.0	0.00	0.00	0.00 4	,839,745
Average Daily Inflows	GPD		524,177	88,357	221,015	163,089	204,999	191,394	107,792	0.00	0.00	0.00	0.00	0.00	0.00	122,081
Average Stage N	Feet NAVD 88		1	23.53	24.37	24.60	24.70	24.67	24.63	22.44	22.44	22.02	22.01	22.01	22.01	23.92
Average Stage S	Feet NAVD 88		ı	23.49	24.32	24.55	24.70	24.65	24.58	22.48	22.48	22.00	22.00	21.96	21.96	23.91
STA Cell 2 (STA 2)			(Filling)													
Total Inflows	Gallons		19,252,906	8,397,850	12,349,244	No data	10,359,203	16,311,329	19,050,264	00.00	0.00	00.0	0.00	0.00	0.00	,495,413
Average Daily Inflows	GPD		1	335,914	411,641	No Data	334,168	526,172	680,367	0.00	0.00	0.00	0.00	0.00	0.00	326,895
Average Stage W	Feet NAVD 88		-	24.93	25.53	25.66	25.66	25.66	25.30	21.94	21.94	21.97	22.00	22.00	22.00	24.58
Average Stage E	Feet NAVD 88		1	24.94	25.54	25.69	25.74	25.77	25.38	22.03	22.03	22.02	22.01	22.01	22.01	24.64
Notes:																

For the month of July 2006, flow and stage data for STA1and STA2 was recorded from 7/6/06 to 7/31/06. For month of September 2006, totalizer malfunction at STA2.

For month of October 2006, totalizer malfunction at RTC2.

Pumping to STAs discontinued on December 28, 2006. Pumping to RTC2 Discontinued on March 14, 2007 Pumping to RTC1 Discontinued on April 4, 2007

Table 8.8 Test Cell Seepage Canal Drawdown Test Volume Pumped Geotechnical Data Report

	SCC1 Stage	SCC1	Cumulative Total					
Total	Start	Stage End	Volume	To RTC1	To RTC2	To STA2	To STA1	
1,710,987	20.3	19.3	1,710,987	593,528.00	201,546.00	397,025.00		
2,354,314	19.38	18.48	4,065,301	407,912.00	159,835.00	1,317,679.00		
2,375,801	18.48	17.3	6,441,102	149,380.00	495,311.00			20
2,645,369	17.3	16.14	9,086,471	72,795.00	151,119.00			1
1,257,304	16.14	15.42	10,343,775	177,049.00	7,423.00			
1,108,824	15.42	16.28	11,452,599	113,460.00	00.0			
1,525,986	16.28	15.64	12,978,585	00.00	501,699.00			
1,024,335	15.64	16.09	14,002,920	180,058.00	54,530.00			
2,371,995	16.09	14.82	16,374,915	230,542.00	0.00			
2,769,949	14.82	14.64	19,144,864	152,531.00	325,385.00			
745,577	14.64	15.39	19,890,441	59,098.00	36,251.00			
1,112,630		15.43	21,003,071	252,141.00	00.0			
2,619,293	15.43	14.76	23,622,364	201,988.00	660,281.00			
1,612,830	14.76	14.63	25,235,194	00.00	255,920.00			
1,415,696	14.63	14.86	26,650,890	339,607.00	5.00			
1,826,351	14.86	14.78	28,477,241	00.00	64.00	1,041,578.00	319,709.00	
1,550,339	14.78	14.76	30,027,580	304,894.00	375,550.00	652,985.00	216,910.00	
1,678,077	14.76	14.64	31,705,657	00.00	31.00	660,615.00	126,431.00	
1,455,186	14.64	14.78	33,160,843	226,553.00	2.00	846,223.00	382,408.00	
2,301,718	14.78	14.63	35,462,561	00.00	337,505.00	913,438.00	138,775.00	
1,657,845	14.63	15.35	37,120,406	00.00	57.00	369,358.00	136,430.00	
2,684,892	15.35	14.56	39,805,298	446,023.00	604,276.00	1,190,637.00	443,956.00	
643,032	14.56	15.4	40,448,330	00.00	1,672.00	481,545.00	159,815.00	
2,787,088	15.4	14.44	43,235,418	349,557.00	46.00	1,104,859.00	441,626.00	
2,085,264	14.44	13.95	45,320,682	258,530.00	113,429.00	637,991.00	287,814.00	
3,715,578	13.95	13.95	49,036,260	170,495.00	598,090.00	130,974.00	38,319.00	
2,805,794	13.95	13.93	51,842,054	143,300.00	10.00	623,701.00	424,333.00	
3,426,882	13.93	12.6	55,268,936	101,425.00	3.00	1,133,605.00	343,849.00	
1,807,298	12.6	13.8	57,076,234	00.00	00.0	457,599.00	47,699.00	
2,342,517	13.8	12.8	59,418,751	130,095.00	38,816.00	293, 191.00	125,415.00	
2,771,526	12.8	12.4	62,190,277	241,966.00	329,922.00	5.00	33.00	
2,520,000	12.4	12.4	64,710,277	189,482.00	5.00		256,440.00	
936,000	12.4	12.2	65,646,277					
37,120,406				3,461,536.00	4,240,972.00	10,538,304.00		
1,827,210				173,076.80				

9,871,188.00

331616 Total to RTC1 in Nov prior to test45,115 Daily avg

																																		_	.,	
	Estimated to Troup Canal				1,776,000	330,000				660,000	1,255,500				312,000		465,000		891,000		912,000	1,152,000			891,000	787,500	2,777,700	1,614,450	1,848,000	1,302,000	1,755,000	2,199,600	2,520,000	936,000	7,753,500	RG1 500
Total Volume	Pumped SCC1	1,710,987	2,354,314	2,375,801	869,369	927,304	1,108,824	1,525,986	1,024,335	1,711,995	1,514,449.00	745,577	1,112,630	2,619,293	1,300,830	1,415,696	1,361,351	1,550,339	787,077	1,455,186	1,389,718	505,845	2,684,892	643,032	1,896,088	1,297,764	937,878	1,191,344	1,578,882	505,298	587,517	571,926			29,366,906	1 308 424
	Day	27-Nov-06	28-Nov-06	29-Nov-06	30-VoV-06	1-Dec-06	2-Dec-06	3-Dec-06	4-Dec-06	5-Dec-06	6-Dec-06	7-Dec-06	8-Dec-06	9-Dec-06	10-Dec-06	11-Dec-06	12-Dec-06	13-Dec-06	14-Dec-06	15-Dec-06	16-Dec-06	17-Dec-06	18-Dec-06	19-Dec-06	20-Dec-06	21-Dec-06	22-Dec-06	23-Dec-06	24-Dec-06	25-Dec-06	26-Dec-06	27-Dec-06	28-Dec-06	29-Dec-06	Total	Avn

Note: pumps shut down evening of 12/7

Table 8.9 Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

Min Max		24.62 25.66				1131 1705				6.81 7.56				0.24 0.41													
PZ- 22B																					20	4 0 E	20 20	50 50	40	C 40 20 20 20 20 20 20 20 20 20 20 20 20 20	
PZ-21B		25.55				1525				6.93				0.41					09	09	100 60	60 60 60	60 60	C 00 00 00 00 00 00 00 00 00 00 00 00 00			
PZ- 20B		25.66				1705				7.15				0.26					15	15	30 15	20 30 15	30 15 20	C 20 30 15 1	 ⊂ 20 30 42 	C 20 30 131	
PZ-26C																			20	50 40	40 50	40 50	50 40 40	4000 41000 500 500 500 500 500 500 500 500 500	5000 8.0000 8.0000 8.0000 8.000 8.000000 8.0000 8.0000 8.0000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.00	50 50 40 40 40 40 8.000 8.000	50 50 40 40 40 8.000 8.000 8.000
PZ-26B																			40	40	40 150 50	40 150 50	40 150 50	 U 150 150 	 40 150 50 	U U 40	L U 50 150
PZ-24C		24.62				1137				6.81				0.24					20	20	20 20	20 20 20	20 20	∩	¬ ¬	∩	с с с 23 <u>3</u> 3 <u>3</u> 3
PZ- 24B		24.89				1131				7.56				 0.32					30	30	40 30	30 40 40	30 40 40	○ 4 4 ○ 30	0 4 4 0 30	→ → → → → → → → → → → → → → → → → → →	
PZ-16C																			30	30	⊂ 30 30	⊂ 33	- 33 30	30 30 130.000	30 30 130.000 32.000	30 30 0 130.000 132.000 4.000	30 30 0 130.000 32.000 4.000
Z-16B																			30	30 30	93 30 30	33 33	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	□ 3 3 3	30 30 1000 1	30 30 1.000 U	000 F
-12C P																			50	50	30 20	30 20	30 20	000 30 20	5000 30 500 500 500 500 500 500 500 500	500 000 000	2000 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20
-12B P2																		 0	S	2 00				2 00 10 20 20 20 20 20 20 20 20 20 20 20 20 20	2 000 33 20 000 33 30 000 35 30 000 30 000 35 30 000 000 30 000 000 30 0000	0000 10 10 10 10 10 10 10 10 10 10 10 10	
7C PZ	_																	 0						0 0 00	0 0 0 0 0 0 0 1.1 1.1 1.1 1.1 1.1 1.1 1.	00 00 00 00 00 00 00 00 00 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7B PZ																		 5 5			2	4 5	4 5	8.0	8.0	0 5 0 8.0 0 2.0	0 5 0 8.0 4 00 2.0 8.0 4.0 2.0 4.0
-Z- C	_																	 5(4	30	3(0 0 3(4) 1.0	
-Z-Z																		 50	Ĺ	nc	00 40	50 70 70 70	00 40	00 40 1.00	00 1.00 2.000	00 04 0.1 00 2:00 0	00 07 07 00 07 00 00 00 00 00 00 00 00 0
PZ-5B																		40	30	8	20	50 8	3 2	1:0	1.0	∩ 10 20	⊂ :
UNITS		Deg. C				umhos cm				std. Units				mg/l				PCU						T.O.N.	L.O.N.	T.O.N.	L.O.N.
Date		Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06		Dec-06	Dec-06 Apr-07	Dec-06 Apr-07	Apr-07 Jul-06	Apr-07 Jul-06 Sep-06	Apr-07 Jul-06 Sep-06 Dec-06	Dec-06 Apr-07 Jul-06 Sep-06 Dec-06 Apr-07
MDL																											
MCL/GW Cleanup Target Level*		N/A				N/A				6.5-8.5				N/A													
		Temperature				Conductivity				Hd				Dissolved Oxygen				Color						Odor	Odor	Odor	Odor

Table 8.9 (Continued) Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

Max						0				1.3				1				1.3				0.81				0.62	
Min						0				0.25				0.25				0.25				0.091				0.074	
PZ- 22B				1.600	8.300			⊃	0.041			0.72	1.2			0.37	0.27			0.720	1.200			0.049	0.075		
PZ-21B		7.400		2.600	20.000	С		С	0.11	1.1		1.5	1.6	0.36		0.66	0.45	1.1		1.5	1.5	0.20		0.09	0.16	0.074	
PZ- 20B		5.900		4.000	5.300	N		0.011	0.042	0.25		0.59	0.89	0.36		0.39	0.30	0.250		0.580	0.850	0.290		0.120	0.087	0.59	
PZ-26C		16.000	5.900	18.000		С	D	С		0.63	0.66	0.86		0.42	0.41	0.46		0.630	0.660	0.860		0.730	0.350	0.470			0.240
PZ-26B		17.000	5.900	0.660		D	D	D		0.71	0.62	0.67		0.66	0.64	0.46		0.710	0.620	0.670		0.810	0.370	0.340			0.310
PZ-24C		34.000		12.000	9.400	U			0.13	0.51		0.69	0.39	0.48		0.63	0.22	0.510		0.690	0.260	0.560		0.560	0.200		
PZ- 24B	-	22.00		17.00	17.00	С		D	0.029	0.64		0.59	0.56	0.58		0.46	0.41	0.64		0.59	0.53	 0.74		0.38	0.46	0.57	
PZ-16C		64.000	0.190	⊃		С	D	0.014		0.74	1.1	0.86		0.40	0.46	0.53		0.740	1.100	0.850		0.190	0.190	0.130		0.180	0.160
PZ-16B		5.400	3.000	D		n	n	0.026		0.35	0.88	0.86		0.25	0.25	0.29		0.350	0.880	0.830		 0.110	0.089	0.068		0.110	0.062
Z-12C	_	4.000	1.400	D		n	N	0.014		0.77	0.77	0.89		0.26	0.32	0.42		 0.770	0.770	0.880		 0.190	0.120	0.100		0.190	0.110
-12B		2.000 4	000.9	D		n	n	.025 (.33	.39	.68		.25	.21	.27		 .330 (.390 (.650 (.091 (.048 (.043 (.089	.040
-7C P2		.000 22	43	800	100	D		015 0	0094	1.1		1.4	1.3	540 0	0	450 0	370	 100 0	0	400 0	300	 170 0	0	130 0	120	 160 0	0
-7B P2		000 19		300 8.	300 5.			о О	0.0	.3		4	4.	0.00		0.00	330 0.	300 1.		400 1.	400 1.	 530 <u>0</u> .		410 0.	440 0.	 520 <u>0</u> .	
5C PZ	-	00 2.0	00	00 4.8	4.6			19	0.0	8	3	1	-	40 1.(10	30 1.(0.0	80 1.3	30	90 1.4	1.	 98 0.0	99	30 0.4	0.	 95 0.(83
	_	13.0	14.0	2.10				0.0		0.7	0.8	0.8		0.4	0.5	0.46		0.78	0.8	0.79		 0.0	0.0	1 0.76		0.0	3 0.0
PZ-5	_	4.5	26.0	1.3				0.03		0.55	0.47	0.57		0.45(0.37(0.29(0.55(0.47(0.54(0.13(0.12(0.06		 0.13(0.08;
		NTU	3	G	-	mg/l	0	6	7	mg/l	G	6	~	mg/l	3	0	~	mg/l	ő	6	7	mg/l	0	G		 , mg/l	<u> </u>
Date	_	Jul-06	Sep-0(Dec-0	Apr-07	Jul-06	Sep-0(Dec-0(Apr-07	Jul-06	Sep-0(Dec-0(Apr-07	Jul-06	Sep-0(Dec-0(Apr-07	Jul-06	Sep-0(Dec-0(Apr-07	Jul-06	Sep-0(Dec-0	Apr-07	 Jul-06	Sep-0(
MDL																										 	
MCL/GW Cleanup Target Level*		urbidity				itrite-Nitrate				otal Nitrogen				mmonia				NX				hosphorus				 hosphorus(dissolved)	

Table 8.9 (Continued) Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

											-										
	MCL/GW Cleanup Target Level*	MDL	Date	UNITS	PZ-5B	PZ-5C	PZ-7B	PZ-7C	PZ-12B	PZ-12C	PZ-16B	PZ-16C	PZ- 24B	PZ-24C	PZ-26B	PZ-26C	PZ- 20B	PZ-21B	PZ- 22B	Min	Max
																	. =				
			Dec-06		0.054	0.069	0.460	0.100	0.032	0.100	0.061	0.120	0.06	0.076	0.240	0.290	0.04	0.046	0.033		
			Apr-07				0.380	0.088					0.33	0.220			0.04	0.025	0.033		
Soluble Reactive P			Jul-06	mg/l	0.090	0.094	0.540	0.150	0.013	0.170	0.086	0.180	0.38	0.32			0.045	0.036		0.013	0.54
			Sep-06		0.076	0.079			0.033	0.120	0.059	0.160			0.240	0.240					
			Dec-06		0.060	0.077	0.300	0.110	0.033	0.120	0.065	0.130	0.03	0.08	0.200	0.300	0.028	0.039	0.024		
			Apr-07				0.390	0.092					0.14	0.20			0.030	0.019	0.026		
Arseni¢	0.0 <mark>15</mark>	0.00016	Jul-06	mg/l	D	n	N	n	Л	D	D	D	0.0020	0.00180	D	D	0.0021	0.0079		0.0018	0.0079
			Sep-06		0.00074	0.00064			0.00220	0.00090	0.00130	0.00230			0.00180	0.00110					
			Dec-06		0	D	∍	D		D	D	D	D	D	D		D		0.0030 0		
			Apr-07				∍	∍					∍	D			∍	∍	∍		
Barium	2	0.00014	Jul-06	mg/l	0.029	0.0110	0.081	0.013	0.030	0.025	0.052	0.018	0.066	0.059	0.067	0.038	0.043	0.083		0.011	0.083
			Sep-06		0.034	0.0280			0.026	0.063	0.055	0.023			0.091	0.027					
			Dec-06		n	0.0067	0.092	0.010	0.016	0.012	0.043	0.011	0.058	0.046	0.095	0.022	0.020	0.045	0.013		
			Apr-07				0.096	0.009					0.061	0.047			0.026	0.038	0.012		
Beryllium		0.00016	Jul-06	mg/l	D	D	р	D	⊃	⊃	D	р	р	р	Ū.	С	р	С			
			Sep-06												Ū						
			Dec-06			⊃		⊃				⊃		Э	D			D	С		
			Apr-07																		
Cadmium	0.005	0.000091	Jul-06	mg/l	⊃	⊃	⊃	⊃	⊃	D	⊃	∍	D	∍	D		D	∍		0	0
			Sep-06		⊃	⊃			⊃	⊃	⊃	D			D	⊃					
			Dec-06		⊃	⊃	р	⊃	⊃	⊃	⊃	D	D	D	D	⊃	D	D	D		
			Apr-07				D	D					D	D			⊃	D	D		
Chromium	0.1	0.000038	Jul-06	mg/l	0.003	0.00041	0.002	0.00510	0.003	0.0058	0.0052	0.009	0.0039	D	D	⊃	С	⊃		0.00041	0.0086
			Sep-06		0.001	0.00110			0.00064	0.0014	0.0020	0.004			0.008	0.00180					
			Dec-06			⊃	∍	⊃		0.0024	⊃	0.005	D	D	Ъ	0.00220	D	D	С		
			Apr-07				D	D					U	D				U	D		

Table 8.9 (Continued) Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

	Max							0				310				0				0.000072				0.024					
	Min							0				45				0				0.000072				0.0032					
	PZ- 22B				D	⊃				D	С			75.000	78.000			С	⊃			⊃				⊃	⊃		
	PZ-21B		0.00082		0.00140	⊃		⊃		С	О	260		120	130			⊃	С	⊃	I	⊃	О	0.0082			⊃		
	PZ- 20B		D		0.004	D		∍		n	D	170		83	130	D		D	р	р		D	n	0.0032			⊃	⊃	
	PZ-26C		⊃	D	n			∍	n	n		94.000	120.000	100.000		р	D	р		D	⊃	D		0.0076	0.0025	D			D
	PZ-26B		D	⊃	О			D	С	0.009		78.000	120.000	95.000		D	С	D		С	С	⊃		0.0061	0.0029	D			D
	Z-24C	_	D		D			D		D	D	130		170	160	D		D	D	000072		D	С	.0044					
	PZ- 24B P	-	0.001		n					n	D	 310		120	130	D		D	D	U 0.0		D	D	0.024 0					
	2-16C	-			U			D	N	U		1.000	6.000	0.000			D	D		 D	D	D		0077 0	0020				U U
	16B P2	_	_	053								 2 000	000 16	000 14							_			100 0.	0.032			 	(
-	C PZ-	_		00.0								 0 87.0	00 18.0	00 160.										4 0.0	7 0.00				
	PZ-12	_	0.00(⊃				⊃				69.00	150.00	130.00			D	⊃		⊃	⊃	⊃		0.007	0.003				D
	PZ-12B		⊃	⊃	С			∍		С		85.000	140.000	120.000		⊃	С	⊃		⊃		⊃		0.0100	0.0033	D		⊃	D
	PZ-7C		⊃		D	D		∍		D	О	47.000		95.000	84.000	С		D	D	D		D	D	0.0063		D	⊃	∍	
	PZ-7B		⊃		D	С		∍		D	D	49.000		110.000	120.000	С		⊃	С	С		⊃	С	0.0070		С		⊃	
	PZ-5C		D	0.001	U			С	U	U		45.000	100.000	90.000		D	U	С		U	D	D		0.0044	0.0031	D		D	U
	PZ-5B		D	⊃	С			5	С	С		 64.000	40.000	С		D	С	5		С	С	⊃		0.0092	0.0061	D			
	UNITS		mg/l					mg/l				mg/l				mg/l				mg/l				mg/l				mg/l	
	Date		Jul-06	Sep-06	Dec-06	Apr-07	-	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	Jul-06	Sep-06	Dec-06	Apr-07	 Jul-06	Sep-06
	MDL		.00020									0.024				.00012								.00012				 70000.	
	CL/GW eanup arget evel*		0					0.2								.015 0				.002				0.1 0				0	
	L T C M	_														 0				0									
			Copper					Cyanide				Calcium				Lead				Mercury				Nickel				Silver	
Table 8.9 (Continued) Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

	Max				530				2.7				270				0.0037				2000				
	Min				49				0.096				27				0.0037				490				
	PZ- 22B	n	D				75.00	86.00			0.510	0.500			56	54			0.003	D			420	490	
	PZ-21B	N	С		69.00		71.00	85.00	0.560		1.400	0.880	100		54	53	0.0037		0.0041	С	980		560	530	
	PZ- 20B	D	D		84.00		83.00	87.00	D		0.260	D	150		67	120	⊃		0.009	D	710		460	590	
	PZ-26C	n			360.00	280.00	77.00		1.200	0.280	0.400		210.0	220.0	240.0		С	С	С		1400	610	1400		
	22-26B	С			49.00	42.00	44.00		2.700	0.370	4.200		42.0	56.0	50.0		D	D	0.005		490	650	510		
	Z-24C	n			84.00		31.00	88.00	1.8		1.2	1.1	170		270	200	D		С	С	790		960	810	
	22- 73- 73	n	D		5.00 8		00.00	1.00 6	2.0		2.1	1.3	:70		00	06			D	D	020		60	50	
	16C	(.00 55	00.	.00 90	76	70 2	40		7	0.0	0.0	0.0	-	 _	_			о 00	00	00	2	
	BZ.				530	560	570		0.1	0.1			22(20(24(20	19	20		
	PZ-16	D			82.00	79.00	90.00		1.000	0.320	0.340		170	160	190		⊃	⊃			770	730	750		
	PZ-12C	D			230.00	170.00	300.00		0.940	0.430	С		44.0	71.0	110.0			0.008	О		980	730	1100		
	PZ-12B	U			82.00	74.00	80.00		2.200	0.054	1.300		170.0	110.0	110.0		D	0.0013	U		750	1400	560		
	PZ-7C	n	С		110.00		120.00	120.00	0.160		0.180	С	27		25	26	⊃		С	С	750		730	730	
	PZ-7B	D	D		130.00		140.00	200.00	0.590		0.570	0.830	110		130	110	⊃		D	D	620		750	780	
	2-5C	D			20.00	98.00	00.00		0.096	0.12	D		120	150	140		D	0.009	0.004		790	006	760		
	Z-5B	n			5.00	2.00	2.00		.38	.26	Л		160	150	130				С		720	520	520		
	AITS P.				ng/l 8	9	8		ng/l ()			ng/l				ng/l				l/bu				
	ate	.c-06	ir-07		il-06 r	p-06	ic-06	ır-07	il-06 r.	p-06	.c-06	ir-07	il-06 r	p-06	ic-06	ır-07	 il-06 r.	p-06	c-06	ir-07	 il-06 r	p-06	ic-06	ir-07	
-	۲ ۲	De	Ac		חר 0	Se	De	Ap	12 Ju	Se	De	Ac	חר 00	Se	De	Αc	335 Ju	Se	De	Ap	 4 Ju	Se	De	Ac	
	ML ML				5.				 0.0				10.				 0.0(7.				
	MCL/G Cleanı Targe Level				250				0.3				250				5				500				
					Chloride				Iron				Sulfate				Zinc				Total Dissolved Solids				

Table 8.9 (Continued) Groundwater Quality Monitoring Summary – Test Cells Geotechnical Data Report

50 FAC 77 FAC (1)=MS and/or MSD recoveries outside control limits. LCS and/or LCSD within limits. Data reported

V=Present in blank

MCL= Maximum Contar	minant Level	for Drinking Water per 62-550
*Groundwater and Surfa	ace Water Cl	eanup Target Level per 62-77
**Surface Water Quality	Standards p	oer 62-302.530 F.A.C
*** Copper surface wate	r std based o	on total hardness of 120 mg/l
(1)		
Q=sample held outside the re	quired holding ti	ime
I=Result between MDL and P(al	

Table 9.1 Soil-Cement Strength Testing Geotechnical Data Report

	Denth		Fines	Carbonate		Organic	Col	nent itent		Str	compre ength (ssive (psi)		Wet-Drv
Test Pit ID	Interval (ft)	Sample Description	Content (%)	Content (%)	На	Content (%)	(%)	(Ib/cv)	3 dav	7 dav	14 dav	28 dav	56 dav	Test Loss (%)
					-		7	215	380	335	370	525	625	1.5
TP-354	4	Lt. Brown to brown clayey fine SAND with shell fragments	26.8	ı	7.6	1.4	6	277	340	370	485	510	069	1.3
							11	339	610	495	680	725	815	1.2
							5	151	230	315	315	300		6.4
TP-356	4-1	Brown clayey fine SAND	22.8	12.0	7.6	2.1	7	211	280	365	350	350		0
							6	272	355	460	455	490		0.5
							7	210	280	260	365	415	520	10.7
TP-357	44	Light tan to brown clayey fine SAND with shell fragments	19.9	ı	7.4	2.3	6	270	300	435	475	480	675	1.7
							11	336	465	270	420	640	885	1.7
							5	146	195	235	215	250		13.0
TP-358	6-7	Gray to dark gray clayey fine SAND with shell fragments	20.5	21.1	7.3	1.8	7	204	290	375	360	420		4.6
							6	262	360	390	440	545		3.0
							5	151	230	260	295	330		4.1
TP-355	10-11	Brown to dark brown clayey fine SAND with some roots	16.3	1.5	5.5	1.5	7	211	225	260	390	545		2.3
							6	272	335	395	555	200		0.2

Table 9.1 (Continued) Soil-Cement Strength Testing Geotechnical Data Report

Depth		-	Fines	Carbonate		Organic	Cer Cor	nent itent	4	, Str	compre ength (ssive (psi)	ŝ	Wet-Dry
Interval Sample Content (ft) Description (%)	Sample Content Description (%)	Content (%)		Content (%)	Ηd	Content (%)	(%)	(lb/cy)	3 day	7 day	14 day	28 day	56 day	Test Loss (%)
	Drawing alicentative alocenter final						5	153	230	255	250	365		5.6
12-13 SAND with shell fragments 11.4	SAND with shell fragments 11.4	11.4		1.5	7.3	0.7	7	214	315	390	365	505		1.7
							6	275	435	540	525	655		0.9
Drown to dor't brown alightly	Drawn to dorb brown oficiality						5	154	250	305	360	360		4.2
13-14 clayey fine SAND with some 11.6	clayey fine SAND with some 11.6	11.6		2.5	7.6	1.2	7	215	340	430	435	460		1.8
מלאו באמום	מאאו האמוה						6	277	440	555	485	620		1.1

			Chapte	er 62-777 Sta	indards	
			21-22-22	Fresh		[]
Client		Reporting	GW	Surface	Marine	
Sample ID	Analyte	Units	Criteria	Water	Water	Result
TP-491	Lead	ug/L	15	•		140
TP-491	Potassium	ug/L	NA	NA	NA	30000
TP-491	Selenium	ug/L	50			240
TP-491	Sodium	ug/L	160000	NA	NA	69000
TP-491	Zinc	ug/L	5000		*	100
TP-491	Nitrate as N	mg/L	10	NA	NA	0.075U
TP-491	Nitrite as N	mg/L	1	NA	NA	0.075U
TP-491	Nitrate Nitrite as N	mg/L	10	NA	NA	0.075U
TP-491	Chloride	mg/L	250	NA	*	89
TP-491	Sulfate	mg/L	250	NA	NA	160
TP-491	Acidity	mg/L	NA	NA	NA	12
TP-491	Alkalinity	mg/L	NA	NA	NA	1100
TP-491	Total Organic Carbon	mg/L	NA	NA	NA	6.1
TP-491	4.4'-DDE	ug/L	0.1	0.0002	0.0002	0.0076U
TP-491	4.4'-DDT	ug/L	0.1		•	0.0095U
TP-491	Heptachlor	ug/L	0.4	•	*	0.0069U
TP-491	Chlordane (technical)	ug/L	2	NA	NA	0.098U
TP-491	pH	SU	NA	NA	NA	7.51H
TP-491	Density	g/mL	NA	NA	NA	1.0124
TP-498	HEM (Oil & Grease)	mg/L	NA	NA	NA	1.3U
TP-498	Copper	ug/L	1000		*	24
TP-498	Iron	ug/L	300	1000		20000
TP-498	Lead	ug/L	15			43
TP-498	Potassium	ug/L	NA	NA	NA	3700
TP-498	Selenium	ug/L	50			140
TP-498	Sodium	ug/L	160000	NA	NA	41000
TP-498	Zinc	ug/L	5000			17J
TP-498	Nitrate as N	ma/L	10	NA	NA	0.075U
TP-498	Nitrite as N	mg/L	1	NA	NA	0.075U
TP-498	Nitrate Nitrite as N	ma/L	10	NA	NA	0.075U
TP-498	Chloride	ma/L	250	NA	*	44
TP-498	Sulfate	mo/L	250	NA	NA	67
TP-498	Acidity	ma/L	NA	NA	NA	11
TP-498	Alkalinity	ma/L	NA	NA	NA	320
TP-498	Total Organic Carbon	mg/L	NA	NA	NA	12
TP-498	4.4'-DDE	ug/L	0.1	0.0002	0.0002	0.0073U
TP-498	4.4'-DDT	ug/L	0.1			0.0092U
TP-498	Heptachlor	ug/L	0.4		•	0.0066U
TP-498	Chlordane (technical)	ug/L	2	NA	NA	0.094U
TP-498	DH	SU	NA	NA	NA	7.61H
TP-498	Density	a/ml	NA	NA	NA	0 9974
	benny	Service				
TP-498-D	HEM (Oil & Grease)	ma/l	NA	NA	NA	1.30
TP-498-D	Conner	ug/L	1000	*	*	74
TP-498-D	Iron	ug/L	300	1000		53000
TP-498-D	Lead	ug/L	15			100
TP-498-D	Potassium	ug/L	NA	NA	NA	6900
TP.498-D	Selenium	ugit	50	**	**	350
11-400-0	(Selenan)	I M M / L	00.		1	000

Table 9.2Water Analysis ParametersGeotechnical Data Report

Table 9.2 (Continued) Water Analysis Parameters Geotechnical Data Report

-			Chapte	r 62-777 Sta	indards	N
Client Sample ID	Analyte	Reporting Units	GW Criteria	Fresh Surface Water	Marine Water	Result
TP-498-D	Sodium	ug/L	160000	NA	NA	44000
TP-498-D	Zinc	ug/L	5000		•	44
TP-498-D	Nitrate as N	ma/L	10	NA	NA	0.075U
TP-498-D	Nitrite as N	mg/L	1	NA	NA	0.075U
TP-498-D	Nitrate Nitrite as N	ma/L	10	NA	NA	0.075U
TP-498-D	Chloride	ma/L	250	NA		44
TP-498-D	Sulfate	ma/L	250	NA	NA	68
TP-498-D	Acidity	ma/L	NA	NA	NA	11
TP-498-D	Alkalinity	ma/L	NA	NA	NA	410
TP-498-D	Total Organic Carbon	ma/l	NA	NA	NA	14
TP-498-D	4 4'-DDE	uo/l	0.1	0.0002	0.0002	0.0073U
TP-498-D	4.4'-DDT	ug/l	0.1	*		0.0092U
TP-498-D	Hentachlor	ug/L	0.4		•	0.0066U
TP-498-D	Chlordane (technical)	ug/L	2	NA	NA	0.09511
TP.498-D	nH	SU	NA	NA	NA	7.62H
TP-498-D	Density	o/ml	NA	NA	NA	0.9994
C44-Well	HEM (Oil & Grease)	mg/L	NA	NA	NA	1.3U
C44-Well	Copper	ug/L	1000			1.9
C44-Well	Iron	ug/L	300	1000	*	50
C44-Well	Lead	ug/L	15	•	•	4
C44-Well	Potassium	ug/L	NA	NA	NA	580
C44-Well	Selenium	ug/L	50		*	6.4
C44-Well	Zinc	ug/L	160000	NA	NA	8.7
C44-Well	Sodium	ug/L	5000		•	230000
C44-Well	Nitrate as N	mg/L	10	NA	NA	0.075U
C44-Well	Nitrite as N	mg/L	1	NA	NA	0.075U
C44-Well	Nitrate Nitrite as N	mg/L	10	NA	NA	0.075U
C44-Well	Chloride	mg/L	250	NA	•	70
C44-Well	Sulfate	mg/L	250	NA	NA	7.9
C44-Well	Acidity	ma/L	NA	NA	NA	10U
C44-Well	Alkalinity	mg/L	NA	NA	NA	310
C44-Well	Total Organic Carbon	mg/L	NA	NA	NA	3.5
C44-Well	4.4'-DDE	ug/L	0.1	0.0002	0.0002	0.0076U
C44-Well	4.4'-DDT	ug/L	0.1		•	0.0096U
C44-Well	Heptachlor	ug/L	0.4		*	0.0069U
C44-Well	Chlordane (technical)	ug/L	2	NA	NA	0.099U
C44-Well	pH	SU	NA	NA	NA	7.54H
C44-Well	Density	a/ml	NA	NA	NA	0.9953
0	Contrary	Buine				0.0000
Indiantown	HEM (Oil & Grease)	mg/L	NA	NA	NA	1.3
Indiantown	Copper	ug/L	1000			1200
Indiantown	Iron	ug/L	300	1000	•	250
Indiantown	Lead	ug/L	15		*	5.9
Indiantown	Potassium	ug/L	NA	NA	NA	1900
Indiantown	Selenium	ug/l	50		*	6.4
Indiantown	Sodium	ug/L	160000	NA	NA	15000

			Chapte	r 62-777 Sta	ndards	
Client Sample ID	Analyte	Reporting Units	GW Criteria	Fresh Surface Water	Marine Water	Result
Indiantown	Zinc	ug/L	5000	•		34
Indiantown	Nitrate as N	mg/L	10	NA	NA	0.63
Indiantown	Nitrite as N	mg/L	1	NA	NA	0.075U
Indiantown	Nitrate Nitrite as N	mg/L	10	NA	NA	0.63
Indiantown	Chloride	mg/L	250	NA		28
Indiantown	Sulfate	mg/L	250	NA	NA	2.8J
Indiantown	Acidity	mg/L	NA	NA	NA	100
Indiantown	Alkalinity	mg/L	NA	NA	NA	240
Indiantown	Total Organic Carbon	mg/L	NA	NA	NA	7.7
Indiantown	4,4'-DDE	ug/L	0.1	0.0002	0.0002	0.0074U
Indiantown	4,4'-DDT	ug/L	0.1			0.0093U
Indiantown	Heptachlor	ug/L	0.4			0.0067U
Indiantown	Chlordane (technical)	ug/L	2	NA	NA	0.096U
Indiantown	pH	SU	NA	NA	NA	7.87
Indiantown	Density	g/mL	NA	NA	NA	1.0025

Table 9.2 (Continued)Water Analysis ParametersGeotechnical Data Report

Source: AMEC Report, 2013

Notes: g/ml - grams per milliliter

mg/l – milligrams per liter

su - standard unit

ug/I – micrograms per liter

H – sample was prepped or analyzed beyond the specified holding time

J – result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

U – indicates the analyte was analyzed for but not detected

* As Provided in Chapter 62-3032, Florida Administrative Code

Bold and italicized - exceeds Soil Cleanup Standards in Chapter 62-777, Florida Administrative Code

			62-777 Ta	able 2 Soil		SQAG*
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-475	Chloride	mg/Kg	NA	NA	260	NA
TP-475	Nitrate Nitrite as N	mg/Kg	NA	NA	0.63U	NA
TP-475	Nitrite as N	mg/Kg	8700	220000	0.23U	NA
TP-475	Nitrate as N	mg/Kg	140000		0.63U	NA
TP-475	Sulfate	mg/Kg	NA	NA	36U	NA
TP-475	Copper	mg/Kg	150	89000	1.3U	32
TP-475	Iron	mg/Kg	53000		380	NA
TP-475	Lead	mg/Kg	400	1400	0.62J	36
TP-475	Magnesium	mg/Kg	NA	NA	130	NA
TP-475	Potassium	mg/Kg	NA	NA	38J	NA
TP-475	Selenium	mg/Kg	440	11000	1.2U	NA
TP-475	Sodium	mg/Kg	NA	NA	2100	NA
TP-475	Zinc	mg/Kg	26000	630000	1.4U	120
TP-475	Calcium	mg/Kg	NA	NA	200000	NA
TP-475	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-475	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-475	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-475	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-475	pH	SU	NA	NA	8.84	NA
TP-475	Total Organic Carbon	mg/Kg	NA	NA	15000	NA
TP-475	Percent Moisture	%			15	NA
TP-475-D	Chloride	mg/Kg	NA	NA	250	NA
TP-475-D	Nitrate Nitrite as N	mg/Kg	NA	NA	0.63U	NA
TP-475-D	Nitrite as N	mg/Kg	8700	220000	0.23U	NA
TP-475-D	Nitrate as N	mg/Kg	140000	**	0.63U	NA
TP-475-D	Sulfate	mg/Kg	NA	NA	38J	NA
TP-475-D	Copper	mg/Kg	150	89000	1.3U	32
TP-475-D	Iron	mg/Kg	53000		390	NA
TP-475-D	Lead	mg/Kg	400	1400	0.82J	36
TP-475-D	Magnesium	mg/Kg	NA	NA	140	NA
TP-475-D	Potassium	mg/Kg	NA	NA	40J	NA
TP-475-D	Selenium	mg/Kg	440	11000	1.1U	NA
TP-475-D	Sodium	mg/Kg	NA	NA	2500	NA
TP-475-D	Zinc	mg/Kg	26000	630000	1.4U	120
TP-475-D	Calcium	mg/Kg	26000	630000	230000	NA
TP-475-D	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-475-D	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-475-D	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-475-D	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-475-D	pH	SU	NA	NA	9.02	NA
TP-475-D	Total Organic Carbon	mg/Kg	NA	NA	12000	NA
TP-475-D	Percent Moisture	%	NA	NA	13	NA
TP-476	Chloride	mg/Kg	NA	NA	260	NA
TP-476	Nitrate Nitrite as N	mg/Kg	NA	NA	0.64U	NA
TP-476	Nitrite as N	mg/Kg	8700	220000	0.23U	NA
TP-476	Nitrate as N	mg/Kg	140000		0.64U	NA

			62-777 Ta	able 2 Soil		SQAG*
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-470	Suifate	mg/Kg	NA 150	NA 80000	130	NA 22
TP-4/0	Copper	mg/Kg	150	89000	1.20	32
1P-4/0	Iron	mg/Kg	53000	1100	510	NA
TP-4/0	Lead	mg/Kg	400	1400	0.895	30
TP-4/0	Retection	mg/Kg	NA NA	NA NA	200	NA
TP-4/0	Potassium	mg/Kg	NA NA	NA NA	56J	NA
TD 478	Selenium	mg/kg	140	11000	1900	NA
TD 478	Zing	mg/Kg	26000	620000	1000	120
TP-4/0	Zinc	mg/Kg	20000	030000	1.30	120
1P-4/0		mg/Kg	NA NA	NA	180000	NA 0.0020
TP-4/0	4.4-DUE	mg/L	NA NA	NA	0.0025	0.0032
1P-4/0	4,4-001	mg/L	NA	NA	0.0025	0.0042
TP-4/0	Heptachior	mg/L	NA	NA	0.0025	0.0025
TP-4/6	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-4/6	pn Tabl Organia Cashan	50	NA	NA	8.72	NA
TP-4/0	Total Organic Carbon	mg/Kg	NA	NA	19000	NA
1P-4/6	Percent Moisture	76	NA	NA	13	NA
TP-477	Chloride	mg/Kg	NA	NA	290	NA
TP-477	Nitrate Nitrite as N	mg/Kg	NA	NA	0.71U	NA
TP-477	Nitrite as N	mg/Kg	8700	220000	0.26U	NA
TP-477	Nitrate as N	mg/Kg	140000	**	0.71U	NA
TP-477	Sulfate	mg/Kg	NA	NA	39U	NA
TP-477	Calcium	mg/Kg	NA	NA	330000	32
TP-477	Copper	mg/Kg	150	89000	1.4U	NA
TP-477	Iron	mg/Kg	53000		2100	36
TP-477	Lead	mg/Kg	400	1400	1.2	NA
TP-477	Magnesium	mg/Kg	NA	NA	220	NA
TP-477	Potassium	mg/Kg	NA	NA	79J	NA
TP-477	Selenium	mg/Kg	440	11000	1.2U	NA
TP-477	Sodium	mg/Kg	NA	NA	3800	120
TP-477	Zinc	mg/Kg	26000	630000	1.5U	NA
TP-477	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-477	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-477	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-477	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-477	pH	SU	NA	NA	8.54	NA
TP-477	Total Organic Carbon	mg/Kg	NA	NA	28000	NA
TP-477	Percent Moisture	%	NA	NA	23	NA
TD 470	Chladda	mall/ -	N/A	NIA	200	NA
TP-4/8	Chionae	mg/Kg	NA	NA	300	NA
TP-4/8	Nitrate Nitrite as N	mg/Kg	NA 0700	NA 2222222	0.680	NA
TP-4/8	Nunte as N	mg/Kg	8700	220000	0.250	NA
TP-4/8	Nitrate as N	mg/Kg	140000	NIA.	0.680	NA
TP-4/8	Suitate	mg/Kg	NA	NA	1103	NA
TD 470	Calcium	mg/Kg	NA 450	NA 80000	200000	32
TD 470	Copper	mg/Kg	150	09000	1.40	NA 22
11-4/8	Iron	mg/Kg	53000	8	5/0	30

Client Sample ID Analyte With Residential Commercial Industrial Result TEC TP-478 Lead mg/Kg NA NA NA NA TP-478 Potassium mg/Kg NA NA NA Solium NA TP-478 Selenium mg/Kg NA NA A Solium NA TP-478 Solium mg/Kg NA NA 2100 120 TP-478 Zinc mg/Kg NA NA 0.0025 0.0032 TP-478 4,4'-DDT mg/L NA NA 0.0025 0.0025 TP-478 Heptachlor mg/Kg NA NA 0.0025 0.0025 TP-478 Chlordane (technical) mg/Kg NA NA 8.29 NA TP-478 Pd-4 Total Organic Carbon mg/Kg NA NA 2.8000 NA TP-479 Chlordane (technical) mg/Kg NA NA 0.86U				62-777 Ta	able 2 Soil		SQAG"
TP-478 Lead mg/Kg 400 1400 0.72J NA TP-478 Magnesium mg/Kg NA NA NA 130 NA TP-478 Potassium mg/Kg NA NA 52J NA TP-478 Selenium mg/Kg NA NA 2200 630000 1.5U NA TP-478 Zinc mg/L NA NA NA 0.0025 0.0032 TP-478 4.4'-DDT mg/L NA NA 0.0025 0.0032 TP-478 Chlordane (technical) mg/L NA NA 0.0025 0.0025 TP-478 Chlordane (technical) mg/Kg NA NA 0.0025 0.0025 TP-478 Total Organic Carbon mg/Kg NA NA NA 19 NA TP-479 Nitrate Nisture % NA NA 1300 NA TP-479 Nitrate N mg/Kg NA NA 130000	Client Sample ID	Analyte	Reporting Unit	Residential	Commerical Industrial	Result	TEC
TP-478 Magnesium mg/Kg NA NA Selenium mg/Kg NA NA 52.1 NA TP-478 Selenium mg/Kg NA NA 52.1 NA TP-478 Selenium mg/Kg A40 11000 4.6 NA TP-478 Zinc mg/Kg 2600 630000 1.5U NA TP-478 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-478 Heptachior mg/L NA NA 0.0025 0.0025 TP-478 Heptachior mg/L NA NA 0.025 0.0025 TP-478 PH SU NA NA NA 0.025 0.0032 TP-478 PH SU NA NA NA 1.6 0.0032 TP-478 Chalordae (technical) mg/Kg NA NA 1.8 1.9 NA TP-479 Nitrate as N mg/Kg NA NA	TP-478	Lead	mg/Kg	400	1400	0.72J	NA
TP-478 Potassium mg/Kg NA NA S2.1 NA TP-478 Seelenium mg/Kg 440 11000 4.6 NA TP-478 Sodium mg/Kg NA NA 2100 120 120 TP-478 Zine mg/L NA NA 0.0025 0.0032 TP-478 4.4*DDE mg/L NA NA 0.0025 0.0032 TP-478 Heptachlor mg/L NA NA 0.0025 0.0032 TP-478 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-478 Percent Moisture % NA NA 19 NA TP-479 Nitrite Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrite as N mg/Kg NA NA 650 NA TP-479 Ni	TP-478	Magnesium	mg/Kg	NA	NA	130	NA
TP-478 Selenium mg/Kg 440 11000 4.6 NA TP-478 Sodium mg/Kg NA NA NA 2100 120 TP-478 Zinc mg/L NA NA NA 0.0025 0.0032 TP-478 4.4'-DDE mg/L NA NA NA 0.0025 0.0042 TP-478 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-478 Heptachlor mg/L NA NA 0.025 0.0025 TP-478 Foldordane (technical) mg/L NA NA 0.025 0.0032 TP-478 Poldordane (technical) mg/L NA NA 0.28000 NA TP-479 Nirrate Nitrite as N mg/Kg NA NA 320 NA TP-479 Nirrate as N mg/Kg NA NA 320 NA TP-479 Nirrate as N mg/Kg NA NA 32000 32000	TP-478	Potassium	mg/Kg	NA	NA	52J	NA
TP-478 Sodium mg/Kg NA NA 2100 120 TP-478 Zinc mg/Kg 26000 630000 1.5U NA TP-478 4,4*DDE mg/L NA NA 0.0025 0.0032 TP-478 Heptachlor mg/L NA NA 0.0025 0.0025 TP-478 Chlordare (technical) mg/L NA NA 0.025 0.0025 TP-478 Chlordare (technical) mg/Kg NA NA 0.025 0.0032 TP-478 Fercent Moisture % NA NA 0.829 NA TP-479 Nirate as N mg/Kg NA NA 0.66 NA TP-479 Nirate as N mg/Kg NA NA 1500 NA TP-479 Nirate as N mg/Kg NA NA 1500 NA TP-479 Suirate mg/Kg NA NA 1500 NA TP-479 Caleium <td< td=""><td>TP-478</td><td>Selenium</td><td>mg/Kg</td><td>440</td><td>11000</td><td>4.6</td><td>NA</td></td<>	TP-478	Selenium	mg/Kg	440	11000	4.6	NA
TP-478 Zine mg/Kg 26000 630000 1.5U NA TP-478 4,4*DDE mg/L NA NA 0.0025 0.0032 TP-478 Heptachlor mg/L NA NA 0.0025 0.0032 TP-478 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-478 Chlordane (technical) mg/L NA NA NA 0.0025 0.0032 TP-478 Chtal Organic Carbon mg/Kg NA NA NA 8.29 NA TP-479 Chloride mg/Kg NA NA 19 NA TP-479 Nirrate as N mg/Kg NA NA 140000 0.68U NA TP-479 Nirrate as N mg/Kg 140000 -* 6.06U NA TP-479 Suifate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 3	TP-478	Sodium	mg/Kg	NA	NA	2100	120
TP-478 4,4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-478 4,4'-DDT mg/L NA NA NA 0.0025 0.0032 TP-478 Heptachlor mg/L NA NA 0.0025 0.0032 TP-478 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-478 Dpl Total Organic Carbon mg/Kg NA NA 0.0025 NA TP-478 Percent Moisture % NA NA NA 109 NA TP-479 Nitrate Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrate as N mg/Kg R70 220000 0.24U NA TP-479 Nitrate as N mg/Kg NA NA 13000 32 TP-479 Calcium mg/Kg NA NA 1300 330 32 TP-479 Calcium mg/Kg A00 1400	TP-478	Zinc	mg/Kg	26000	630000	1.5U	NA
TP-478 4.4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-478 Chlordane (technical) mg/L NA NA NA 0.0025 0.0032 TP-478 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-478 Total Organic Carbon mg/Kg NA NA 8.29 NA TP-478 Percent Moisture % NA NA 19 NA TP-479 Chloride mg/Kg NA NA 0.66 NA TP-479 Nitrate as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/Kg NA NA 150U NA TP-479 Sulfate mg/Kg NA NA 130000 32 TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Icad mg/Kg NA NA 0.50 NA TP	TP-478	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-478 Heptachlor mg/L NA NA NA 0.0025 0.0025 TP-478 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-478 PH SU NA NA NA 8.29 NA TP-478 Total Organic Carbon mg/Kg NA NA 1.4 26000 NA TP-479 Chloride mg/Kg NA NA 1.4 320 NA TP-479 Nitrate Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrate as N mg/Kg NA NA 1.3000 32 TP-479 Calcium mg/Kg NA NA 1.3000 32 TP-479 Calcium mg/Kg 150 86000 1.3U NA TP-479 Icad mg/Kg 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA 6800 1.3U	TP-478	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-478 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-478 PH SU NA NA 8.29 NA TP-478 Total Organic Carbon mg/Kg NA NA 8.29 NA TP-479 Chloride mg/Kg NA NA 320 NA TP-479 Nitrate Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrate as N mg/Kg 8700 220000 0.24U NA TP-479 Sulfate mg/Kg NA NA NA 130000 32 TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg S00 620 36 TP-479 Icon mg/Kg NA NA 620 NA TP-479 Magnesium mg/Kg NA NA 68J NA TP-479 Solium mg/Kg N	TP-478	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-478 pH SŨ NA NA NA 8.29 NA TP-478 Total Organic Carbon mg/kg NA NA NA 26000 NA TP-478 Percent Moisture % NA NA NA 19 NA TP-479 Chloride mg/kg NA NA 0.66 NA TP-479 Nitrate Nitrite as N mg/kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/kg 140000 ** 0.66U NA TP-479 Nitrate as N mg/kg NA NA 130000 32 TP-479 Copper mg/kg 53000 * 620 36 TP-479 Lead mg/kg NA NA NA 130000 32 TP-479 Lead mg/kg NA NA 250 NA TP-479 Lead mg/kg NA NA 68J NA TP	TP-478	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-478 Total Organic Carbon mg/Kg NA NA NA 26000 NA TP-478 Percent Molsture % NA NA 19 NA TP-479 Chloride mg/Kg NA NA 320 NA TP-479 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/Kg 140000 ** 0.66U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Magnesium mg/Kg NA 130 120 TP TP-479 Sodium	TP-478	pH	SŬ	NA	NA	8.29	NA
TP-478 Percent Moisture % NA NA NA 19 NA TP-479 Chloride mg/Kg NA NA 320 NA TP-479 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate Nitrite as N mg/Kg 140000 ** 0.66U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 53000 * 620 36 TP-479 Lead mg/Kg NA NA 250 NA TP-479 Magnesium mg/Kg NA NA 68J NA TP-479 Selenium mg/Kg NA NA 1300 120 TP-479 Sodium mg/Kg RA NA 0.0025 0.0032 TP-479 A/4*DDT mg/L	TP-478	Total Organic Carbon	mg/Kg	NA	NA	26000	NA
TP-479 Chloride mg/Kg NA NA 320 NA TP-479 Nitrate Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrate as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/Kg 140000 0.66U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Lead mg/Kg 400 1400 0.95J. NA TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Magnesium mg/Kg NA NA 0.0250 NA TP-479 Selenium mg/Kg NA NA 1300 120 TP-479 Solium mg/Kg NA	TP-478	Percent Moisture	%	NA	NA	19	NA
TP-479 Nitrate Nitrite as N mg/Kg NA NA 0.66 NA TP-479 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/Kg 140000 ** 0.66U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Potassium mg/Kg NA NA 68J NA TP-479 Selenium mg/Kg NA NA 1600 1.3J NA TP-479 Sodium mg/Kg NA NA 1800 120 TP-479 Sodium mg/Kg NA NA 0.0025 0.0032 TP-479 Zinc mg/K	TP-479	Chloride	mg/Kg	NA	NA	320	NA
TP-479 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-479 Nitrate as N mg/Kg 140000 ** 0.66U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA NA 620 38 TP-479 Potassium mg/Kg NA NA 88J NA TP-479 Soldium mg/Kg NA NA 1300 120 TP-479 Soldium mg/L NA NA 0.0025 0.0032 TP-479 J.4'-DDE mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L </td <td>TP-479</td> <td>Nitrate Nitrite as N</td> <td>mg/Kg</td> <td>NA</td> <td>NA</td> <td>0.66</td> <td>NA</td>	TP-479	Nitrate Nitrite as N	mg/Kg	NA	NA	0.66	NA
TP-479 Nitrate as N mg/Kg 140000 ** 0.86U NA TP-479 Sulfate mg/Kg NA NA 150U NA TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Lead mg/Kg Value Value 0.95J NA TP-479 Lead mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg NA NA 88J NA TP-479 Selenium mg/Kg NA NA 1300 120 TP-479 Sodium mg/Kg 28000 630000 1.5U NA TP-479 J.4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 J.4'-DDT mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA	TP-479	Nitrite as N	mg/Kg	8700	220000	0.24U	NA
TP-479 Sulfate mg/Kg NA NA NA 150U NA TP-479 Calcium mg/Kg NA NA NA 130000 32 TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Iron mg/Kg 53000 * 620 36 TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Potassium mg/Kg NA NA 68J NA TP-479 Potassium mg/Kg A40 11000 1.3J NA TP-479 Selenium mg/Kg A40 11000 1.3J NA TP-479 Sodium mg/Kg 26000 630000 1.5U NA TP-479 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 Heptachlor mg/L NA NA 0.025 0.0032 TP-479 PH S	TP-479	Nitrate as N	mg/Kg	140000	**	0.66U	NA
TP-479 Calcium mg/Kg NA NA 130000 32 TP-479 Copper mg/Kg 150 88000 1.3U NA TP-479 Iron mg/Kg 53000 * 620 36 TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg NA NA 68J NA TP-479 Selenium mg/Kg 440 11000 1.3J NA TP-479 Sodium mg/Kg NA NA 1300 120 TP-479 Zinc mg/L NA NA 0.0025 0.0032 TP-479 4,4'-DDE mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0255 0.0032 TP-479 Fotal Organic Carbon mg/Kg NA	TP-479	Sulfate	mg/Kg	NA	NA	150U	NA
TP-479 Copper mg/Kg 150 89000 1.3U NA TP-479 Iron mg/Kg 53000 * 620 36 TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA NA 250 NA TP-479 Potassium mg/Kg NA NA NA 68J NA TP-479 Selenium mg/Kg NA NA 1000 1.3J NA TP-479 Sodium mg/Kg NA NA NA 1300 120 TP-479 Zinc mg/Kg 26000 630000 1.5U NA TP-479 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 Heptachlor mg/L NA NA 0.0025 0.0032 TP-479 Dhordane (technical) mg/L NA NA 0.025 0.0032 <t< td=""><td>TP-479</td><td>Calcium</td><td>mg/Kg</td><td>NA</td><td>NA</td><td>130000</td><td>32</td></t<>	TP-479	Calcium	mg/Kg	NA	NA	130000	32
TP-479 Iron mg/Kg 53000 * 620 36 TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg NA NA NA 68J NA TP-479 Selenium mg/Kg NA NA NA 68J NA TP-479 Solium mg/Kg NA NA NA 1300 120 TP-479 Sodium mg/Kg 28000 630000 1.5U NA TP-479 4.4'-DDE mg/L NA NA 0.0025 0.0025 TP-479 4.4'-DDT mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 PH SU NA NA NA 0.025 0.0025 TP-479	TP-479	Copper	mg/Kg	150	89000	1.3U	NA
TP-479 Lead mg/Kg 400 1400 0.95J NA TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg A40 11000 1.3J NA TP-479 Sodium mg/Kg A40 11000 1.3J NA TP-479 Sodium mg/Kg NA NA 1300 120 TP-479 Zinc mg/L NA NA 0.0025 0.0032 TP-479 4.4'-DDE mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 pH SU NA NA 0.025 0.0032 TP-479 pH SU NA NA 13000 NA TP-479 Percent Moisture % NA NA <td>TP-479</td> <td>Iron</td> <td>mg/Kg</td> <td>53000</td> <td>•</td> <td>620</td> <td>36</td>	TP-479	Iron	mg/Kg	53000	•	620	36
TP-479 Magnesium mg/Kg NA NA 250 NA TP-479 Potassium mg/Kg NA NA 68J NA TP-479 Selenium mg/Kg 440 11000 1.3J NA TP-479 Sodium mg/Kg NA NA NA 1300 120 TP-479 Zinc mg/Kg 28000 630000 1.5U NA TP-479 4,4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 4,4'-DDT mg/L NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-479 pH SU NA NA 0.025 0.0032 TP-479 pH SU NA NA 13000 NA TP-479 Percent Moisture %<	TP-479	Lead	mg/Kg	400	1400	0.95J	NA
TP-479 Potassium mg/Kg NA NA 68J NA TP-479 Selenium mg/Kg 440 11000 1.3J NA TP-479 Sodium mg/Kg NA NA NA 1300 120 TP-479 Zinc mg/Kg 26000 630000 1.5U NA TP-479 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0032 TP-479 Dtal Organic Carbon mg/Kg NA NA 13000 NA TP-479 Percent Moisture % NA NA 13000 NA TP-479 Percent Moisture % NA NA 130 NA TP-480 Chloride	TP-479	Magnesium	mg/Kg	NA	NA	250	NA
TP-479 Selenium mg/Kg 440 11000 1.3J NA TP-479 Sodium mg/Kg NA NA NA 1300 120 TP-479 Zinc mg/Kg NA NA NA 1300 120 TP-479 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-479 4.4'-DDT mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-479 Potal Organic Carbon mg/Kg NA NA 13000 NA TP-479 Percent Moisture % NA NA 18 NA TP-479 Percent Moisture % NA NA 18 NA	TP-479	Potassium	mg/Kg	NA	NA	68J	NA
TP-479 Sodium mg/Kg NA NA 1300 120 TP-479 Zinc mg/Kg 26000 630000 1.5U NA TP-479 4,4'-DDE mg/L NA NA 0.0025 0.0032 TP-479 4,4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA 0.025 0.0025 TP-479 DH SU NA NA 0.025 0.0032 TP-479 Percent Moisture % NA NA 8.16 NA TP-479 Percent Moisture % NA NA 13000 NA TP-480 Chloride mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite	TP-479	Selenium	mg/Kg	440	11000	1.3J	NA
TP-479 Zinc mg/Kg 26000 630000 1.5U NA TP-479 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-479 4.4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-479 Dtal Organic Carbon mg/Kg NA NA 13000 NA TP-479 Percent Moisture % NA NA 18 NA TP-479 Percent Moisture % NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate as N mg/Kg 140000 *** 0.67U NA	TP-479	Sodium	mg/Kg	NA	NA	1300	120
TP-479 4,4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-479 4,4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-479 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-479 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-479 Dtal Organic Carbon mg/Kg NA NA 8.16 NA TP-479 Percent Moisture % NA NA 13000 NA TP-479 Percent Moisture % NA NA 18 NA TP-480 Chloride mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg NA NA 140000<	TP-479	Zinc	mg/Kg	26000	630000	1.5U	NA
TP-479 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-479 Heptachlor mg/L NA NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-479 pH SU NA NA NA 8.16 NA TP-479 Total Organic Carbon mg/Kg NA NA 13000 NA TP-479 Percent Moisture % NA NA 18 NA TP-479 Percent Moisture % NA NA 18 NA TP-479 Percent Moisture % NA NA 18 NA TP-480 Chloride mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg NA NA 49J NA	TP-479	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-479 Heptachlor mg/L NA NA 0.0025 0.0025 TP-479 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-479 pH SU NA NA NA 8.16 NA TP-479 Total Organic Carbon mg/Kg NA NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate as N mg/Kg 140000 *** 0.67U NA TP-480 Calcium mg/Kg NA	TP-479	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-479 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-479 pH SU NA NA NA 8.16 NA TP-479 Total Organic Carbon mg/Kg NA NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-480 Chloride mg/Kg NA NA NA 0.67U NA TP-480 Nitrate as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 <	TP-479	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-479 pH SU NA NA 8.16 NA TP-479 Total Organic Carbon mg/Kg NA NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Chloride mg/Kg NA NA NA 18 NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA A49J NA TP-480 Calcium mg/Kg NA NA 140000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA	TP-479	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-479 Total Organic Carbon mg/Kg NA NA 13000 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-479 Percent Moisture % NA NA NA 18 NA TP-480 Chloride mg/Kg NA NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Sulfate mg/Kg NA NA 14000 32 TP-480 Calcium mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg NA NA 140 NA TP-480 <td>TP-479</td> <td>pH</td> <td>SU</td> <td>NA</td> <td>NA</td> <td>8.16</td> <td>NA</td>	TP-479	pH	SU	NA	NA	8.16	NA
TP-479 Percent Moisture % NA NA 18 NA TP-480 Chloride mg/Kg NA NA NA 330 NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Sulfate mg/Kg NA NA 140000 32 TP-480 Calcium mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg NA NA 140 NA TP-480 Lead mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg </td <td>TP-479</td> <td>Total Organic Carbon</td> <td>mg/Kg</td> <td>NA</td> <td>NA</td> <td>13000</td> <td>NA</td>	TP-479	Total Organic Carbon	mg/Kg	NA	NA	13000	NA
TP-480 Chloride mg/Kg NA NA 330 NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Nitrate as N mg/Kg NA NA 49J NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Detassium mg/Kg	TP-479	Percent Moisture	%	NA	NA	18	NA
TP-480 Chloride mg/Kg NA NA 330 NA TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-480 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Nitrate as N mg/Kg NA NA 49J NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg	TD 100	Oblasida				844	
TP-480 Nitrate Nitrite as N mg/Kg NA NA 0.670 NA TP-480 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg 400 1400 1.1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA	TP-460	Chionde	mg/Kg	NA NA	NA	330	NA NA
TP-480 Nitrate as N mg/Kg 8700 220000 0.240 NA TP-480 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA 14000 32 TP-480 Calcium mg/Kg 150 89000 1.3U NA TP-480 Copper mg/Kg 53000 * 630 36 TP-480 Iron mg/Kg 400 1400 1.1J NA TP-480 Lead mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA<	TP-480	Nitrate Nitrite as N	mg/Kg	NA 0700	NA 220000	0.670	NA
TP-480 Nitrate as N mg/Kg 140000 0.070 NA TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA NA 14000 32 TP-480 Calcium mg/Kg 150 89000 1.3U NA TP-480 Copper mg/Kg 53000 * 630 36 TP-480 Iron mg/Kg 400 1400 1.1J NA TP-480 Lead mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg NA NA 120 NA TP-480 Selenium mg/Kg NA NA 120 NA	TP-480	Nitrate as N	mg/Kg	8700	220000	0.240	NA
TP-480 Sulfate mg/Kg NA NA 49J NA TP-480 Calcium mg/Kg NA NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg 400 1400 1.1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg NA NA 150.1 120	TP-400	Nitrate as N	mg/Kg	140000	NIA	0.070	NA
TP-480 Copper mg/Kg NA NA 14000 32 TP-480 Copper mg/Kg 150 89000 1.3U NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg 400 1400 1.1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Detassium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 150.1 120	TP 490	Sullate	mg/Kg	NA NA	NA NA	490	1NA 22
TP-480 Iron mg/Kg 150 89000 1.30 NA TP-480 Iron mg/Kg 53000 * 630 36 TP-480 Lead mg/Kg 400 1400 1.1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Selenium mg/Kg NA NA 150.1 120	TP 400	Calcium	mg/Kg	150	NA 80000	14000	32
TP-480 Iron mg/kg 5300 630 36 TP-480 Lead mg/Kg 400 1400 1.1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Selenium mg/Kg NA NA 150.1 120	TP 490	Copper	mg/Kg	52000	69000	620	114
TP-480 Magnesium mg/Kg NA NA 1400 1,1J NA TP-480 Magnesium mg/Kg NA NA 140 NA TP-480 Potassium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Selenium mg/Kg NA NA 150.1 120	TD 400	Load	mg/Kg	400	1400	1.11	30 NIA
TP-480 Potassium mg/Kg NA NA 140 NA TP-480 Selenium mg/Kg NA NA 48J NA TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Selenium mg/Kg NA NA 150.1 120	TP.490	Magnacium	mg/Kg	400	NIA	1.10	NA
TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Selenium mg/Kg 440 11000 1.2U NA TP-480 Sodium mg/Kg NA NA 150.1 120	TP.480	Poteccium	marka	NA	NA	401	NIA
TP-480 Sodium Img/Kg NA NA 150.1 120	TP-480	Selenium	mg/Kg	440	11000	1.211	NA
	TP-480	Sodium	mg/Kg	NA	NA	150.1	120

·			62-777 Ta	able 2 Soil		SQAG*
Client Sample ID	Analyte	Reporting Unit	Residential	Commerical Industrial	Result	TEC
TP-480	Zinc	mg/Kg	26000	630000	1.4U	NA
TP-480	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-480	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-480	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-480	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-480	pH	SU	NA	NA	7.57	NA
TP-480	Total Organic Carbon	mg/Kg	NA	NA	420U	NA
TP-480	Percent Moisture	%			18	NA
TP-481	Chloride	mg/Kg	NA	NA	380	NA
TP-481	Nitrate Nitrite as N	mg/Kg	NA	NA	0.690	NA
TP-481	Nitrite as N	mg/Kg	8700	220000	0.250	NA
TP-481	Nitrate as N	mg/Kg	140000		0.690	NA
TP-481	Sulfate	mg/Kg	NA	NA	84J	NA
TP-481	Calcium	mg/Kg	NA	NA	130000	32
TP-481	Copper	mg/Kg	150	89000	1.40	NA
TP-481	Iron	mg/Kg	53000		2100	36
TP-481	Lead	mg/Kg	400	1400	1.3	NA
TP-481	Magnesium	mg/Kg	NA	NA	410	NA
TP-481	Potassium	mg/Kg	NA	NA	120	NA
TP-481	Selenium	mg/Kg	440	11000	1.8J	NA
TP-481	Sodium	mg/Kg	NA	NA	1300	120
TP-481	Zinc	mg/Kg	26000	630000	1.50	NA
TP-481	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-481	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-481	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-481	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-481	pH	SU	NA	NA	8.22	NA
TP-481	Total Organic Carbon	mg/Kg	NA	NA	5000	NA
TP-481	Percent Moisture	%			20	NA
TP-482	Chloride	ma/Ka	NA	NA	240	NA
TP-482	Nitrate Nitrite as N	ma/Ka	NA	NA	0.64U	NA
TP-482	Nitrite as N	ma/Ka	8700	220000	0.23U	NA
TP-482	Nitrate as N	ma/Ka	140000		0.64U	NA
TP-482	Sulfate	ma/Ka	NA	NA	120	NA
TP-482	Calcium	ma/Ka	NA	NA	180000	32
TP-482	Copper	ma/Ka	150	89000	1.3U	NA
TP-482	Iron	ma/Ka	53000		290	36
TP-482	Lead	ma/Ka	400	1400	0.67J	NA
TP-482	Magnesium	mg/Kg	NA	NA	190	NA
TP-482	Potassium	mg/Kg	NA	NA	37J	NA
TP-482	Selenium	mg/Kg	440	11000	1.10	NA
TP-482	Sodium	mg/Kg	NA	NA	2000	120
TP-482	Zinc	mg/Kg	26000	630000	1.4U	NA
TP-482	4.4'-DDE	ma/L	NA	NA	0.0025	0.0032
TP-482	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-482	Heptachlor	mg/L	NA	NA	0.0025	0.0025

			62-777 Ta	able 2 Soil		SQAG'
Client Sample ID	Analyte	Reporting Unit	Residential	Commerical Industrial	Result	TEC
TP-482	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-482	pH	SU	NA	NA	8.84	NA
TP-482	Total Organic Carbon	mg/Kg	NA	NA	19000	NA.
TP-482	Percent Moisture	%			15	NA
					· · · · · · · · · · · · · · · · · · ·	1
TP-483	Chloride	mg/Kg	NA	NA	260	NA
TP-483	Nitrate Nitrite as N	mg/Kg	NA	NA	0.71U	NA
TP-483	Nitrite as N	mg/Kg	8700	220000	0.26U	NA
TP-483	Nitrate as N	mg/Kg	140000		0.71U	NA
TP-483	Sulfate	mg/Kg	NA	NA	120	NA
TP-483	Calcium	mg/Kg	NA	NA	170000	32
TP-483	Copper	mg/Kg	150	89000	1.4U	NA
TP-483	Iron	mg/Kg	53000	•	360	36
TP-483	Lead	mg/Kg	400	1400	0.69J	NA
TP-483	Magnesium	mg/Kg	NA	NA	140	NA
TP-483	Potassium	mg/Kg	NA	NA	44J	NA
TP-483	Selenium	mg/Kg	440	11000	1.3J	NA
TP-483	Sodium	mg/Kg	NA	NA	1900	120
TP-483	Zinc	mg/Kg	26000	630000	1.5J	NA
TP-483	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-483	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-483	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-483	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-483	pH	SU	NA	NA	8.84	NA
TP-483	Total Organic Carbon	mg/Kg	NA	NA	33000	NA
TP-483	Percent Moisture	%	NA	NA	22	NA
TP-484A	Chloride	mg/Kg	NA	NA	290	NA
TP-484A	Nitrate Nitrite as N	mg/Kg	NA	NA	0.67U	NA
TP-484A	Nitrite as N	mg/Kg	8700	220000	2.6	NA
TP-484A	Nitrate as N	mg/Kg	140000		0.67U	NA
TP-484A	Sulfate	mg/Kg	NA	NA	190	NA
TP-484A	Calcium	mg/Kg	NA	NA	1100	32
TP-484A	Copper	mg/Kg	150	89000	1.3U	NA
TP-484A	Iron	mg/Kg	53000		740	36
TP-484A	Lead	mg/Kg	400	1400	2.3	NA
TP-484A	Magnesium	mg/Kg	NA	NA	120J	NA
TP-484A	Potassium	mg/Kg	NA	NA	58J	NA
TP-484A	Selenium	mg/Kg	440	11000	2.4J	NA
TP-484A	Sodium	mg/Kg	NA	NA	98	120
TP-484A	Zinc	mg/Kg	26000	630000	1.4U	NA
TP-484A	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-484A	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-484A	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-484A	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-484A	pH	SÚ	NA	NA	7.79	NA
TP-484A	Total Organic Carbon	mg/Kg	NA	NA	610	NA
TP-484A	Percent Moisture	%	NA	NA	18	NA

			62-777 Ta	able 2 Soil		SQAG*
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-485A	Chloride	mg/Kg	NA	NA	320	NA
TP-485A	Nitrate Nitrite as N	mg/Kg	NA	NA	0.69U	NA
TP-485A	Nitrite as N	mg/Kg	8700	220000	0.25U	NA
TP-485A	Nitrate as N	mg/Kg	140000		0.69U	NA
TP-485A	Sulfate	mg/Kg	NA	NA	330U	NA
TP-485A	Calcium	mg/Kg	NA	NA	170000	32
TP-485A	Copper	mg/Kg	150	89000	1.3	NA
TP-485A	Iron	mg/Kg	53000		700	36
TP-485A	Lead	mg/Kg	400	1400	0.95J	NA
TP-485A	Magnesium	mg/Kg	NA	NA	300	NA
TP-485A	Potassium	mg/Kg	NA	NA	69J	NA
TP-485A	Selenium	mg/Kg	440	11000	1.6	NA
TP-485A	Sodium	ma/Ka	NA	NA	1800	120
TP-485A	Zinc	mg/Kg	26000	630000	1.5U	NA
TP-485A	4.4'-DDE	ma/L	NA	NA	0.0025	0.0032
TP-485A	4.4'-DDT	ma/L	NA	NA	0.0025	0.0042
TP-485A	Heptachlor	ma/L	NA	NA	0.0025	0.0025
TP-485A	Chlordane (technical)	ma/L	NA	NA	0.025	0.0032
TP-485A	pH	SU	NA	NA	8.31	NA
TP-485A	Total Organic Carbon	ma/Ka	NA	NA	27000	NA
TP-485A	Percent Moisture	%	NA	NA	22	NA
TP-486	Chloride	ma/Ka	NA	NA	290	NA
TP-486	Nitrate Nitrite as N	ma/Ka	NA	NA	0.67U	NA
TP-486	Nitrite as N	ma/Ka	8700	220000	0.26U	NA
TP-486	Nitrate as N	ma/Ka	140000		0.67U	NA
TP-486	Sulfate	mg/Kg	NA	NA	38U	NA
TP-486	Calcium	ma/Ka	NA	NA	160000	32
TP-486	Copper	ma/Ka	150	89000	1.3U	NA
TP-486	Iron	ma/Ka	53000		450	36
TP-486	Lead	ma/Ka	400	1400	0.91J	NA
TP-486	Magnesium	ma/Ka	NA	NA	210	NA
TP-486	Potassium	ma/Ka	NA	NA	52J	NA
TP-486	Selenium	ma/Ka	440	11000	1.2U	NA
TP-486	Sodium	ma/Ka	NA	NA	1600	120
TP-486	Zinc	ma/Ka	26000	630000	14	NA
TP-486	4.4'-DDF	ma/l	NA	NA	0.0025	0.0032
TP-486	4 4'-DDT	mal	NA	NA	0.0025	0.0042
TP-486	Hentachlor	ma/l	NA	NA	0.0025	0.0025
TP-486	Chlordane (technical)	mal	NA	NA	0.025	0.0032
TP-486	nH	SU	NA	NA	8.66	NA
TP-486	Total Omanic Carbon	ma/Ka	NA	NA	25000	NA
TP-486	Percent Moisture	04	NA	NA	18	NA
11-400	r er cent moisture	70	110	1104	10	NA
TD_487	Chlorida	malka	NA	NA	310	NIA
TP.487	Nitrate Nitrite as N	mg/Kg	NA	NA	0.74	NA
TP.487	Nitrite as N	malka	8700	220000	0.74	NA
11 401	NAME OF TA	ing/Ng	0100	220000	0.61	1104

Client Sample ID Analyte Unit Residential Industrial Result Result TEC TP-487 Nitrate as N mg/Kg NA NA NA NA TP-487 Suifate mg/Kg NA NA NA NA TP-487 Calcium mg/Kg 150 89000 1.4 NA TP-487 Copper mg/Kg 53000 * 360 36 TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Magnesium mg/Kg 400 14000 0.82 NA TP-487 Selenium mg/Kg NA NA 60 NA TP-487 Sodium mg/Kg 28000 630000 1.6 NA TP-487 Zonc mg/Kg NA NA 0.0025 0.0032 TP-487 At-DDT mg/L NA NA 0.0025 0.0032 TP-487 Chlordare (technical) mg/L				62-777 Ta	able 2 Soil		SQAG"
TP-487 Nitrate as N mg/Kg 140000 ** 0.74 NA TP-487 Sulfate mg/Kg NA NA A8 NA TP-487 Calcium mg/Kg NA NA A8 NA TP-487 Copper mg/Kg 150 89000 1.4 NA TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Lead mg/Kg NA NA 130 NA TP-487 Lead mg/Kg NA NA 130 NA TP-487 Selenium mg/Kg NA NA 2600 120 TP-487 Zinc mg/L NA NA 0.0025 0.0032 TP-487 Zinc mg/L NA NA 0.0025 0.0032 TP-487 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-487 Total Organic Carbon mg/Kg NA	Client Sample ID	Analyte	Reporting Unit	Residential	Commerical Industrial	Result	TEC
TP-487 Sulfate mg/Kg NA NA NA 48 NA TP-487 Calcium mg/Kg 150 89000 32 TP-487 Copper mg/Kg 150 89000 1.4 NA TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Lead mg/Kg NA NA NA 130 NA TP-487 Selenium mg/Kg NA NA NA 130 NA TP-487 Soldium mg/Kg NA NA NA 0.0025 0.0032 TP-487 Zinc mg/Kg NA NA NA 0.0025 0.0032 TP-487 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-487 Chlordane (technical) mg/Kg NA NA 0.0025 0.0032 TP-487 Pd Total Organic Carbon mg/Kg NA NA 20000	TP-487	Nitrate as N	mg/Kg	140000		0.74	NA
TP-487 Calcium mg/Kg NA NA 23000 32 TP-487 Copper mg/Kg 150 89000 1.4 NA TP-487 Iron mg/Kg 53000 * 360 36 TP-487 Lead mg/Kg NA NA NA 1400 0.82 NA TP-487 Selenium mg/Kg NA NA NA 130 NA TP-487 Selenium mg/Kg NA NA NA 2600 1.3 NA TP-487 Sodium mg/Kg NA NA 0.0025 0.0032 TP-487 Zinc mg/L NA NA 0.0025 0.0025 TP-487 4.4'-DDT mg/L NA NA 0.0025 0.0025 TP-487 Heptachlor mg/L NA NA 0.025 0.0025 TP-487 Total Crganic Carbon mg/Kg NA NA 21000 NA <	TP-487	Sulfate	mg/Kg	NA	NA	48	NA
TP-487 Copper mg/Kg 150 89000 1.4 NA TP-487 Iron mg/Kg 53000 * 360 36 TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Magnesium mg/Kg NA NA NA 60 NA TP-487 Selenium mg/Kg NA NA 60 NA TP-487 Sodium mg/Kg NA NA 60 NA TP-487 Sodium mg/Kg NA NA NA 2600 630000 1.6 NA TP-487 A.4*DDE mg/L NA NA NA 0.0025 0	TP-487	Calcium	mg/Kg	NA	NA	230000	32
TP-487 Iron mg/Kg 53000 * 360 36 TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Potassium mg/Kg NA NA 130 NA TP-487 Selenium mg/Kg NA NA NA 60 NA TP-487 Selenium mg/Kg NA NA NA 2000 120 TP-487 Sodium mg/Kg NA NA NA 0.0025 0.0032 TP-487 4.4*DDE mg/L NA NA NA 0.0025 0.0032 TP-487 Heptachior mg/L NA NA 0.0025 0.0032 TP-487 OH SU NA NA 0.0025 0.0032 TP-487 Total Organic Carbon mg/Kg NA NA 2100 NA TP-487 Percent Moisture % NA NA 220000 NA TP-4	TP-487	Copper	mg/Kg	150	89000	1.4	NA
TP-487 Lead mg/Kg 400 1400 0.82 NA TP-487 Magnesium mg/Kg NA NA NA 130 NA TP-487 Selenium mg/Kg NA NA 60 NA TP-487 Sodium mg/Kg 26000 630000 1.3 NA TP-487 Zinc mg/Kg 26000 630000 1.6 NA TP-487 A.4*DDE mg/L NA NA 0.0025 0.0032 TP-487 Heptachlor mg/L NA NA 0.0025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 8.55 NA TP-487 Total Organic Carbon mg/Kg NA NA 21000 NA TP-487 Percent Moisture % NA NA 220 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as	TP-487	Iron	ma/Ka	53000	•	360	36
TP-487 Magnesium mg/Kg NA NA NA 130 NA TP-487 Potassium mg/Kg NA NA NA 60 NA TP-487 Selenium mg/Kg NA NA NA 60 NA TP-487 Sodium mg/Kg NA NA NA 2000 120 TP-487 4,4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-487 Heptachlor mg/L NA NA NA 0.025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0025 TP-487 Total Organic Carbon mg/Kg NA NA 25 NA TP-487 Total Organic Carbon mg/Kg NA NA 25 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg NA NA	TP-487	Lead	mg/Kg	400	1400	0.82	NA
TP-487 Potassium mg/Kg NA NA NA 60 NA TP-487 Selenium mg/Kg 440 11000 1.3 NA TP-487 Sodium mg/Kg NA NA NA 2600 120 TP-487 Zinc mg/Kg 26000 630000 1.6 NA TP-487 4.4'-DDE mg/L NA NA 0.0025 0.0042 TP-487 Heptachior mg/L NA NA 0.0025 0.0042 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0042 TP-487 Otal Organic Carbon mg/Kg NA NA 25 NA TP-487 Total Organic Carbon mg/Kg NA NA 260 NA TP-487 Percent Moisture %6 NA NA 0.67U NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA <t< td=""><td>TP-487</td><td>Magnesium</td><td>mg/Kg</td><td>NA</td><td>NA</td><td>130</td><td>NA</td></t<>	TP-487	Magnesium	mg/Kg	NA	NA	130	NA
TP-487 Selenium mg/Kg 440 11000 1.3 NA TP-487 Sodium mg/Kg NA NA NA 2600 120 TP-487 Zinc mg/Kg 26000 630000 1.6 NA TP-487 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-487 Heptachler mg/L NA NA 0.0025 0.0025 TP-487 Heptachler mg/L NA NA 0.0025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-487 Total Organic Carbon mg/Kg NA NA 21000 NA TP-487 Percent Moisture % NA NA 22000 0.24U NA TP-488 Nitrate as N mg/Kg NA NA 130 NA TP-488 Nitrate as N mg/Kg NA NA 140000 ** 640	TP-487	Potassium	mg/Kg	NA	NA	60	NA
TP-487 Sodium mg/Kg NA NA 2800 120 TP-487 Zinc mg/Kg 26000 630000 1.6 NA TP-487 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-487 4.4'-DDT mg/L NA NA 0.0025 0.0025 TP-487 Heptachlor mg/L NA NA 0.0025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-487 DH SU NA NA 0.0025 0.0032 TP-487 DH SU NA NA 0.6025 N.0032 TP-487 Percent Moisture % NA NA 25 NA TP-488 Nitrate as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg NA NA 130 NA TP-488 Suffate mg/Kg <	TP-487	Selenium	mg/Kg	440	11000	1.3	NA
TP-487 Zinc mg/Kg 26000 630000 1.6 NA TP-487 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-487 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-487 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-487 Total Organic Carbon mg/Kg NA NA 0.855 NA TP-487 Percent Moisture % NA NA 21000 NA TP-488 Chloride mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg NA NA 130 NA TP-488 Sulfate mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg NA NA 140000 0.91J NA<	TP-487	Sodium	mg/Kg	NA	NA	2600	120
TP-487 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-487 4.4'-DDT mg/L NA NA NA 0.0025 0.0032 TP-487 Heptachlor mg/L NA NA NA 0.0025 0.0032 TP-487 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-487 DH SU NA NA NA 8.55 NA TP-487 Total Organic Carbon mg/Kg NA NA 21000 NA TP-487 Percent Moisture % NA NA 290 NA TP-488 Nitrate as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg 150 89000 1.3U NA TP-488 Calcium mg/Kg 150 360 7540	TP-487	Zinc	mg/Kg	26000	630000	1.6	NA
TP-487 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-487 Heptachlor mg/L NA NA 0.0025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-487 DH SU NA NA 0.025 0.0032 TP-487 Total Organic Carbon mg/Kg NA NA 25 NA TP-487 Percent Moisture % NA NA 25 NA TP-488 Chloride mg/Kg NA NA 200 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg NA NA 130 NA TP-488 Sulfate mg/Kg NA NA 140000 32 TP-488 Colpier mg/Kg NA NA 140000 1.3U NA TP-488 Copper <td>TP-487</td> <td>4.4'-DDE</td> <td>mg/L</td> <td>NA</td> <td>NA</td> <td>0.0025</td> <td>0.0032</td>	TP-487	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-487 Heptachlor mg/L NA NA 0.0025 0.0025 TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-487 pH SU NA NA NA 8.55 NA TP-487 Total Organic Carbon mg/Kg NA NA 21000 NA TP-487 Percent Moisture % NA NA 25 NA TP-488 Chloride mg/Kg NA NA 0.67U NA TP-488 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrite as N mg/Kg NA NA 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg NA NA 190 NA TP-488 Calc	TP-487	4.4'-DDT	ma/L	NA	NA	0.0025	0.0042
TP-487 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-487 pH SU NA NA 8.55 NA TP-487 Total Organic Carbon mg/Kg NA NA 21000 NA TP-487 Percent Moisture % NA NA 21000 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 22000 0.24U NA TP-488 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Suifate mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg NA NA 190 NA TP-488	TP-487	Heptachlor	ma/L	NA	NA	0.0025	0.0025
TP-487 pH SU NA NA NA 8.55 NA TP-487 Total Organic Carbon mg/Kg NA NA NA 21000 NA TP-487 Percent Moisture % NA NA NA 21000 NA TP-488 Chloride mg/Kg NA NA 225 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg 140000 *** 0.67U NA TP-488 Sulfate mg/Kg NA NA 140000 32 TP-488 Colclum mg/Kg NA NA 140000 32 TP-488 Coopper mg/Kg 150 89000 1.3U NA TP-488 Lead mg/Kg NA NA 190 NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488	TP-487	Chlordane (technical)	ma/L	NA	NA	0.025	0.0032
TP-487 Total Organic Carbon mg/Kg NA NA NA 21000 NA TP-487 Percent Moisture % NA NA NA 25 NA TP-487 Percent Moisture % NA NA NA 25 NA TP-488 Chloride mg/Kg NA NA 200 NA TP-488 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA 130 NA TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Iron mg/Kg 400 1400 0.91J NA TP-488 Lead mg/Kg NA NA 1500 120 TP-488 Detassium mg/Kg NA NA 1500 120 TP-488<	TP-487	pH	SU	NA	NA	8.55	NA
TP-487 Percent Moisture % NA NA NA 25 NA TP-487 Chloride mg/Kg NA NA NA 25 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA NA 130 NA TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg NA NA 140000 0.91J NA TP-488 Lead mg/Kg NA NA 190 NA TP-488 Magnesium mg/Kg NA NA 150 120 TP-48	TP-487	Total Organic Carbon	ma/Ka	NA	NA	21000	NA
TP-488 Chloride mg/Kg NA NA 290 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA NA 0.67U NA TP-488 Nitrate Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA 130 NA TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Calcium mg/Kg 150 89000 1.3U NA TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Lead mg/Kg NA NA 58J NA TP-488 Lead mg/Kg NA NA 58J NA TP-488 Solium mg/Kg NA NA 1500 120 TP-488 Zinc mg/Kg	TP-487	Percent Moisture	%	NA	NA	25	NA
TP-488 Chloride mg/Kg NA NA 290 NA TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA NA 130 NA TP-488 Calcium mg/Kg NA NA NA 140000 32 TP-488 Calcium mg/Kg NA NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Lead mg/Kg A00 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Solium mg/Kg NA NA 1500 120 TP-488				-			
TP-488 Nitrate Nitrite as N mg/Kg NA NA 0.67U NA TP-488 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA NA 130 NA TP-488 Calcium mg/Kg NA NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg 400 1400 0.91J NA TP-488 Lead mg/Kg NA NA 190 NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Sodium mg/Kg NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 A,4'-DDE <td>TP-488</td> <td>Chloride</td> <td>ma/Kg</td> <td>NA</td> <td>NA</td> <td>290</td> <td>NA</td>	TP-488	Chloride	ma/Kg	NA	NA	290	NA
TP-488 Nitrite as N mg/Kg 8700 220000 0.24U NA TP-488 Nitrate as N mg/Kg 140000 ** 0.67U NA TP-488 Sulfate mg/Kg NA NA NA 130 NA TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Lead mg/Kg 53000 * 540 36 TP-488 Lead mg/Kg NA NA NA 140000 0.91J NA TP-488 Lead mg/Kg NA NA 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 150 120 TP-488 Selenium mg/Kg NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-4	TP-488	Nitrate Nitrite as N	ma/Ka	NA	NA	0.67U	NA
TP-488 Nitrate as N mg/Kg 140000 *** 0.67U NA TP-488 Sulfate mg/Kg NA NA NA 130 NA TP-488 Calcium mg/Kg NA NA NA 130 NA TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg 53000 * 540 36 TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Dagnesium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 Zinc mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 Heptachlor	TP-488	Nitrite as N	ma/Ka	8700	220000	0.24U	NA
TP-488 Sulfate mg/Kg NA NA 130 NA TP-488 Calcium mg/Kg NA NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg 5300 * 540 36 TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 Zinc mg/L NA NA 0.0025 0.0032 TP-488 Zinc mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDT mg/L NA	TP-488	Nitrate as N	mg/Kg	140000	**	0.67U	NA
TP-488 Calcium mg/Kg NA NA 140000 32 TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg 53000 * 540 36 TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Potassium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg A40 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1400 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 Zinc mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDT mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L N	TP-488	Sulfate	mg/Kg	NA	NA	130	NA
TP-488 Copper mg/Kg 150 89000 1.3U NA TP-488 Iron mg/Kg 53000 * 540 36 TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Potassium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg NA NA 190 NA TP-488 Selenium mg/Kg NA NA 120 NA TP-488 Selenium mg/Kg 26000 630000 1.4U NA TP-488 Zinc mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDE mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 PH SU NA NA	TP-488	Calcium	mg/Kg	NA	NA	140000	32
TP-488 Iron mg/Kg 53000 * 540 36 TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Potassium mg/Kg NA NA 190 NA TP-488 Potassium mg/Kg NA NA 58J NA TP-488 Selenium mg/Kg A40 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 4,4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 4,4'-DDT mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L NA NA 0.025 0.0032 TP-488 DH SU NA </td <td>TP-488</td> <td>Copper</td> <td>ma/Ka</td> <td>150</td> <td>89000</td> <td>1.3U</td> <td>NA</td>	TP-488	Copper	ma/Ka	150	89000	1.3U	NA
TP-488 Lead mg/Kg 400 1400 0.91J NA TP-488 Magnesium mg/Kg NA NA NA 190 NA TP-488 Potassium mg/Kg NA NA NA 58J NA TP-488 Selenium mg/Kg 440 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1400 1.2U NA TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 4,4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 4,4'-DDT mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-488 Total Organic Carbon mg/Kg NA NA 18 NA <td>TP-488</td> <td>Iron</td> <td>ma/Ka</td> <td>53000</td> <td></td> <td>540</td> <td>36</td>	TP-488	Iron	ma/Ka	53000		540	36
TP-488 Magnesium mg/Kg NA NA 190 NA TP-488 Potassium mg/Kg NA NA NA 58.J NA TP-488 Selenium mg/Kg 440 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1500 120 TP-488 Zinc mg/Kg 26000 630000 1.4U NA TP-488 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L NA NA 0.025 0.0032 TP-488 Dflordane (technical) mg/L NA NA 0.025 0.0032 TP-488 Percent Moisture % NA NA 17000 NA TP-488	TP-488	Lead	mg/Kg	400	1400	0.91J	NA
TP-488 Potassium mg/Kg NA NA 58.J NA TP-488 Selenium mg/Kg 440 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1500 120 TP-488 Sodium mg/Kg 26000 630000 1.4U NA TP-488 Zinc mg/L NA NA NA 0.0025 0.0032 TP-488 4,4'-DDT mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L NA NA 0.0025 0.0032 TP-488 DH SU NA NA 0.025 0.0032 TP-488 pH SU NA NA 0.025 0.0032 TP-488 Percent Moisture % NA NA 17000 NA TP-488 Percent Moisture <td>TP-488</td> <td>Magnesium</td> <td>ma/Ka</td> <td>NA</td> <td>NA</td> <td>190</td> <td>NA</td>	TP-488	Magnesium	ma/Ka	NA	NA	190	NA
TP-488 Selenium mg/Kg 440 11000 1.2U NA TP-488 Sodium mg/Kg NA NA NA 1500 120 TP-488 Zinc mg/Kg 26000 630000 1.4U NA TP-488 4.4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 4.4'-DDT mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 DH SU NA NA 0.025 0.0032 TP-488 DH SU NA NA 0.025 0.0032 TP-488 Total Organic Carbon mg/Kg NA NA 17000 NA TP-488 Percent Moisture % NA NA 18 NA TP-489 Nitrate Nitrite as N	TP-488	Potassium	ma/Ka	NA	NA	58J	NA
TP-488 Sodium mg/Kg NA NA 1500 120 TP-488 Zinc mg/Kg 26000 630000 1.4U NA TP-488 4,4'-DDE mg/L NA NA 0.0025 0.0032 TP-488 4,4'-DDT mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Chlordane (technical) mg/L NA NA 0.0025 0.0032 TP-488 pH SU NA NA 0.025 0.0032 TP-488 pH SU NA NA 17000 NA TP-488 Total Organic Carbon mg/Kg NA NA 18 NA TP-488 Percent Moisture % NA NA 18 NA TP-489 Nitrate Nitrite as N mg/	TP-488	Selenium	ma/Ka	440	11000	1.2U	NA
TP-488 Zinc mg/Kg 26000 630000 1.4U NA TP-488 4,4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-488 4,4'-DDT mg/L NA NA NA 0.0025 0.0032 TP-488 Heptachlor mg/L NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-488 pH SU NA NA 0.025 0.0032 TP-488 pH SU NA NA 0.025 0.0032 TP-488 Total Organic Carbon mg/Kg NA NA 17000 NA TP-488 Percent Moisture % NA NA 18 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-48	TP-488	Sodium	mg/Kg	NA	NA	1500	120
TP-488 4.4'-DDE mg/L NA NA NA 0.0025 0.0032 TP-488 4.4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA 0.025 0.0032 TP-488 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-488 pH SU NA NA NA 0.025 0.0032 TP-488 Total Organic Carbon mg/Kg NA NA 17000 NA TP-488 Percent Moisture % NA NA 18 NA TP-489 Chloride mg/Kg NA NA 0.65U NA TP-489 Nitrate Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 1400000 ** 0.65U	TP-488	Zinc	ma/Ka	26000	630000	1.4U	NA
TP-488 4,4'-DDT mg/L NA NA NA 0.0025 0.0042 TP-488 Heptachlor mg/L NA NA NA 0.0025 0.0025 TP-488 Chlordane (technical) mg/L NA NA NA 0.0025 0.0032 TP-488 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-488 DH SU NA NA NA 8.56 NA TP-488 Total Organic Carbon mg/Kg NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 0.65U NA TP-489 Nitrate Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 *** 0.65U NA TP-489 Sulfate	TP-488	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-488 Heptachlor mg/L NA NA 0.0025 0.0025 TP-488 Chlordane (technical) mg/L NA NA NA 0.025 0.0032 TP-488 pH SU NA NA NA 8.56 NA TP-488 Total Organic Carbon mg/Kg NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 0.65U NA TP-489 Nitrate Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg NA NA 140 NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA <t< td=""><td>TP-488</td><td>4.4'-DDT</td><td>mg/L</td><td>NA</td><td>NA</td><td>0.0025</td><td>0.0042</td></t<>	TP-488	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-488 Chlordane (technical) mg/L NA NA 0.025 0.0032 TP-488 pH SU NA NA NA 8.56 NA TP-488 Total Organic Carbon mg/Kg NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA 0.65U NA TP-489 Nitrate Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-488	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-488 pH SU NA NA 8.56 NA TP-488 Total Organic Carbon mg/Kg NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 380 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-488	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-488 Total Organic Carbon mg/Kg NA NA 17000 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-488 Percent Moisture % NA NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 380 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrate as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Sulfate mg/Kg NA NA 73000 32 TP-489 Calcium mg/Kg 150 89000 1.3U NA	TP-488	pH	SŬ	NA	NA	8.56	NA
TP-488 Percent Moisture % NA NA 18 NA TP-489 Chloride mg/Kg NA NA NA 380 NA TP-489 Chloride mg/Kg NA NA NA 380 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-488	Total Organic Carbon	mg/Kg	NA	NA	17000	NA
TP-489 Chloride mg/Kg NA NA 380 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrate Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Nitrate as N mg/Kg 140000 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-488	Percent Moisture	%	NA	NA	18	NA
TP-489 Chloride mg/Kg NA NA 380 NA TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 ** 0.65U NA TP-489 Nitrate as N mg/Kg 140000 ** 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA							
TP-489 Nitrate Nitrite as N mg/Kg NA NA 0.65U NA TP-489 Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 ••• 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Chloride	mg/Kg	NA	NA	380	NA
TP-489 Nitrite as N mg/Kg 8700 220000 1J NA TP-489 Nitrate as N mg/Kg 140000 ** 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Nitrate Nitrite as N	mg/Kg	NA	NA	0.65U	NA
TP-489 Nitrate as N mg/Kg 140000 ** 0.65U NA TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Nitrite as N	mg/Kg	8700	220000	1J	NA
TP-489 Sulfate mg/Kg NA NA 140 NA TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Nitrate as N	mg/Kg	140000	**	0.65U	NA
TP-489 Calcium mg/Kg NA NA 73000 32 TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Sulfate	mg/Kg	NA	NA	140	NA
TP-489 Copper mg/Kg 150 89000 1.3U NA	TP-489	Calcium	mg/Kg	NA	NA	73000	32
	TP-489	Copper	mg/Kg	150	89000	1.3U	NA

			62-777 Ta	able 2 Soil		SQAG*
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-489	Iron	mg/Kg	53000	**	2100	36
TP-489	Lead	mg/Kg	400	1400	1.3	NA
TP-489	Magnesium	mg/Kg	NA	NA	230	NA
TP-489	Potassium	mg/Kg	NA	NA	98J	NA
TP-489	Selenium	mg/Kg	440	11000	1.2J	NA
TP-489	Sodium	mg/Kg	NA	NA	720	120
TP-489	Zinc	mg/Kg	26000	630000	1.4U	NA
TP-489	4,4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-489	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-489	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-489	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-489	pH	SU	NA	NA	7.95	NA
TP-489	Total Organic Carbon	mg/Kg	NA	NA	13000	NA
TP-489	Percent Moisture	%	NA	NA	16	NA
TP.490	Chloride	ma/Ka	NA	NA	28	NΔ
TP.400	Nitrate Nitrite as N	mg/Kg	NA	NA	0.6311	NA
TP-400	Nitrite as N	ma/Ka	8700	220000	0.000	NA
TP 400	Nitrate as N	mg/Kg	140000	**	0.6311	NA
TP-490	Sulfate	mg/kg	140000 NA	NA	3511	NA
TP.400	Calcium	mg/Kg	NA	NA	03000	32
TP.400	Copper	ma/Ka	150	80000	1 311	NA NA
TP.400	Iron	mg/Kg	53000	**	610	36
TD 400	Lead	ma/Ka	400	1400	0.01	NA
TP_490	Magnesium	ma/Ka	NA	NA	250	NA
TP-400	Potassium	ma/Ka	NA	NA	491	NA
TP-490	Selenium	ma/Ka	440	11000	1 1U	NA
TP-490	Sodium	ma/Ka	NA	NA	820	120
TP-490	Zinc	ma/Ka	26000	630000	1 411	NA
TP.490		mail	NA	NA	0.0025	0.0032
TP-490	4.4-DDL	mail	NA	NA	0.0025	0.0032
TP-490	Hentachlor	mail	NA	NA	0.0025	0.0025
TP-490	Chlordane (technical)	mal	NA	NA	0.025	0.0032
TP-490	pH	SU	NA	NA	8.97	NA
TP-490	Total Organic Carbon	ma/Ka	NA	NA	12000	NA
TP-490	Percent Moisture	96	NA	NA	12	NA
TP-490	Percent Solids	%	NA	NA	88	NA
TD 404	Oblacida	11 m 11 d -			0.70	
1P-491	Chioride	mg/Kg	NA	NA	2/0	NA
TP-491	Nitrate Nitrite as N	mg/Kg	NA	NA	0.660	NA
1P-491	Nitrite as N	mg/Kg	8700	220000	0.240	NA
TP-491	Nitrate as N	mg/Kg	140000		0.660	NA
TP-491	Suitate	mg/Kg	NA	NA	360	NA
TP-491	Calcium	mg/Kg	NA	NA	56000	32
TP-491	Copper	mg/Kg	150	89000	1.30	NA
TP-491	Iron	mg/Kg	53000		1500	36
TP-491	Lead	mg/Kg	400	1400	1.7	NA
TP-491	Magnesium	mg/Kg	NA	NA	610	NA

			62-777 Ta	able 2 Soil		SQAG*
Client Sample ID	Analyte	Reporting	Residential	Commerical Industrial	Result	TEC
TP-491	Potassium	ma/Ka	NA	NA	230	NA
TP-491	Selenium	mg/Kg	440	11000	4.3	NA
TP-491	Sodium	mg/Kg	NA	NA	380	120
TP-491	Zinc	mg/Kg	26000	630000	1.9U	NA
TP-491	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-491	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-491	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-491	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-491	pH	SU	NA	NA	8.67	NA
TP-491	Total Organic Carbon	mg/Kg	NA	NA	1800	NA
TP-491	Percent Moisture	%	NA	NA	17	NA
TP-492	Chloride	mg/Kg	NA	NA	430	NA
TP-492	Nitrate Nitrite as N	mg/Kg	NA	NA	0.67U	NA
TP-492	Nitrite as N	mg/Kg	8700	220000	0.24U	NA
TP-492	Nitrate as N	mg/Kg	140000		0.67U	NA
TP-492	Sulfate	mg/Kg	NA	NA	290	NA
TP-492	Calcium	mg/Kg	NA	NA	24000	32
TP-492	Copper	mg/Kg	150	89000	1.4U	NA
TP-492	Iron	mg/Kg	53000	**	2500	36
TP-492	Lead	mg/Kg	400	1400	1.7	NA
TP-492	Magnesium	mg/Kg	NA	NA	440	NA
TP-492	Potassium	mg/Kg	NA	NA	230	NA
TP-492	Selenium	mg/Kg	440	11000	1.2U	NA
TP-492	Sodium	mg/Kg	NA	NA	200J	120
TP-492	Zinc	mg/Kg	26000	630000	2.3J	NA
TP-492	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-492	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-492	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-492	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-492	pH	SU	NA	NA	8.21	NA
TP-492	Total Organic Carbon	mg/Kg	NA	NA	540	NA
TP-492	Percent Moisture	%	NA	NA	19	NA
TP-494	Chloride	mg/Kg	NA	NA	35	NA
TP-494	Nitrate Nitrite as N	mg/Kg	NA	NA	0.65U	NA
TP-494	Nitrite as N	mg/Kg	8700	220000	0.4J	NA
TP-494	Nitrate as N	mg/Kg	140000		0.65U	NA
TP-494	Sulfate	mg/Kg	NA	NA	36U	NA
TP-494	Calcium	mg/Kg	NA	NA	250000	32
TP-494	Copper	mg/Kg	150	89000	1.2U	NA
TP-494	Iron	mg/Kg	53000	•	450	36
TP-494	Lead	mg/Kg	400	1400	0.71J	NA
TP-494	Magnesium	mg/Kg	NA	NA	200	NA
TP-494	Potassium	mg/Kg	NA	NA	74J	NA
TP-494	Selenium	mg/Kg	440	11000	1.1U	NA
TP-494	Sodium	mg/Kg	NA	NA	2600	120
TP-494	Zinc	mg/Kg	26000	630000	1.3U	NA

			62-777 Ta	able 2 Soil	1	SQAG*
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-494	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-494	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-494	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-494	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-494	pH	SU	NA	NA	8.61	NA
TP-494	Total Organic Carbon	mg/Kg	NA	NA	26000	NA
TP-494	Percent Moisture	%	NA	NA	15	NA
TP-494D	Chloride	mg/Kg	NA	NA	38	NA
TP-494D	Nitrate Nitrite as N	mg/Kg	NA	NA	0.65U	NA
TP-494D	Nitrite as N	mg/Kg	8700	220000	0.4J	NA
TP-494D	Nitrate as N	mg/Kg	140000	**	0.65U	NA
TP-494D	Sulfate	mg/Kg	NA	NA	34U	NA
TP-494D	Calcium	mg/Kg	NA	NA	190000	32
TP-494D	Copper	mg/Kg	150	89000	1.3U	NA
TP-494D	Iron	mg/Kg	53000	•	530	36
TP-494D	Lead	mg/Kg	400	1400	0.89J	NA
TP-494D	Magnesium	mg/Kg	NA	NA	320	NA
TP-494D	Potassium	mg/Kg	NA	NA	83J	NA
TP-494D	Selenium	mg/Kg	440	11000	1.2J	NA
TP-494D	Sodium	mg/Kg	NA	NA	1900	120
TP-494D	Zinc	mg/Kg	26000	630000	1.4U	NA
TP-494D	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-494D	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-494D	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-494D	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-494D	pH	SU	NA	NA	8.60	NA
TP-494D	Total Organic Carbon	mg/Kg	NA	NA	39000	NA
TP-494D	Percent Moisture	%	NA	NA	15	NA
TP-495	Chloride	mg/Kg	NA	NA	24	NA
TP-495	Nitrate Nitrite as N	mg/Kg	NA	NA	0.62	NA
TP-495	Nitrite as N	mg/Kg	8700	220000	0.23U	NA
TP-495	Nitrate as N	mg/Kg	140000		0.62U	NA
TP-495	Sulfate	mg/Kg	NA	NA	35U	NA
TP-495	Calcium	mg/Kg	NA	NA	180000	32
TP-495	Copper	mg/Kg	150	89000	1.2U	NA
TP-495	Iron	mg/Kg	53000	+	560	36
TP-495	Lead	mg/Kg	400	1400	0.89J	NA
TP-495	Magnesium	mg/Kg	NA	NA	420	NA
TP-495	Potassium	mg/Kg	NA	NA	71J	NA
TP-495	Selenium	mg/Kg	440	11000	1.10	NA
TP-495	Sodium	mg/Kg	NA	NA	1600	120
TP-495	Zinc	mg/Kg	26000	630000	1.3U	NA
TP-495	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-495	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-495	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-495	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-495	pH	SU	NA	NA	9.05	NA

			62-777 Ta	able 2 Soil		SQAG"
		Reporting		Commerical		
Client Sample ID	Analyte	Unit	Residential	Industrial	Result	TEC
TP-495	Total Organic Carbon	mg/Kg	NA	NA	34000	NA
TP-495	Percent Moisture	%	NA	NA	13	NA
TP-497	Chloride	mg/Kg	NA	NA	280	NA
TP-497	Nitrate Nitrite as N	mg/Kg	NA	NA	0.88J	NA
TP-497	Nitrite as N	mg/Kg	8700	220000	0.24U	NA
TP-497	Nitrate as N	mg/Kg	140000		0.69J ^	NA
TP-497	Sulfate	mg/Kg	NA	NA	150	NA
TP-497	Copper	mg/Kg	NA	NA	1.3U	32
TP-497	Iron	mg/Kg	150	89000	1500	NA
TP-497	Lead	mg/Kg	53000		2.9	36
TP-497	Magnesium	mg/Kg	400	1400	520	NA
TP-497	Potassium	ma/Ka	NA	NA	210	NA
TP-497	Selenium	mg/Kg	NA	NA	1.1U	NA
TP-497	Sodium	mg/Kg	440	11000	93U	NA
TP-497	Zinc	ma/Ka	NA	NA	1.4J	120
TP-497	Calcium	ma/Ka	26000	630000	2300	NA
TP-497	4.4'-DDE	ma/L	NA	NA	0.0025	0.0032
TP-497	4.4'-DDT	ma/L	NA	NA	0.0025	0.0042
TP-497	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-497	Chlordane (technical)	ma/L	NA	NA	0.025	0.0032
TP-497	pH	SU	NA	NA	8.32	NA
TP-497	Total Organic Carbon	ma/Ka	NA	NA	420U	NA
TP-497	Percent Moisture	%	NA	NA	17	NA
TP-498	Chloride	ma/Ka	NA	NA	34	NA
TP-498	Nitrate Nitrite as N	ma/Ka	NA	NA	0.7U	NA
TP-498	Nitrite as N	ma/Ka	8700	220000	0.25U	NA
TP-498	Nitrate as N	ma/Ka	140000	**	0.7U	NA
TP-498	Sulfate	ma/Ka	NA	NA	40U	NA
TP-498	Calcium	ma/Ka	NA	NA	130000	32
TP-498	Copper	mg/Kg	150	89000	1.4U	NA
TP-498	Iron	ma/Ka	53000	**	390	36
TP-498	Lead	ma/Ka	400	1400	0.66U	NA
TP-498	Magnesium	ma/Ka	NA	NA	120	NA
TP-498	Potassium	ma/Ka	NA	NA	47J	NA
TP-498	Selenium	ma/Ka	440	11000	2.4J	NA
TP-498	Sodium	ma/Ka	NA	NA	1300	120
TP-498	Zinc	mg/Kg	26000	630000	1.5U	NA
TP-498	4 4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-498	4.4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-498	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-498	Chlordane (technical)	ma/L	NA	NA	0.025	0.0032
TP-498	pH	SU	NA	NA	8.77	NA
TP-498	Total Organic Carbon	ma/Ka	NA	NA	11000	NA
TP-498	Percent Moisture	0%	NA	NA	22	NA
		-				

			62-777 Ta	able 2 Soil		SQAG*
Client Sample ID	Analyte	Reporting Unit	Residential	Commerical Industrial	Result	TEC
TP-499	Chloride	mg/Kg	NA	NA	250	NA
TP-499	Nitrate Nitrite as N	mg/Kg	NA	NA	0.66U	NA
TP-499	Nitrite as N	mg/Kg	8700	220000	0.24U	NA
TP-499	Nitrate as N	mg/Kg	140000	**	0.66U	NA
TP-499	Sulfate	mg/Kg	NA	NA	120	NA
TP-499	Copper	mg/Kg	NA	NA	1.3U	32
TP-499	Iron	mg/Kg	150	89000	510	NA
TP-499	Lead	mg/Kg	53000	**	1.1J	36
TP-499	Magnesium	mg/Kg	400	1400	340	NA
TP-499	Potassium	mg/Kg	NA	NA	110J	NA
TP-499	Selenium	mg/Kg	NA	NA	1.2U	NA
TP-499	Sodium	mg/Kg	440	11000	2500	NA
TP-499	Zinc	mg/Kg	NA	NA	1.4U	120
TP-499	Calcium	mg/Kg	26000	630000	240000	NA
TP-499	4.4'-DDE	mg/L	NA	NA	0.0025	0.0032
TP-499	4,4'-DDT	mg/L	NA	NA	0.0025	0.0042
TP-499	Heptachlor	mg/L	NA	NA	0.0025	0.0025
TP-499	Chlordane (technical)	mg/L	NA	NA	0.025	0.0032
TP-499	pH	SU	NA	NA	8.8	NA
TP-499	Total Organic Carbon	mg/Kg	NA	NA	26000	NA
TP-499	Percent Moisture	%	NA	NA	18	NA

Source: AMEC Report, 2013

Notes: mg/kg - milligrams per kilogram

su – standard unit

J- result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U - indicates the analyte was analyzed but not detected

*Sediment Quality Assessment Guideline

**Contaminant is not a health concern for this exposure scenario

Bold and italicized – exceeds SQAG TEC

2
H
ð
ž
A.
_
7
\mathbf{S}
2
Z
Z
2
Ξ
S
E
2
4
4
2
$\mathbf{\nabla}$

Table 9.4 Summary of Water Source Testing Geotechnical Data Report

TEST PI	T WATER SOURCE						
Test Pit	Cement Content	Sample	Max Density (pcf)	Optimum Molsture Content	Test Sample Density (pcf)	Test Sample Moisture Content	7-Day Unconfined Compressive Strength (psi)
	8	-	106.4	17.1	101.4	172	130
	20	64	106.4	17.1	101.3	172	140
-	i No	-	109.6	15.8	1042	15.8	230
0.78	1076	64	109.6	15.8	104.1	15.8	230
		1	1112	16.3	105.4	16.3	206
	124	e4	1112	16.3	106.4	16.3	300
	18	-	1162	12	110.9	12.0	385
	6.0	24	1162	12	110.6	12.0	420
040	1000	1	116.3	14	110.5	14.0	430
10	1076	2	116.3	14	111.0	14.0	415
		1	6711	13.9	1117	13.9	565
	ŝ	5	117.9	13.9	1123	13.9	565
		1	116.9	11	1107	011	305
	ć	ev.	116.9	=	1113	11.0	285
101	1001	1	117.8	=	111.7	11.0	006
104	10.01	2	117.8	11	1122	11.0	088 DBR
	100	1	118.8	11	113.1	11.0	495
	1 <u>C</u> 1	54	118.8	11	112.6	11.0	475
	10	-	110.7	13.5	1057	13.1	280
	10	2	1107	13.5	1052	13.1	256
907	1001	1	1112	135	106.3	13.5	099
204	8.71	2	111.2	13.5	106.4	13.5	360
	100	1	112.7	13.2	107.8	13.0	600
	41.71	2	1127	132	107.2	13.0	475

PROJECT
OIR/STA
RESERV
C-44

Table 9.4 (Continued) Summary of Water Source Testing Geotechnical Data Report

SITE WE	ELL WATER SOURCE						
Test Pit	Cement Content	Sample	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content	7-Day Unconfined Compressive Strength (psi)
	100	-	107.5	17.1	102.8	16.8	155
	50 50	2	107.5	1.71	103.1	16.8	160
71	1001	-	110	16.9	104.7	16.9	250
0.4	1078	2	110	16.9	105.0	16.9	255
	1001	-	111.1	16.7	105.3	167	335
	129	2	111.1	16.7	105.8	167	335
	00	-	1152	15	109.3	15.0	235
	0.16	2	1152	15	110.0	15.0	250
0.0	1001	1	117.3	14.4	1112	14.4	270
8/4	10%	2	117.3	14.4	111.8	14.4	405
	100.0	1	117.5	14.5	111.6	14.5	540
	123	2	117.5	14.5	1120	14.5	500
	100	1	116.9	11,4	111.1	11.4	380
	010	2	116.9	11.4	1112	11.4	435
101	1000	1	117.6	11	111.9	11.0	665
192	10%	2	117.6	11	112.1	11.0	635
	1000	-	118.5	11.2	112.5	112	730
	6,71	2	118.5	11.2	112.6	112	745
	8	-	111.4	14.7	105.5	14.4	270
	8/0	2	111.4	14.7	105.4	14.4	092
100	1001	-	111.9	14.5	105.9	14.5	098
Ditt	1078	2	111.9	14.5	106.5	14.5	345
	100.1	1	113.1	14.6	107.4	14.6	380
5	10.10	2	113.1	14.6	107.7	14.6	400

PROJECT
VOIR/STA
RESER
C-44

Table 9.4 (Continued) Summary of Water Source Testing Geotechnical Data Report

INDIANT	OWN PUBLIC WATH	ER SOURCE					
Test Pit	Cement Content	Sample	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content	7-Day Unconfined Compressive Strength (psi)
	001	1	108	17.3	102.3	172	130
	810	2	801	17.3	1027	172	145
200	1001	-	109.7	1.71	103.7	1.71	205
0	80.01	2	109.7	17.1	104.4	1.71	215
	1001	-	110.1	16.2	104.9	16.2	275
	10.01	64	110.1	16.2	1052	16.2	300
	100	-	115.6	15.1	110.0	15.1	220
	879	2	115.6	15.1	110.6	15.1	240
	inter i	1	1172	15	112.1	15.0	440
4/8	10%	2	117.2	15	1125	15.0	455
	1000	-	118.2	12.8	1127	12.8	606
	101	e4	1182	12.8	112.8	12.8	680
	00	-	1.711	11.1	110.8	11.1	420
	810	64	1.711	1.11	110.9	11.1	375
-	1001	1	118	11.3	111.7	11.3	575
174	1079	2	118	11.3	112.3	11.3	505
	1001	1	5.911	10.2	1135	11.4	710
3	12.1	53	119.3	10.2	113.8	11.4	666
	00	1	110.6	14.8	105.3	147	215
	10	04	110.6	14.8	105.4	147	175
001	1001	-	111.5	14.9	106.4	14.9	280
8	SCO1	2	111.5	14.9	106.6	14.9	285
	1000	+	1157	12.6	109.8	152	405
	104	2	115.7	12.6	110.3	15.2	400

Source: AMEC Report, 2013

correction Note: Compressive strength test samples molded using standard 4 in. diameter split proctor mold with 4.57 in. height yielding an approximate 1:15 h/d ratio, no factor was applied

Table 9.5Summary of Soil-Cement Mix Design TestingGeotechnical Data Report

					Cel Cel	technical	Data Kel	00rt			
1.0000	Proctor	r Testing	7.Da	w Compressive	Strength (3 5a	mples)			We	atting / Drying Samples	
Content	Max Density (pcf)	Optimum Molture (%)	Sample Dry Density (pcf)	% of Meximum	Molding Moleture Content (%)	Compressive Strength (psi)	Sample Dry Density (bcf)	% of Maximum	Molding Moisture Content (%)	Cycle Testing	
			1000000			Test Pit CP12-I	RC44-TP-476				
			105.2	04°0	14.9	230	1907	Specimen 1	4200	Max Volume Chance (%)	1.13
10%	111.9	15.0	106.8	36.5	14.9	270	106.8	95.5	14.9	Max Moisture Content	16.7
			106.8	25.4	14.9	250	106.6	95,2	14.9	Soil Cement Loss (g) Soit Cement Loss (g)	8 5
			107.9	56.7	14.7	440		Specimen 1		Specimen 1	1000
12%	112.7	14.9	107.7	36.6	14.7	390	107.6	95.6	14,7	Max Volume Change (%) Max Moleture Content	141
			107.7	95,6	14.7	380	107,5	35.4	14.7	Soil Camant Loss (g) Soil Camant Loss (%)	4 14
						Test Pit CP12-I	RC44-TP-479				
			107.6	94.8	14.5	280		Specimen 1		Specimen 1	1.000
10%	113.6	14.8	F BOF	16.4	14.6	270	108,0	95.2	14.5	Max Volume Change (%) Max Molsture Content	15.7
2	2	a t		t u			1000	Specimen 2	14.6	Specimen 2 Soil Cement Loss (g)	57
			0.000				100	0.00	2442	Soll Cement Loss (%)	3,5
		-	6.601	96.1	15.4	326	109.6	Specimen 1 95.9	15,4	Max Volume Change (%) Max Moleture Contant	2.16
12	0.411	ŧ. 6	109.2	30.5	10.4	375		Specimen 2		Specimen 2	
			109-9	96.1	15.4	385	109.9	96.1	15.4	Soli Cement Loss (g) Soli Cement Loss (%)	74
						Test Pit CP12-I	RC44-TP-480				
			510.2	95.7	11.5	355		Specimen 1		Specimen 1	222.
200	1 82.1	2.14	0077	02.0	211	020	109.5	95.1	11.5	Max Volume Change (%) Max Molsture Confent	11.1
100	1.011		matt	0.00		2/2		Spectmen 2		Soul Carrier's Carrier's Carl	ţ
			109-2	94.9	11.5	350	109.4	95.0	11.5	Soil Cement Loss (3)	6.0
			111.4	8,18	112	515	55.77 D.	Specimen 1		Specimen 1 Max Volume Chance (%)	0.90
12%	117.6	11.4	111.6	96.1	11.2	515	0.111	94.4	1	Max Moisture Content	12.5
ģ(j.	111.8	96.1	11.2	380	112.4	Specimen 2 95.6	11.2	Soll Cement Loss (g) Soll Cement Loss (9)	47
						Test Pit CP12-I	RC44-TP-481				
			107.8	04.3	12.7	OFX		Specimen 1	11	Specimen 1	1.122.02
10%	114.4	13.2	108.8	86.1	13.7	375	108.0	94.4	13.7	Max Volume Change (%) Max Molsture Content	0.60
			108.7	95.0	13.7	365	108.4	pecimen 4	13.7	Soil Cement Loss (g)	31
								Specimen t	500	cor cement Loss (1%) Specimen 1	2
			8,601	0.45	13.4	430	1:021	86.3	13,4	Max Volume Charge (%)	0.95
12%	116.2	13.4	110.9	95,4	13.4	455		Specimen 2		Spectmen 2	0.41
			110.5	96.2	13.4	405	110.8	95.4	13.4	Soil Cerment Loss (g) Soil Cement Loss (%)	6 14
					-	Test Pit CP12-I	RC44-TP-482				
			105.0	84.3	16.4	245		Specimen 1		Specimen 1	0.40
10%	111.3	16.1	106.0	1 YO	16.4	26.0	106.2	95.4	16,4	Max Molsture Content	15.2
			0.000				10000	Specimen 2		Soil Cament Loss (d)	53
			105.1	B4.4	16.4	230	106.1	85.3	16.4	Soli Cement Loss (%)	3.3
			106.2	36.2	15.4	366	1000	Specimen 1	100	Specimen 1 Max Volume Change (%)	0.41
12%	112.5	16.7	107.7	592	16.4	350	100.0	Craciman 2	10.4	Max Molsture Content	16.9
į	ł	į	9.201	an e	15.4	and a	106.3	o hannan e	16.4	Soll Cement Loss (g)	119
			0.101	0.00	10.0	200	0.001	0.40	ta	Solt Cement Loss (%)	7.4

Table 9.5 (Continued) Summary of Soil-Cement Mix Design Testing Geotechnical Data Report

					20	technical	Data Kel	00rt			
122225	Proctor	Testing	7.04	y Compressive	Strength (3 Sa	mples)			We	etting / Drying Samples	
Content	Max Density (pcf)	Optimum Molture (%)	Sample Dry Density (pcf)	% of Meximum	Molding Moleture Content (%)	Compressive Strength (psi)	Sample Dry Density (bcf)	% of Maximum	Molding Moisture Content (%)	Cycle Testing	
			1000000 - 1000			Test Pit CP12-I	RC44-TP-476				
			105.2	01,0	14.9	230	1207	Specimen 1	100	Max Volume Chance (%)	10.00
10%	9111	15.0	106.8	36.5	941	270	106.8	95.5	14.9	Max Moisture Content	10.7
			106.8	95.4	14.9	250	106.6	95,2	14.9	Soil Cement Loss (g) Soit Cement Loss (%)	89 6.1
			107.9	198	14.7	440		Specimen 1		Specimen 1	1.0000
12%	112.7	14.9	107.7	36.6	14.7	390	107.6	95.6	14,7	Max Volume Change (%) Max Moleture Content	1.41
			107.7	35,6	14.7	380	107,5	85.4	14.7	Soil Cament Loss (9) Soil Cement Loss (%)	- 1
						Test Pit CP12-I	RC44-TP-479				
			107.6	94.8	14.5	280		Specimen 1		Specimen 1	
10%	113.6	14.8	108.3	96.4	14.5	270	108,0	95.2	14.5	Max volume change (1%) Max Molsture Content	15.7
			106.5	96.6	14.5	276	106.5	Specimen 2 95.6	14.5	Specimen 2 Soil Cement Loss (g)	57
								Specimen 1		Specimen 1 Specimen 1	0.0
12%	114.3	15.4	5.501 C 001	1.05	15.4	820 37K	109.6	95.9	15,4	Max Volume Change (%) Max Molsture Content	2.16
			4 52	0.00	Line .	0.0		Specimen 2		Specimen 2 Soli Camadi Loss (n)	74
			109-9	96.1	15.4	385	109.9	96.1	154	Soli Cement Loss (%)	4.4
						Test Pit CP12-I	RC44-TP-480				
			110.2	95.7	11.5	355		Specimen 1		Specimen 1	
10%	1.011	11.6	UUL	95.6	11.6	87n	109.5	95.1	19 19	Max Moisture Content	1111
						-	1.001	Spectmen 2	19.73 1	Soll Cement Loss (g)	13
			7-201	0.46	ertr	000	109/4	0.08	0110	Soli Cement Loss (%)	0.9
			111.4	84,8	11.2	515	0.141	Specimen 1	0	Nax Volume Change (%)	06.0
12%	117.6	11.4	111.6	96.1	11.2	515	2010	Craciman 0	4	Max Moisture Content	12.5
			111.8	96.1	11.2	380	112.4	95.8	11.2	Soil Cement Loss (g) Soil Cement Loss (%)	47
						Test Pit CP12-I	RC44-TP-481				
			107.8	04.3	13.7	OEX		Specimen 1	1. Andread	Specimen 1	000.02
10%	114.4	13.2	106.8	86.1	13.7	375	108.0	94.4 Creatimen 1	13.7	Max Volume Change (%) Max Molsture Content	0.60
			108.7	95.0	13.7	365	108,4	94.7	13.7	Soll Cement Loss (g)	18
			8 0 0 1			act		Specimen 1		Son Certainers Loss Line	0.1.0
			0.001	0.4n	-	027	1:00.1	86.3	13,4	Max Volume Change (%) Max Moleture Context	0.95
12%	116.2	13.4	110.9	95.4	13.4	455		Specimen 2		Specimen 2	at to
			110.5	36,2	13.4	405	1 10.8	95.4	13.4	Soil Cement Loss (g) Soil Cement Loss (%)	0.4
						Test Pit CP12-I	RC44-TP-482				
			105.0	e +8	16.4	245	10101	Specimen 1	1	Specimen 1 Max Volume Channe (%)	0.58
10%	111.3	16.1	105.8	96.1	16.4	260	106.2	95.4	16.4	Max Moisture Content	15.2
			105.1	94.4	16.4	230	106.1	95.3	16.4	Soll Cement Loss (g)	63
								Soecimen 1		SQL CETTERLADES (19) SDECIMEN 1	22
			106,2	36.2	15.4	365	106.3	94.5	15.4	Max Volume Change (%)	0.41
12%	112.5	16.7	1.701	49.7	15.4	350	2000	Specimen 2	200	Max Moisture Content Spectmen 2	10.9
			107.6	90.6	15.4	345	106.3	94.0	15.4	Soll Cement Loss (g) Soll Cement Loss (%)	119

C-44 RESERVOIR/STA PROJECT

Table 9.5 (Continued) Summary of Soil-Cement Mix Design Testing Geotechnical Data Report

					200	nechilical	Data Nc	1100			
1000000	Procto	r Testing	7.Da	y Compressive	Strength (3 Sa	(saldus)	1	1	M	witing / Drying Samples	
Content	Max Density (pcf)	Optimum Moiture (%)	Sample Dry Density (pcf)	% of Maximum	Molding Moisture Content (%)	Conpressive Strength (psi)	Sampte Dry Density (pcf)	% of Maximum	Molding Moisture Content (%)	Cycle Testing	
	10	100 000 000				Test Pit CP12-1	RC44-TP-483			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			1.001	552	14.4	420	10000	Specimen 1		Max Volume Channe (16)	0.41
10%	1153	14.7	109.7	55.2	14.4	415	109.6	Spacimen 2	14.4	Max Monsture Content	15.1
			110.2	95.5	14.4	420	109.9	96.3	14.4	Sod Cement Loss (g) Sol Cement Loss (%)	73
			111.6	94.6	14.0	616		Specimen 1		Specimen 1	an 1
12%	118.0	14.2	111.6	94.6	14.0	575	112.5	96.3	14.0	Max Moleture Content	13.3
	45557		112.7	96.5	14.0	650	112.2	96.1	14.0	Soil Cement Loss (%) Soil Cement Loss (%)	24
						Test Pit CP12-I	RC44-TP-484				
			108.1	95.9	12.7	260		Specimen 1		Specimen 1	1.000
10%	112.8	12.8	108.3	96.0	12.7	210	108.3	96.0 Geoclesco 7	12.7	Max Volume Change (%) Max Moisture Content	14.1
			107.9	956	12.7	240	108.3	96.0	12.7	Sod Cement Loss (9) Sod Cement Loss (%)	32
			108.9	95.8	13.3	270		Specimen 1		Specimen 1	100
12%	113.7	13.5	108.6	95.6	13.3	225	105.9	95.8 Sections 7	13.3	Max Molsture Content	14.3
			109.0	6'56	13.3	280	108.9	95.8	13.3	Soli Cernent Loss (g) Soli Cernent Loss (%)	31
						est Pit CP12-IR	C44-TP-484 (D	6			3
			108.3	95.5	13.3	230		Specimen 1	0.02	Max Voluma Channel 1	0.70
10%	113.4	13.4	108.8	0.95	13.3	240	100.4	S-company	13.5	Max Moesture Content	14.8
			108.6	96.8	13.3	220	0.601	96.1	13.3	Soil Cement Loss (g) Soil Cement Loss (g)	52
			0.004			010		Specimen 1		Specimen 1	A10
			102.8	F. G.	111	210 101	109.9	96.1	13.3	Max Volume Change (%) Max Moisture Content	0.52
e y	1	0.2	1000	n - 5	121	090	104 8	Specimen 2 96.1	13.3	Specimen 2 Soil Cenvent Loss (g)	16
				1000	1000			10000		Sol Cement Loss (%)	1.0
	2		3			Test Pit CP12.1	RC44-TP-485				
			108.2	5'56	14.4	305	1001	Specimen 1		Max Volume Change (%)	0.54
10%	113.6	14.5	107.8	6.16	14.4	405		Scecimen 2	1000	Max Moisture Content Spectmen 2	158
			107.8	9,92	14.4	405	109.2	95.2	14.4	Soil Cernent Loss (g) Soil Cernent Loss (%)	42
			A PART OF	94.6	1.1.1	USU .		Specimen 1		Specimen 1	
124	1137	6 11	108.01	858	143	540	109.0	95.8	14.3	Max Volume Change (%) Max Molstune Content	152
			108.9	926	14.3	520	0.601	5pecmen 2 95.9	14.3	Soil Cement Loss (g)	8
						Test Pit CP12-1	RC44-TP-486				A-21
			109.2	96.3	14.6	480		Specimen 1		Spectmen 1	
10%	114.6	7.47	109.0	0,10	14.6	600	108.3	94.5	14.6	Max Mosture Connect (%)	15.4
2	1	ł	c	000	4	000	1000	Specimen 2	975	Soli Cement Loss (g)	47
			7.601	20.08	14.0	010	103.0	1.06	14.0	Soil Cement Loss (%)	2.8
			110.3	96.4	14.4	665	1100	Specimen 1		Max Volume Change (%)	0.58
12%	116.7	14.5	110.6	95.6	14.4	665	41.011	Scoreman 2	14.4	Max Moisture Content Sciencimen 2	14.1
			110.5	95.5	14.4	660	110.8	896	14.4	Soli Cement Loss (g)	11

C-44 RESERVOIR/STA PROJECT

Table 9.5 (Continued) Summary of Soil-Cement Mix Design Testing Geotechnical Data Report

			121112								
2	Proctos	r Testing	7 - Da	y Compressive	Strength (3 So	imples)			We	titing / Drying Samples	
Content	Max Density (pcf)	Optimum Moiture (%)	Sample Dry Density (pcf)	% of Maximum	Molding Moisture Content (%)	Compressive Strength (psi)	Sample Dry Density (pcf)	% of Maximum	Molding Moisture Content (%)	Cycle Testing	
						Test Pit CP12-	IRC44-TP-488				
			109.6	95.4	153	405		Specimen 1	1	Specimen 1 Max Volume Change (%)	0.41
10%	114.8	15.5	109.6	95.4	15.3	370	6 601	1.35 T	15.3	Max Moisture Content	150
	202000	2	109.5	95.4	6.51	400	110.0	95.8	15.3	Soil Cement Loss (%) Soil Cement Loss (%)	96 3.3
			0.00	0.00	2.87	0.4C		Specimen 1		Spacimen 1	101
			\$111	5.05 + 30	1.41	040	110.9	95.0	14.7	Max Volume Change (%) Max Moisture Content	0.75
<u>q</u>	201	7-11	110.8	95.0	14.7	656	111.4	Specimen 2 95.5	14.7	Soli Cament Loss (g)	8
				1900		Tast Dir CD13	DCAR TD A90			2001 Cement 1000 1.04	2
			111.0	94.2	12.3	450	113.1	Specimen 1 95.9	12.3	Max Volume Change (%)	0.51
10%	117.9	12.3	112.3	55.2	12.3	480		Specimen 2		Max Moisture Content Specimen 2	14.0
			112.4	553	12.3	485	1.211	96.0	12.3	Soil Cement Loss (g) Soil Cement Loss (%)	19
			C 51+	100	2++	080		Specimen 1		Specimen 1	
Sec.1	118.7	• 64	1.631	100		and a	114.1	96.1	11.9	Max Volume Change (%) Max Moisture Content	0.43
40.7		1.771	0.011	1.00		000		Specimen 2		Spectmen 2 Sold Connect Loss (n)	23
			114.1	96.1	11.9	969	113.3	95.5	11.9	Soll Cement Loss (%)	32
		a a				est Pit CP12-IR	C44-TP-489 (D				
			111.0	050	121	385		Specimen 1		Specimen 1	
Const.	100	-		-		000	112.5	97.6	12.1	Max Volume Change (%) Max Moisture Content	0.76
201	1.741	12.2	6711	2.65	121	4,20		Specimen 2		Specimen 2	51
			112.9	95.9	121	636	111.9	95.1	12.1	Soil Cement Loss (g) Soil Cement Loss (%)	3.6
			113.0	05.7	12.2	636		Specimen 1		Specimen 1	1000
Sect	1100	5.53	144.1	aya	101	¢t0	114.1	95.8	12.2	Max Volume Change (%) Max Moisture Contert	131
1	100	***				neo	1.255.1	Specimen 2		Sod Camert Loss (o)	21
			1.411	20 65	12.2	690	113.4	5.65	2.25	Sof Cement Loss (%)	12
						Test Pit CP12-	IRC44-TP-490				
			105.0	95.2	16.9	270		Specimen 1		Specimen 1	1000
10%	1111	15.9	105.8	96.2	16.9	250	105.6	0.36	15.9	Max Volume Criange (%) Max Molsture Confent	15.5
	2		105.5	95.0	16.9	260	105.5	95.0	15.9	Soil Cement Loss (1) Soil Cement Loss (1)	107 6.7
				0.10	100			Soecimen 1		Goocimori 1	
		100	106.4	0.05	13.0	410	106.6	95.2	13.6	Max Volume Change (%) Max Moeture Contect	0.65
22	112.0	9.51	2.701	198	13.6	428		Specimen 2		Specimen 2 Sold Camand Loss (n)	20
			107.2	1.66	13.6	440	106.8	95.3	13.6	Soil Cement Loss (%)	3.0
						Test Pit CP12.	IRC44-TP-492				
			114.0	1.35	11.2	015	- 10 P	Specimen 1		Max Volume Change (%)	0.48
10%	1.911	11.3	113.7	355	11.2	535	7511	Doceinor D	7	Max Motature Content	143
8	10220	5 1)	112.9	94.8	11.2	470	113.5	95.3	11.2	Soil Convert Loss (g)	10
										The resonance work	10 M
	4745454	2000	114.6	96.1	11.2	675	114.1	94.7	11.2	Max Volume Change (%)	0.48
12%	120.5	11.4	115.0	95.4	11.2	029	100200	Specimen 2	1000	Max Molsture Content Specimen 2	13.6
			114.2	7.96	11.2	675	134.4	94.9	112	Soil Cement Loss (g)	4 6

Table 9.5 (Continued) Summary of Soil-Cement Mix Design Testing Geotechnical Data Report

					Ce0	tecnnical	Data Kep	0L1			
3	Proctor	r Tasting	7-1	Day Compressive 5	Strength (3 Sar	nples)	82		Weth	ing / Drying Samples	
Content	Max Density (pcf)	Optimum Moiture (%)	Sample Dry Demsity (pcf)	% of Maxemum	Molding Moisture Content (%)	Compressive Strength (psi)	Sample Dry Density (pcf)	% of Maximum	Molding Moisture Content (%)	Cycle Testing	
	-					Test Pit CP12-I	RC44-TP-494				
			111.9	94.6	12.9	425	1.00	Specimen 1		Specimen 1 Max Volume Channe (%)	0.84
10%	118.3	12.9	112.9	95.4	12.9	485	112.1	54.7 Specimen 2	12.9	Max Moisture Content	139
			112.6	552	12.9	435	112.5	95.1	12.9	Soil Cement Loss (9) Soil Cement Loss (%)	29
			114,8	94.6	12.9	615		Specimen 1		Specimen 1 May Volume Present (%)	0.68
12%	1213	12.9	115.6	95.3	12.9	670	114.5	94.4 Specimen 2	12.9	Max Majature Confert	126
			116.4	96.0	12.9	750	114.4	94.3	12.9	Soil Cement Loss (q) Soil Cement Loss (%)	24 1.4
						Test Pit CP12-I	RC44-TP-495				
			104.4	95.8	15.0	1002		Specimen 1		Specimen 1	(3-8048)
						2000	109.4	95.8	15,0	Max Volume Change (%) Max Moisture Content	0.62
201	114.2	9.41	100/6	1.05	0.41	1995		Specimen 2		Specimen 2	
			108.5	95.0	15.0	335	109.4	95.8	15,0	Soil Cement Loss (g) Soil Cement Loss (%)	8.8 8.8
			444.4	2 20	14.0	2 fu		Specimen 1		Specimen 1	No.
12%	1163	14.0	110.3	878	14.0	485	110.8	95.2	14.0	Max Volume Change (%) Max Moisture Content	13.1
			111.4	85	14.0	525	111.3	95.7	14.0	Soil Cement Loss (g) Soil Cement Loss (g)	38 2.3
	1					Test Pit CP12-I	RC44-TP-497				
			146.0	06.7	11.4	ABE		Specimen 1		Specimen 1	- 530
1000	1000	0000		100			115.3	95.1	11.4	Max Volume Change (%) Max Moleture Content	0.62
10%	1212	TH.	116.0	1.66	11.4	470		Specimen 2		Specimen 2	
			115.2	95.1	11.4	450	115.4	95.2	11.4	Soil Cement Loss (9) Soil Cement Loss (%)	11
			116.4	95.0	11.4	600		Specimen 1		Specimen 1	
and a	4.944			2		000	116.8	96.2	11.4	Max Volume Change (%) Max Moisture Content	12.1
128	141.4	111	0.011	0.95	11.4	870		Specimen 2		Specimen 2	
			116.8	96.2	11.4	620	115.0	95.4	11,4	Soil Cement Loss (1) Soil Cement Loss (%)	11

Source: AMEC Report, 2013