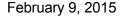
DRAFT Report of Geotechnical Exploration – Phase V

C-44 RSTA Project Additional Test Pit Excavation, Soil Washing, Soil Cement Mix Design Testing


February 11, 2015

Laboratory testing for all samples was not complete prior to this draft report. Blank fields in the tables indicate that laboratory testing results were not yet available but will be forthcoming and included in the final report.

Prepared by

AMEC Foster Wheeler Environment & Infrastructure, Inc. 6256 Greenland Road Jacksonville, Florida 32258, USA

AMEC Project No. 6734-14-9799

Ms. Deborah Brost Contract Specialist A/E Construction Branch Jacksonville District Corps of Engineers P.O. Box 4970 Jacksonville, Florida 32232-0019

Subject: DRAFT Report of Geotechnical Exploration and Laboratory Testing

Phase V

Additional Soil Cement Testing at Soil Borrow Source C-44 Reservoir and Stormwater Treatment Area

Martin County, Florida

Contract No. W912EP-11-D-0002

Task Work Order No. 0114 AMEC Project No. 6734-14-9799

Dear Ms. Brost:

AMEC Environment & Infrastructure, Inc., (AMEC) has performed a geotechnical exploration for the subject project in general accordance with our Proposal No., 14PROP0002.0083, dated November 19, 2014. Authorization for our services was provided by the Order for Supplies or Services as part of our Contract No. W912EP-11-D-0002, dated November 24, 2014, signed by Ms. Pamela Shirley of the U.S. Army Corps of Engineers (USACE). Task Order 0119, which was received on via email on January 16, 2015, was issued to include an additional 108 Unconfined Compressive Strength for Soil Cement tests. A summary of requested services is presented in the Geotechnical Exploration Scope section of this report.

In summary, this report presents the results of six test pits, performed by Phillips and Jordan, Inc. (P&J), and subcontracted by AMEC. This report also presents the associated laboratory testing results performed by our office and the "as-excavated" survey coordinates of the subject test pit locations, conducted by our Orlando office.

We have enjoyed assisting you on this project and look forward to serving as your geotechnical consultant on this and other important projects. If you have any questions concerning this report, please contact us.

Sincerely,

AMEC ENVIRONMENT & INFRASTRUCTURE, INC.

State of Florida Board of Professional Engineers Certificate of Authorization No. 5392

Stephanie A. Setser, P.E. Senior Geotechnical Engineer Florida License No. 53949 Jason M. Goldstein Task Manager

<u>Distribution</u>: Addressee (2)

File (1)

TABLE OF CONTENTS

SECT	ON SUBJECT	PAGE NUMBER
1.0	FIELD SAMPLING AND LABORATORY TESTING SCOPE 1.1 Field Sampling Scope	1
2.0	PURPOSE OF EXPLORATION	4
3.0	PERTINENT PROJECT INFORMATION 3.1 Site Location 3.2 Project Background 3.3 Project Information	5 5
4.0	GEOLOGICAL SETTING	6
5.0	AMEC PREVIOUS AREA EXPERIENCE	9
6.0	FIELD EXPLORATION AND SAMPLE COLLECTION	10 10 11 12 13
7.0	LABORATORY TESTING	14 14
8.0	SUBSURFACE CONDITIONS	38
9.0	GEOTECHNICAL COMMENTARY	38
10.0	EXPLORATION LIMITATIONS	39
TABL	ES	
Table Table Table Table Table Table Table	1: Summary of General Geologic Stratigraphy of South Central Florida	8 11 15 17 19 28 29
rable	9: Summary of Generalized Groundwater	38

APPENDICES

Appendix A

Field and Laboratory Procedures

Appendix B

Site Location Map Field Exploration Plan Survey Report Summary of Laboratory Test Data

Appendix C

Field, Laboratory, and Photographs by Test Pit Location

1.0 FIELD SAMPLING AND LABORATORY TESTING SCOPE

The subject project is located at the C-44 Reservoir and Stormwater Treatment Area (RSTA) due north of C-44 Canal at the intersection of Florida Route 76 and Florida Route 70, in Martin County, Florida. In order to evaluate the subsurface conditions in the areas of the planned C-44 RSTA project, field soil and water sampling and associated laboratory tests were requested. The field sampling and laboratory test details were provided in the Scope of Work titled Contract No. W912EP-11-D-0002 Architect-Engineer Services for C-44 RSTA Contract 2 Geotechnical Investigation – Phase V Additional Soil Cement Testing at Soil Borrow Source, revision dated November 20, 2014. A second task order (TO 0119) was then issued on January 15, 2015, increasing the laboratory testing scope of work to include the addition of 108 unconfined compressive strength tests on soil cement samples.

The requested field and laboratory scopes are discussed in the subsequent sections and the actual scope performed is discussed in Sections 6.0 and 7.0.

1.1 Field Sampling Scope

The requested field sampling and on-site soil sample compositing and washing at C-44 RSTA consisted of the following:

1) Test Pit Soil Sampling

- a) Perform a total of six test pits, designated as CP14-IRC44-TP-513 through CP14-IRC44-TP-518. Excavate each to a maximum depth of 12 feet below the ground surface.
- b) Collect 20, five- gallon buckets of soil excavated from target depth of 2 to 5 feet below existing grade. Collect ten, five-gallon buckets of soil excavated from target depth of 5 to 7 feet below existing grade. Collect ten, five-gallon buckets of soil excavated from target depth of 9 to 11 feet below existing grade. A total of 40, five-gallon buckets of soils were collected from each test pit. Sealable lids were to be placed on the buckets once sampling was completed.

2) Composite samples for each target depth

- a) For each of the three target depths, mix together all the five-gallon sample buckets collected at each respective depth. A total of 40 five-gallon buckets will be mixed per test pit. Mixing efforts to be performed on-site by placing all buckets of each target sample on clean sheets of plywood.
- b) The soils mixed for target depth of 2 to 5 feet will have a testing sample designation of S-2/5, for a total of 60 sample buckets (10 per test pit).

- c) Mix five, five-gallon sample buckets from each of the two target depths of 5 to 7 feet and 9 to 11 feet (for a total of 10 sample buckets). Mix the soil samples together to prepare a target depth composite sample, for a total of 10 individual composite samples. These composited soils will have a testing sample designation of C-5/11, for a total of 60 sample buckets (10 per test pit).
- d) A total of 120, five gallon buckets of soil samples will be washed. 120, five gallon buckets of soil samples will be held in reserve.

3) Generating Test Samples

a) Sort the 120 five-gallon buckets of soil samples in three different condition designations – Unwashed (UW), Lightly Washed (LW), and Medium Washed (MdW). Three, five-gallon buckets will be prepared for each condition designation for each of the two testing sample designations. One, five-gallon bucket will account for the loss soil sample at each target depth.

4) Sample Washing

- a) All washing of soil will be performed in the field using well water from the on-site source
- b) Approximately 2.5 gallons of soil will be placed into a cement mixer. Water will be added into the mixer.
- c) The drum will be rotated and the material thoroughly mixed with the water until all the fines are in suspension and the water appears to be "muddy."
- d) The water will be carefully decanted and sampled after a defined number of drum rotations, which will be determined during the pilot washing.
- e) After the water is decanted, fresh water will be added and steps c and d will be repeated, and so forth. Steps b through d define one cycle. The number of rotations and cycles per operation are defined below.

5) Pilot Washing

- a) The pilot washing operation will have the same set up as described above. Pilot washing will be performed on two test pit samples (reserve buckets will be used) with different silt contents (SP-SM approximately 5%, SM approximately 25%).
- b) The samples will be washed as described in the Sample Washing section above.
- c) One wash water sample from each decanter will be collected in a 100 mL vial and set aside to allow the fines to settle out. This is to estimate the percentage of fines washed out in each cycle. The process of rotating and decanting will be repeated until the decanted water is close to being clear.
- d) The light wash shall wash approximately 25% of the fines out. The medium wash shall wash approximately 50% of the fines out. The vials, with the collected decanted water, will be used to estimate 25% and 50% wash rates, respectively.
- e) After the pilot washing, estimates will be obtained of the following:
 - The number of rotations to achieve on cycle;
 - The number of cycles needed for a light wash;
 - The number of cycles needed for a medium wash.

6) Light Washing

a) Enough material from each Testing Sample will be lightly washed to have three, five-gallon buckets of lightly washed material. The material will be washed using the number of rotations and cycles determined by the pilot washing, and agreed upon by the government representative during the pilot wash operation.

7) Medium Washing

a) Enough material from each Testing Sample will be medium washed to have three, five-gallon buckets of lightly washed material. The material will be washed using the number of rotations and cycles determined by the pilot washing, and agreed upon by the government representative during the pilot wash operation.

8) Water-Well Sampling:

a) Collection of three, 15-gallon containers of water from the on-site water-well for associated soil cement testing.

1.2 Geotechnical Laboratory Testing Scope

1.2.1 Geotechnical Index Testing

The anticipated laboratory index testing of the soil samples obtained at the site were as follows:

- 48 Sieve Analysis (Sieve Sizes No. ¾", ¾", 3.5, 4, 5, 7, 10, 14, 18, 25, 35, 45, 60, 80, 120, 170, 200, 230) ASTM D6913
- 48 visual percent shell classifications
- 48 Hydrometer Analysis ASTM D422
- 48 Carbonate Content tests ASTM D4373
- 48 Atterberg Limit tests ASTM D4318, Wet Preparation Method (Test Method A – Multipoint)
- 48 Organic Content ASTM D2974, Test Method C
- 48 Specific Gravity for Soil ASTM D854
- 48 pH (EPA SW-846 9045C)
- 36 Sand Equivalent Testing ASTM D2419

1.2.2 Soil Cement Mix Design Testing

1) All soil samples were to be screened through a ¾ inch sieve before testing to remove particles greater than ¾ inch.

2) Moisture-Density Tests

a) The optimum-moisture / maximum-density relationship for the soil samples were conducted in accordance with ASTM D 558, Test Method B, for a total of 36 Moisture Density Tests. The sampled well-water was utilized on all samples for the Moisture Density testing.

- 3) Compressive Strength Tests (14% Cement, 100% Compaction)
 - a) Three cylinders for 7-day and three cylinders for 28-day compressive strength testing each were to be prepared in accordance with ASTM D 1633 for each of the 36 samples, resulting in 216 specimens.
 - b) The specimens were to be prepared to a target density of 100% of the maximum dry density as determined by ASTM D 558.
 - c) All specimens were to be prepared using the sampled well-water.
 - d) For each cylinder, an estimate of the water/cement ratio was to be performed.
 - e) The test specimens were to be tested at 7 days and 28 days from the date of preparation.
- 4) Compressive Strength Tests (14% Cement, 95% Compaction)
 - a) Three cylinders for 7-day compressive strength testing were to be prepared in accordance with ASTM D 1633 for each of the 36 samples, resulting in 108 specimens.
 - b) The specimens were to be prepared to a target density of 95% of the maximum dry density as determined by ASTM D 558.
 - c) All specimens were to be prepared using the samples well-water.
 - d) For each cylinder, an estimate of the water/cement ratio was to be performed.
 - e) The test specimens were to be tested at 7 days and 28 days from the date of preparation.
- 5) 36 Wetting and Drying of Soil Cement ASTM D559
- 6) 36 Freezing and Thawing of Compacted Soil Cement Mixtures ASTM D560-03

2.0 PURPOSE OF EXPLORATION

The purpose of this exploration was to excavate and collect representative soil and water samples within the project area as well as to provide field and laboratory data in support of the C-44 reservoir design. The representative field and laboratory data obtained from this exploration as well as from our 2012 exploration and our 2013/2014 exploration will be used by others to verify the suitability of the borrow area. The results obtained from these findings will aide in the soil-cement mix design in support of the overall engineering design and construction of the reservoir embankment interior slope armoring of the C-44 Reservoir and Stormwater Treatment Area. The following sections briefly describe the field and laboratory testing activities and present the findings.

3.0 PERTINENT PROJECT INFORMATION

3.1 Site Location

The C-44 Reservoir and Stormwater Treatment Area Project (RSTA) is located in southeastern Florida. More specifically, the project site is located in north central Martin County, and at the intersection of SR 710 (SW Warfield Boulevard) and Country Road 726 (Citrus Boulevard) near Indiantown, Florida.

3.2 Project Background

The C-44 RSTA is part of the Indian River Lagoon South Restoration Project. The proposed land improvements will consist of an above-ground reservoir and six Stormwater Treatment Area (STA) cells. The reservoir will have a 3,400 acre footprint and a design storage capacity of 56,000 acre-feet with a normal full storage level of 15 feet. The primary purpose of the C-44 RSTA will be to improve water quality by capturing and storing stormwater runoff from the C-44 Basin within the reservoir and then filter it through the STA cells prior to discharging back into the C-44 (St. Lucie) Canal after passage through the STA. These project components are designed to attenuate flows and reduce nutrient loading to the St. Lucie Estuary.

The geotechnical sampling performed in this scope of work is within the footprint of the proposed C-44 Reservoir in the northwestern portion of the C-44 project site. There were no construction activities ongoing at the sampling area.

Historically, the land use within the footprint of the planned C-44 RSTA project consisted of citrus grove (orange and grapefruit), row crops (tomatoes, potatoes, and watermelons), and sod production.

3.3 Project Information

Project information was provided by Ms. Felicia Copeland, Ms. Deborah Brost, and Ms. Barbara Nist, P.G., of the USACE during the period of October 21, 2014 to February 6, 2015. We were furnished with copies of a Scope of Work (SOW) and revised SOW, titled C-44 RSTA Contract 2 Geotechnical Investigation – Phase V Additional Soil Cement Testing at Soil Borrow Source, prepared by the USACE. The final SOW was dated November 20, 2014. We have also been furnished with the following information:

- Site Map (Plate B-2)
 C-44 RSTA Geotechnical Investigation 2014
 Martin County, FL
 Prepared by: USACE
 Dated: September 2014
- Proposed Test-Pit Locations (Plate B-3)
 C-44 RSTA Geotechnical Investigation 2014
 Martin County, FL
 Prepared by: USACE
- Range of Concentrations Measured Versus Regulatory Requirements Provided by: USACE
- Listing of Available Survey Control Monuments Provided by: USACE
- Coordinates for Impacted Zones Provided by: USACE
- Sample Bucket Flow Chart Provided by: USACE

The requested test pit excavation locations were shown on the furnished Geotechnical Investigation 2014 Proposed Test-Pit Locations (Plate B-3) attached to the SOW. We have not been furnished with any plans or structural loading information.

4.0 GEOLOGICAL SETTING

The Florida Platform lies in the south-central part of the North American Plate that extends to the southeast part of the continent and is separated by the Atlantic Ocean and the Gulf of Mexico. Most of the state lies within the Florida Platform except for the Panhandle, which is a section of the Gulf Coastal Plain. The subject site overlies the Florida Platform, which is formed of igneous and metamorphic rocks overlain by approximately 13,000 feet of sedimentary rocks, mostly of marine origin, comprising the Florida Platform.

The geologic formations underlying Martin County may be described as consisting of two aquifers and an intermediate confining unit. The upper water table or non-artesian aquifer conditions extend from the ground surface to depths of about 150 feet below land surface, and are comprised of Pamlico sand and the Anastasia Formation of Pleistocene age and possibly a portion of the upper part of the Tamiami Formation of the late Miocene age group. The intermediate confining unit is comprised of the Hawthorn Formation of the Miocene age which underlies the surficial aquifer. Beneath the intermediate confining unit is the Floridan aquifer, which underlies all of Florida and southern Georgia. In Martin County, the top of the Floridan aquifer is usually between 600 and 800 feet below land surface.

Three different physiographic subdivisions cover Martin County. The Eastern Flatlands covers the majority of the area, including the subject site, and is located in the central part of the county. The Everglades is adjacent to Lake Okeechobee on the western portion of the county, and the Atlantic Coastal Ridge is in the eastern portion of the county.

The following table summarizes the geologic formations adjacent to Martin County (Scott (1) and USGS (6)), based on water wells drilled to depths of up to approximately 600 feet below mean sea level.

	Table 1	: Summary o	f General	Geologic Stra	atigraphy of S	South Central Florida
Approx. El. Range (feet, MSL)	Geologic Period	Geologic Epoch	Stratigraphic Symbol and Formation		General Lithology	General Material Description
0 to -100	Tertiary/ Quaternary	Pliocene/ Pleistocene	TQsu	Shelly Sediments of Pliocene- Pleistocene age	Shells, sand, clay	Complex, varying from unconsolidated, variably calcareous and fossiliferous quartz sands to well-indurated, sandy fossiliferous limestones—both marine and freshwater. Clayey sands and sandy clays are present. These sediments form part of the surficial aquifer system.
-100 to -200	Tertiary	Pliocene	Tt	Tamiami Formation	Limestone, sand, clay	Light gray to tan, unconsolidated, fine to coarse grained, fossiliferous sand; light gray to green, poorly consolidated, fossiliferous sandy clay to clayey sand; light gray, poorly consolidated, very fine to medium grained, calcareous, fossiliferous sand; white to light gray, poorly consolidated, sandy, fossiliferous limestone; and white to light gray, moderately to well

	Table 1: Summary of General Geologic Stratigraphy of South Central Florida																			
Approx. El. Range (feet, MSL)	Geologic Period	Geologic Epoch	Stratigraphic Symbol and Formation		Symbol and		Symbol and		Symbol and		Symbol and		Symbol and		Symbol and		Symbol and		General Lithology	General Material Description
						indurated, sandy, fossiliferous limestone. Limited quantities of phosphate are present in sand- to gravel-sized grains. Fossils present occur as molds, casts, and original material.														
-200 to -600+	Tertiary	Miocene	Th	Hawthorn Formation	Dolostone, limestone, sand, clay, phosphate	Light olive gray, blue-gray, green and gray-green in unweathered sections to reddish brown in deeply weathered sections, poorly to moderately consolidated, clayey sands to silty clays, sandy clays and relatively pure clays. Clays contains lenses or stringers of sands and gravels, and thin layers of limestone and shells.														

Lichtler (2) provides a more site-specific geologic stratification through his analysis of well logs located near the subject site in Martin County. The nearest well that was reported was installed at SE½ NW½ sec. 36, T39S, R38E, located approximately 7 miles away from the subject site, and was drilled to a depth of approximately 1155 feet below ground surface, according to the literature. Table 2 below presents a general stratigraphy of the materials encountered.

Table 2:	Summary of Go	eneral Geologic St	ratigraphy at Central Martin County Wells
Approx. Depth Range (feet)	Geologic Epoch	Stratigraphic Name	General Material Description
0 to 10		Pamlico Sand	Gray or brown quartz sand
10 to 100	Pleistocene	Anastasia Formation	Sand, shell beds, and thin discontinuous layers of sandy limestone or sandstone.
100 to 150	Pliocene	Caloosahatchee Marl	Primarily consists of sand and shell
150 to 189	Miocene	Tamiami Formation	Dark green to white phosphatic clay containing silt
189 to 756	MIOCETTE	Hawthorn Formation	and quartz sand.
756 to 777	Oligocene	Suwannee Limestone	Cream colored, slightly porous, soft, granular mass of limy particles, many of which seem to be of organic origin. Contains very few distinguishable fossils.
777 to 798	Eocene	Ocala Group	White to cream or slightly pink, soft to medium hard limestone with some crystalline calcite and miliolid foraminifera.
798 to 1155		Avon Park Limestone	Cream to tan, hard to medium soft, chalky to finely crystalline limestone with foraminifers.

REFERENCES

- 1. Scott, Thomas M., P.G., 2001. Text to Accompany the Geologic Map of Florida -Open-File Report No. 80. Florida Geological Survey, pages1-22.
- 2. Lichtler, William F., 1960. Geology and Ground-Water Resources of Martin County - Report of Investigations No. 23. Florida Geological Survey, pages 1-160.
- 3. Lichtler, William F., 1957. Ground-Water Resources of the Stuart Area, Martin County, Florida - Information Circular No. 12. Florida Geological Survey, pages 1-52.
- 4. Crandall, C.A., 2000. Distribution, Movement, and Fate of Nitrate in the Surficial Aquifer Beneath Citrus Groves, Indian River, Martin, and St. Lucie Counties, Florida – Water-Resources Investigations Report 00-4057. U.S. Geological Survey, pages 1-76.
- 5. Miller, R. Adam, 1978. Water-Resources Setting, Martin County, Florida – Water-Resources Investigation 77-68. U.S. Geological Survey, page 139.
- 6. United States Geological Survey (USGS), South Florida Information Access Website: http://sofia.usgs.gov.

5.0 AMEC PREVIOUS AREA EXPERIENCE

Prepared for: USACE

AMEC has previously performed geotechnical explorations for the USACE along the alignment of the Herbert Hoover Dike near Port Mayaca as well as for the Florida Inland Navigation District (FIND) at 0-7 Dredge Material Management Area (DMMA) located east of the subject site and adjacent (due north) of the C-44 (St. Lucie) Canal and navigation lock. Additionally, our predecessor company, MACTEC, performed a geotechnical exploration at this C44 site from 2012 through 2014 consisting of subsurface Standard Penetration Test (SPT) borings, test pits, and well water testing, and soil cement mix design testing. These reports are summarized below:

FINAL Report of Geotechnical Exploration Volume 1

SPT Borings and Laboratory Testing C-44 Reservoir and Stormwater Treatment Area Martin County, Florida Contract No. W912EP-11-D-0002 Task Work Order No. 0040, and Modification No. 1 AMEC Project No. 6734-12-9680 Dated: December 4, 2012

FINAL Report of Geotechnical Exploration Volume 2

Test Pits, Water Sampling, and Laboratory Testing C-44 Reservoir and Stormwater Treatment Area Martin County, Florida Contract No. W912EP-11-D-0002

AMEC Project No. 6734-12-9680

Dated: February 13, 2013 Prepared for: USACE

FINAL Report of Geotechnical Exploration and Laboratory Testing

Test Pits, Water Sampling, and Laboratory Testing C-44 Reservoir and Stormwater Treatment Area Martin County, Florida Contract No. W912EP-11-D-0002 Task Work Order No. 0070 AMEC Project No. 6734-13-9741

Dated: November 21, 2014

Prepared for: USACE

6.0 FIELD EXPLORATION AND SAMPLE COLLECTION

6.1 Site Conditions

The site contains a network of drainage ditches and distribution canals that were previously used during citrus, row crop, and sod production. Except where unpaved roadways have been created, vegetation over much of the site consists of small to medium brush and small trees in a medium to thick density. During periods of relatively low rainfall there are isolated areas of standing water, including the drainage ditches, but there are also many areas with no standing water. Following periods of heavy rainfall there are frequent localized areas of ponded water.

6.2 Clearing and Grubbing

Vegetation and land clearing activities were subcontracted and performed by Phillips and Jordan, Inc. operating rubber tired front-end loader heavy construction equipment with the support of AMEC's West Palm Beach on-site Biologist and Professional Engineer. Clearing activities were performed during test pit excavation operations.

Prior to commencing the clearing and grubbing, all personnel involved completed training for threatened and endangered species. This training was given by Randy Telford, Biologist with AMEC. In addition, Mr. Telford was on site during all clearing and grubbing operations. The clearing and grubbing was accomplished during the period of December 9, 2014, through December 11, 2014.

6.3 Test Pit Excavations

In general, the test pit excavations were performed starting at the existing ground surface and excavated to a maximum depth of approximately 12 feet as noted in Table 3. During the test pit excavations, three depth intervals were sampled (approximate depths of 2 to 5 feet, 5 to 7 feet, and 9 to 11 feet below existing grade). The material was stockpiled and then placed into pre-labeled sealable, 5-gallon sample buckets and transported to the on-site field yard for compositing and sample washing. The samples were then delivered to our materials testing laboratory for subsequent laboratory soil cement testing.

The approximate test pit locations are shown on the Field Exploration Plan in Appendix B. The test pit locations were selected by the USACE. We were provided with State Plane Coordinates for each field test location. We converted the State Plane Coordinates into Latitude/Longitude coordinates for use with our hand-held Global Positioning System (GPS) device. The excavations were performed at or adjacent to the requested locations with some allowances for adjacent canals. Test pit CP14-IRC44-TP-514 was moved due to proximity to a built-up roadway, canal excavation, and irrigation pipes. The relocated test pit was named CP14-IRC44-TP-514A. The test pit relocation was approved by the USACE TPOC.

The test pits were excavated by our subcontractor Phillips and Jordan, Inc. A Professional Engineer (P.E.) from our West Palm Beach office was present to provide direction during the test pit excavations. The heavy construction equipment utilized to access and excavate each of the test pits was a track-mounted Komatsu PC 210 LC excavator. The test pits were excavated during the period of December 9 through 11, 2014. A summary of the test pit locations and depths excavated is provided below in Table 3.

	Table 3: Summary of Test Pit Excavations Performed for Project											
Field Test Designation	Dates Performed ^D	Survey Co Northing NAD83 (2007) ^A (feet)	Easting NAD83 (2007) ^A (feet)	Ground Surface Elevation NAVD88 ^B (feet)	Approx. Excavation Depth (feet) ^c	Approx. Excavation Elevation NAVD88 (feet)						
CP14-IRC44- TP-513	12-9-14	1004733	837282	+26.2	11.0	+15.2						
CP14-IRC44- TP-514 ^E	12-9-14	1003765	835426	+24.3	7.0	+17.3						

	Table 3: S	•	oordinates	Ground	_	Approx.	
Field Test Designation	Dates Performed ^D	Northing NAD83 (2007) ^A (feet)	Easting NAD83 (2007) ^A (feet)	Surface Elevation NAVD88 ^B (feet)	Approx. Excavation Depth (feet) ^c	Excavation Elevation NAVD88 (feet)	
CP14-IRC44- TP-514A	12-10-14	1003776	835628	+26.8	11.0	+15.8	
CP14-IRC44- TP-515	12-10-14	1001649	835607	+26.5	12.0	+14.5	
CP14-IRC44- TP-516	12-10-14	1001372	837233	+26.5	11.5	+15.0	
CP14-IRC44- TP-517	12-10-14	1000988	835210	+26.7	11.0	+15.7	
CP14-IRC44- TP-518	12-11-14	1000116	837236	+26.6	11.0	+15.6	

A - National American Datum 1983.

From each test pit the following target-depth samples were collected:

20 bucketsfrom 2-3 feet

10 bucketsfrom 5-7 feet

10 bucketsfrom 9-11 feet

The Test-Pit Logs, presented on the Boring Drilling Log forms in Appendix C, present the soil descriptions for each test pit excavation. The stratification lines and depth designations on the test pit records represent the approximate boundaries between soil types. In some instances, the transition between soil types may be gradual. Brief descriptions of the excavation and sampling techniques used are presented in the Field Procedures section in Appendix A.

6.4 Sampling and Sample Compositing and Washing

The sample buckets were transported to the on-site trailer compound. The sample material was there composited and washed as described below

1. Compositing:

Samples from each target depth were composited according to the scope described in paragraph 1.1 field sampling.

B - North American Vertical Datum 1988.

C – Depth below existing ground surface.

D – Performed test pit with a Komatsu PC 210 LC track-mounted excavation.

E – Test pit terminated due to built-up roadway, canal excavation, and irrigation pipes.

For each test-pit, a combined sample was created from the two lower target depths: 5-7 feet and 9-11 feet. This combined sample for each test pit was designated C-5/11.

The table below summarized the compositing and combining for each test pit.

Target Depth Composite Samples	Testing Samples to be Washed for each Test Pit				
2-5	Target Sample S-2/5				
5-7	Combined complete from toward donth F. 71 and 01111 C F/44				
9-11	Combined samples from target depth 5-7' and 9'11' C-5/1				

2. Washing:

The sample material of the target samples S-2/5 and the combined samples C-5/11 from each test pit were washed. Three buckets of each sample were washed lightly and three buckets were medium washed according to the scope outlined in paragraph 1.1 and detailed description and illustration with pictures in **Appendix A**.

The table below summarizes the steps taken to create the sample material for each test pit to be tested in the laboratory. The last column shows the sample designations.

1. Step	2. Step	3. Step	4. Step		
Test Pit Excavation Sample Material Composited and Combined		Washing of Samples	Lab Sample Designation		
	Target comple from 2 5 feet	Unwashed (UW)	UW-S-2/5		
Torgot	Target sample from 2-5 feet S-2/5	Lightly Washed (LW)	LW-S-2/5		
Target	3-2/3	Medium Washed (MW)	MdW-S-2/5		
samples collected	Combine samples from	Unwashed (UW)	UW-C-5/11		
Collected	target depth 5-7' and 9'11'	Lightly Washed (LW)	LW-C-5/11		
	C-5/11	Medium Washed (MW)	MdW-C-5/11		

6.5 Collection of Wash Water Samples

100mL of wash water was collected from each decanter obtained from each wash condition and test sample designation (i.e. LW at Target Sample S-2/5). The collected decanted wash was combined, thoroughly mixed to form one composite was water sample, and was poured into a half-gallon glass water sampling container. A total of six water samples were collected, one per wash condition and test sample designation, for a total of 24, half-gallon glass containers. In addition, one, half-gallon sample was collected from the on-site well water source. In total 25, half-gallon glass containers were collected

and shipped off to the U.S. Army Environmental Laboratory (ERDC) for subsequent chemical analysis.

6.6 Water Collection for Soil-Cement Testing

Water was collected for associated soil-cement laboratory testing utilizing the potable well-water source at the on-site area office. The sampled water was pumped on December 12, 2014, from the on-site water-well and placed into 15 gallon plastic containers.

7.0 LABORATORY TESTING

7.1 General

In order to aid in classifying the soils and to help quantify and correlate engineering properties, geotechnical laboratory classification tests were performed on the soil samples obtained from the 6 test pits during this exploration. The quantity and types of tests were selected by USACE personnel.

The laboratory testing was categorized into two general areas:

- Geotechnical Index Testing Requirement (Table 5 SOW)
- Soil-Cement Mix Design Testing Requirements (Tables 6 SOW)

7.2 Geotechnical Classification Testing

The laboratory classification testing performed for this project included the following:

- 48 Sieve Analysis (Sieve Sizes No. ¾", ¾", 3.5, 4, 5, 7, 10, 14, 18, 25, 35, 45, 60, 80, 120, 170, 200, 230) ASTM D6913
- 48 visual percent shell classifications
- 48 Hydrometer Analysis ASTM D422
- 48 Carbonate Content tests ASTM D4373
- 48 Atterberg Limit tests ASTM D4318, Wet Preparation Method (Test Method A – Multipoint)
- 48 Organic Content ASTM D2974, Test Method C
- 48 Specific Gravity for Soil ASTM D854
- 48 pH (EPA SW-846 9045C)
- 36 Sand Equivalent Testing ASTM D2419

A summary of the classification testing results is provided below in Table 4. A summary of the Sand Equivalent Testing results are provided in Table 5. These results are also presented in Appendices B and C.

	Table 4: Summary of Classification Testing																
		-	le Depth (ft)		Atte	rberg l	Limits	Organic Content	Specific	Gravel	Sand	Minus 200	Silt	Clay	Carbonate	Shell	
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	(%)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН
CP14-IRC44-TP-513	UW-S-2/5	2	5.0	SW-SM	16	16	0	2.0	2.72	33.5	52	10.7	5.9	4.8	11.07	0	8.6
CP14-IRC44-TP-513	LW-S-2/5	2.0	5.0	SP-SM	NP	NP	NP	0.3	2.62	31.7	56.1	6.9	3.6	3.3	34.94	0	8.2
CP14-IRC44-TP-513	MdW-S-2/5	2.0	5.0	SP	NP	NP	NP	0.2	2.67	17.7	71.7	3.5	1.7	1.8	10.42	0	8.5
CP14-IRC44-TP-513	UW-C-5/11	5.0	11.0	SW-SC	26	17	9	3.2	2.7	21.0	57.7	11.9	2.2	9.7	9.33	0	8.6
CP14-IRC44-TP-513	LW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.7	2.76	17.4	76.4	3.8	3	0.8	11.2	0.1	9.4
CP14-IRC44-TP-513	MdW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.3	2.69	19.6	77.3	1.8	0.5	1.3	5.05	0.2	8.4
CP14-IRC44-TP-513	UW-R-5/7	5.0	7.0	SP-SC	24	17	7	1.4	2.76	27.4	58.1	9.3	3.1	6.2	5.8	0	8.4
CP14-IRC44-TP-513	UW-R-9/11	9.0	11.0	SP-SC	25	17	8	0.3	2.78	23.9	58.4	9.6	2.5	7.1	15.39	0.2	8.8
CP14-IRC44-TP-514A	UW-S-2/5	2.0	5.0	SP-SM	20	18	2	2	2.68	5.5	83.2	11.3	3.4	7.9	4.91	1	8.7
CP14-IRC44-TP-514A	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	0.6	2.75	22.8	71.9	3.3	0.9	2.4	5.3	0.5	9.2
CP14-IRC44-TP-514A	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.64	17.7	79.9	2.4	0.6	1.8	4.44	2	8.4
CP14-IRC44-TP-514A	UW-C-5/11	5.0	11.0	SW-SM	20	18	2	1.6	2.71	16.6	72.3	10.8	3.1	7.7	11.75	41.5	8.9
CP14-IRC44-TP-514A	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.44	0.1	93.9	6.0	5.7	0.3	6.64	0.4	8.8
CP14-IRC44-TP-514A	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.3	2.61	18.4	73.1	1.5	1.5	0	10.77	3.4	9.6
CP14-IRC44-TP-514A	UW-R-5/7	5.0	7.0	SP-SM	21	18	3	0.3	2.65	37	54.6	6	1.8	4.2	12.17	2	8.9
CP14-IRC44-TP-514A	UW-R-9/11	9.0	11.0	SP-SC	23	17	6	2.2	2.67	28.5	61.4	10.1	2.6	7.5	24	24	8.8
CP14-IRC44-TP-515	UW-S-2/5	2.0	5.0	SP-SC	20	15	5	2.2	2.68	22.2	67.4	8	1.6	6.4	7.64	0	9.2
CP14-IRC44-TP-515	LW-S-2/5	2.0	5.0	SP	0	0	0	1.5	2.54	25.5	70.4	3.4	2.8	0.6	8.1	0	8.1
CP14-IRC44-TP-515	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.3	2.62	0	97.5	2.5	1.7	0.8	7.46	0.4	8.4
CP14-IRC44-TP-515	UW-C-5/11	5.0	11.0	SC	24	12	12	3	2.69	7.4	76.7	14.6	2.2	12.4	8.95	0.1	8.6
CP14-IRC44-TP-515	LW-C-5/11	5.0	11.0	SP	0	0	0	0.7	2.75	16.4	74.6	4.2	2.6	1.6	13.6	0.5	8.8
CP14-IRC44-TP-515	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.5	2.66	20.6	75.6	2.6	1.7	0.9	7.04	0.3	9.5
CP14-IRC44-TP-515	UW-R-5/7	5.0	7.0	SC	28	15	13	1.5	2.63	11.7	68.4	19.9	6.5	13.4	14.21	0	8.6
CP14-IRC44-TP-515	UW-R-9/11	9.0	11.0	SW-SM	0	0	0	1.2	2.67	5.6	84.1	10	0.6	9.4	1.95	0	8.5

	Table 4: Summary of Classification Testing																
		-	le Depth (ft)		Atte	erberg	Limits	Organic Content	Specific	Gravel	Sand	Minus 200	Silt	Clay	Carbonate	Shell	
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	(%)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН
CP14-IRC44-TP-516	UW-S-2/5	2.0	5.0	SP-SC	24	16	8	2.2	2.33	14.7	67.1	9.5	0.9	8.6	4.08	0	8.6
CP14-IRC44-TP-516	LW-S-2/5	2.0	5.0	SP	0	0	0	0.6	2.65	6.7	82.8	3	2	1	3.63	0.2	8.6
CP14-IRC44-TP-516	MdW-S-2/5	2.0	5.0	SP	0	0	0	18	2.74	23	68.2	1.6	1	0.6	3.48	0.1	9.6
CP14-IRC44-TP-516	UW-C-5/11	5.0	11.0	SC	26	18	8	3.8	2.7	3.9	77.2	18.9	4.1	14.7	7.61	0.4	8.6
CP14-IRC44-TP-516	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.69	13.5	81.4	5.1	1	4.1	3.83	5.3	9.0
CP14-IRC44-TP-516	MdW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.99	10.7	82	6.5	0.5	6	3.72	0.5	8.6
CP14-IRC44-TP-516	UW-R-5/7	5.0	7.0	SC	36	15	21	2.4	2.59	14.8	64.6	19.7	3.7	16	4.9	0	8.6
CP14-IRC44-TP-516	UW-R-9/11	9.0	11.0	SM	25	18	7	1.7	2.7	3.6	77.1	19.3	3.6	15.7	3.17	0.1	8.5
CP14-IRC44-TP-517	UW-S-2/5	2.0	5.0	SW-SM	0	0	0	1.4	2.48	8.3	79.6	11.1	2.6	8.5	7.47	0	8.8
CP14-IRC44-TP-517	LW-S-2/5	2.0	5.0	SP	0	0	0	0.7	2.72	22.2	70.7	3.6	1.7	1.9	9.31	0	8.6
CP14-IRC44-TP-517	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.4	2.61	17.0	80.6	2.4	2.1	0.3	6.06	0	8.5
CP14-IRC44-TP-517	UW-C 5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.67	6.5	84.3	9.2	3.3	5.9	7.23	0.6	8.8
CP14-IRC44-TP-517	LW-C 5/11	5.0	11.0	SP	0	0	0	1.7	2.68	14.2	82.6	3.2	1.5	1.7	5.91	1.4	9.4
CP14-IRC44-TP-517	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.4	2.66	24.9	72.8	2.3	1.3	1	7.74	0.5	8.4
CP14-IRC44-TP-517	UW-R-5/7	5.0	7.0	SP-SM	0	0	0	0.6	2.67	6.0	83.7	10.3	3.5	6.8	10.91	0	8.9
CP14-IRC44-TP-517	UW-R 9/11	9.0	11.0	SW-SM	0	0	0	0.5	2.67	3.1	86.7	10.2	3.6	6.6	8.77	0.3	8.9
CP14-IRC44-TP-518	UW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.7	2.66	0	90.3	9.7	2.7	7	1.48	0	8.2
CP14-IRC44-TP-518	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.4	2.79	0	92.4	7.6	4.3	3.3	3.68	0	8.9
CP14-IRC44-TP-518	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.67	0	96.7	3.3	1.1	2.2	0.45	0	9.1
CP14-IRC44-TP-518	UW-C 5/11	5.0	11.0	SC	22	14	8	2.5	2.72	12.3	70.3	14.8	5.1	9.7	12.15	1	8.6
CP14-IRC44-TP-518	LW-C 5/11	5.0	11.0	SP-SM	0	0	0	0.6	2.64	14.2	78.7	6.2	1.5	4.7	11.9	3	8.9
CP14-IRC44-TP-518	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.2	2.73	22.5	72	2.6	2	0.6	10.5	36.5	9.4
CP14-IRC44-TP-518	UW-R-5/7	5.0	7.0	SW-SC	21	14	7	1.4	2.68	26.6	53.4	10.6	4	6.6	13.5	0	8.7
CP14-IRC44-TP-518	UW-R-9/11	9.0	11.0	SC	28	18	10	1.6	2.61	9.4	73.8	16.4	4.3	12.1	5.93	0.6	8.3

Tab	le 5: Summary o	of Sand Clea	anliness an	d Sand Eq	uivalent Testi	ng
					Sand	
Sample Depth			Clay	Sand	Equivalent	Average Sand
Range (feet)	Sample No.	Trail No.	Reading	Reading	(%)	Equivalent (%)
		CP14-I	RC44-TP-5	13		
		1	12.8	2.1	17	
	UW-S-2/5	2	12.6	2.0	16	17
		3	12.5	2.1	17	
		1	13.6	3.4	25	
2-5	LW-S-2/5	2	13.6	3.4	25	25
		3	13.6	3.4	25	
		1	7.0	3.6	52	
	MdW-S-2/5	2	7.1	3.5	50	51
		3	7.0	3.5	50	
		1	14.5	2.2	16	
	UW-C-5/11	2	14.4	2.2	16	16
		3	14.3	2.2	16	
= 44	134 0 544	1	13.5	3.5	26	0=
5-11	LW-C-5/11	2	13.3	3.3	25	25
		3	13.3	3.3	25	
	14 114/ 0 5/44	1	10.6	3.6	34	0.4
	MdW-C-5/11	2	10.6	3.6	34	34
		3	11.0	3.6	33	
		CP14-IF	RC44-TP-51	4A		
		1	12.9	2.1	17	
	UW-S-2/5	2	12.6	1.9	16	16
		3	12.7	2.0	16	
		1	12.7	3.5	28	
2-5	LW-S-2/5	2	12.5	3.5	28	28
		3	12.3	3.5	29	
		1	10.6	3.5	33	
	MdW-S-2/5	2	10.0	3.2	32	33
		3	10.3	3.6	35	
		1	13.5	2.2	17	
	UW-C-5/11	2	13.5	2.3	17	17
		3	13.5	2.3	17	
		1	11.8	3.3	28	
5-11	LW-C-5/11	2	11.7	3.2	28	28
		3	11.7	3.3	29	
		1	7.0	3.5	50	
	MdW-C-5/11	2	7.1	3.6	51	50
		3	7.1	3.5	50	
		CP14-I	RC44-TP-5	15		
		1	13.9	2.4	18	
	UW-S-2/5	2	14.1	2.4	19	19
	UVV-3-2/3					19
		3	14.2	2.6	19	
2.5	1.14/ 6.2/5	1	11.9	3.4	29 29	20
2-5	LW-S-2/5	3	12.1 11.8	3.5	30	29
		1	6.5	3.5	53	
	MdW S 2/5	2	6.5	3.4 3.4	53	53
	MdW-S-2/5	3				ეე
		1	6.4 13.3	3.4 2.5	54 19	
	UW-C-5/11	2			17	18
	000-0-5/11	3	13.6	2.3	17	10
5-11		1	13.6 13.0	3.1	24	
	LW C 5/11	2	13.0	3.4	27	26
	LW-C-5/11	3	13.0			20
	1	<u> </u>	13.0	3.6	28	

Tab	le 5: Summary o	of Sand Clea	anliness an	d Sand Eq		ng
					Sand	
Sample Depth			Clay	Sand	Equivalent	Average Sand
Range (feet)	Sample No.	Trail No.	Reading	Reading	(%)	Equivalent (%)
		CP14-I	RC44-TP-5	15		
		1	11.5	3.8	33	
5-11	MdW-C-5/11	2	12.0	3.8	32	33
		3	11.7	3.8	33	
		CP14-I	RC44-TP-5	16		
		1	14.0	2.4	18	
	UW-S-2/5	2	14.1	2.4	17	18
		3	13.9	2.4	18	
0.5	1.14.0.0/5	1	10.4	3.7	36	0.5
2-5	LW-S-2/5	3	10.4	3.4	33	35
		1	10.4 11.2	3.6 3.5	35 32	
	MdW-S-2/5	2	11.4	3.7	33	32
	1010 0 - 3 - 2/3	3	11.4	3.6	32	32
		1	13.8	3.4	25	
	UW-C-5/11	2	13.7	3.4	25	25
	311 3 37 11	3	13.8	3.4	25	20
		1	13.8	2.4	18	
5-11	LW-C-5/11	2	13.4	2.0	15	16
		3	13.6	2.1	16	
	MdW-C-5/11	1	14.3	3.1	22	
		2	14.2	3.0	22	22
		3	14.3	3.0	21	
		CP14-I	RC44-TP-5	17		
		1	14.3	2.2	16	
	UW-S-2/5	2	14.2	2.1	15	15
	011 0 270	3	14.1	2.0	15	
		1	11.3	3.6	32	
2-5	LW-S-2/5	2	11.1	3.3	30	30
		3	11.2	3.2	29	
		1	10.6	3.8	36	
	MdW-S-2/5	2	10.5	3.9	38	37
		3	10.5	3.9	38	
		1	13.6	2.8	21	
	UW-C-5/11	2	13.2	2.4	19	20
		3	13.2	2.6	20	
F 44	1.M.C. 5/44	1	8.1	3.0	37	20
5-11	LW-C-5/11	3	8.7	3.1 3.0	36 35	36
		1	8.7 6.2	3.5	57	
	MdW-C-5/11	2	6.3	3.2	51	56
	WIGVV-C-3/11	3	6.2	3.6	59	30
	1	•				
			RC44-TP-5	18 1.7	12	
	UW-S-2/5	2	14.5 14.5	1.7	13	13
	000-3-2/3	3	14.5	1.0	13	13
		1	11.2	2.9	26	
2-5	LW-S-2/5	2	12.0	3.0	25	26
20	211 0 2/0	3	11.7	3.1	27	
		1	13.5	3.7	28	
	MdW-S-2/5	2	13.5	3.6	27	28
		3	13.4	3.7	28	

Tab	le 5: Summary o	of Sand Clea	anliness an	d Sand Eq	uivalent Testi	ng					
Sample Depth Range (feet)	Sample No.	Trail No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)					
CP14-IRC44-TP-518											
		1	14.8	2.3	16						
	UW-C-5/11	2	14.1	2.7	20	18					
		3	14.3	2.6	19						
		1	13.0	3.6	28						
5-11	LW-C-5/11	2	12.8	3.4	27	27					
		3	12.7	3.4	27						
		1	10.4	3.8	37						
	MdW-C-5/11	2	10.4	3.7	36	36					
		3	10.6	3.7	35						

7.3 Soil Cement Design Testing

The laboratory soil cement testing performed for this project included the following:

- 36 Moisture density tests of soil cement samples ASTM D558
- 324 Unconfined compression strength tests for soil cement samples ASTM D1633, Test Method A
- 36 Wetting and Drying of Soil Cement ASTM D559
- 36 Freezing and Thawing of Compacted Soil Cement Mixtures ASTM D560-03

A summary of the unconfined compressive strength test results is provided in Table 6 and Table 7. A summary of the Wetting/Drying and Freezing/Thawing test results are provided in Table 8. These results are also presented in Appendices B and C.

		Table 6	: Summary of	f Soil Cem	ent Testing	at 100% Con	npaction						
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)					
	CP14-IRC44-TP-513 UW-S-2/5												
	1 7 0.78 126.1 10.0 125.8 9.6 1060												
	2	7	0.78	126.1	10.0	126.4	9.6	890					
4.40/	3	7	0.76	126.1	10.0	126.2	9.3	825					
14%	4	28	0.76	126.1	10.0	126.2	9.3	NT					
	5	28	0.77	126.1	10.0	126.0	9.4	NT					
	6	28	0.77	126.1	10.0	126.3	9.4	NT					
			CP1	4-IRC44-TF	P-513 UW-C	-5/11							
	1	7	0.97	117.3	12.0	117.6	12.0	785					
	2	7	0.97	117.3	12.0	117.6	12.0	825					
4.40/	3	7	0.93	117.3	12.0	118.0	11.4	795					
14%	4	28	0.93	117.3	12.0	118.1	11.4	NT					
	5	28	0.96	117.3	12.0	117.8	11.8	NT					
	6	28	0.96	117.3	12.0	117.8	11.8	NT					

		Table 6	: Summary	of Soil Co	emei	nt Testing	at 100% Cor	npaction		
Cement Content	Sample	Age	Water / Cement Ratio	Max Densi (pcf)	ty	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)	
			C	P14-IRC4	4-TP	-513 LW-9	S-2/5			
	1	7	0.59	127.7		8.6	129.3	7.2	1600	
	2	7	0.59	127.7		8.6	129.6	7.2	1295	
14%	3	7	0.60	127.7		8.6	129.2	7.3	1345	
14%	4	28	0.60	127.7		8.6	129.2	7.3	1805	
	5	28	0.65	127.7		8.6	128.8	7.8	1425	
	6	28	0.65	127.7		8.6	128.5	7.8	1680	
	1	7	0.86	125	5.3	10.6	125.3	10.5	765	
	2	7	0.86	125	5.3	10.6	125.0	10.5	1370	
1.40/	3	7	0.86	125	5.3	10.6	124.6	10.6	1250	
1470	4	28	0.86	125	5.3	10.6	124.8	10.6	NT	
	5	28	0.84	125	5.3	10.6	125.5	10.4	NT	
	6	28	0.84	125	5.3	10.6	125.5	10.4	NT	
			С	P14-IRC44	-TP-	513 MdW-	S-2/5			
	1	7	0.70	124.5		10.4	126.3	8.6	1585	
	2	7	0.70	124.5		10.4	126.6	8.6	1355	
14%	3	7	0.75	124.5		10.4	125.9	9.2	1590	
1470	4	28	0.75	124.5		10.4	125.9	9.2	1755	
	5	28	0.73	124.5		10.4	126.2	9.0	1895	
	6	28	0.73	124.5		10.4	125.9	9.0	1885	
			CF	P14-IRC44-	TP-	513 MdW-0	C-5/11			
	1	7	0.78	126.3		9.2	125.5	9.6	1030	
	2	7	0.78	126.3		9.2	125.5	9.6	1190	
4.40/	3	7	0.81	126.3		9.2	125.1	10.0	1190	
14%	4	28	0.81	126.3		9.2	125.1	10.0	1405	
	5	28	0.82	126.3		9.2	125.0	10.0	1665	
	6	28	0.82	126.3		9.2	125.0	10.0	1760	
				P14-IRC44	-TP-	514A UW-	S-2/5	•		
	1	7	0.81	121.1		11.8	122.9	10.0	630	
	2	7	0.81	121.1	1	11.8	122.8	10.0	690	
14%	3	7	0.77	121.1	1	11.8	123.6	9.4	810	
17 /0	4	28	0.77	121.1		11.8	123.6	9.4	NT	
	5	28	0.81	121.1		11.8	122.7	9.9	NT	
	6	28	0.81	121.1		11.8	122.5	9.9	NT	

		Table 6	: Summary	of Soil Ce	ment Testing	at 100% Con	npaction	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	14-IRC44-1	P-514A UW-0	C-5/11		
	1	7	0.97	120.9	11.5	120.7	11.9	820
	2	7	0.97	120.9	11.5	120.7	11.9	965
14%	3	7	0.96	120.9	11.5	120.8	11.8	945
14 70	4	28	0.96	120.9	11.5	120.7	11.8	NT
	5	28	0.94	120.9	11.5	120.7	11.6	NT
	6	28	0.94	120.9	11.5	121.1	11.6	NT
			СР	14-IRC44-	TP-514A LW-	S-2/5		
	1	7	2.89	123.3	10.6	123.8	9.6	1195
	2	7	2.34	123.3	10.6	124.2	9.6	1205
14%	3	7	2.43	123.3	10.6	124.3	9.6	1135
1470	4	28	0.79	123.3	10.6	123.7	9.6	NT
	5	28	0.79	123.3	10.6	123.6	9.7	NT
	6	28	0.79	123.3	10.6	123.6	9.7	NT
			CP1	14-IRC4 <mark>4-</mark> 1	P-514A LW-C	C-5/11		
	1	7	0.81	125.3	11	125.7	10.0	765
	2	7	0.81	125.3	11	125.4	10.0	1370
14%	3	7	0.88	125.3	11	124.5	10.8	1250
14 /0	4	28	0.88	125.3	11	124.7	10.8	NT
	5	28	0.92	125.3	11	123.9	11.2	NT
	6	28	0.92	125.3	11	123.9	11.2	NT
			CP1	4-IRC44-T	P-514A MdW	-S-2/5		
	1	7	0.62	123.9	8.9	124.1	7.6	790
	2	7	0.62	123.9	8.9	124.1	7.6	1195
4.40/	3	7	0.69	123.9	8.9	123.2	8.5	990
14%	4	28	0.69	123.9	8.9	123.5	8.5	1585
	5	28	0.67	123.9	8.9	123.5	8.2	1240
	6	28	0.67	123.9	8.9	123.5	8.2	1340
		<u> </u>	CP1	4-IRC44-T	P-514A MdW-		•	
	1	7	0.67	125.1	9.4	122.8	8.2	1120
	2	7	0.67	125.1	9.4	122.5	8.2	1385
14%	3	7	0.71	125.1	9.4	122.0	8.7	1265
14 70	4	28	0.71	125.1	9.4	122.0	8.7	1785
	5	28	0.70	125.1	9.4	123.0	8.6	1855
	6	28	0.70	125.1	9.4	123.0	8.6	1660

		Table	6: Summary	of Soil Cer	ment Testing	at 100% Coi	mpaction	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			С	P14-IRC44	-TP-515 UW-	S-2/5		
	1	7	0.72	123.1	10.4	124.3	8.7	715
	2	7	0.72	123.1	10.4	124.9	8.7	950
4.40/	3	7	0.84	123.1	10.4	122.8	10.1	955
14%	4	28	0.84	123.1	10.4	123.4	10.1	NT
	5	28	0.73	123.1	10.4	124.3	8.8	NT
	6	28	0.73	123.1	10.4	124.6	8.8	NT
			CF	P14-IRC44-	TP-515 UW-C	:-5/11		
	1	7	0.84	118.3	12.3	120.1	10.3	835
	2	7	0.84	118.3	12.3	120.1	10.3	625
4.40/	3	7	0.85	118.3	12.3	120.3	10.4	765
14%	4	28	0.85	118.3	12.3	120.0	10.4	NT
	5	28	0.98	118.3	12.3	118.3	12.1	NT
	6	28	0.98	118.3	12.3	118.3	12.1	NT
			C	P14-IRC44	-TP-515 LW-	S-2/5		
	1	7	0.75	123.8	10.1	124.8	9.2	1250
	2	7	0.78	123.8	10.1	124.3	9.5	1305
14%	3	7	0.78	123.8	10.1	124.4	9.5	1660
1470	4	28	0.73	123.8	10.1	124.7	8.9	NT
	5	28	0.79	123.8	10.1	124.0	9.6	NT
	6	28	0.78	123.8	10.1	124.1	9.5	NT
			CI	P14-IRC44-	TP-515 LW-C	c-5/11		
	1	7	0.81	125.7	9.9	125.1	9.9	940
	2	7	0.81	125.7	9.9	125.1	9.9	1135
1.40/	3	7	0.79	125.7	9.9	125.6	9.6	995
14%	4	28	0.79	125.7	9.9	125.3	9.6	NT
	5	28	0.82	125.7	9.9	125.0	10.0	NT
	6	28	0.82	125.7	9.9	125.0	10.0	NT

Cement Content		Та	able 6:	Summary o	of Soil Cem	ent Testing	AT 100% Com	npaction	
1 7 0.78 125.0 8.3 123.7 9.6 950 2 7 0.78 125.0 8.3 123.7 9.6 910 3 7 0.80 125.0 8.3 123.5 9.8 990 4 28 0.80 125.0 8.3 123.2 9.8 1365 5 28 0.81 125.0 8.3 123.6 9.9 1380 6 28 0.81 125.0 8.3 123.0 9.9 1500 CP14-IRC44-TP-515 MdW-C-5/11 1 7 0.83 124.3 10.1 123.9 10.2 1115 2 7 0.83 124.3 10.1 124.1 10.2 1070 3 7 0.82 124.3 10.1 124.1 10.1 1210 4 28 0.82 124.3 10.1 124.1 10.1 1210 4 28 0.82 124.3 10.1 124.5 10.1 NT 5 28 0.82 124.3 10.1 124.5 10.1 NT 6 28 0.82 124.3 10.1 124.5 10.1 NT CP14-IRC44-TP-516 UW-S-2/5 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 121.7 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 14% 28 0.76 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.7 NT 6 28 0.76 122.0 10.2 122.3 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 28 1.20 118.0 13.3 111.2 14.8 NT 5 28 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.9 14.2 NT		Sample	Age	Cement	Density	Moisture Content	Sample Density	Sample Moisture Content	Compressive Strength
14%				CP1	14-IRC44-T	P-515 MdW-\$	S-2/5		
14% 3		1	7	0.78	125.0	8.3	123.7	9.6	950
14%		2	7	0.78	125.0	8.3	123.7	9.6	910
4	1 / 1 0 /	3	7	0.80	125.0	8.3	123.5	9.8	990
1	1470	4	28	0.80	125.0	8.3	123.2	9.8	1365
CP14-IRC44-TP-515 MdW-C-5/11 1 7 0.83 124.3 10.1 123.9 10.2 1115 2 7 0.83 124.3 10.1 124.1 10.2 1070 3 7 0.82 124.3 10.1 124.1 10.1 1210 4 28 0.82 124.3 10.1 124.5 10.1 NT 5 28 0.82 124.3 10.1 124.7 10.1 NT CP14-IRC44-TP-516 UW-S-2/5 CP14-IRC44-TP-516 UW-S-2/5 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.76 122.0 10.2 122.3 9.7 NT 5 28 0.76 12		5	28	0.81	125.0	8.3	123.6	9.9	1380
14% 14% 1 7 0.83 124.3 10.1 123.9 10.2 1115 2 7 0.83 124.3 10.1 124.1 10.2 1070 3 7 0.82 124.3 10.1 124.1 10.1 1210 4 28 0.82 124.3 10.1 124.5 10.1 NT 5 28 0.82 124.3 10.1 124.7 10.1 NT 6 28 0.82 124.3 10.1 124.5 10.1 NT CP14-IRC44-TP-516 UW-S-2/5 14% 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 CP14-IRC44-TP-516 UW-C-5/11 14% 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		6	28	0.81	125.0	8.3	123.0	9.9	1500
14% 2 7 0.83 124.3 10.1 124.1 10.2 1070 3 7 0.82 124.3 10.1 124.1 10.1 1210 4 28 0.82 124.3 10.1 124.5 10.1 NT 5 28 0.82 124.3 10.1 124.5 10.1 NT 6 28 0.82 124.3 10.1 124.5 10.1 NT CP14-IRC44-TP-516 UW-S-2/5 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 121.7 9.9 815 3 7 0.79 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 CP14-IRC44-TP-516 UW-C-5/11 CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.2 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT				CP1	4-IRC44-TF	P-515 MdW-C	-5/11		
14% 3		1	7	0.83	124.3	10.1	123.9	10.2	1115
14% 4 28 0.82 124.3 10.1 124.5 10.1 NT 5 28 0.82 124.3 10.1 124.7 10.1 NT 6 28 0.82 124.3 10.1 124.5 10.1 NT CP14-IRC44-TP-516 UW-S-2/5 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.7 NT 6 28 0.76 122.0 10.2 122.3 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		2	7	0.83	124.3	10.1	124.1	10.2	1070
4	1.40/	3	7	0.82	124.3	10.1	124.1	10.1	1210
1	1470	4	28	0.82	124.3	10.1	124.5	10.1	NT
CP14-IRC44-TP-516 UW-S-2/5 1 7 0.81 122.0 10.2 121.7 9.9 915 2 7 0.81 122.0 10.2 122.3 9.9 815 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0		5	28	0.82	124.3	10.1	124.7	10.1	NT
14%		6	28	0.82	124.3	10.1	124.5	10.1	NT
14% 2				СР	14-IRC44-1	rp-516 UW-S	-2/5		
14% 3 7 0.79 122.0 10.2 121.9 9.7 840 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT 6 28 0.76 122.0 10.2 122.5 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		1	7	0.81	122.0	10.2	121.7	9.9	915
14% 4 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT 6 28 0.76 122.0 10.2 122.5 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.2 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		2		0.81	122.0	10.2	122.3	9.9	815
14% 28 0.79 122.0 10.2 122.3 9.7 NT 5 28 0.76 122.0 10.2 122.3 9.4 NT 6 28 0.76 122.0 10.2 122.5 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT	4.40/	3	7	0.79	122.0	10.2	121.9	9.7	840
6 28 0.76 122.0 10.2 122.5 9.4 NT CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT	14%	4	28	0.79	122.0	10.2	122.3	9.7	NT
CP14-IRC44-TP-516 UW-C-5/11 1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		5	28	0.76	122.0	10.2	122.3	9.4	NT
1 7 1.23 118.0 13.3 111.4 15.1 355 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		6	28	0.76	122.0	10.2	122.5	9.4	NT
14% 2 7 1.23 118.0 13.3 111.4 15.1 460 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT				CP ²	14-IRC44-T	P-516 UW-C-	5/11		
14% 3 7 1.20 118.0 13.3 112.2 14.8 435 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		1	7	1.23	118.0	13.3	111.4	15.1	355
14% 4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT		2	7	1.23	118.0	13.3	111.4	15.1	460
4 28 1.20 118.0 13.3 112.3 14.8 NT 5 28 1.16 118.0 13.3 112.9 14.2 NT	4 (2)	3	7	1.20	118.0	13.3	112.2	14.8	435
	14%	4	28	1.20	118.0	13.3	112.3	14.8	NT
6 28 1.16 118.0 13.3 118.7 14.2 NT		5	28	1.16	118.0	13.3	112.9	14.2	NT
		6	28	1.16	118.0	13.3	118.7	14.2	NT

	Ta	able 6:	Summary o	of Soil Cem	nent Testing	at 100% Com	paction	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			СР	14-IRC44-1	ΓP-516 LW-S	-2/5		
	1	7	0.85	121.5	10.1	120.6	10.5	1095
	2	7	0.85	121.5	10.1	120.9	10.5	1295
14%	3	7	0.80	121.5	10.1	121.3	9.8	1065
14 /0	4	28	0.80	121.5	10.1	121.2	9.8	NT
	5	28	0.80	121.5	10.1	121.2	9.8	NT
	6	28	0.80	121.5	10.1	121.7	9.8	NT
			CP1	14-IRC44-T	P-516 LW-C-	5/11		
	1	7	0.91	121.8	11.7	122.2	11.2	715
	2	7	0.91	121.8	11.7	122.2	11.2	605
14%	3	7	0.86	121.8	11.7	122.8	10.6	750
1470	4	28	0.86	121.8	11.7	122.9	10.6	975
	5	28	1.02	121.8	11.7	120.8	12.5	1065
	6	28	1.02	121.8	11.7	120.4	12.5	970
			CP1	14-IRC44-T	P-516 MdW-9	S-2/5		
	1	7	0.75	122.4	10.2	123.4	9.2	1585
	2	7	0.74	122.4	10.2	123.5	9.2	1465
14%	3	7	0.74	122.4	10.2	123.2	9.2	1665
14%	4	28	0.74	122.4	10.2	123.8	9.2	NT
	5	28	0.73	122.4	10.2	123.6	9.0	NT
	6	28	0.73	122.4	10.2	124.1	9.0	NT
			CP1	4-IRC44-TF	P-516 MdW-C	-5/11		
	1	7	0.70	122.0	10.3	123.7	8.6	1070
	2	7	0.70	122.0	10.3	123.7	8.6	950
4.40/	3	7	0.69	122.0	10.3	124.4	8.4	970
14%	4	28	0.69	122.0	10.3	124.4	8.4	NT
	5	28	0.68	122.0	10.3	123.8	8.4	NT
	6	28	0.68	122.0	10.3	123.8	8.4	NT

	Ta	able 6:	Summary of	of Soil Cen	nent Testing	at 100% Com	paction					
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)				
			СР	14-IRC44-7	ΓP-517 UW-S	-2/5						
	1	7	0.87	120.2	11.4	121.3	10.7	1025				
	2	7	0.87	120.2	11.4	121.3	10.7	850				
4.40/	3	7	0.83	120.2	11.4	121.8	10.1	1000				
14%	4	28	0.83	120.2	11.4	121.8	10.1	NT				
	5	28	0.80	120.2	11.4	122.0	9.9	NT				
	6	28	0.80	120.2	11.4	122.1	9.9	NT				
	CP14-IRC44-TP-517 UW-C-5/11											
	1	7	0.87	123.4	11.0	121.3	10.7	1025				
	2	7	0.87	123.4	11.0	121.3	10.7	850				
14%	3	7	0.83	123.4	11.0	121.8	10.1	1000				
1470	4	28	0.83	123.4	11.0	121.8	10.1	NT				
	5	28	0.80	123.4	11.0	122.0	9.9	NT				
	6	28	0.80	123.4	11.0	122.1	9.9	NT				
			СР	14-IRC44-	Γ <mark>Ρ-</mark> 517 LW-S	-2/5						
	1	7	0.75	122.7	10.4	123.8	9.2	1315				
	2	7	0.75	122.7	10.4	123.8	9.2	1100				
4.407	3	7	0.75	122.7	10.4	123.7	9.3	1240				
14%	4	28	0.75	122.7	10.4	124.3	9.3	NT				
	5	28	0.74	122.7	10.4	124.1	9.0	NT				
	6	28	0.74	122.7	10.4	124.0	9.0	NT				
			CP'	14-IRC44-T	P-517 LW-C-	·5/11						
	1	7	0.70	122.6	9.5	123.4	8.6	NT				
	2	7	0.70	122.6	9.5	123.9	8.6	NT				
14%	3	7	0.72	122.6	9.5	123.1	8.8	NT				
14%	4	28	0.72	122.6	9.5	123.1	8.8	NT				
	5	28	0.71	122.6	9.5	123.1	8.8	NT				
	6	28	0.71	122.6	9.5	123.2	8.8	NT				

	Ta	able 6:	Summary of	of Soil Cem	ent Testing	at 100% Com	paction				
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)			
			CP1	4-IRC44-T	P-517 MdW-	S-2/5					
	1	7	0.75	122.2	10.2	122.9	9.3	1265			
	2	7	0.75	122.2	10.2	123.3	9.3	1190			
	3	7	0.76	122.2	10.2	123.2	9.4	1385			
14%	4	28	0.76	122.2	10.2	123.1	9.4	NT			
	5	28	0.76	122.2	10.2	122.9	9.3	NT			
	6	28	0.76	122.2	10.2	123.4	9.3	NT			
	CP14-IRC44-TP-517 MdW-C-5/11										
	1	7	0.66	123.3	9.1	123.8	8.1	1365			
	2	7	0.66	123.3	9.1	123.8	8.1	1305			
14%	3	7	0.65	123.3	9.1	123.9	8.0	1465			
1470	4	28	0.65	123.3	9.1	124.4	8.0	NT			
	5	28	0.68	123.3	9.1	123.4	8.4	NT			
	6	28	0.68	123.3	9.1	124.1	8.4	NT			
			СР	14 -I RC44-1	P-518 UW-S	-2/5					
	1	7	0.75	116.5	12.6	120.0	9.2	845			
	2	7	0.75	116.5	12.6	119.9	9.2	900			
14%	3	7	0.77	116.5	12.6	119.8	9.5	795			
1470	4	28	0.77	116.5	12.6	119.8	9.5	NT			
	5	28	0.77	116.5	12.6	119.8	9.4	NT			
	6	28	0.77	116.5	12.6	119.7	9.4	NT			
			CP1	14-IRC44-T	P-518 UW-C-	·5/11					
	1	7	0.81	121.6	12.2	124.0	9.9	NT			
	2	7	0.81	121.6	12.2	124.0	9.9	NT			
14%	3	7	1.00	121.6	12.2	121.5	12.3	NT			
1470	4	28	1.00	121.6	12.2	121.3	12.3	NT			
	5	28	0.84	121.6	12.2	123.4	10.3	NT			
	6	28	0.84	121.6	12.2	123.5	10.3	NT			

	T	able 6:	Summary of	of Soil Cem	nent Testing	at 100% Com	paction					
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)				
			СР	14-IRC44-	ΓP-518 LW-S	-2/5						
	1	7	0.81	121.0	11.1	122.2	9.9	1050				
	2	7	0.81	121.0	11.1	122.6	9.9	935				
14%	3	7	0.82	121.0	11.1	122.2	10.1	1000				
14%	4	28	0.82	121.0	11.1	121.9	10.1	NT				
	5	28	0.81	121.0	11.1	122.2	9.9	NT				
	6	28	0.81	121.0	11.1	122.0	9.9	NT				
	CP14-IRC44-TP-518 LW-C-5/11											
	1	7	0.77	126.2	10.3	127.0	9.5	NT				
	2	7	0.77	126.2	10.3	127.3	9.5	NT				
4.40/	3	7	1.08	126.2	10.3	122.6	13.3	NT				
14%	4	28	1.08	126.2	10.3	122.6	13.3	NT				
	5	28	0.81	126.2	10.3	126.4	9.9	NT				
	6	28	0.81	126.2	10.3	126.5	9.9	NT				
			CP1	4-IRC44-T	P-518 MdW-S	S-2/5						
	1	7	0.76	118.0	10.7	119.6	9.3	1110				
	2	7	0.76	118.0	10.7	119.2	9.3	1150				
4.40/	3	7	0.81	118.0	10.7	118.6	10.0	1190				
14%	4	28	0.81	118.0	10.7	118.7	10.0	NT				
	5	28	0.80	118.0	10.7	119.2	9.9	NT				
	6	28	0.80	118.0	10.7	119.2	9.9	NT				
			CP1	4-IRC44-TF	P-518 MdW-C	-5/11						
	1	7	0.76	123.6	10.4	124.1	9.3	1140				
	2	7	0.76	123.6	10.4	124.1	9.3	1215				
4.407	3	7	0.78	123.6	10.4	123.8	9.6	1265				
14%	4	28	0.78	123.6	10.4	124.4	9.6	NT				
	5	28	0.77	123.6	10.4	124.3	9.5	NT				
	6	28	0.77	123.6	10.4	124.6	9.5	NT				

NT: Not tested as of date of report preparation.

Table 7	: Summary of Soil	Cement	Testing a	at 95% Com	paction
	-		PSI		-
Test	t Pit No.	1	2	3	Average*
TP-513	UW-S-2/5				
TP-513	LW-S-2/5	945	1215	1410	1190
TP-513	MdW-S-2/5	1100	995	920	1005
TP-513	UW-C-5/11				
TP-513	LW-C-5/11				
TP-513	MdW-C-5/11	385	455	455	432
TP-514	UW-S-2/5				
TP-514	LW-S-2/5	720	1235	1115	1023
TP-514	MdW-S-2/5	860	925	870	885
TP-514	UW-C-5/11				
TP-514	LW-C-5/11				
TP-514	MdW-C-5/11	1135	1035	1155	1108
TP-515	UW-S-2/5				
TP-515	LW-S-2/5	1275	1333	1197	1268
TP-515	MdW-S-2/5	1020	930	925	958
TP-515	UW-C-5/11				
TP-515	LW-C-5/11	7			
TP-515	MdW-C-5/11	850	880	1000	910
TP-516	UW-S-2/5				
TP-516	LW-S-2/5	1165	1045	1110	1107
TP-516	MdW-S-2/5	940	970	1065	992
TP-516	UW-C-5/11				
TP-516	LW-C-5/11				
TP-516	MdW-C-5/11				
TP-517	UW-S-2/5				
TP-517	LW-S-2/5	940	1250	1210	1133
TP-517	MdW-S-2/5	975	805	965	915
TP-517	UW-C-5/11				
TP-517	LW-C-5/11				
TP-517	MdW-C-5/11				
TP-518	UW-S-2/5				
TP-518	LW-S-2/5	905	800	935	880
TP-518	MdW-S-2/5	1360	945	1355	1220
TP-518	UW-C-5/11				
TP-518	LW-C-5/11				
TP-518	MdW-C-5/11				

^{*}Testing still in progress.

		Table 8	: Summary	of Wet/Dr	y and Free	ze/Thaw Testi	ng		
			CP1	4-IRC44-TP	-513 UW-S-2	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.77	126.1	10.00	126.5	9.3	NT	NT	
Drying	17	0.77	126.1	10.00	126.9	9.3	NT	NT	
Freezing and	14	0.80	126.1	10.00	126.0	9.7	NT	NT	
Thawing	17	0.80	126.1	10.00	126.5	9.7	NT	NT	
			CP14	-IRC44-TP-	513 UW-C-5/	11			•
Wetting and	14	0.94	117.3	12.00	117.9	11.4	NT	NT	
Drying	Drying 14	0.94	117.3	12.00	118.0	11.4	NT	NT	
Freezing and	14	0.97	117.3	12.00	117.6	11.8	NT	NT	
Thawing	17	0.97	117.3	12.00	117.6	11.8	NT	NT	
<u>'</u>			CP1	4-IRC44-TP	-513 LW-S-2	/5	<u> </u>		
Wetting and	14	0.66	127.7	8.60	128.7	8.0	130.8	0.0	
Drying	17	0.66	127.7	8.60	128.4	8.0	130.1	0.0	
Freezing and	14	0.65	127.7	8.60	128.6	7.8	NT	NT	
Thawing	17	0.65	127.7	8.60	128.9	7.8	NT	NT	
			CP14	I-IRC44-TP-	513 LW-C-5/	11	!		
Wetting and	14	0.90	125.3	10.60	124.7	0.1	NT	NT	
Drying	17	0.90	125.3	10.60	124.6	0.1	NT	NT	
Freezing and	14	0.95	125.3	10.00	124.2	0.1	NT	NT	
Thawing	14	0.95	125.3	10.00	124.0	0.1	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP14	-IRC44-TP-5	13 MdW-S-2	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.73	124.5	10.40	126.4	8.9	NT	NT	
Drying		0.73	124.5	10.40	126.4	8.9	NT	NT	
Freezing and	14	0.73	124.5	10.40	127.3	8.9	NT	NT	
Thawing		0.73	124.5	10.40	127.6	8.9	NT	NT	
			CP14-	IRC44-TP-51	3 MdW-C-5/	11			
Wetting and	14	0.85	126.3	9.20	125.1	10.3	NT	NT	
Drying		0.85	126.3	9.20	124.8	10.3	NT	NT	
Freezing and	14	0.82	126.3	9.20	125.2	10.0	NT	NT	
Thawing	14	0.82	126.3	9.20	125.2	10.0	NT	NT	
			CP1	4-IRC44-TP-	514 UW-S-2/	5			
Wetting and	14	0.84	121.1	11.80	123.0	10.1	NT	NT	
Drying		0.84	121.1	11.80	123.0	10.1	NT	NT	
Freezing and	14	0.84	121.1	11.80	125.6	10.0	NT	NT	
Thawing		0.84	121.1	11.80	126.1	10.0	NT	NT	
			CP14	-IRC44-TP-5	14 UW-C-5/1	1			,
Wetting and	14	0.94	120.9	11.50	120.3	11.5	NT	NT	
Drying		0.94	120.9	11.50	120.8	11.5	NT	NT	
Freezing and	14	0.92	120.9	11.50	120.9	11.3	NT	NT	
Thawing		0.92	120.9	11.50	120.7	11.3	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP1	4-IRC44-TP-	514 LW-S-2/	5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.78	123.3	10.60	124.0	9.5	130.8	0.2	
Drying	14	0.78	123.3	10.60	124.0	9.5	130.1	0.2	
Freezing and	14	0.76	123.3	10.60	124.2	9.3	NT	NT	
Thawing	14	0.76	123.3	10.60	124.2	9.3	NT	NT	
-			CP14	I-IRC44-TP-5	14 LW-C-5/1	1			1
Wetting and	14	0.94	120.9	11.50	120.3	11.5	NT	NT	
Drying		0.94	120.9	11.50	120.8	11.5	NT	NT	
Freezing and	14	0.92	120.9	11.50	120.9	11.3	NT	NT	
Thawing		0.92	120.9	11.50	120.7	11.3	NT	NT	
,			CP14	-IRC44-TP-5	14 MdW-S-2	/5			1
Wetting and	14	0.75	123.9	8.90	123.2	9.0	NT	NT	
Drying		0.75	123.9	8.90	122.6	9.0	NT	NT	
Freezing and	14	0.72	123.9	8.90	123.0	8.7	NT	NT	
Thawing		0.72	123.9	8.90	123.0	8.7	NT	NT	
		<u> </u>	CP14-	IRC44-TP-51	4 MdW-C-5/	11	1		J
Wetting and	14	0.74	125.1	9.40	122.0	9.1	NT	NT	
Drying		0.74	125.1	9.40	122.6	9.1	NT	NT	
Freezing and	14	0.71	125.1	9.40	122.1	8.7	NT	NT	
Thawing		0.71	125.1	9.40	122.4	8.7	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP14	-IRC44-TP-	515 UW-S-2	2/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.77	123.1	10.40	123.8	9.3	NT	NT	
Drying		0.77	123.1	10.40	124.4	9.3	NT	NT	
Freezing and	14	0.80	123.1	10.40	123.9	9.7	NT	NT	
Thawing		0.80	123.1	10.40	123.9	9.7	NT	NT	
			CP14-	IRC44-TP-5	15 UW-C-5/	11			
Wetting and	14	1.01	118.3	12.30	117.9	12.1	NT	NT	
Drying		1.01	118.3	12.30	118.0	12.1	NT	NT	
Freezing and	14	0.96	118.3	12.30	119.1	11.6	NT	NT	
Thawing		0.96	118.3	12.30	119.1	11.6	NT	NT	
			CP14	-IRC44-TP-	515 LW-S-2	/5			
Wetting and	14	0.77	123.8	10.10	124.5	9.3	130.8	NT	
Drying		0.77	123.8	10.10	124.4	9.3	130.1	NT	
Freezing and	14	0.80	123.8	10.10	123.8	9.8	NT	NT	
Thawing		0.80	123.8	10.10	124.2	9.8	NT	NT	
	<u> </u>	<u>, </u>	CP14-	-IRC44-TP-5	15 LW-C-5/	11	1		
Wetting and	14	0.94	120.9	11.50	120.3	11.5	NT	NT	
Drying		0.94	120.9	11.50	120.8	11.5	NT	NT	
Freezing and	14	0.92	120.9	11.50	120.9	11.3	NT	NT	
Thawing		0.92	120.9	11.50	120.7	11.3	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP14-	IRC44-TP-5	15 MdW-S-	2/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.82	125.0	8.30	123.0	10.0	NT	NT	
Drying		0.82	125.0	8.30	123.0	10.0	NT	NT	
Freezing and	14	0.83	125.0	8.30	122.8	10.2	NT	NT	
Thawing		0.83	125.0	8.30	122.8	10.2	NT	NT	
			CP14-I	RC44-TP-51	5 MdW-C-5	/11			
Wetting and	14	0.79	124.3	10.10	124.6	9.6	NT	NT	
Drying	17	0.79	124.3	10.10	124.6	9.6	NT	NT	
Freezing and	14	0.84	124.3	10.10	124.1	10.3	NT	NT	
Thawing		0.84	124.3	10.10	124.3	10.3	NT	NT	
			CP14	-IRC44-TP-	516 UW-S-2	/5			
Wetting and	14	0.79	122.0	10.20	122.7	9.6	NT	NT	
Drying	'-	0.79	122.0	10.20	122.2	9.6	NT	NT	
Freezing and	14	0.80	122.0	10.20	122.0	9.7	NT	NT	
Thawing	14	0.80	122.0	10.20	122.6	9.7	NT	NT	
			CP14-	IRC44-TP-5	16 UW-C-5/	11			,
Wetting and	14	1.17	118.0	13.30	112.5	14.3	NT	NT	
Drying	14	1.17	118.0	13.30	112.5	14.3	NT	NT	
Freezing and	14	1.17	118.0	13.30	112.5	14.4	NT	NT	
Thawing	14	1.17	118.0	13.30	111.9	14.4	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP14	-IRC44-TP-	516 LW-S-2	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.91	121.5	10.10	120.9	11.0	130.8	0.0	
Drying	''	0.91	121.5	10.10	120.9	11.0	130.1	0.0	
Freezing and	14	0.87	121.5	10.10	120.2	10.6	NT	NT	
Thawing		0.87	121.5	10.10	120.0	10.6	NT	NT	
			CP14-	IRC44-TP-5	16 LW-C-5/	11			
Wetting and	14	1.03	121.8	11.70	120.6	12.6	NT	NT	
Drying	1.4	1.03	121.8	11.70	120.5	12.6	NT	NT	
Freezing and	14	1.01	121.8	11.70	120.4	12.4	NT	NT	
Thawing	"	1.01	121.8	11.70	120.6	12.4	NT	NT	
			CP14-	IRC44-TP-5	16 MdW-S-	2/5			
Wetting and	14	0.78	122.4	10.20	123.2	9.6	NT	NT	
Drying	14	0.78	122.4	10.20	122.9	9.6	NT	NT	
Freezing and	14	0.74	122.4	10.20	123.7	9.2	NT	NT	
Thawing	14	0.74	122.4	10.20	123.9	9.2	NT	NT	
	•		CP14-I	RC44-TP-51	6 MdW-C-5	/11			•
Wetting and 14		0.70	122.0	10.30	124.1	8.5	NT	NT	
Drying	14	0.70	122.0	10.30	123.9	8.5	NT	NT	
Freezing and	14	0.70	122.0	10.30	124.5	8.5	NT	NT	
Thawing	14	0.70	122.0	10.30	124.0	8.5	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freeze	/Thaw Test	ing		
			CP14-	IRC44-TP-5	17 UW-S-2/	5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.83	120.2	11.40	121.5	10.0	NT	NT	
Drying	14	0.83	120.2	11.40	121.5	10.0	NT	NT	
Freezing and	14	0.84	120.2	11.40	121.6	10.1	NT	NT	
Thawing	14	0.84	120.2	11.40	121.6	10.1	NT	NT	
		,	CP14-II	RC44-TP -5	17 UW-C-5/	11			
			Not Tested	as of date of	report prepar	ation.			
			CP14-	IRC44-TP-5	17 LW-S-2/	5			
Wetting and	14	0.78	122.7	10.40	123.3	9.5	130.8	0.0	
Drying	14	0.78	122.7	10.40	123.2	9.5	130.1	0.0	
Freezing and	14	0.76	122.7	10.40	123.7	9.3	NT	NT	
Thawing	'4	0.76	122.7	10.40	123.7	9.3	NT	NT	
		4	CP14-I	RC44-TP-5	17 LW-C-5/1	11	•	•	
Wetting and	14	0.78	122.6	9.50	121.8	10.0	NT	NT	
Drying	14	0.78	122.6	9.50	121.6	10.0	NT	NT	
Freezing and	14	0.82	122.6	9.50	122.1	9.6	NT	NT	
Thawing	14	0.82	122.6	9.50	122.1	9.6	NT	NT	

*

		เลมเช 0.		of Wet/Dry			ung		
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.76	122.2	10.20	123.5	9.4	NT	NT	
Drying	14	0.76	122.2	10.20	123.0	9.4	NT	NT	
Freezing and	14	0.75	122.2	10.20	123.4	9.3	NT	NT	
Thawing	14	0.75	122.2	10.20	123.5	9.3	NT	NT	
	1		CP14-I	RC44-TP-5	7 MdW-C-5	/11			
Wetting and	14	0.72	123.3	9.10	123.1	8.8	NT	NT	
Wetting and Drying	14	0.72	123.3	9.10	123.1	8.8	NT	NT	
Freezing and	14	0.71	123.3	9.10	123.8	8.7	NT	NT	
Thawing	14	0.71	123.3	9.10	123.8	8.7	NT	NT	
	1		CP14	-IRC44-TP-	518 UW-S-2	/5			
Wetting and	14	0.80	116.5	12.60	119.5	9.5	NT	NT	
Drying	14	0.80	116.5	12.60	119.8	9.5	NT	NT	
Freezing and	14	0.79	116.5	12.60	119.9	9.3	NT	NT	
Thawing	14	0.79	116.5	12.60	119.4	9.3	NT	NT	
	1		CP14-	IRC44-TP-5	18 UW-C-5/	111	<u> </u>		•
Wetting and	14	1.15	121.6	12.20	119.3	13.9	NT	NT	
Drying	14	1.18	121.6	12.20	119.3	14.2	NT	NT	
Freezing and	14	0.95	121.6	12.20	122.2	11.5	NT	NT	
Thawing	14	0.95	121.6	12.20	122.3	11.5	NT	NT	

		Table 8:	Summary	of Wet/Dry	and Freez	e/Thaw Tes	ting		
			CP14	-IRC44-TP-	518 LW-S-2	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.86	121.0	11.10	121.2	10.5	130.8	0.0	
Drying		0.86	121.0	11.10	121.7	10.5	130.1	0.0	
Freezing and	14	0.84	121.0	11.10	121.5	10.2	NT	NT	
Thawing		0.84	121.0	11.10	121.9	10.2	NT	NT	
			CP14-	IRC44-TP-5	18 LW-C-5/	11			
Wetting and	14	0.85	126.2	10.30	126.9	9.6	NT	NT	
Drying	14	0.85	126.2	10.30	127.0	9.6	NT	NT	
Freezing and	14	0.79	126.2	10.30	125.6	10.3	NT	NT	
Thawing	14	0.79	126.2	10.30	125.6	10.3	NT	NT	
			CP14-	IRC44-TP-5	18 MdW-S-	2/5			
Wetting and	14	0.80	118.0	10.70	119.2	10.0	NT	NT	
Drying	14	0.80	118.0	10.70	119.2	10.0	NT	NT	
Freezing and	14	0.82	118.0	10.70	118.7	10.2	NT	NT	
Thawing	14	0.82	118.0	10.70	118.9	10.2	NT	NT	
			CP14-I	RC44-TP-51	8 MdW-C-5	/11			
Wetting and	14	0.79	123.6	10.40	124.8	9.3	NT	NT	
Drying	14	0.79	123.6	10.40	125.1	9.3	NT	NT	
Freezing and	14	0.77	123.6	10.40	124.2	9.6	NT	NT	
Thawing	14	0.77	123.6	10.40	124.5	9.6	NT	NT	

NT: Not tested as of date of report preparation.

8.0 SUBSURFACE CONDITIONS

The Test-Pit Logs in Appendix C should be consulted for a detailed description of the subsurface conditions encountered at test pit location. When reviewing the logs, it should be understood that the soil conditions may vary between and away from the test pit locations.

In general, subsurface profile consisted of fine-grained sands and sands with silt and clay underlain by alternating layers of cohesive soils and sands. The groundwater level was measured at the time of the excavation of the test pit. The groundwater levels varied between 8.5 and 10 feet below existing ground surface (elevation of approximately +16.6 to +18.7 feet, NAVD88). Table 9 below summarizes general information relative to the groundwater levels (depth and elevations) measured during our field exploration.

Table 9	Table 9: Summary of Generalized Groundwater												
Test Pit Location	Ground Surface Elevation, NAVD88 (feet)	Approx. Groundwater Depth (feet) ^A	Approx. Groundwater Elevation, NAVD88 (feet) ^A										
CP14-IRC44-TP-513	+26.2	8.5	+17.7										
CP14-IRC44-TP-514 ^B	+24.3	NE	NE										
CP14-IRC44-TP-514AB	+26.8	NE	NE										
CP14-IRC44-TP-515	+26.5	9.0	+17.5										
CP14-IRC44-TP-516 ^B	+26.5	NE	NE										
CP14-IRC44-TP-517	+26.7	8.0	+18.7										
CP14-IRC44-TP-518	+26.6	10.0	+16.6										

A Groundwater elevation referenced at the time of excavation.

9.0 GEOTECHNICAL COMMENTARY

The purpose of this study was to provide geotechnical data which will be used by others to evaluate the subsurface conditions in support of the overall engineering effort for the site improvements at C-44 Reservoir and Stormwater Treatment Area. The details of the engineering design are not known to us at this time.

^B NE = Groundwater level not encountered during test pit excavation

In summary, the upper zones of the profile were relatively uniform in nature. The near-surface soils consisted of fine-grained quartz sand and fine-grained quartz sand with silt (Unified Soil Classification Symbols SP and SP-SM). This material was encountered at the ground surface and extended to a depth of 2 feet below the site grade. These soils were generally brown and pale orange-yellow in color. Varying degrees of limestone was encountered at about 1 foot below existing grade. Below the surficial soils, fine-grained quartz sand and fine-grained quartz sand with silt and clay (Unified Soil Classification Symbols SP, SP-SM, SW-SM, and SW-SC) were generally encountered to the maximum excavated depth of 12 feet. These soils were generally light brown, light gray, and pale orange-yellow in color. Varying degrees limestone and shell content were encountered throughout this zone. Test Pits CP14-IRC44-TP-515, CP14-IRC44-TP-516 and CP14-IRC44-TP-518 encountered a zone of cohesive soils consisting of pale orange-yellow, light brownish gray, and light gray clayey fine sand (SC) with varying degrees of limestone and shell content in the depth range of 5 to 11 feet below the existing site grade.

10.0 EXPLORATION LIMITATIONS

In accordance with the Scope of Work for Contract No. W912EP-11-D-0002, AMEC was requested to perform a total of 6 test pits designated as CP14-IRC44-TP-513 through CP14-IRC44-TP-518.

Test pit CP14-IRC44-TP-514 was terminated at the direction of the USACE's TPOC at depth of approximately 7 feet below the existing site grade due to proximity to built-up roadway, canal excavation, and irrigation pipe. The USACE's TPOC provided approval on December 9, 2014, to relocate and perform Test Pit CP14-IRC44-TP-514A approximately 300 feet to the east.

FIELD AND LABORATORY PROCEDURES

Field Procedures

<u>Test Pits</u> - Test pits were excavated by means of a tractor-mounted backhoe. The subsurface conditions were recorded by a geotechnical engineer as they were encountered. Samples were obtained of representative materials for laboratory testing.

Laboratory Procedures

Atterberg Limits (Plasticity) - A soil's Plasticity Index (PI) is the numerical difference between the Liquid Limit (LL) and the Plastic Limit (PL). The LL is the moisture content at which the soil will flow as a heavy viscous fluid and is determined in general accordance with ASTM D 4318. The PL is the moisture content at which the soil begins to crumble when rolled into a small thread and is also determined in general accordance with ASTM D 4318.

The Liquidity Index (I_L) was computed from the above test data. The (I_L) is an expression which compares the relative natural moisture state of the soil with its liquid and plastic limits and is an indicator of various other physical properties such as strength and preconsolidation characteristics.

Grain Size Distribution/Hydrometer - The grain size distribution tests were performed to determine the particle sizes and distribution of each sample tested. The sample was dried, weighed, and washed over a No. 200 mesh sieve. The dried sample was then passed through a standard set of nested sieves to determine the grain size distribution of the soil particles coarser than the No. 200 sieve. In some instances, materials passing the No. 10 mesh sieve were suspended in water in a hydrometer test cylinder and the grain size distribution was measured by the rate of settlement of the soil particles. The purpose of the hydrometer tests was to determine the grain size distribution of the soil particles finer than the No. 200 mesh sieve. This test is similar to that described by ASTM D 422.

<u>Specific Gravity</u> - The specific gravity of soil solids is the ratio of the weight in air of a given volume of soil particles to the weight in air of an equal volume of water. This test was conducted in general accordance with ASTM D 854.

<u>Visual Percent Shell</u> – The visual percent shell is a weighted average of the estimated percent shell retained on each individual sieve for a single sample and rounded to the nearest five percent for tests

conducted in conjunction with a sieve analysis. For stand-alone estimates, the visual percent shell is a visual estimate of the shell content present in the sample, rounded to the nearest 5 percent.

<u>Carbonate Testing</u> – This test is conducted in accordance with a modified "insoluble residue" analysis using the 1941 method described by Twenhofel Tyler. The sample is oven dried to a constant weight and then washed over a No. 200 sieve. After drying to a constant weight, the sand-sized or greater portion of the sample is sieved (if requested) and visual shell noted (if requested). The sample is then placed in a glass beaker and a diluted hydrochloric acid solution is slowly added. The sample is stirred and more acid solution added until there is no reaction, indicating that all carbonate matter has been digested. After digestion, the sample is washed over a #200 sieve to remove all residual acid, and dried to a constant weight. The percent loss (percent carbonate) is determined by subtracting the post acid weight from the dried, washed weight (after sieving), divided by the dried, washed weight. This test was conducted in general accordance with ASTM D 4373.

Organic Content (Organic Loss on Ignition) - The amount of organic material in a sample is determined in this test. The sample is first dried and weighed, then ignited and reweighed. The amount of organic material is expressed as a percentage of the total dry weight of the sample prior to ignition. This test was conducted in general accordance with ASTM D 2974.

<u>pH</u> - The pH is an expression of the concentration of dissociated hydrogen ions present in aqueous solution. pH values range from 1 to 14 with values below 7 indicating acidic conditions and values above 7 indicating alkaline conditions. This test is performed using a calibrated electronic pH meter with a sensing probe. The meter is calibrated by immersing the probe in a solution with a known pH. The soil pH is determined by mixing equal weights of soil and distilled water and testing the supernatent solution with the pH probe. These tests were performed in general accordance with EPA SW-846 9045C.

<u>Sand Cleanliness Test</u> - Refer to Appendix H of the SOW.

<u>Sand Equivalent Test</u> – The sand equivalent tests were performed to determine the relative proportion of gravel soils present in each sample tested. These tests were performed in general accordance with ASTM D2419.

Moisture Density of Soil Cement Mixture - The moisture density tests were performed in general accordance with ASTM D-558, test method B except the material retained on the ¾" sieve was discarded and not included in the test procedure. The soil obtained from the test pit was air dried and sieved into two groups, material retained on the #4 sieve and material passing the #4 sieve, recording the percentages of each fraction. The plus #4 material (if present) was moistened to a saturated surface dry condition and sealed. The minus #4 fraction was moistened at the desired moisture points and allowed to soak overnight. The plus #4 and -#4 materials were then recombined by percentage and the desired amount of Type I Portland cement added to each point. The combined material was then compacted using a standard compactive effort and weighed. A moisture sample was obtained from the mixture and oven dried to a constant weight. After drying, the wet density and dry density of the compacted samples were determined.

Compressive Strength for Soil Cement - The test sample was prepared using material sieved and prepared in the moisture density test. The compressive strength test samples were tested in general accordance with ASTM D-1633, method A. The remolded sample was compacted to 95% of the standard compactive effort. The samples were molded and allowed to cure 7 days in our moist curing room which is maintained at 100% humidity and 73 degrees Fahrenheit. After the seven day curing period, the samples were removed from the moist curing room and submerged in water for a period of 4 hours. After the four hour soak, the samples were removed one at a time, the diameter measured and recorded and the end condition checked and ground if necessary, and placed in our compression test machine. A compressive load was applied at an approximate loading rate of 20 psi per second to each until failure occurred.

Wetting and Drying for Soil Cement – These tests were performed to determine the soil-cement losses, water content changes, and volume changes due to cyclical wetting and drying of hardened soil-cement specimens. These tests were performed in general accordance with ASTM D559 (Method B). We note that before hydration of the soil-cement specimens commenced, preparation of the soil samples to determine the maximum density and optimum water contents were performed in accordance with ASTM D558 (Method B).

<u>Freezing and Thawing for Soil Cement</u> – These tests were performed to determine the soil-cement losses, water content changes, and volume changes due to cyclical freezing and thawing of hardened soil-cement specimens. These tests were performed in general accordance with ASTM D560 (Method B). We note that before hydration of the soil-cement specimens commenced, preparation of the soil samples to determine the maximum density and optimum water contents were performed in accordance with ASTM D558 (Method B).

EQUIPMENT NEEDED

3 Cubic Ft. Cement Mixer

500mL Measuring Cup

5-Gallon Bucket. Mark a "Fill Line" on the bucket to approximate the same volume of wash water to be used during each wash cycle

EQUIPMENT NEEDED, cont'd.

Composite Sample – previously mixed per specifications

Spigot and Hose (on-site well water source)

PILOT WASHING

1. Soil sample and water preparation (began pilot washing with test soil samples from TP-516, 9' to 11')

Place approximately 50 percent of previously mixed soil sample into cement mixer.

Fill 5-gallon bucket ½ to ¾ full with well water from on-site source. Pour well water into cement mixer. This quantity of water should just cover the soil sample in the mixer.

2. Sample Washing & Water Decanting

Set drum at a 45 degree angle to ensure material is not lost during the mixing process. Initiate washing and continue to mix until sample is saturated and in suspension, not adhering to bottom of drum. At this juncture, rotate drum 10 revolutions, then stop the mixer.

Decant wash water from mixer into clean (rinsed) 5-gallon collection bucket.

• Introduce additional well water into the mixer, enough to ensure the previously decanted wash sample is just covered. Rotate mixer for 10 revolutions. Decant wash. Repeat water addition, sample washing and water decanting until the wash water visually appears to contain less than 10 percent of the initial fines (translucent) in suspension.

Note: After 70 revolutions, clay nodules will need to be manually agitated (broken apart). Perform manual agitation inside the drum. Upon completion of manual agitation, rotate drum for 10 more revolutions. Decant wash waster.

Manually break apart clay nodules. Wash sample is still in suspension and manual agitation is complete. Rotate drum for 10 more revolutions.

3. Decanted Water Sampling

Sample the decanted wash water with a 500mL measuring cup and pour into a glass sample jar. Seal jar with a lid. Label jars and lids.

4. Decanted Water Storage

Record test pit designation, wash cycle number, and revolution number on jars and lids. Set jars aside. (Note: Revolutions are to be recorded on lids as R-#, with number designation representing cumulative revolutions).

5. Procedural Changes to TP-516 (9' to 11')

- It was determined that the same volume of wash water should be used with each wash cycle. A "Fill Line" was marked on a 5-gallon bucket to approximate \(^3\)4-volume of the bucket.
- Clay nodules were manually agitated after 20 revolutions. When manual agitation was complete, the drum was rotated 10 more revolutions.
- The procedural changes were utilized on test soil samples obtained from TP-517 (5' to 7').

6. Pilot Wash Findings

- Manual breaking/agitation of the clay nodules expedited the removal of the fines.
- After 10 revolutions, 25 percent of the fines (from the parent test sample) appear to have been removed during washing.
- After 20 revolutions, 50 percent of the fines appear to have been removed during washing.
- The production wash procedure for Light-Wash and Medium-Wash operations was fine tuned. Refer to Light-Wash Operations and Medium-Wash Operations for details.

LIGHT-WASH OPERATIONS

STEP 1: Place 2.5 gallons of soil sample into cement mixer (equivalent to half of a 5-gallon bucket's worth of soil).

STEP 2: Fill the pre-marked, 5-gallon water bucket with well water. Pour water into cement mixer.

STEP 3: Set drum at a 45 degree angle to ensure material is not lost during the mixing process.

STEP 4: Initiate washing and continue to mix until sample is saturated and in suspension, not adhering to bottom of drum. At this point, rotate drum for 5 revolutions then stop the mixer.

STEP 5: Manually agitate clay nodules. STEP 6: Mechanically mix for 5 additional revolutions.

STEP 7: Decant wash water from mixer into a collection bucket, then set aside. This water will be collected later (refer to procedure for Water Sampling).

STEP 8: Place washed soil sample into a clean, labeled 5-gallon bucket.

STEP 9: Repeat sample washing, wash water decanting, and soil sample collection cycle for remaining soil sample in bucket. When 5-gallon bucket is full of the washed soil sample, decant the free water. This decanted water does not need to be collected. Place lid on bucket and set aside.

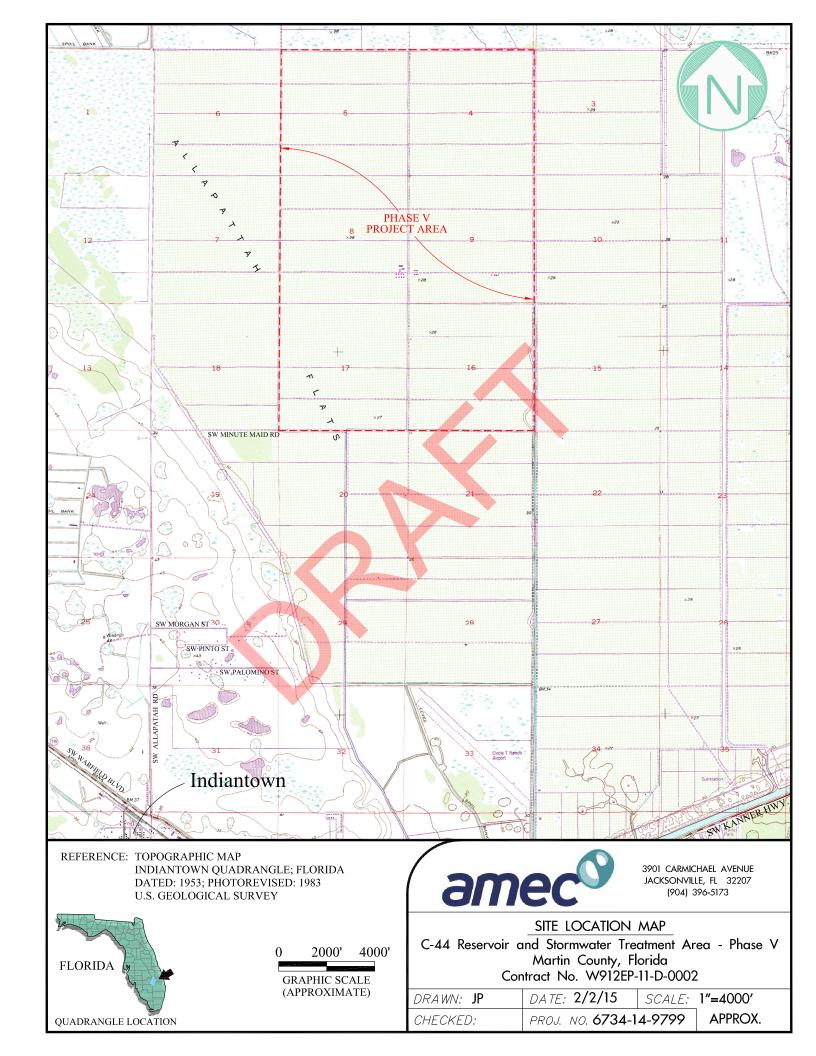
MEDIUM-WASH OPERATIONS

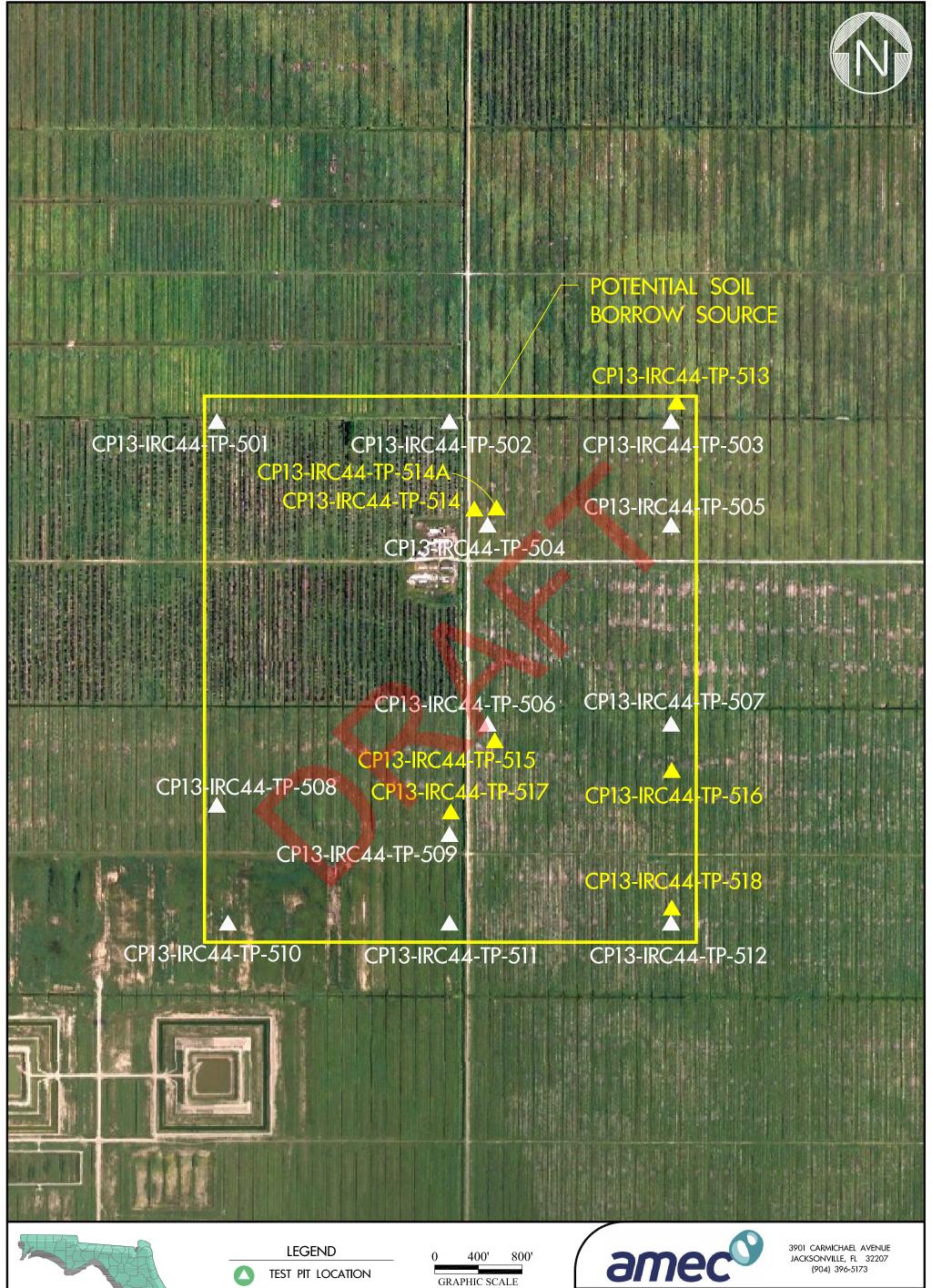
Follow Steps 1 through 7 from Light-Wash Operations. After decanting (Step 7), introduce additional well water into the mixer just enough to cover the wash sample. Rotate mixer 10 revolutions (at this juncture, a total of 20 revolutions have occurred). Repeat Steps 7 through 9 from Light-Wash Operations.

WATER SAMPLING

- Light Wash: Collect 200mL of decanted wash water after every 10 revolutions, for each wash sample (2 wash samples per 5-gallon bucket of soil sample).
- Medium Wash: Collect 100mL of decanted wash water after every 10 revolutions from each wash cycle (4 wash samples per 5-gallon bucket of soil sample).

Collect decanted wash water from collection bucket using a 500mL measuring cup.




Pour collected decanted wash water into a labeled glass jar. Place lid on jar. Label jar and lid

The collected decanted wash water will be shipped off for subsequent laboratory testing (to be performed by others).

REFERENCE: Aerial Photograph USDA Farm Service Agency Dated: 2007

FIELD EXPLORATION PLAN

C-44 Reservoir and Stormwater Treatment Area - Phase V Martin County, Florida Contract No. W912EP-11-D-0002

DRAWN: JP	DATE: 2/2/15	SCALE:	1″=800′
CHECKED:	PROJ. NO. 6734-1	4-9799	APPROX.

SURVEYOR'S REPORT for SPECIFIC PURPOSE SURVEY

C-44 Reservoir and Stormwater Treatment Area (C-44 RSTA Contract 2)

Geotechnical Investigation- Phase V Additional Soil Cement Testing at Borrow Pit Source
Martin County, FL

Contract No. W912EP-11-D-0002, Task 0114

AMEC Project No. 6734-14-9799

Location

The project site is located in north central Martin County and due north of the C-44 Canal at the intersection of SR 76 and SR 710, just northeast of Indiantown, Florida. The project site is planned as a 3400 acre reservoir and stormwater treatment area.

Purpose

The survey was performed to determine the horizontal locations and elevations of seven (7) test pits installed as part of the geotechnical investigation.

Project Datums

The horizontal locations of the test pits were determined relative to the North American Datum of 1983 (NAD83) and were expressed in U.S. Survey Feet as Florida State Plane Coordinates (FSPC), Florida East Zone 901.

The ground elevations of these locations were determined relative to the North American Vertical Datum of 1988 (NAVD88) and expressed in feet.

Survey Methodologies

The survey was performed utilizing Global Positioning System (GPS) technology operating in Real Time Kinematic (RTK) mode.

<u>Control</u> - National Spatial Reference System (NSRS) control stations with designations F007 and F008 located in the vicinity of the work were recovered. Prior to beginning the site survey GPS RTK measurements relative to these NSRS respective stations indicated acceptable correlation for horizontal position and elevation.

Using a Trimble Model R8 GPS rover unit operating in RTK mode with the Trimble Virtual Reference System (VRS Now) network, the NAVD88 elevations and NAD83 geographic positions (expressed as FSPC) were determined for the approximate center of each of the test pits, as pointed out by the site geotechnical engineer, by occupying each location for a 1- minute measurement. This was followed by a redundant measurement at each test pit site. Following the measurements at the test pit sites another measurement was made to control station F008 to confirm system measurement integrity.

Summary of Survey Data

	NAD83/11 FS	PC (USFt.)	NAVD88 (Ft.)	
Designation	Northing	Easting	Elevation	Description
CP14-IRC44-TP-513	1004733	837282	26.2	TEST PIT
CP14-IRC44-TP-514	1003765	835426	24.3	TEST PIT
CP14-IRC44-TP-514A	1003776	835628	26.8	TEST PIT
CP14-IRC44-TP-515	1001649	835607	26.5	TEST PIT
CP14-IRC44-TP-516	1001372	837233	26.5	TEST PIT
CP14-IRC44-TP-517	1000988	835210	26.7	TEST PIT
CP14-IRC44-TP-518	1000116	837236	26.6	TEST PIT

Surveyor's Notes

- 1. This Surveyor's Report for Specific Purpose Survey is not valid without the signature and original embossed seal of the Florida licensed surveyor and mapper in responsible charge.
- 2. This survey was performed on December 12, 2014.
- 3. This work was performed for the sole benefit of the U.S. Army Corps of Engineers.
- 4. Field notes for this survey can be found in Field Book No. 1269.
- 5. The following NSRS geodetic control stations with published values are listed below

Station	FSPC, FL Ea	ast Zone 901	
Station Designation	Northing NAD83 (US Survey feet)	Easting NAD83 (US Survey feet)	Elevation, NAVD88 (feet)
F007	983,118.06	824,655.74	38.23
F008	1,012,642.97	824,675.55	28.59

For the Firm.

AMEC Environment and Infrastructure, Inc.

Robert Michael Jones, PLS

Florida Licensed Surveyor and Mapper No. LS004201

AMEC Environment and Infrastructure, Inc., LB 0007932

75 East Amelia Street, Suite 200

Orlando, Florida 32801

407-522-7570

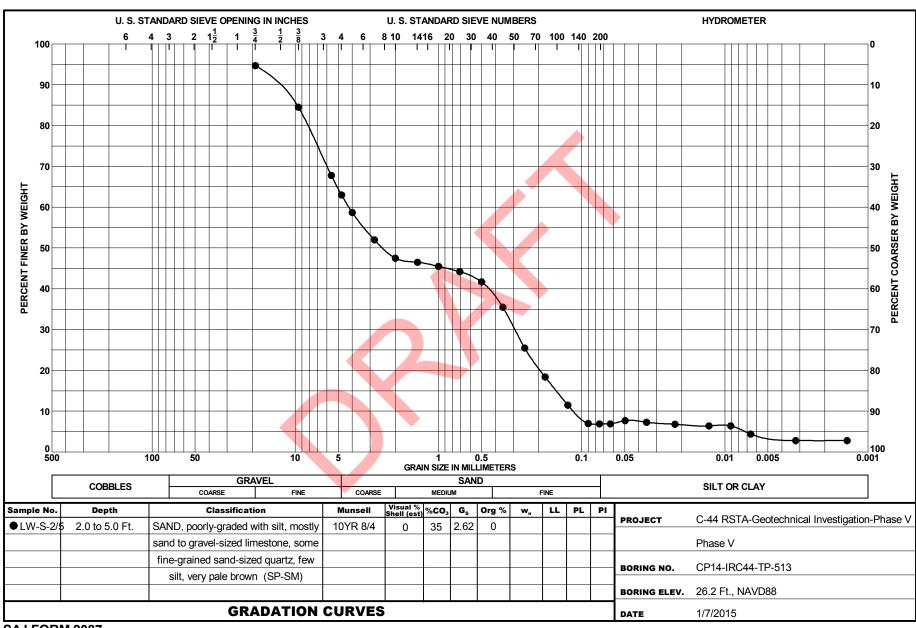
407-522-7576 (fax)

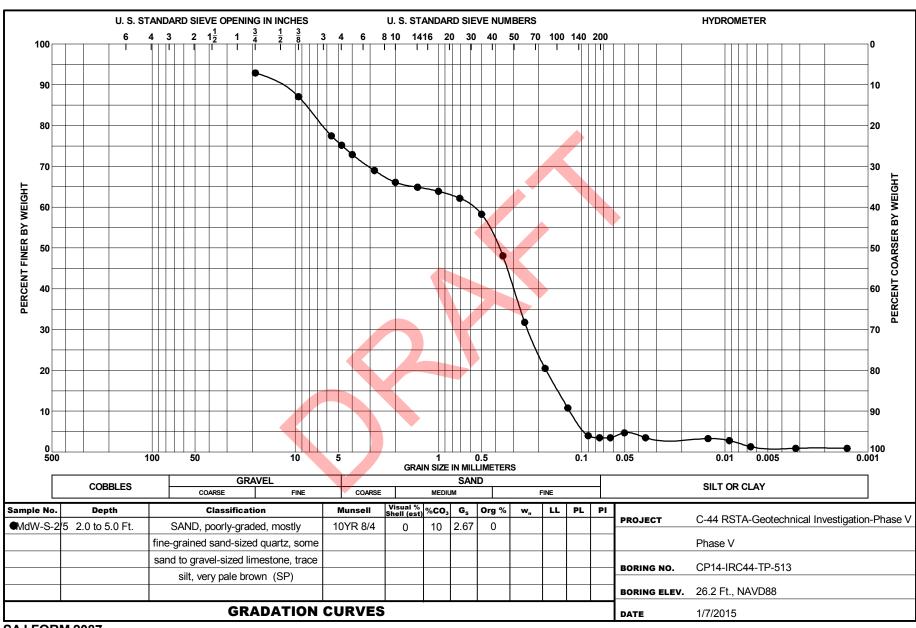
	Summary of Classification Testing																
		-	le Depth (ft)		Atte	erberg	Limits	Organic Content	Specific	Gravel	Sand	Minus 200	Silt	Clay	Carbonate	Shell	
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	(%)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН
CP14-IRC44-TP-513	UW-S-2/5	2	5.0	SW-SM	16	16	0	2.0	2.72	33.5	52	10.7	5.9	4.8	11.07	0	8.6
CP14-IRC44-TP-513	LW-S-2/5	2.0	5.0	SP-SM	NP	NP	NP	0.3	2.62	31.7	56.1	6.9	3.6	3.3	34.94	0	8.2
CP14-IRC44-TP-513	MdW-S-2/5	2.0	5.0	SP	NP	NP	NP	0.2	2.67	17.7	71.7	3.5	1.7	1.8	10.42	0	8.5
CP14-IRC44-TP-513	UW-C-5/11	5.0	11.0	SW-SC	26	17	9	3.2	2.7	21.0	57.7	11.9	2.2	9.7	9.33	0	8.6
CP14-IRC44-TP-513	LW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.7	2.76	17.4	76.4	3.8	3	0.8	11.2	0.1	9.4
CP14-IRC44-TP-513	MdW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.3	2.69	19.6	77.3	1.8	0.5	1.3	5.05	0.2	8.4
CP14-IRC44-TP-513	UW-R-5/7	5.0	7.0	SP-SC	24	17	7	1.4	2.76	27.4	58.1	9.3	3.1	6.2	5.8	0	8.4
CP14-IRC44-TP-513	UW-R-9/11	9.0	11.0	SP-SC	25	17	8	0.3	2.78	23.9	58.4	9.6	2.5	7.1	15.39	0.2	8.8
CP14-IRC44-TP-514A	UW-S-2/5	2.0	5.0	SP-SM	20	18	2	2	2.68	5.5	83.2	11.3	3.4	7.9	4.91	1	8.7
CP14-IRC44-TP-514A	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	0.6	2.75	22.8	71.9	3.3	0.9	2.4	5.3	0.5	9.2
CP14-IRC44-TP-514A	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.64	17.7	79.9	2.4	0.6	1.8	4.44	2	8.4
CP14-IRC44-TP-514A	UW-C-5/11	5.0	11.0	SW-SM	20	18	2	1.6	2.71	16.6	72.3	10.8	3.1	7.7	11.75	41.5	8.9
CP14-IRC44-TP-514A	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.44	0.1	93.9	6.0	5.7	0.3	6.64	0.4	8.8
CP14-IRC44-TP-514A	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.3	2.61	18.4	73.1	1.5	1.5	0	10.77	3.4	9.6
CP14-IRC44-TP-514A	UW-R-5/7	5.0	7.0	SP-SM	21	18	3	0.3	2.65	37	54.6	6	1.8	4.2	12.17	2	8.9
CP14-IRC44-TP-514A	UW-R-9/11	9.0	11.0	SP-SC	23	17	6	2.2	2.67	28.5	61.4	10.1	2.6	7.5	24	24	8.8
CP14-IRC44-TP-515	UW-S-2/5	2.0	5.0	SP-SC	20	15	5	2.2	2.68	22.2	67.4	8	1.6	6.4	7.64	0	9.2
CP14-IRC44-TP-515	LW-S-2/5	2.0	5.0	SP	0	0	0	1.5	2.54	25.5	70.4	3.4	2.8	0.6	8.1	0	8.1
CP14-IRC44-TP-515	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.3	2.62	0	97.5	2.5	1.7	0.8	7.46	0.4	8.4
CP14-IRC44-TP-515	UW-C-5/11	5.0	11.0	SC	24	12	12	3	2.69	7.4	76.7	14.6	2.2	12.4	8.95	0.1	8.6
CP14-IRC44-TP-515	LW-C-5/11	5.0	11.0	SP	0	0	0	0.7	2.75	16.4	74.6	4.2	2.6	1.6	13.6	0.5	8.8
CP14-IRC44-TP-515	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.5	2.66	20.6	75.6	2.6	1.7	0.9	7.04	0.3	9.5
CP14-IRC44-TP-515	UW-R-5/7	5.0	7.0	SC	28	15	13	1.5	2.63	11.7	68.4	19.9	6.5	13.4	14.21	0	8.6
CP14-IRC44-TP-515	UW-R-9/11	9.0	11.0	SW-SM	0	0	0	1.2	2.67	5.6	84.1	10	0.6	9.4	1.95	0	8.5

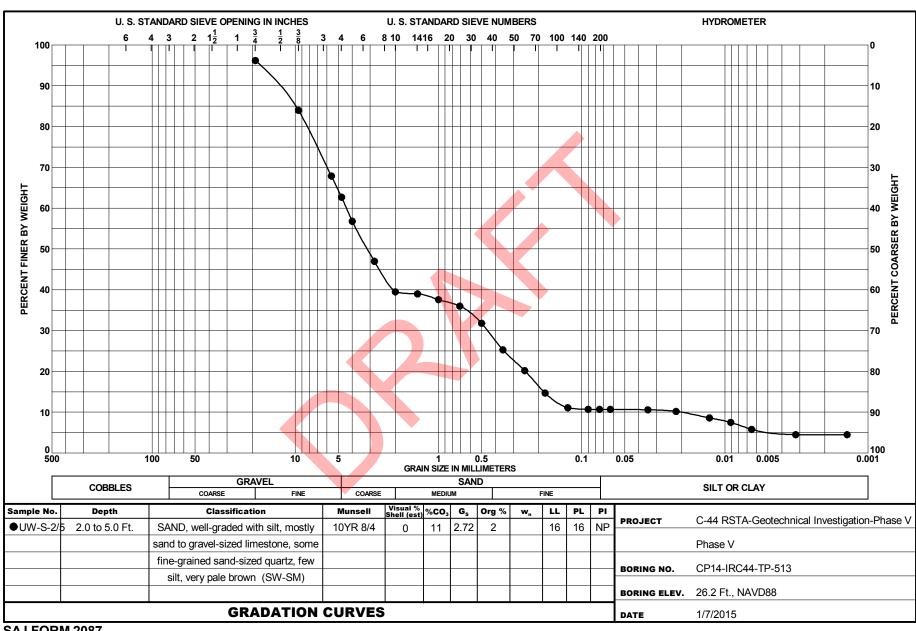
Summary of Classification Testing																	
		-	le Depth (ft)		Atte	erberg	Limits	Organic Content	Specific	Gravel	Sand	Minus 200	Silt	Clay	Carbonate	Shell	
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	(%)	Gravity	(%)	(%)	(%)	(%)	(%)	(%)	(%)	рН
CP14-IRC44-TP-516	UW-S-2/5	2.0	5.0	SP-SC	24	16	8	2.2	2.33	14.7	67.1	9.5	0.9	8.6	4.08	0	8.6
CP14-IRC44-TP-516	LW-S-2/5	2.0	5.0	SP	0	0	0	0.6	2.65	6.7	82.8	3	2	1	3.63	0.2	8.6
CP14-IRC44-TP-516	MdW-S-2/5	2.0	5.0	SP	0	0	0	18	2.74	23	68.2	1.6	1	0.6	3.48	0.1	9.6
CP14-IRC44-TP-516	UW-C-5/11	5.0	11.0	SC	26	18	8	3.8	2.7	3.9	77.2	18.9	4.1	14.7	7.61	0.4	8.6
CP14-IRC44-TP-516	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.69	13.5	81.4	5.1	1	4.1	3.83	5.3	9.0
CP14-IRC44-TP-516	MdW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.99	10.7	82	6.5	0.5	6	3.72	0.5	8.6
CP14-IRC44-TP-516	UW-R-5/7	5.0	7.0	SC	36	15	21	2.4	2.59	14.8	64.6	19.7	3.7	16	4.9	0	8.6
CP14-IRC44-TP-516	UW-R-9/11	9.0	11.0	SM	25	18	7	1.7	2.7	3.6	77.1	19.3	3.6	15.7	3.17	0.1	8.5
CP14-IRC44-TP-517	UW-S-2/5	2.0	5.0	SW-SM	0	0	0	1.4	2.48	8.3	79.6	11.1	2.6	8.5	7.47	0	8.8
CP14-IRC44-TP-517	LW-S-2/5	2.0	5.0	SP	0	0	0	0.7	2.72	22.2	70.7	3.6	1.7	1.9	9.31	0	8.6
CP14-IRC44-TP-517	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.4	2.61	17.0	80.6	2.4	2.1	0.3	6.06	0	8.5
CP14-IRC44-TP-517	UW-C 5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.67	6.5	84.3	9.2	3.3	5.9	7.23	0.6	8.8
CP14-IRC44-TP-517	LW-C 5/11	5.0	11.0	SP	0	0	0	1.7	2.68	14.2	82.6	3.2	1.5	1.7	5.91	1.4	9.4
CP14-IRC44-TP-517	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.4	2.66	24.9	72.8	2.3	1.3	1	7.74	0.5	8.4
CP14-IRC44-TP-517	UW-R-5/7	5.0	7.0	SP-SM	0	0	0	0.6	2.67	6.0	83.7	10.3	3.5	6.8	10.91	0	8.9
CP14-IRC44-TP-517	UW-R 9/11	9.0	11.0	SW-SM	0	0	0	0.5	2.67	3.1	86.7	10.2	3.6	6.6	8.77	0.3	8.9
CP14-IRC44-TP-518	UW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.7	2.66	0	90.3	9.7	2.7	7	1.48	0	8.2
CP14-IRC44-TP-518	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.4	2.79	0	92.4	7.6	4.3	3.3	3.68	0	8.9
CP14-IRC44-TP-518	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.67	0	96.7	3.3	1.1	2.2	0.45	0	9.1
CP14-IRC44-TP-518	UW-C 5/11	5.0	11.0	SC	22	14	8	2.5	2.72	12.3	70.3	14.8	5.1	9.7	12.15	1	8.6
CP14-IRC44-TP-518	LW-C 5/11	5.0	11.0	SP-SM	0	0	0	0.6	2.64	14.2	78.7	6.2	1.5	4.7	11.9	3	8.9
CP14-IRC44-TP-518	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.2	2.73	22.5	72	2.6	2	0.6	10.5	36.5	9.4
CP14-IRC44-TP-518	UW-R-5/7	5.0	7.0	SW-SC	21	14	7	1.4	2.68	26.6	53.4	10.6	4	6.6	13.5	0	8.7
CP14-IRC44-TP-518	UW-R-9/11	9.0	11.0	SC	28	18	10	1.6	2.61	9.4	73.8	16.4	4.3	12.1	5.93	0.6	8.3

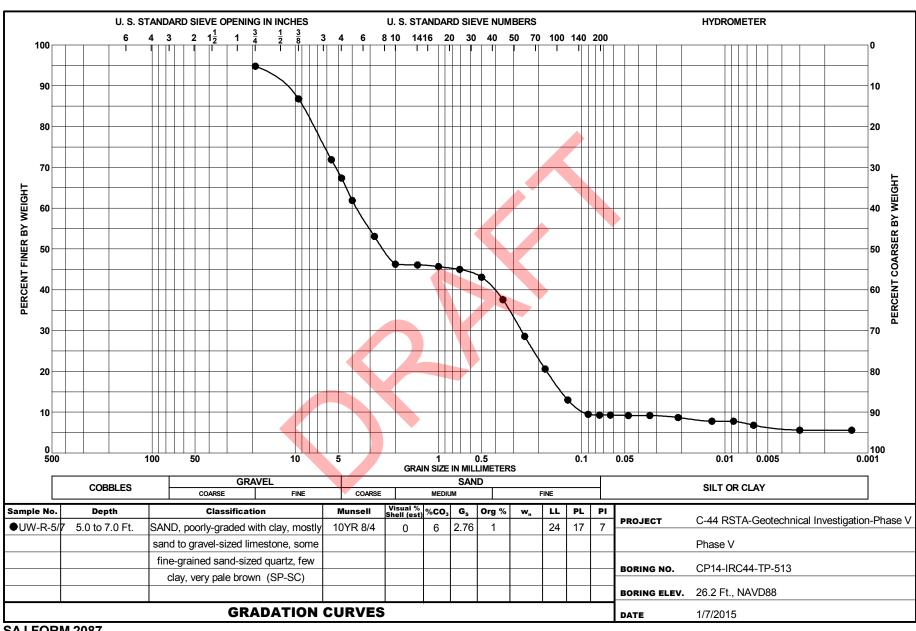
			DIVISION		INST	ALLATIO	ON	<u> </u>		SHEET	1	1
	LLING	LUG	South Atlantic		Ja	cksonv	ille Di	strict		OF 2	SHEETS	
1. PROJ									e Remarks			
C-	-44 RSTA-	Geotec	hnical Investigation-Phase	V	10. 0			SYSTEM/DATUM	HORIZONTA	L VERTICA	\L	
	hase V		'		ļ.,			e, FLE (U.S. Ft.)	NAD83	NAVI		4
	ng desigi P14-IRC44		i	RDINATES 33 Y = 837,282	11. 1			rer's designatio 210 LC	ON OF DRILL [AUTO HAMI		
	LING AGEN			NTRACTOR FILE NO.				!	DISTURBED	UNDISTURB		1
PI	hillips & Jo	rdan		6734-14-9799	12. 1	TOTAL S	SAMP	LES	8	0		
	E OF DRILL				13. 1	TOTAL I	NUMB	ER CORE BOXES	0			
	huck Floyd		DEC EDOM	BEARING	14. E	LEVAT	ION G	ROUND WATER	17.7 Ft.			8.5
	ETION OF	BURING	DEG. FROM VERTICAL	BEARING	4				STARTED	COMPLE	TED	
	NCLINED				15. 1	DATE BO	UKING	•	12-09-14	12-09) -14	
6. ТНІС	KNESS OF	OVERB	URDEN N/A		16. E	LEVAT	ION T	OP OF BORING	26.2 Ft.			
7. DEPT	H DRILLED	INTO F	ROCK N/A		17. 1	TOTAL I	RECO	VERY FOR BORING	N/A			
	AL DEPTH (DE BOBI	NG 11.0 Ft.		18. \$			AND TITLE OF INSI				
8. 1012	C DEPIN	т т	11.0 Ft.		Ц_	_	_	naway, Geotechni T	cal Engineer			-
ELEV.	DEPTH	LEGEND	CLASSIFICATION	OF MATERIALS	RE	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/	N-VALUE	
00.0	0.0							00.0				
26.2	0.0	1.11	SAND, poorly-graded with	silt, mostly	\dashv)	26.2			+-	_ _c
	•		fine-grained sand-sized q	uartz, few silt,			Y .					F
25.2	1.0	<u> </u>	10YR 4/2 dark grayish bro SAND, poorly-graded, mo		_(1	$\sqrt{}$			Test Pit			F
			sand-sized quartz, trace s						v chi			Ė
24.2	2.0		orange yellow (SP)				<u>K</u> /	24.2	of R. T.			上
-	-	° ()	SAND, well-graded with s gravel-sized limestone, so				$\mathbb{N}_{<}$	24.2 24.2 24.2				}
	•		sand-sized quartz, few sil	t, occasional seams o	f			24.2				F
	-	0	cemented nodules, occas			4		/ /				F
-	-	°,4+1	seams, 10YR 8/4 very pa	le brown (SVV-SIVI)	N	MdW-S- LW-S-2	2/5	8				ŀ
	- -					LW-S-2 JW-S-2	1/5 1/5 °	Ete.				F
	=	0			7//		Cate					ţ
	-					Menci	ľ	21.2				<u> </u>
-	-	[0]]	-At El. 21.2 Ft., few clay, o	occásional clay seams	,	83 R		21.2 21.2				ॊ`
	-	°°			Ceo'			21.2				F
	-		-At El. 20.2 Ft., 10YR 7/2	light gray	/ /	JW-R-	\$/7					F
	• •	0										Ŀ
-	_		-At El. 19.2 Ft., 10G 2.5/2	Dark Gravish Green			┨					H
	•	°		anted .								F
	-	°		10000	Тм	dW-C-	 5/11					L
	-			stall!	₩ L	.W-C-5	<i>l</i> 11					Ł
	-	°		102	٦	JW-C-5	∛ 11	17.2				F
	- -		-At El. 17.2 Ft., 10YR 8/3	very pale brown			1					Ŧ
	- -											ţ
-	-	°			ι	JW-R-9	11					-1
]	-											F
15.2	11.0				\perp			15.2				丰
[• •		NOTES:					Abbreviations:				Ė
I ⊦	_		1 LICACE loakes = 10	the quetedies for								Ł
	-		 USACE Jacksonville is these original files. 	s the custodian for								F
	• •		· ·									F
] <u> </u>	-		Soils are field visually accordance with the Unifi	classified in ed Soils Classification	,							F
l F	-		System.	od Odio OlassiiloatiOl	·							F
]	-		•	culto								L
] <u> </u>	- -		Laboratory Testing Re	SuitS								Ł
]	-		SAMPLE SAMPLE	LABORATORY								1

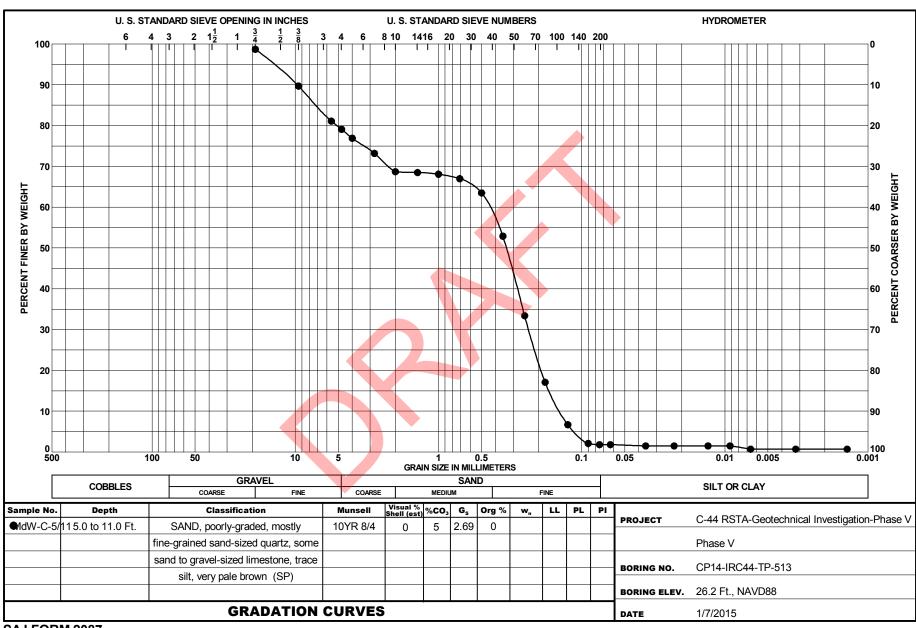
SAJ FORM 1836 JUN 02

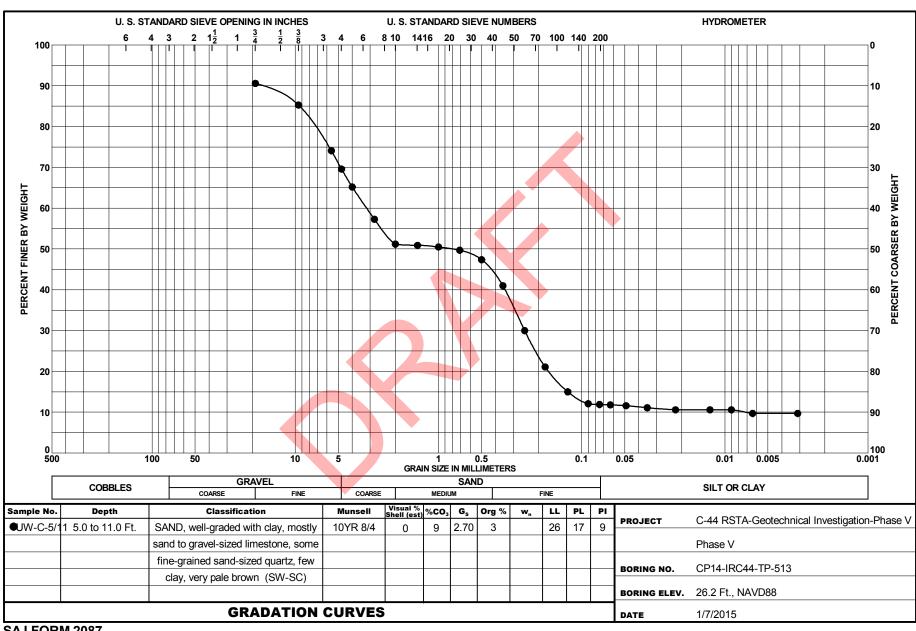

(Continued)

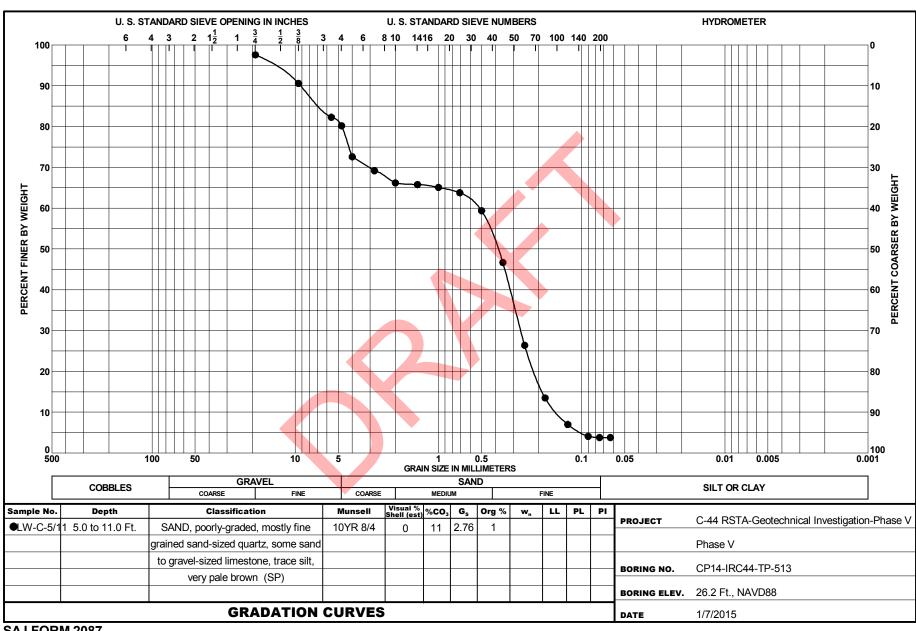

2

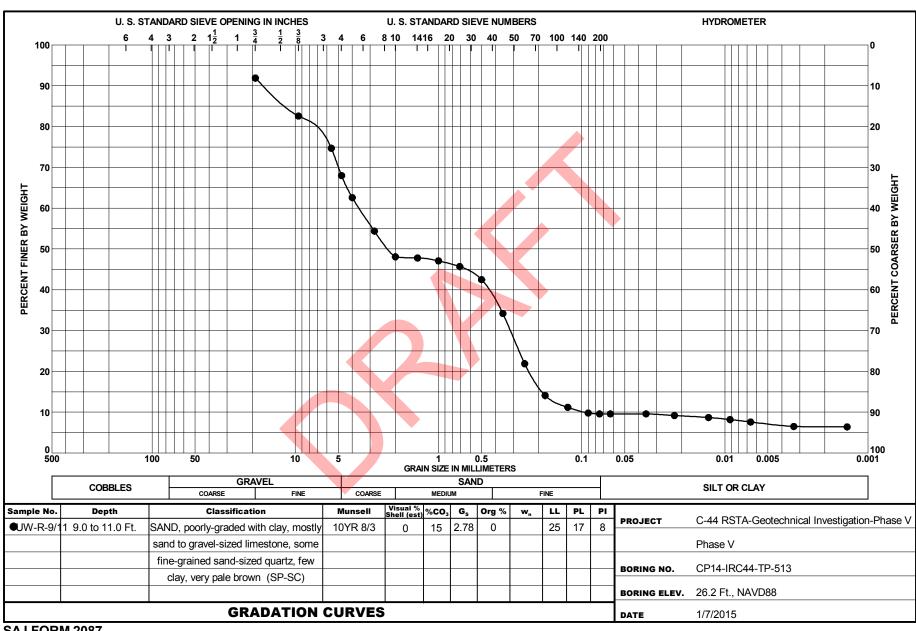

Boring Designation CP14-IRC44-TP-513

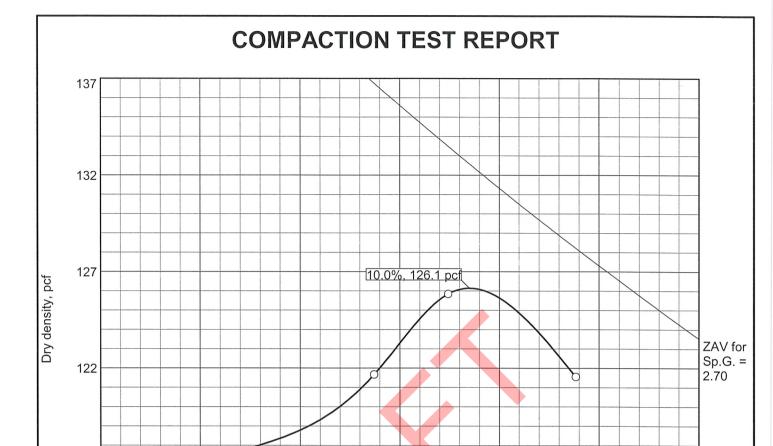

DRI	LLING	G (Cont. Sheet)	INSTALLA			SHEET 2							
				Jackso								SHEETS	4
PROJEC	· -			COORDINA				!	RIZONTAL	VERTI			
			nical Investigation-Phase V	State P					IAD83	i NA	VD88		4
	ON COORDI		1	ELEVATION TOP OF BORING 26.2 Ft.									
ELEV.	,004,733 DEPTH	LEGEND	837,282 CLASSIFICATION OF MATERIAL	-	REC.	BOX OR SAMPLE		BLOWS/ 1 FT.	N-VALUE				
			ID DEPTH CLASSIFIC LW-S-2/5 2.0/5.0 SP-SI MdW-S-2/5 2.0/5.0 SW-S UW-S-2/5 2.0/5.0 SW-S UW-R-5/7 5.0/7.0 SP-S MdW-C-5/11 5.0/11.0 SP-S MdW-C-5/11 5.0/11.0 SP-S UW-C-5/11 5.0/11.0 SP-S UW-C-5/11 5.0/11.0 SP-S "Lab visual classification based on gracurve 4. Additional Laboratory Testing LW-S-2/5Specific Gravity LW-S-2/5Specific Gravity LW-S-2/5Percent Organic LW-S-2/5Percent Carbonate LW-S-2/5Percent Carbonate LW-S-2/5Percent Visual Shell MdW-S-2/5Specific Gravity UW-S-2/5Percent Visual Shell UW-S-2/5Percent Carbonate MdW-S-2/5Percent Carbonate UW-S-2/5Percent Carbonate UW-S-2/5Percent Carbonate UW-S-2/5Percent Carbonate UW-S-2/5Percent Carbonate UW-S-5/7Percent Organic UW-R-5/7Specific Gravity UW-R-5/7Percent Organic UW-R-5/7Percent Organic UW-R-5/7Percent Carbonate UW-S-1/1Percent Carbonate UW-S-1/1Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Carbonate UW-C-5/11Percent Carbonate UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Carbonate UW-C-5/11Percent Organic	CATION W* GM CC GC	RÉC.	BOX	RODO	Jan Barana Andrews And	REMARKS Regulate discussion		BLOY 4 F	NA-N	-15
CALE	DM 192	G A											 35


Summary of Classification Testing																	
		Sample Depth (ft)			Atterberg Limit		Limits										
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Gravel (%)	Sand (%)	Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-513	UW-S-2/5	2	5.0	SW-SM	16	16	0	2.0	2.72	33.5	52	10.7	5.9	4.8	11.07	0	8.6
CP14-IRC44-TP-513	LW-S-2/5	2.0	5.0	SP-SM	NP	NP	NP	0.3	2.62	31.7	56.1	6.9	3.6	3.3	34.94	0	8.2
CP14-IRC44-TP-513	MdW-S-2/5	2.0	5.0	SP	NP	NP	NP	0.2	2.67	17.7	71.7	3.5	1.7	1.8	10.42	0	8.5
CP14-IRC44-TP-513	UW-C-5/11	5.0	11.0	SW-SC	26	17	9	3.2	2.7	21.0	57.7	11.9	2.2	9.7	9.33	0	8.6
CP14-IRC44-TP-513	LW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.7	2.76	17.4	76.4	3.8	3	0.8	11.2	0.1	9.4
CP14-IRC44-TP-513	MdW-C-5/11	5.0	11.0	SP	NP	NP	NP	0.3	2.69	19.6	77.3	1.8	0.5	1.3	5.05	0.2	8.4
CP14-IRC44-TP-513	UW-R-5/7	5.0	7.0	SP-SC	24	17	7	1.4	2.76	27.4	58.1	9.3	3.1	6.2	5.8	0	8.4
CP14-IRC44-TP-513	UW-R-9/11	9.0	11.0	SP-SC	25	17	8	0.3	2.78	23.9	58.4	9.6	2.5	7.1	15.39	0.2	8.8








		Sum	mary of Soil	Cement Te	esting at 100	% Compact	ion					
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)				
	CP14-IRC44-TP-513 UW-S-2/5											
	1	7	0.78	126.1	10.0	125.8	9.6	1060				
	2	7	0.78	126.1	10.0	126.4	9.6	890				
	3	7	0.76	126.1	10.0	126.2	9.3	825				
14%	4	28	0.76	126.1	10.0	126.2	9.3	NT				
	5	28	0.77	126.1	10.0	126.0	9.4	NT				
	6	28	0.77	126.1	10.0	126.3	9.4	NT				
			CP14-	IRC44-TP-	513 UW-C-5	/11						
	1	7	0.97	117.3	12.0	117.6	12.0	785				
	2	7	0.97	117.3	12.0	117.6	12.0	825				
	3	7	0.93	117.3	12.0	118.0	11.4	795				
14%	4	28	0.93	117.3	12.0	118.1	11.4	NT				
	5	28	0.96	117.3	12.0	117.8	11.8	NT				
	6	28	0.96	117.3	12.0	117.8	11.8	NT				

		Sum	nmary of Soil	Cement 7	Testing at 10	00% Compac	ction	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-T	P-513 LW-S	5-2/5		
	1	7	0.59	127.7	8.6	129.3	7.2	1600
	2	7	0.59	127.7	8.6	129.6	7.2	1295
	3	7	0.60	127.7	8.6	129.2	7.3	1345
14%	4	28	0.60	127.7	8.6	129.2	7.3	1805
	5	28	0.65	127.7	8.6	128.8	7.8	1425
	6	28	0.65	127.7	8.6	128.5	7.8	1680
			CP14	-IRC44-T	P-513 LW-C	-5/11		1
	1	7	0.86	125.3	10.6	125.3	10.5	765
	2	7	0.86	125.3	10.6	125.0	10.5	1370
	3	7	0.86	125.3	10.6	124.6	10.6	1250
14%	4	28	0.86	125.3	10.6	124.8	10.6	NT
	5	28	0.84	125.3	10.6	125.5	10.4	NT
	6	28	0.84	125.3	10.6	125.5	10.4	NT

		Sun	nmary of So	il Cement	Testing at 10	00% Compact	ion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-T	P-513 MdW-	S-2/5		
	1	7	0.70	124.5	10.4	126.3	8.6	1585
	2	7	0.70	124.5	10.4	126.6	8.6	1355
	3	7	0.75	124.5	10.4	125.9	9.2	1590
14%	4	28	0.75	124.5	10.4	125.9	9.2	1755
	5	28	0.73	124.5	10.4	126.2	9.0	1895
	6	28	0.73	124.5	10.4	125.9	9.0	1885
		1	CP1	4-IRC44-TF	P-513 MdW-C	-5/11		
	1	7	0.78	126.3	9,2	125.5	9.6	1030
	2	7	0.78	126.3	9.2	125.5	9.6	1190
14%	3	7	0.81	126.3	9.2	125.1	10.0	1190
14/0	4	28	0.81	126.3	9.2	125.1	10.0	1405
	5	28	0.82	126.3	9.2	125.0	10.0	1665
	6	28	0.82	126.3	9.2	125.0	10.0	1760

	Summary of Soil Cement Testing at 95% Compaction										
_	ant Dit No		A)/O *								
1	est Pit No.	1	2	3	AVG.*						
TP-513	UW-S-2/5										
TP-513	LW-S-2/5	945	1215	1410	1190						
TP-513	MdW-S-2/5	1100	995	920	1005						
TP-513	UW-C-5/11										
TP-513	LW-C-5/11										
TP-513	MdW-C-5/11	385	455	455	432						

^{*} Testing still in progress

Test specification: ASTM D 698-07 Method A Standard

117

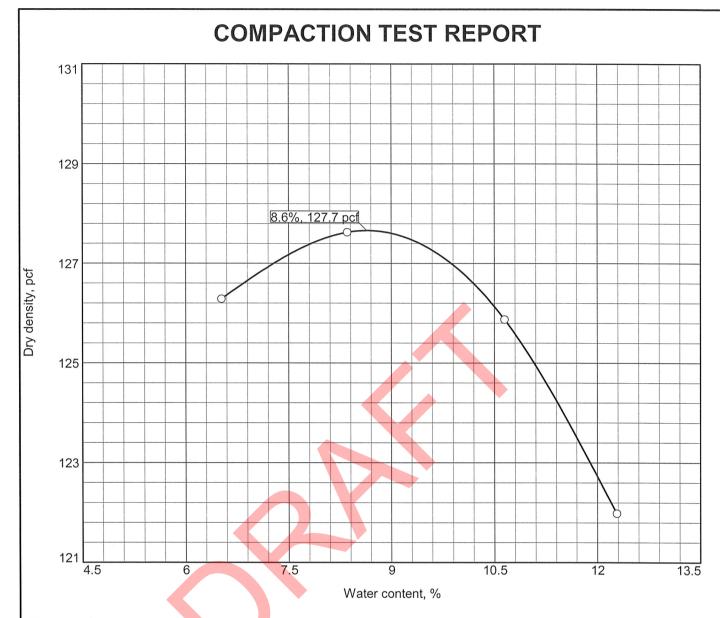
112 4.5

Elev/	Classi	fication	Nat.		Nat.	Nat. Sp.G.	11	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200		
2.0'- 5.0'	SW-SM	A-1-a			16	NP	37.3	10.7		

9

Water content, %

10.5


12

13.5

	TEST RESULTS			N	IATERIAL	DESCRIPT	TION	
Maximum dry density = 126.	Maximum dry density = 126.1 pcf					SAND, well-graded with silt, mostly sand to gravel-sized limestone, some fine-grained		
Optimum moisture = 10.0 %					sand-sized quartz, few silt			
Project No. 6734149799 Client: USACE					Remarks:			
Project: C-44 RSTA Contract 2 C	Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V							
o Location: CP14-IRC44-TP-513	Sample Number: U	JW-S-2/5						
	AMEC E&I							
Jacksonville, Florida						Figure		

Tested By: W. Martin Checked By: Stephanie A. Setser, P.E.

7.5

Test specification: AASHTO T 99 Method A Standard

Elev/	Classi	fication	Nat.	S = C	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP-SM	A-1-b			NV	NP	37.0	6.9
TEST RESULTS					N	IATERIAL	DESCRIPT	TION

TEST RESULTS

Maximum dry density = 127.7 pcf
Optimum moisture = 8.6 %

Project No. 6734149799 Client: USACE
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V

Location: CP14-IRC44-TP-513 Sample Number: LW-S-2/5
AMEC E&I

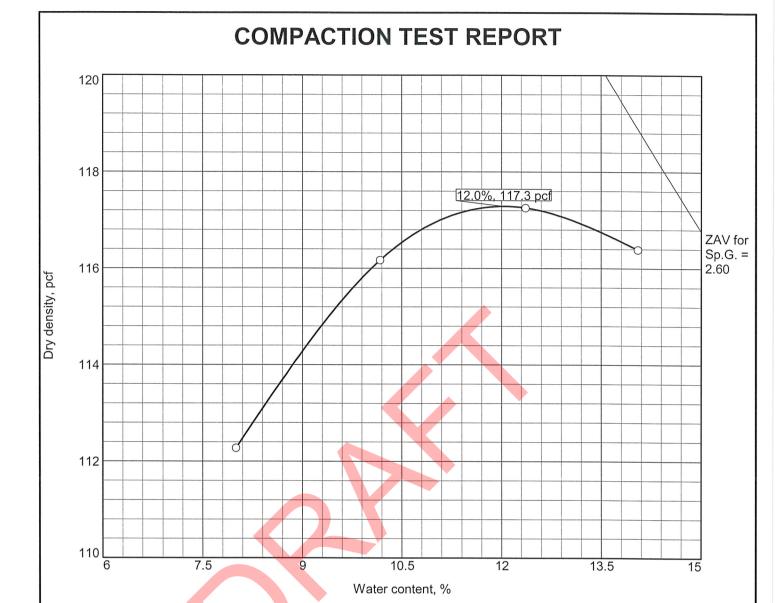
Jacksonville, Florida

MATERIAL DESCRIPTION

SAND, poorly-graded with silt, mostly sand to gravel-sized limestone, some fine-grained sand-sized quartz, few silt

Remarks:

Figure

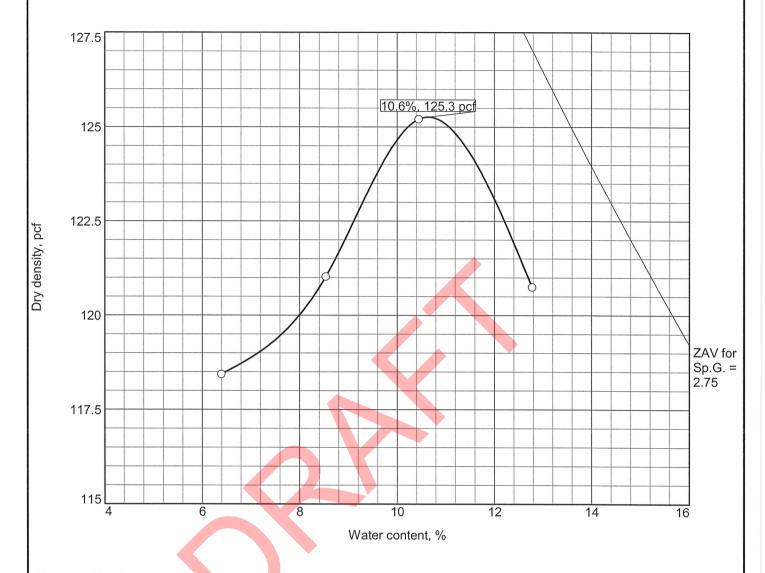


Test specification: AASHTO T 99 Method A Standard

Elev/	Classi	fication	Nat. Sp.G.			LL	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	PI		#4	No.200	
2.0'- 5.0'	SP	A-3			NV	NP	24.8	3.5	

TEST RESULTS	MATERIAL DESCRIPTION				
Maximum dry density = 124.5 pcf	SAND, poorly-graded, mostly fine-grained sand-sized quartz, some sand to gravel-size				
Optimum moisture = 10.4 %	limestone, trace silt				
Project No. 6734149799 Client: USACE	Remarks:				
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V					
○ Location: CP14-IRC44-TP-513 Sample Number: MdW-S-2/5					
AMEC E&I					
Jacksonville, Florida	Figure				

Tested By: A. Coleman Checked By: Stephanie A. Setser, P.E.

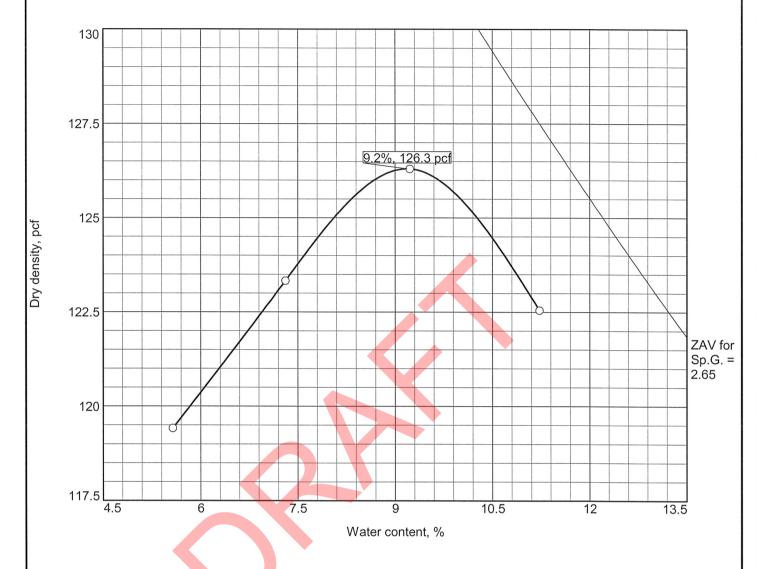

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classification		Nat.		Nat.			DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G. LL	LL	PI	#4	No.200		
5.0'- 11.0'	SW-SC	A-2-4(0)			26	9	30.4	11.9		

TEST RESULTS	MATERIAL DESCRIPTION				
Maximum dry density = 117.3 pcf	SAND, well-graded with clay, mostly sand gravel-sized limestone, some fine-grained				
Optimum moisture = 12.0 %	sand-sized quartz, few clay				
Project No. 6734149799 Client: USACE	Remarks:				
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V					
○ Location: CP14-IRC44-TP-513 Sample Number: UW-C-5/11					
AMEC E&I					
Jacksonville, Florida	Figure				

Tested By: J. Tarpley Checked By: Stephanie A. Setser, P.E.

COMPACTION TEST REPORT


Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.		II DI		% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-3			NP	NP	19.8	3.8

	7	EST RESULTS			N	MATERIAL DESCRIPTION					
Maximu	m dry density = 125.3		SAND, poorly-graded, mostly fine-grained sand-sized quartz, some sand to gravel-sized								
Optimun	m moisture = 10.6 %		limestone, trace silt								
Project No	o. 6734149799 Client:	Remark	Remarks:								
Project:	C-44 RSTA Contract 2 Ge	eotechnical Investigation - I	Phase V								
 Location 	n: CP14-IRC44-TP-513	Sample Number: I	W-C-5/11					1			
	Jack			Figure							

Tested By: A. Coleman Checked By: Stephanie A. Setser, P.E.

COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.	Sp.G.		DI	% >	% <
Depth	USCS	AASHTO	Moist.	3p.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-3			NP	NP	20.9	1.8

TE	EST RESULTS	MATERIAL DESCRIPTION	
Maximum dry density = 126.3	ocf	SAND, poorly-graded, mostly fine-grain sand-sized quartz, some sand to gravel-si	
Optimum moisture = 9.2 %		limestone, trace silt	
Project No. 6734149799 Client:	USACE	Remarks:	
Project: C-44 RSTA Contract 2 Geo	technical Investigation - Phase V		
○ Location: CP14-IRC44-TP-513	Sample Number: MdW-C-5/11		
	AMEC E&I		
lacks	sonville, Florida	F:	
Jacks	ouiville, i luitua	Figure	

Tested By: A. Coleman Checked By: Stephanie A. Setser, P.E.

		(Summary of \	Wet/Dry an	d Freeze/Tha	aw Testing			
			CP14	I-IRC44-TP	-513 UW-S-2	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.77	126.1	10.00	126.5	9.3	NT	NT	
Drying		0.77	126.1	10.00	126.9	9.3	NT	NT	
Freezing and	14	0.80	126.1	10.00	126.0	9.7	NT	NT	
Thawing		0.80 126.1 1		10.00	126.5	9.7	NT	NT	
	1	<u>'</u>	CP14	-IRC44-TP-	513 UW-C-5/	11		l	
Wetting and	14	0.94	117.3	12.00	117.9	11.4	NT	NT	
Drying	17	0.94	117.3	12.00	118.0	11.4	NT	NT	
Freezing and	14	0.97	117.3	12.00	117.6	11.8	NT	NT	
Thawing	14	0.97	117.3	12.00	117.6	11.8	NT	NT	

		S	ummary of	Wet/Dry and	Freeze/Thav	v Testing			
			CP1	4-IRC44-TP-	513 LW-S-2/5	5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.66	127.7	8.60	128.7	8.0	130.8	0.0	
Drying		0.66 127.7 8.60 128.4		8.0	130.1	0.0			
Freezing and	14	0.65	127.7	8.60	128.6	7.8	NT	NT	
Thawing	14	0.65	127.7	8.60	128.9	7.8	NT	NT	
	1		CP14	-IRC44-TP-5	13 LW-C-5/1	1	<u> </u>		
Wetting and	14	0.90	125.3	10.60	124.7	0.1	NT	NT	
Drying	17	0.90	125.3	10.60	124.6	0.1	NT	NT	
Freezing and	14	0.95	125.3	10.00	124.2	0.1	NT	NT	
Thawing	14	0.95	125.3	10.00	124.0	0.1	NT	NT	

		S	ummary of \	Wet/Dry and	Freeze/Thav	w Testing									
	CP14-IRC44-TP-513 MdW-S-2/5														
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)						
Wetting and Drying	14	0.73 0.73	124.5 124.5	10.40 10.40	126.4 126.4	8.9 8.9	NT NT	NT NT							
Freezing and Thawing	14	0.73	124.5	10.40	127.3 127.6	8.9	NT NT	NT NT							
		0.73		10.40 IRC44-TP-51			IVI	111							
Wetting and	14	0.85	126.3	9.20	125.1	10.3	NT	NT							
Drying		0.85	126.3	9.20	124.8	10.3	NT	NT							
Freezing and	14	0.82	126.3	9.20	125.2	10.0	NT	NT							
Thawing	1-7	0.82	126.3	9.20	125.2	10.0	NT	NT							

Ta	able 5: Summary of Sand	Cleanline	ess and Sa	nd Equiva	lent Testing	
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)
	CF	14-IRC44	-TP-513			
		1	12.8	2.1	17	
	UW-S-2/5	2	12.6	2.0	16	17
		3	12.5	2.1	17	
		1	13.6	3.4	25	
2-5	LW-S-2/5	2	13.6	3.4	25	25
		3	13.6	3.4	25	
		1	7.0	3.6	52	
	MdW-S-2/5	2	7.1	3.5	50	51
		3	7.0	3.5	50	
		1	14.5	2.2	16	
	UW-C-5/11	2	14.4	2.2	16	16
		3	14.3	2.2	16	
		1	13.5	3.5	26	
5-11	LW-C-5/11	2	13.3	3.3	25	25
		3	13.3	3.3	25	
		1	10.6	3.6	34	
	MdW-C-5/11	2	10.6	3.6	34	34
		3	11.0	3.6	33	

Test Pit 513 View S

Test Pit 513 View E – Depth Measurement

Test Pit 513 View S

Test Pit 513 View E

Test Pit 513 View N

Test Pit 513 View W

Test Pit 513 View NW

Test Pit 513 View W – Sample Collection

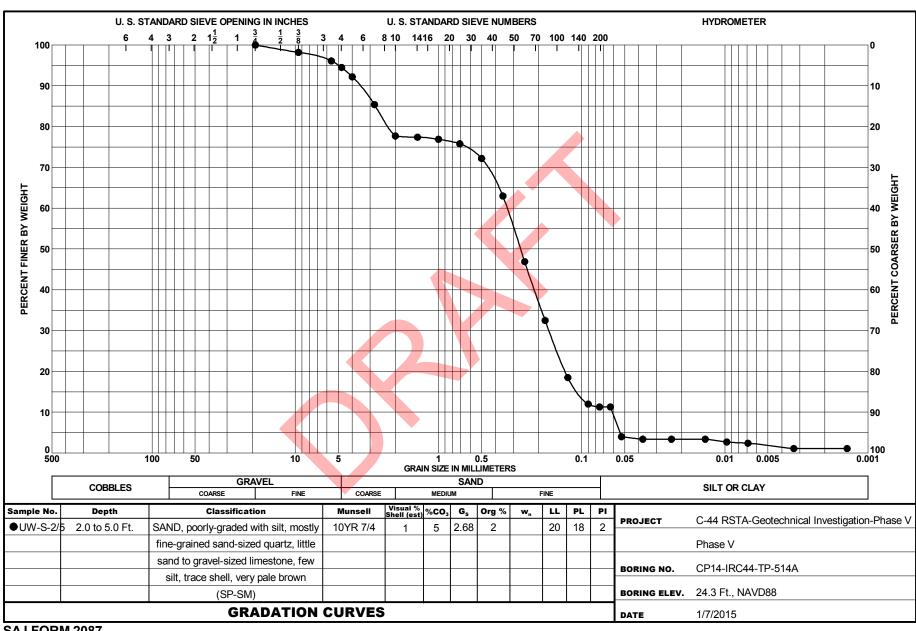
Test Pit 513 – Backfilled Condition

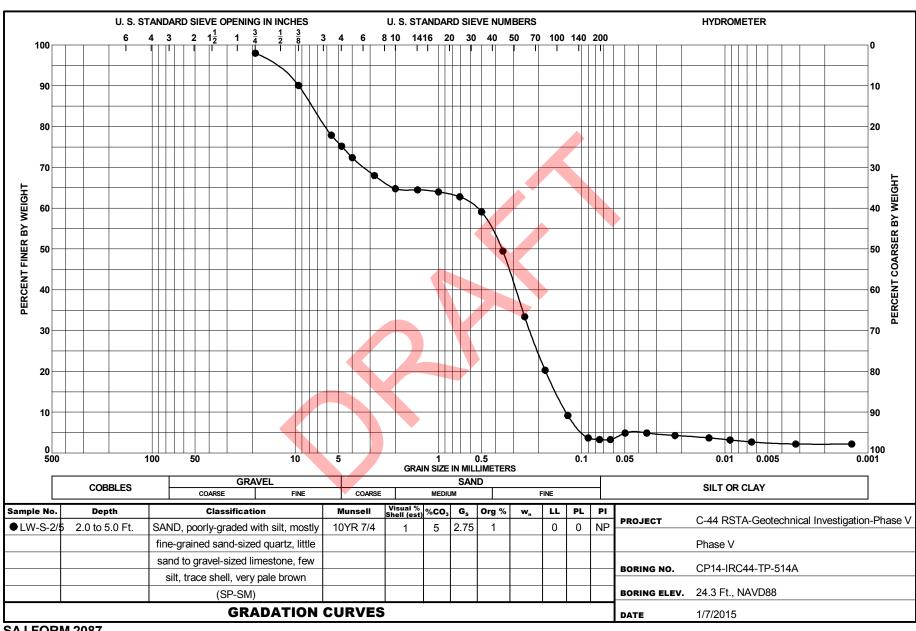
			DIVISION		INS	TALLATI	ON	3 3		SHEET	1
υRI	LLING	LUG	South Atlantic		J	lacksonv	ille Di	strict		OF 2	SHEETS
I. PRO	JECT				9.	SIZE ANI	TYP	E OF BIT S	ee Remarks		
С	-44 RSTA-	-Geotec	hnical Investigation-Phase	e V	10.	COORD	NATE	SYSTEM/DATUM	HORIZONTA	L VERTIC	AL
Р	hase V					State	e Plar	ne, FLE (U.S. Ft.) NAD83	NA۱	/D88
2. BOR	ING DESIGI	NATION	LOCATION CO	ORDINATES	11.	MANUF	ACTU	RER'S DESIGNAT	ION OF DRILL	AUTO HAI	MER
	P14-IRC4		,,	65 Y = 835,426		Kom	atsu 2	210 LC		MANUAL I	
	LING AGEN		C	ONTRACTOR FILE NO.	12.	TOTAL	SAMP	LES	DISTURBED	UNDISTUR	BED (UD)
	hillips & Jo		<u> </u>	6734-14-9799					8	0	
	E OF DRILL				13.	TOTAL	NUMB	ER CORE BOXES	0		
	Chuck Floyd		DEC EDOM	BEARING	14.	ELEVAT	ION C	GROUND WATER			
	VERTICAL	BORING	DEG. FROM VERTICAL	BEARING				_	STARTED	COMPL	ETED
	INCLINED			!	15.	DATE B	ORING	9	12-09-14	12-0	09-14
6. THIC	KNESS OF	OVERB	URDEN N/A		16.	ELEVAT	ION 1	OP OF BORING	24.3 Ft.		
					17.	TOTAL	RECO	VERY FOR BORIN	IG N/A		
7. DEP	TH DRILLED	J IN I O R	ROCK N/A		18.	SIGNAT	URE A	AND TITLE OF IN			
8. ТОТ	AL DEPTH (OF BORI	NG 11.0 Ft.			Briar	n Hath	naway, Geotech	nical Engineer		
ELEV.	DEPTH	EGEND	CLASSIFICATION	OF MATERIALS	R	BOX OR	RQD OR UD		REMARKS	BLOWS/	1 FT.
		+-+			+			\rightarrow			
24.3	0.0							24.3			
	-		SAND, poorly-graded wit fine-grained sand-sized of	h silt, mostly	T						
	-	 •. †	gravel-sized limestone, fe				1 .				
-	<u> </u>	:.	10YR 6/3 pale brown (S					1	Test Pit		
l	-	1::	. ,	,		\times			* 5		
ŀ	-	1. 111			\mathcal{X}			22.3	A after 18		
	_	·					\sim	22.3			_
-	-	 -: †∏				`		22.3			
	_	1.11]>			
-	-	$\ \cdot\ $			X	. l	L,_	<u> </u>			
	-	::			1	MdW-S	12/5 1/5	Heb/			
ŀ	_	:.				UW-S-	2/5 °	1			
	_	[:·] ! ∦					care				
ŀ	_		/			Menco	1	19.3			
-	-		-At El. 19.3 Ft., 10YR 7/2	! light gráy		087 M		19.3			
	-	:.			, ce	97		19.3 19.3			
-	<u> </u>					UW-R-	\$/7	.5.5			
	- -	$ \cdot $			/						
17.3	7.0	$[\cdot]$, red							
	-		SAND, well-graded with	silt, mostly fine grained	T		1				
ŀ	_	· []	sand-sized quartz, some shell, few silt, few mediu	sand to gravel-sized							
	<u> </u>		limestone, 10YR 7/2 ligh	t gray (SW-SM)		MdW-C-	\$ /11				
	- -			- kiloži ,		LW-C-5	/11				
15.3	9.0	°{		1		UW-C-5	y11	15.3			
			SAND, poorly-graded wit		\top		1				\neg
ŀ	_	:	fine-grained sand-sized of	quartz, little sand to							
	_		gravel-sized limestone, li gravel-sized shell, few cla			UW-R-9	W11				
}	_	1: 1/3/	gray (SP-SC)	a,, 50 o, 1 groomon							
13.3	11.0	.	-Ăt Él. 14.3 Ft.					13.3			
10.0	- 11.0	1.1//			\dashv		†				+
-	_		NOTES:					Abbreviations:	:		
ŀ	<u>-</u>		1 LISACE looksonville	is the quetodies for							
	-		 USACE Jacksonville i these original files. 	is the custodian not							
	-		soo original filos.								
	_		2. Soils are field visually	classified in							
ŀ	<u>-</u>		accordance with the Unif	ried Soils Classification	۱						
-	-		System.								
ŀ	_		3. Test pit TP-514 was t	erminated at the							
	_ -		request of USACOE. Te to built-up roadway and e	est pit located adjacent							

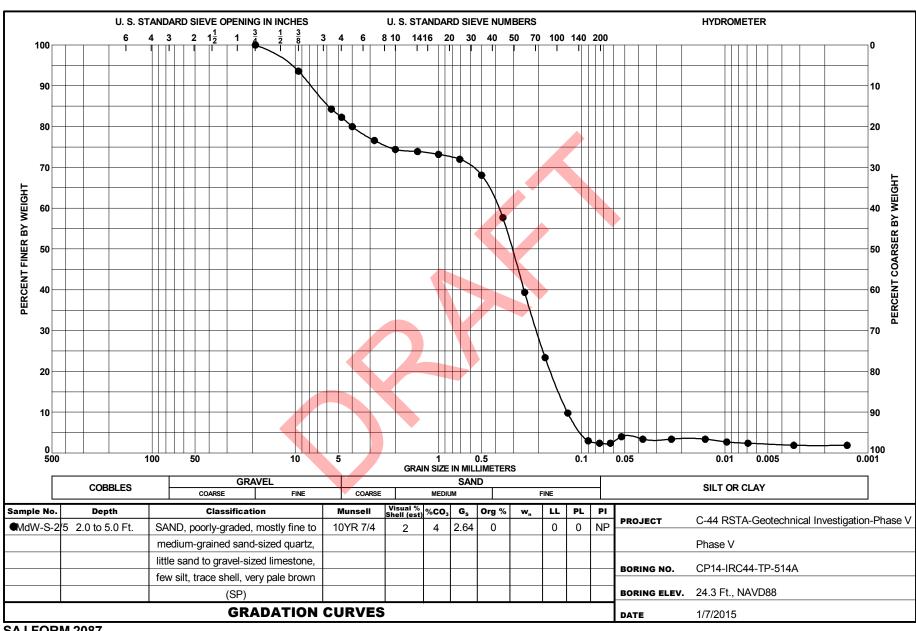
SAJ FORM 1836 JUN 02

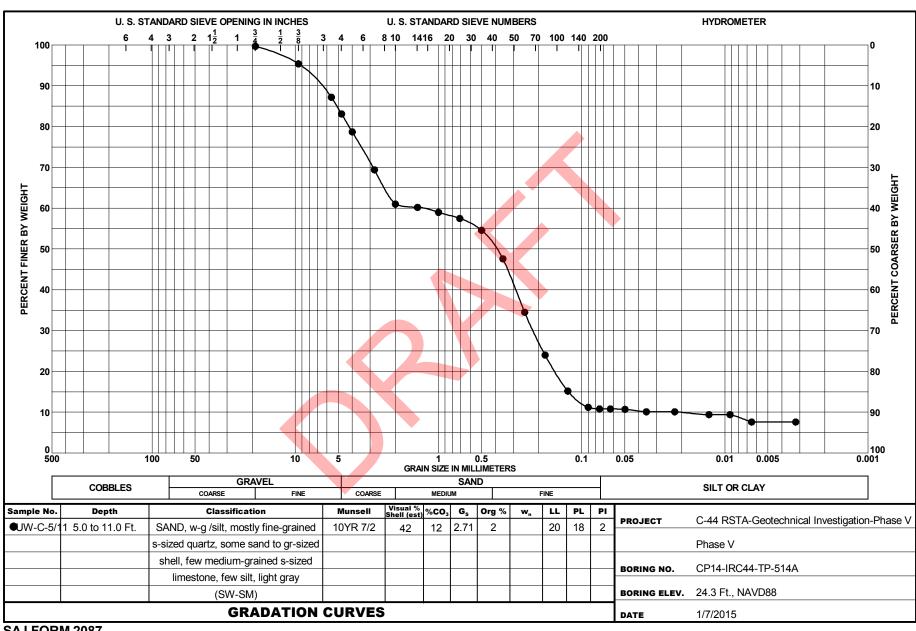
(Continued)

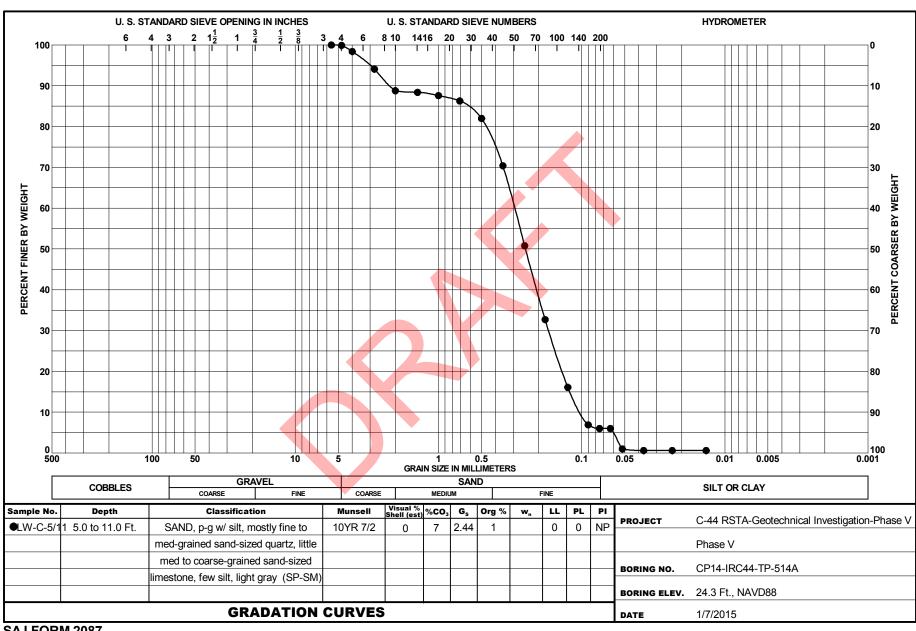
0

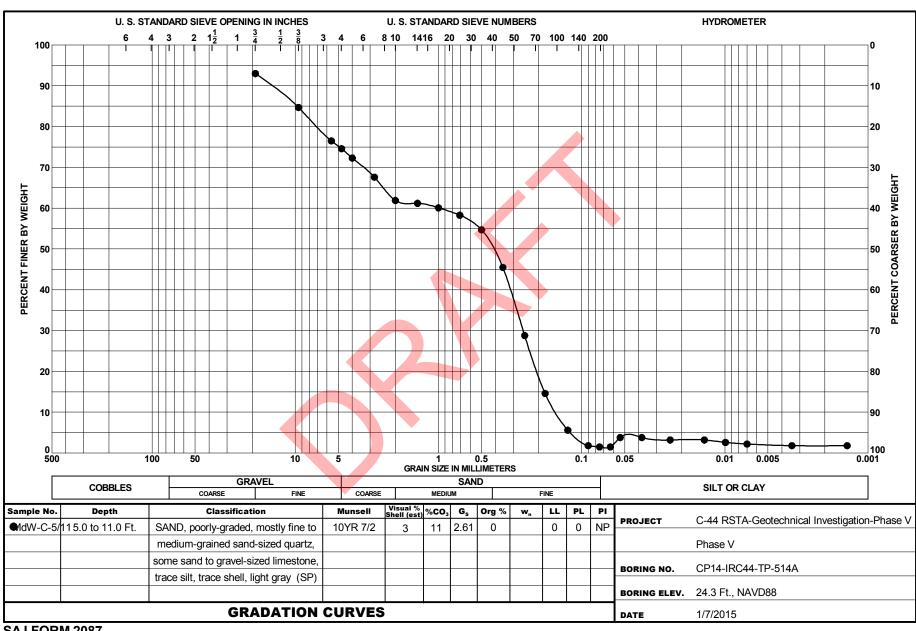

5

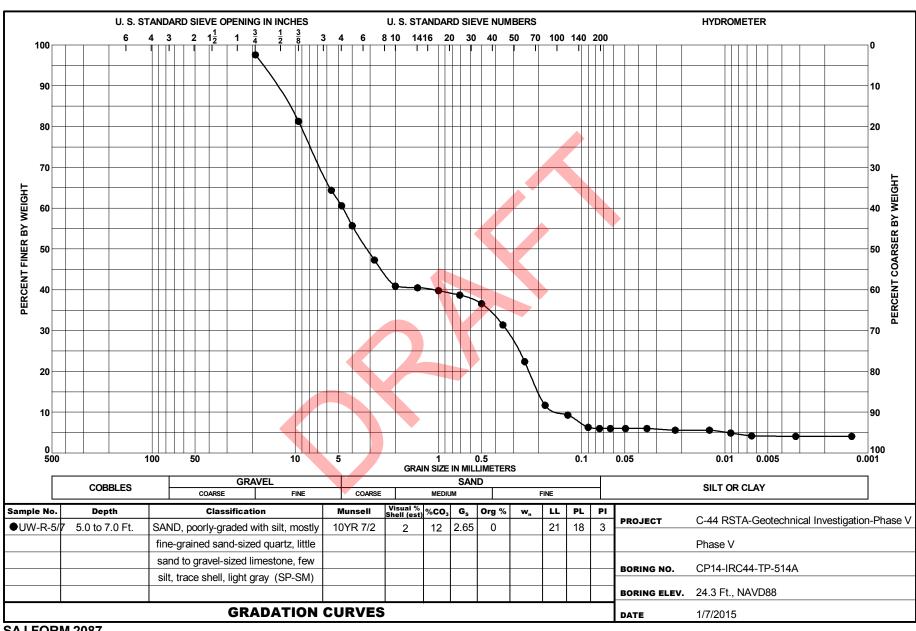

10

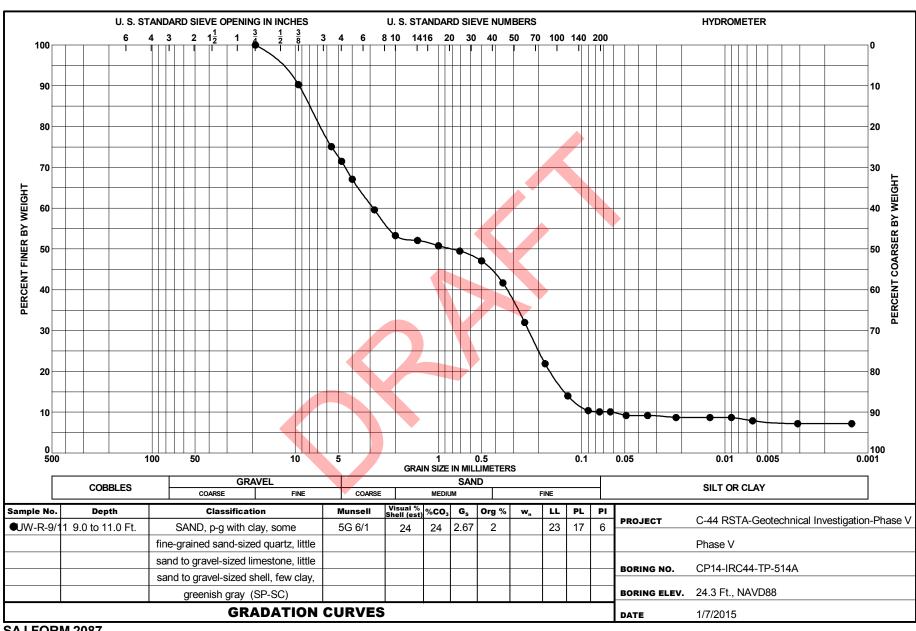

Boring Designation CP14-IRC44-TP-514A


DRI	LLING	G (Cont.	Sheet)		INSTALLA Jackso		Dietri	~ -			SHEET 2 OF 2 SHEET			
ROJEC				-		COORDINA				M HORIZONT	VERTICAL			
C-44	RSTA-Geo	otechr	ical Investiga	tion-Phase V		State F	Plane,	FLE (U.S. Ft.	.) NAD83		NAVD88		
	ON COORDI			ELEVATION TOP OF BORING										
X = 1	,003,765	_	835,426											
ELEV.	DEPTH	LEGEND	CLA	ASSIFICATION	OF MATERIA	LS	"REC.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/	N-VALUE	
			Irrigation pi	pes encounte	red.									
			4. Laborato	ory Testing Re	esults									
			SAMPLE	SAMPLE	LABORA	TORY								
			ID	DEPTH	CLASSIFIC									
		SP-S												
			LW-S-2/5 MdW-S-2/5	2.0/5.0 2.0/5.0	SP-S SP									
		MdW-S-2/5 2.0/5.0 S UW-C-5/11 5.0/11.0 SW LW-C-5/11 5.0/11.0 SP MdW-C-5/11 5.0/11.0 S												
			UW-R-5/7	SP-S	SM									
		UW-R-9/11 9.0/11.0 SP not on atterberg limits.												
			5. Addition	al Laboratory	Testing									
				Specific Gravit	у						ited			
			UW-S-2/5/ UW-S-2/5/	Atterberg Percent Organ	ic					V (Bec			
			UW-S-2/5F	nate	_ /	/ `	/.		, gardina					
			UW-S-2/5F LW-S-2/5S						3025e					
			LW-S-2/5A						\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
				Percent Organi Percent Carbo						/ //				
				Percent Visual		1 //			يوا	<i>></i> /				
			MdW-S-2/5	Specific Grav Atterberg	nty		$Y_{/}$		Cite Ci.	/				
				Percent Orga Percent Carb				25	CARRO					
			MdW-S-2/5	Percent Visu	al Shell		/	Aonen						
			UW-C-5/11 UW-C-5/11	Specific Grav	rity		a ology	ľ						
			UW-C-5/11	Percent Orga	nic									
				Percent Carb Percent Visua		> /								
			LW-C-5/11	Specific Grav		acted								
			LW-C-5/11 LW-C-5/11	Atterberg Percent Orga	nic 🚜	ine .								
			LW-C-5/11	Percent Carb	onate 🚜									
				Percent Visua MSpecific Gra										
			MdW-C-5/	11Atterberg	TRICE									
			MdW-C-5/ MdW-C-5/	11Percent Org 11Percent Ca	ganic rbonate									
			MdW-C-5/	11Percent Vis	ual Shell									
			UW-R-5/78 UW-R-5/7	Specific Gravit Atterbera	:y									
			UW-R-5/7F	Percent Organ										
		UW-R-5/7Percent Carbonate UW-R-5/7Percent Visual Shell												
	UW-R-9/11Specific Gravity													
	UW-R-9/11Atterberg UW-R-9/11Percent Organic				nic									
	UW-R-9/11Percent Carbonate UW-R-9/11Percent Visual Shell													
			ai Sheil											
		1	I				1	1	i I				1	


						Su	ımmar	y of Classific	ation Testi	ing							
		Sample Depth (ft)			Atte	erberg	Limits										
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Gravel (%)	Sand (%)	Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-514A	UW-S-2/5	2.0	5.0	SP-SM	20	18	2	2	2.68	5.5	83.2	11.3	3.4	7.9	4.91	1	8.7
CP14-IRC44-TP-514A	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	0.6	2.75	22.8	71.9	3.3	0.9	2.4	5.3	0.5	9.2
CP14-IRC44-TP-514A	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.64	17.7	79.9	2.4	0.6	1.8	4.44	2	8.4
CP14-IRC44-TP-514A	UW-C-5/11	5.0	11.0	SW-SM	20	18	2	1.6	2.71	16.6	72.3	10.8	3.1	7.7	11.75	41.5	8.9
CP14-IRC44-TP-514A	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.44	0.1	93.9	6.0	5.7	0.3	6.64	0.4	8.8
CP14-IRC44-TP-514A	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.3	2.61	18.4	73.1	1.5	1.5	0	10.77	3.4	9.6
CP14-IRC44-TP-514A	UW-R-5/7	5.0	7.0	SP-SM	21	18	3	0.3	2.65	37	54.6	6	1.8	4.2	12.17	2	8.9
CP14-IRC44-TP-514A	UW-R-9/11	9.0	11.0	SP-SC	23	17	6	2.2	2.67	28.5	61.4	10.1	2.6	7.5	24	24	8.8







		Sum	mary of Soil	Cement Te	sting at 100	% Compacti	on	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP14-	IRC44-TP-	514A UW-S-	2/5		
	1	7	0.81	121.1	11.8	122.9	10.0	630
	2	7	0.81	121.1	11.8	122.8	10.0	690
	3	7	0.77	121.1	11.8	123.6	9.4	810
14%	4	28	0.77	121.1	11.8	123.6	9.4	NT
	5	28	0.81	121.1	11.8	122.7	9.9	NT
	6	28	0.81	121.1	11.8	122.5	9.9	NT
			CP14-I	RC44-TP-5	14A UW-C-	5/11		
	1	7	0.97	120.9	11.5	120.7	11.9	820
	2	7	0.97	120.9	11.5	120.7	11.9	965
4.40/	3	7	0.96	120.9	11.5	120.8	11.8	945
14%	4	28	0.96	120.9	11.5	120.7	11.8	NT
	5	28	0.94	120.9	11.5	120.7	11.6	NT
	6	28	0.94	120.9	11.5	121.1	11.6	NT

		Sum	mary of Soil	Cement Te	esting at 100	% Compact	ion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP14	-IRC44-TP-	514A LW-S-	2/5		
	1	7	2.89	123.3	10.6	123.8	9.6	1195
	2	7	2.34	123.3	10.6	124.2	9.6	1205
	3	7	2.43	123.3	10.6	124.3	9.6	1135
14%	4	28	0.79	123.3	10.6	123.7	9.6	NT
	5	28	0.79	123.3	10.6	123.6	9.7	NT
	6	28	0.79	123.3	10.6	123.6	9.7	NT
			CP14-	IRC44-TP-	514A LW-C-	5/11		
	1	7	0.81	125.3	11	125.7	10.0	765
	2	7	0.81	125.3	11	125.4	10.0	1370
4.40/	3	7	0.88	125.3	11	124.5	10.8	1250
14%	4	28	0.88	125.3	11	124.7	10.8	NT
	5	28	0.92	125.3	11	123.9	11.2	NT
	6	28	0.92	125.3	11	123.9	11.2	NT


	Summary of Soil Cement Testing at 100% Compaction							
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-TF	P-514A MdW-	S-2/5		
	1	7	0.62	123.9	8.9	124.1	7.6	790
	2	7	0.62	123.9	8.9	124.1	7.6	1195
	3	7	0.69	123.9	8.9	123.2	8.5	990
14%	4	28	0.69	123.9	8.9	123.5	8.5	1585
	5	28	0.67	123.9	8.9	123.5	8.2	1240
	6	28	0.67	123.9	8.9	123.5	8.2	1340
		<u> </u>	CP14	-IRC44-TP	-514A MdW-0	C-5/11		
	1	7	0.67	125.1	9.4	122.8	8.2	1120
	2	7	0.67	125.1	9.4	122.5	8.2	1385
	3	7	0.71	125.1	9.4	122.0	8.7	1265
14%	4	28	0.71	125.1	9.4	122.0	8.7	1785
	5	28	0.70	125.1	9.4	123.0	8.6	1855
	6	28	0.70	125.1	9.4	123.0	8.6	1660

	Summary of Soil Cement Testing at 95% Compaction								
т.	est Pit No.		PSI*		AVC *				
''	est Pit No.	1	2	3	AVG.*				
TP-514A	UW-S-2/5								
TP-514A	LW-S-2/5	720	1235	1115	1023				
TP-514A	MdW-S-2/5	860	925	870	885				
TP-514A	UW-C-5/11								
TP-514A	LW-C-5/11								
TP-514A	MdW-C-5/11	1135	1035	1155	1108				

^{*} Testing still in progress

Elev/	Classi	fication	Nat.	S= C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP-SM	A-2-4(0)			20	2	5.5	11.3

						l				
	TEST RESULTS						MATERIAL DESCRIPTION			
Maximum dry density = 121.1 pcf					SAND, poorly-graded with silt, mostly fine grained sand sized quartz, little sand to					
Optimum moisture = 11.8 %	Optimum moisture = 11.8 %					one, few silt,				
Project No. 6734149799 Client	t: USACE			Remark	s:					
Project: C-44 RSTA Contract 2 G	eotechnical Investigation - l	Phase V								
o Location: CP14-IRC44-TP-514A	Sample Number:	UW-S-2/5								
	AMEC E&I		•							
Jac	ksonville, Florida					Figure				

Tested By: W. Martin Checked By: Stephanie Setser, P.E.

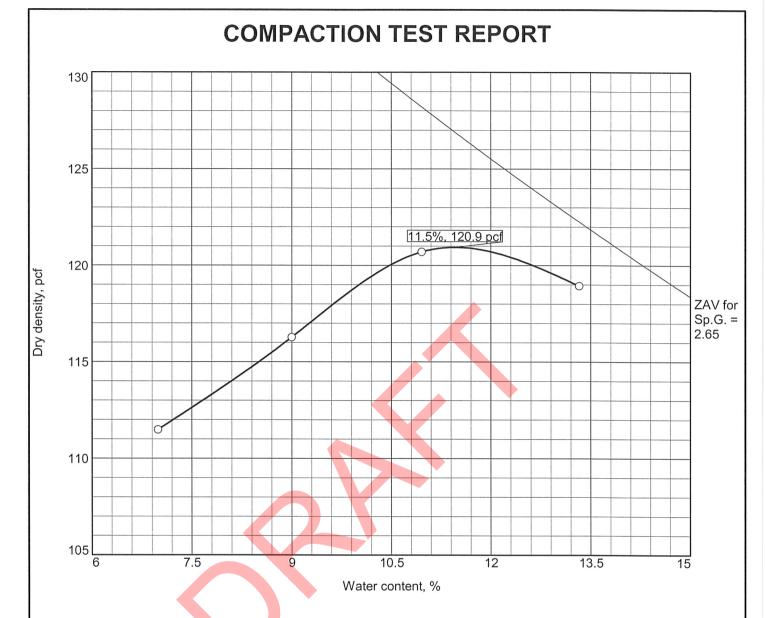
COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classit	fication	Nat.	C= C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP	A-3			NV	NP	24.8	3.3

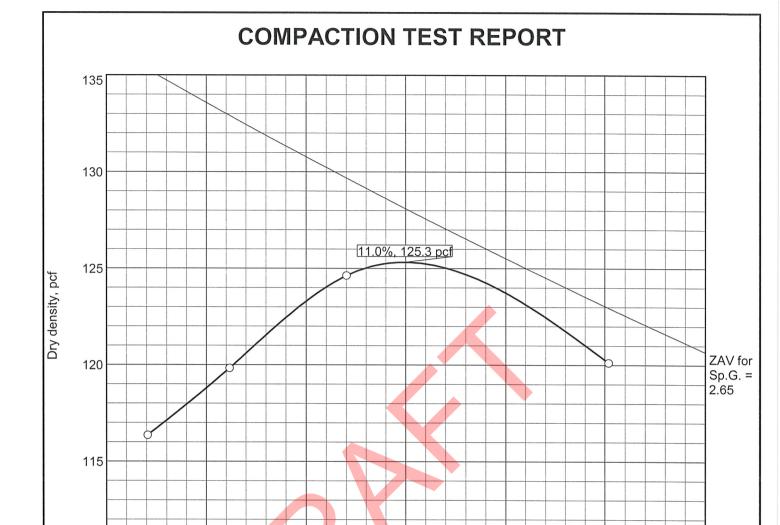
	TEST RESULTS						MATERIAL DESCRIPTION			
Maximu	Maximum dry density = 123.3 pcf					SAND, poorly-graded with silt, mostly fin grained sand sized quartz, little sand to				
Optimu	Optimum moisture = 10.6 %					sized limest	one, few silt,	trace shell		
Project N	lo. 6734149799 Client:	USACE			Remark	s:				
Project:	C-44 RSTA Contract 2 Ge	eotechnical Investigation - I	Phase V							
o Locatio	on: CP14-IRC44-TP-514A	Sample Number:	LW-S-2/5							
		AMEC E&I								
	Jack	sonville, Florida					Figure			

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.



Elev/	Classi	fication	Nat.	S= C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP	A-3			NV	NP	17.7	2.4

TES	T RESULTS		1	IATERIAL	DESCRIPT	ΓΙΟΝ
Maximum dry density = 123.9 pc	f				graded, mostl d-sized quar	y fine to tz, little sand
Optimum moisture = 8.9 %			to grave	-sized limes	stone, few sil	lt, trace shell
Project No. 6734149799 Client: U	SACE		Remark	s:		
Project: C-44 RSTA Contract 2 Geotec	chnical Investigation - I	Phase V				
○ Location: CP14-IRC44-TP-514A	Sample Number:	MdW-S-2/5				
Af	MEC E&I					
Jackso	nville, Florida				Figure	


Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

Elev/	Classi	fication	Nat.	Sp.G.		PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SW-SM	A-2-4(0)			20	2	16.9	10.8

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 120.9 pcf	SAND, w-g /silt, mostly fine-grained s-sized quartz, some sand to gr-sized shell, few
Optimum moisture = 11.5 %	medium-grained s-sized limestone, few silt
Project No. 6734149799 Client: USACE	Remarks:
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V	
○ Location: CP14-IRC44-TP-514A Sample Number: UW-C-5/11	
AMEC E&I	
Jacksonville, Florida	Figure

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

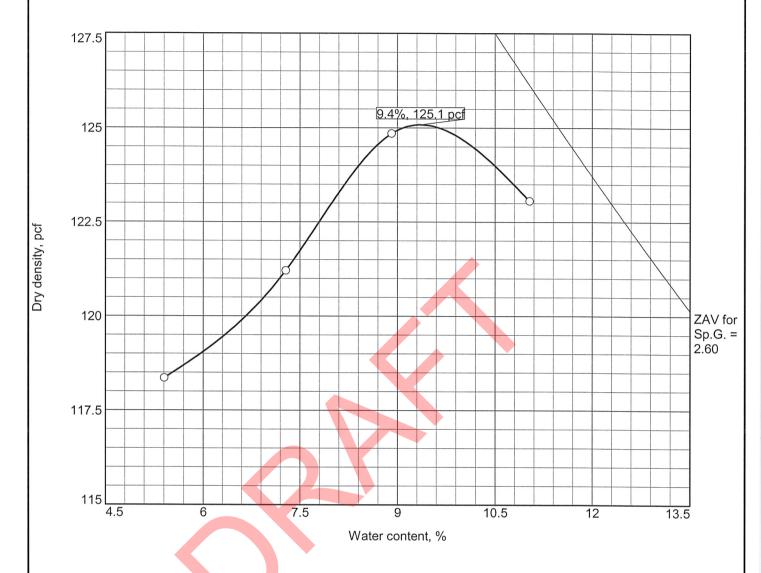
110 <u>|</u>

Elev/	Classi	fication	Nat.	S = C		DI	% >	% <	
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
5.0'- 11.0'	SP-SM	A-3			NP	NP	0.1	6.0	

11

Water content, %

12


13

TEST RESULTS	MATERIAL DESCRIPTION					
Maximum dry density = 125.3 pcf	SAND, p-g w/ silt, mostly fine to med- grained sand-sized quartz, little med to					
Optimum moisture = 11.0 %	coarse-grained sand-sized limestone, few silt					
Project No. 6734149799 Client: USACE	Remarks:					
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V						
○ Location: CP14-IRC44-TP-514A Sample Number: LW-C-5/11						
AMEC E&I						
Jacksonville, Florida	Figure					

Tested By: W. Martin Checked By: Stephanie Setser, P.E.

10

COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.	S= C		D.	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-3			NP	NP	25.4	1.5

Т	EST RESULTS			1	MATERIAL DESCRIPTION					
Maximum dry density = 125.1			graded, mostl	ly fine to z, some sand						
Optimum moisture = 9.4 %			nestone, trace							
Project No. 6734149799 Client:	Remark	Remarks:								
Project: C-44 RSTA Contract 2 Ge	eotechnical Investigation - l	Phase V								
○ Location: CP14-IRC44-TP-514A	Sample Number:	MdW-C-5/1	1							
	AMEC E&I									
Jack	Jacksonville, Florida									

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

Summary of Wet/Dry and Freeze/Thaw Testing CP14-IRC44-TP-514A UW-S-2/5 Test Type Water/ Max **Optimum Initial Test Initial Test Final Test Final Test** Final Loss Cement Content **Cement Ratio** Density Moisture Sample Sample Sample Sample (%) (%) (pcf) Density Moisture Density Moisture Content Content (%) (pcf) (pcf) Content (%) (%) 0.84 NT 121.1 11.80 123.0 NT 10.1 Wetting and 14 Drying 0.84 121.1 11.80 123.0 10.1 NT NT 0.84 121.1 11.80 125.6 10.0 NT NT Freezing and 14 Thawing NT NT 0.84 121.1 11.80 126.1 10.0 CP14-IRC44-TP-514A UW-C-5/11 0.94 NT 120.9 11.50 120.3 11.5 NT Wetting and 14 Drying 0.94 120.9 11.50 120.8 11.5 NT NT 120.9 11.50 120.9 NT NT 0.92 11.3 Freezing and 14 Thawing 0.92 120.9 NT NT 11.3 11.50 120.7 --

		S	ummary of	Wet/Dry and	Freeze/Thav	w Testing									
	CP14-IRC44-TP-514A LW-S-2/5														
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)						
Wetting and Drying	14	0.78	123.3	10.60	124.0	9.5	130.8	0.2							
		0.78	123.3	10.60	124.0	9.5	130.1	0.2							
Freezing and	14	0.76 123.3		10.60	124.2	9.3	NT	NT							
Thawing		0.76	123.3	10.60	124.2	9.3	NT	NT							
			CP14-	IRC44-TP-51	4A LW-C-5/	11									
Wetting and	14	0.94	120.9	11.50	120.3	11.5	NT	NT							
Drying	1-7	0.94	120.9	11.50	120.8	11.5	NT	NT							
Freezing and	14	0.92	120.9	11.50	120.9	11.3	NT	NT							
Thawing	'-	0.92	120.9	11.50	120.7	11.3	NT	NT							

Summary of Wet/Dry and Freeze/Thaw Testing CP14-IRC44-TP-514A MdW-S-2/5 Test Type Max **Initial Test** Cement Water/ **Optimum Initial Test Final Test Final Test Final Loss Density** Sample Sample Sample Sample (%) Content **Cement Ratio** Moisture (%) (pcf) Content Density Moisture **Density Moisture** (%) (pcf) Content (pcf) Content (%) (%) 0.75 NT NT 123.9 8.90 123.2 9.0 Wetting and 14 Drying 123.9 NT 0.75 8.90 122.6 9.0 NT 0.72 123.9 8.7 NT NT 8.90 123.0 Freezing and 14 Thawing 0.72 123.9 8.90 8.7 NT NT 123.0 CP14-IRC44-TP-514A MdW-C-5/11 **Test Type** Cement Water/ Max **Optimum Initial Test Initial Test Final Test Final Test Final Loss** Content **Cement Ratio** Moisture Sample Density Sample Sample Sample (%) (%) Density Density (pcf) Content Moisture **Moisture** (%) (pcf) Content (pcf) Content (%) (%) 0.74 125.1 9.40 122.0 9.1 NT NT Wetting and 14 Drying 0.74 125.1 9.40 122.6 NT NT 9.1 0.71 125.1 9.40 122.1 8.7 NT NT Freezing and 14 Thawing 0.71 8.7 NT 125.1 9.40 122.4 NT --

	Summary of Sand Clea	anliness a	nd Sand E	quivalent	Testing				
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)			
	СР	14-IRC44-	TP-514A			•			
		1	12.9	2.1	17				
	UW-S-2/5	2	12.6	1.9	16	16			
		3	12.7	2.0	16				
		1	12.7	3.5	28				
2-5	LW-S-2/5	2	12.5	3.5	28	28			
		3	12.3	3.5	29				
		1	10.6	3.5	33				
	MdW-S-2/5	2	10.0	3.2	32	33			
		3	10.3	3.6	35				
		1	13.5	2.2	17				
	UW-C-5/11	2	13.5	2.3	17	17			
		3	13.5	2.3	17				
		1	11.8	3.3	28				
5-11	LW-C-5/11	2	11.7	3.2	28	28			
		3	11.7	3.3	29				
		1	7.0	3.5	50				
	MdW-C-5/11	2	7.1	3.6	51	50			
		3	7.1	3.5	50]			

Test Pit 514 View SE – Site Preparation

Test Pit 514 View SE – Site Preparation

Test Pit 514A View S - Excavation

Test Pit 514A View E – Depth Measurement

Test Pit 514A View E – Depth Measurement

Test Pit 514A View E - Depth Measurement

Test Pit 514A View S

Test Pit 514A View E

Test Pit 514A View N

Test Pit 514A View W

Test Pit 514A View W – Sampling and Staging Area

Test Pit 514A View SE – Backfilled Condition

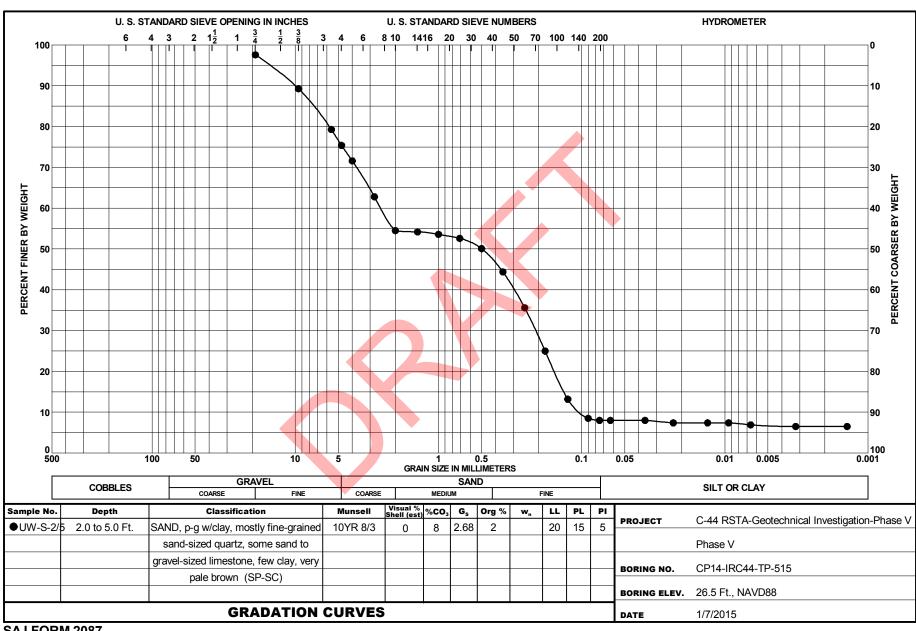
Boring Designation CP14-IRC44-TP-515

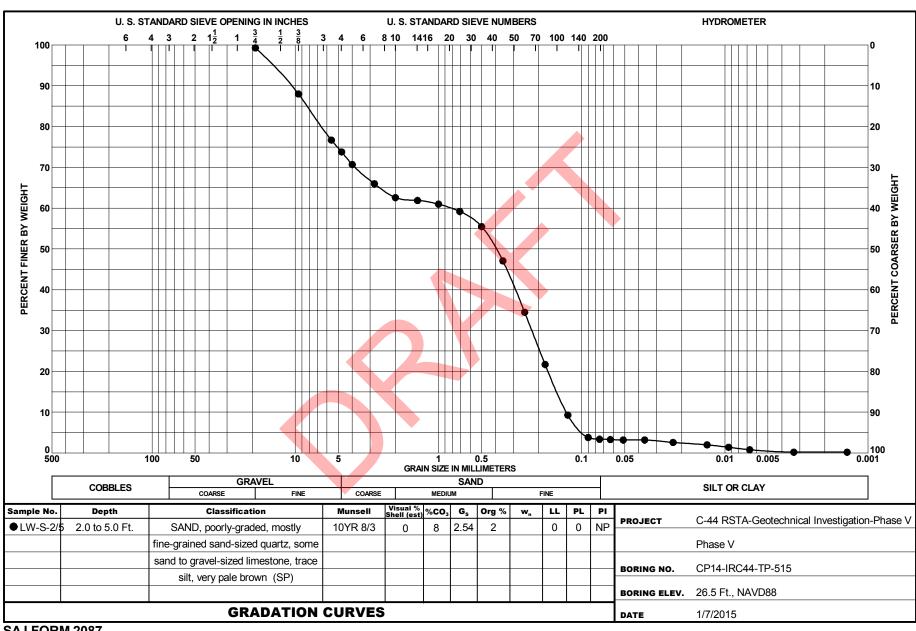
DBI	LLING	106	DIVISION		INST	TALLATI	ON	<u> </u>		SHEE	T 1
		LUG	South Atlantic		Ja	acksonv	ille Di	strict		OF 2	SHEETS
1. PRO									ee Remarks		
		-Geotech	nnical Investigation-Pha	ise V	10.			SYSTEM/DATUM	:	AL VERT	ICAL
	hase V							ne, FLE (U.S. Ft.)		NA	VD88
	ING DESIGN		LOCATION C		11.			RER'S DESIGNATI	ON OF DRILL	AUTO HA	
	P14-IRC44		, , , , , ,	,649 Y = 835,607 CONTRACTOR FILE NO.	-	Kom	atsu 2	210 LC	DISTURBED		HAMMER RBED (UD)
	hillips & Jo			6734-14-9799	12.	TOTAL	SAMP	LES	8	0 0	KBED (UD)
	E OF DRILL			0704-14-0700	42	TOTAL	NI I I I I	ED CODE BOYES	0	<u> </u>	
	huck Floyd				\vdash			SER CORE BOXES	U		
	CTION OF I		DEG. FROM	BEARING	14.	ELEVAT	ION G	ROUND WATER			
_	VERTICAL INCLINED		VERTICAL		15.	DATE B	ORING	3	STARTED 12-10-14		-10-14
6. THIC	KNESS OF	OVERBU	IRDEN N/A		16.	ELEVAT	ION T	OP OF BORING	26.5 Ft.		
7. DEP	TH DRILLED	INTO R	OCK N/A					VERY FOR BORIN			
	AL DEDTI:)F BOD"	10.0 5		18.			AND TITLE OF INS			
6. TOT	AL DEPTH C	JE BURIN	IG 12.0 Ft.		L,		_	naway, Geotechr	nical Engineer		
ELEV.	DEPTH	LEGEND	CLASSIFICATIO	ON OF MATERIALS	RI	BOX OR SAMPLE	RQD OR UD		REMARKS	5	1 FT.
26.5	0.0							26.5			
	-		SAND, poorly-graded v		\dashv						
	_		fine-grained sand-sized				ľ				
	-	1 1 1 L	10YR 3/2 very dark gra	• • •					Test Pit		
	-		At El. 25.5 Ft., few cer	,					the correction		
	-	 []†	10YR 8/3 very pale bro	OWI I	\mathcal{A}			\	R late		
24.5	2.0	 	SAND, poorly-graded v	with clay moetly	4	+	\	24.5 24.5	day.		
	-			d quartz, some sand to				24.5	<i>'</i>		
	_	1. 1//	gravel-sized limestone,	few clay, 10YR 8/3 very	/						
	_		pale brown (SP-SC)					/ /			
	-	.			N	MdW-S	2/5	1./			
	_	·. /				LW-S-	2/5	Etec			
	-	1.	At El. 22.5 Ft., 10YR 6	/2 light brownish gray	VV.	UW-S-	2 /5 💆	Y			
٠. ا		:			W '	\	***/				
21.5	5.0		SAND, clayey, some fi	ne grained sand sized		/ Referro	4	21.5			
	_		quartz, some sand to g		.	OGA		21.5 21.5			
	L		little clay, 10YR 6/2 light	nt brownish gray (SC)	Se ⁰	·/		21.5			
	- -				X	UW-R-	\$/7	1			
	-				/						
19.5	7.0			, Jes		L]	1			
	- <u> </u>		SAND, clayey, mostly f	ine-grained sand-sized			1	1			
	-		quartz (SC)	Sept 123							
	_			, Ido to	N	MdW-C-	\$ /11				
	-			(Eta)		LW-C-5	/11	1			
17.5	9.0			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		UW-C-	√11	17.5			
11.5	_ 5.0		SAND, well-graded wit	silt, mostly fine to	\dashv	+	1	17.5			
	_	٩	medium-grained sand-	sized quartz, some sand							
	_		to gravel-sized limestor			UW-R-9	111	1			
	-	₽ Ĭ∰\	5BG 5/1 greenish gray At El. 16.5 Ft., 10YR 7	(SVV-SIVI)		OVY-K-S	711	1			
	_	° 0 1 1	л. ш. 10.5 Гt., 101К <i>I</i>	75 very pale brown							
	-	[°]				<u> </u>	4	1			
	-	[•] [1			
1/5	120							14.5			
14.5	12.0	° †			+	+		14.5			_
	_		NOTES:					Abbreviations:			
	_		4 110405 1- 1	a ia dha accetadh - f				1			
	_		 USACE Jacksonvilles 	e is the custodian for				1			
	-		these original files.					1			
	_		2. Soils are field visua	lly classified in				1			
	-		accordance with the U	nified Soils Classification	1						
	_		System.				1				
					[1				ı

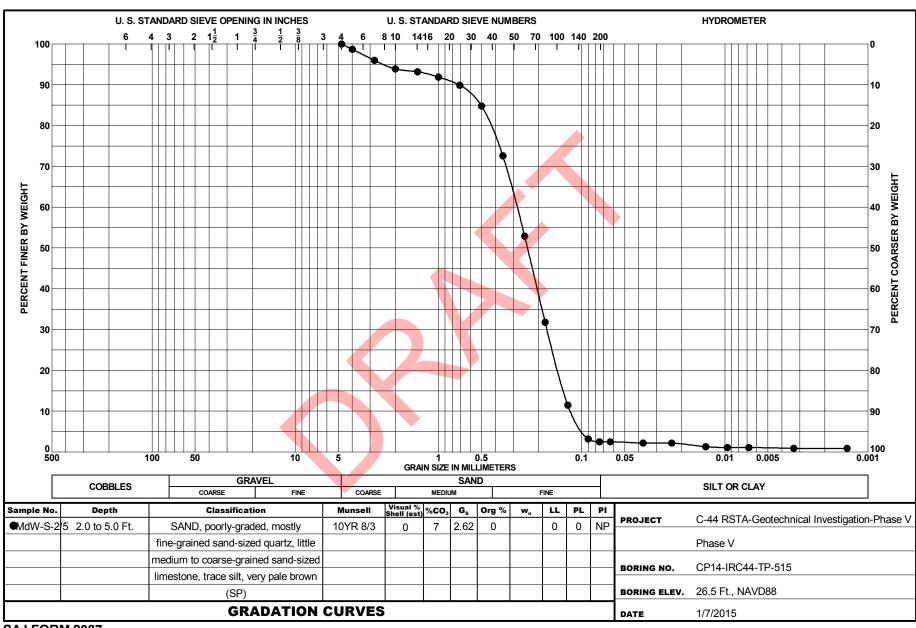
SAJ FORM 1836 JUN 02

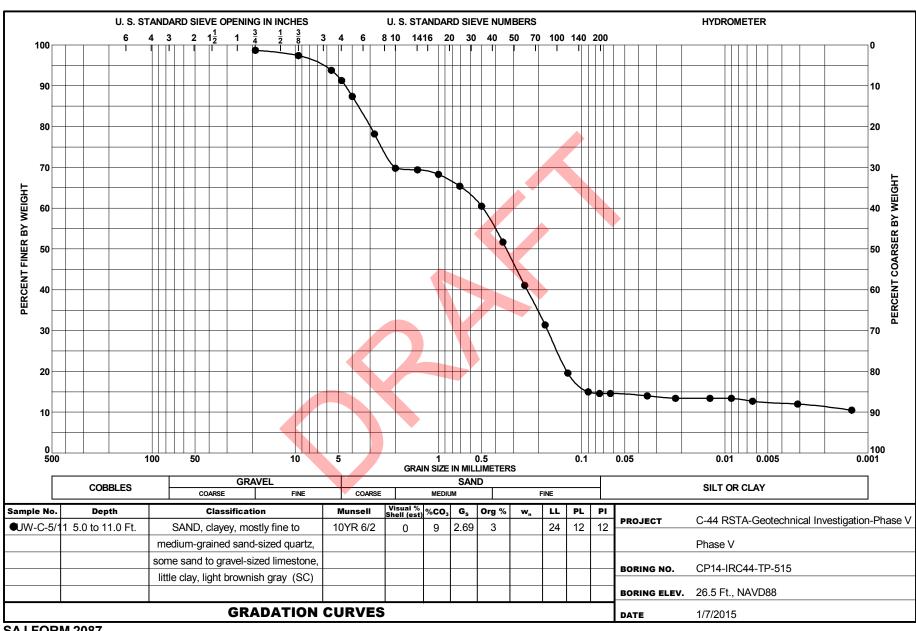
2

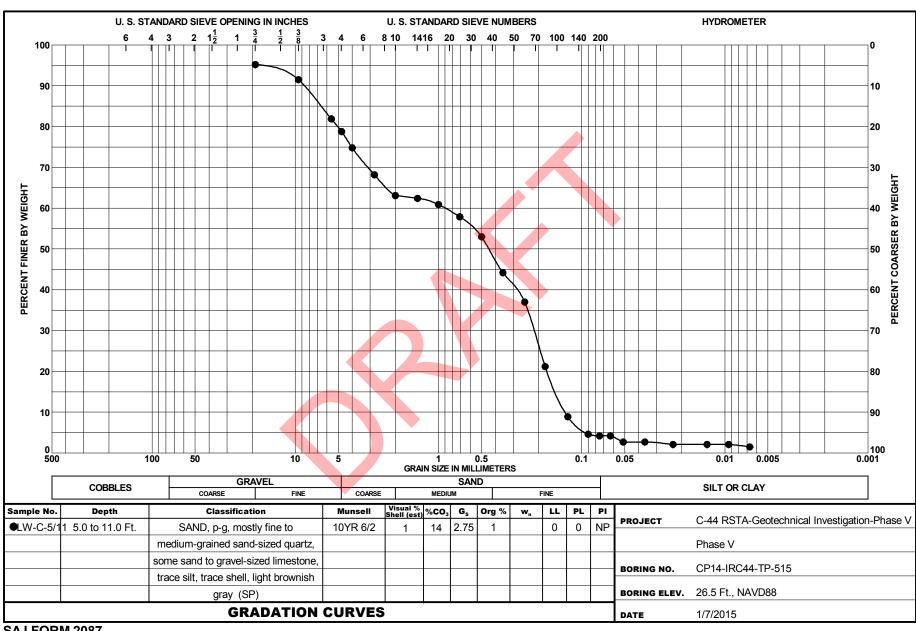
9

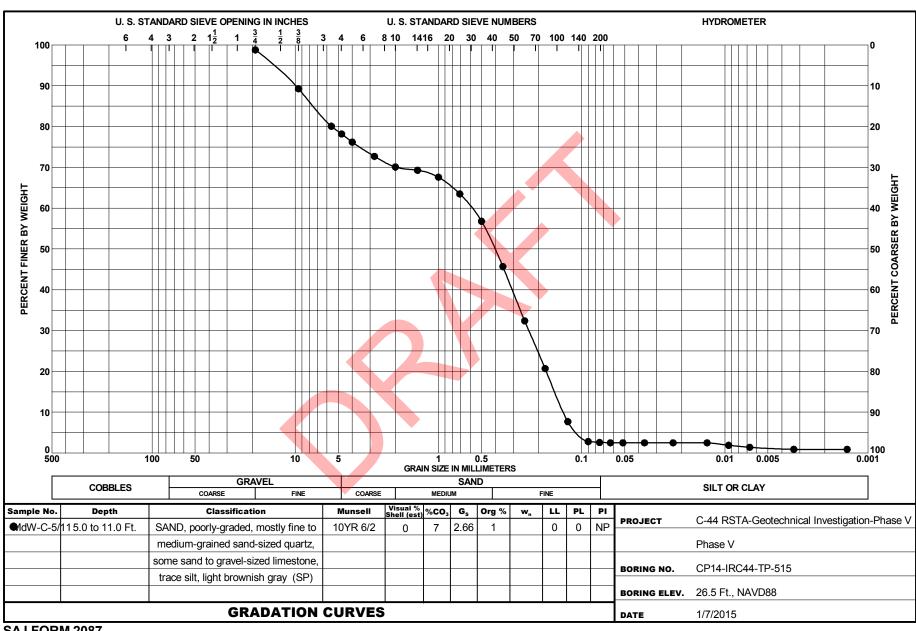

10

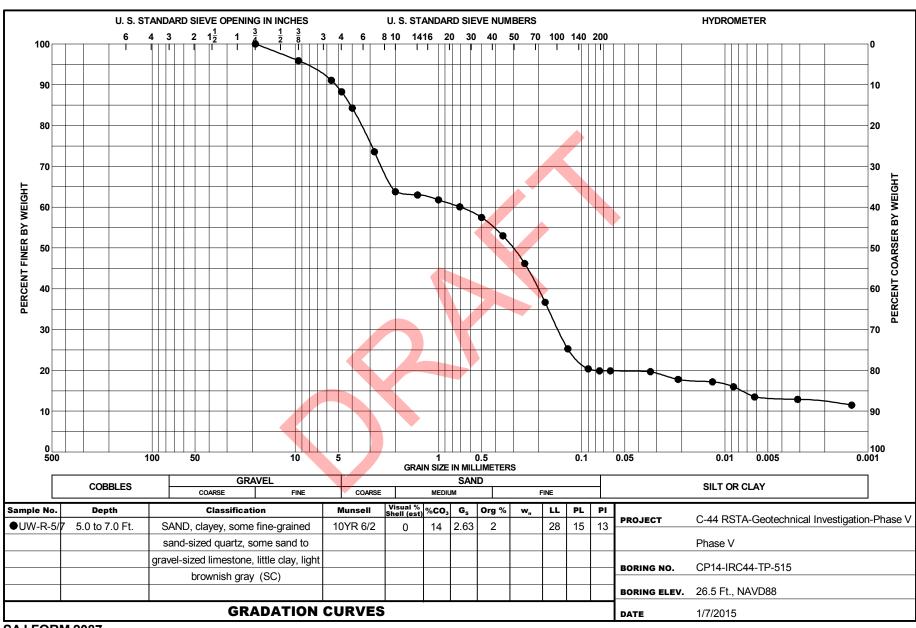

(Continued)

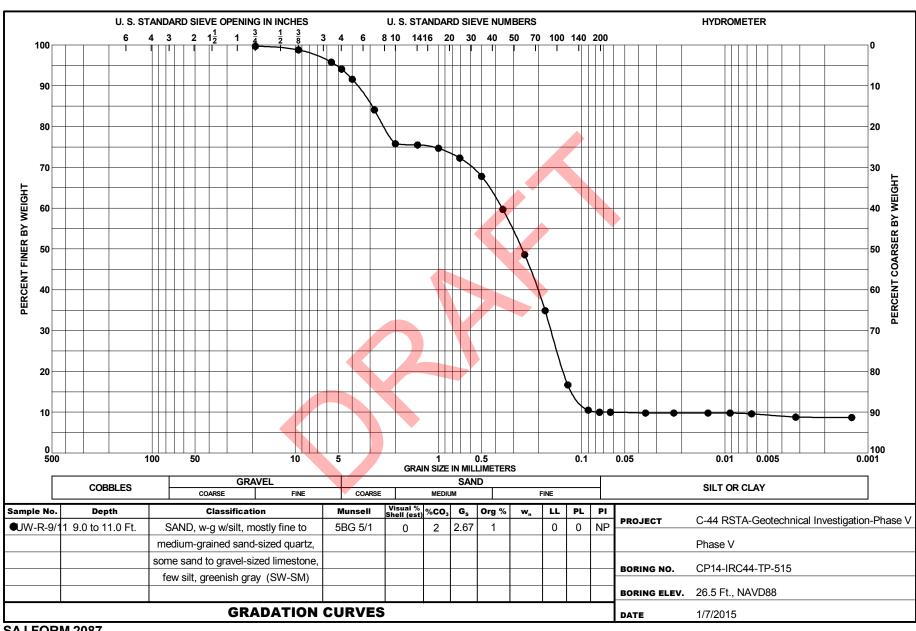

Boring Designation CP14-IRC44-TP-515


DRILLING		INSTALLA Jackso		Distri	rt -		SHEET 2 OF 2 SHEE	:TS						
ROJECT					COORDINA				M HORIZONTAL	VERTICAL				
C-44 RSTA-Geo	otechnical	Investigatio	on-Phase V		State Plane, FLE (U.S. Ft.) NAD83 N									
OCATION COORDI	NATES				ELEVATION TOP OF BORING									
X = 1,001,649	Y = 835	,607			26.5 F	t								
ELEV. DEPTH	EGEND	CLAS	SIFICATION	OF MATERIAI	_S	" REC.	BOX OR SAMPLE	RQD OR UD	REMARKS	BLOWS/	N-VALUE			
	3.	. Laboratory	y Testing Re	sults			ш,				<u>z</u>			
	S/ - UVA	AMPLE ID	SAMPLE DEPTH 2.0/5.0 2.0/5.0 2.0/5.0 5.0/11.0 5.0/11.0 5.0/11.0 9.0/11.0 berg limits. I Laboratory Treetific Gravity terberg ercent Organic ercent Visual secific Gravity erberg ercent Visual secific Gravity erberg ercent Carbon reent Visual secific Gravity erberg ercent Organic ercent Visual secific Gravity erberg ercent Organic ercent Visual specific Gravity terberg ercent Organic ercent Visual specific Gravity terberg ercent Carbon ercent Visual Specific Gravity terberg ercent Carbon ercent Visual Specific Gravity terberg ercent Carbon er	LABORA CLASSIFIC SP-S SP SP SP SC SP SC SW-S Testing C chate Shell chate Shell ty nic conate al Shell ty nic conate al Shell ty ty nic conate and Shell ty nic conate and Shell ty nic conate conate and Shell ty nic conate conate and Shell ty nic conate conate conate conate	CATION C	se ord	Respect of the second of the s	Lute to the state of the state	A Land and the Control of the Contro					

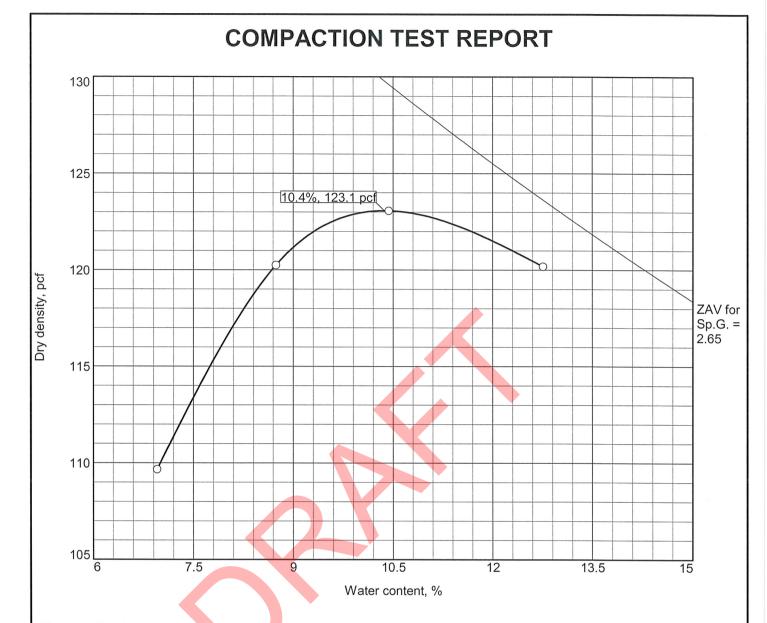

	Summary of Classification Testing																
		Sample Depth (ft)			Atterberg Limits		Limits										
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Specific Gravel (%)		Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-515	UW-S-2/5	2.0	5.0	SP-SC	20	15	5	2.2	2.68	22.2	67.4	8	1.6	6.4	7.64	0	9.2
CP14-IRC44-TP-515	LW-S-2/5	2.0	5.0	SP	0	0	0	1.5	2.54	25.5	70.4	3.4	2.8	0.6	8.1	0	8.1
CP14-IRC44-TP-515	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.3	2.62	0	97.5	2.5	1.7	0.8	7.46	0.4	8.4
CP14-IRC44-TP-515	UW-C-5/11	5.0	11.0	SC	24	12	12	3	2.69	7.4	76.7	14.6	2.2	12.4	8.95	0.1	8.6
CP14-IRC44-TP-515	LW-C-5/11	5.0	11.0	SP	0	0	0	0.7	2.75	16.4	74.6	4.2	2.6	1.6	13.6	0.5	8.8
CP14-IRC44-TP-515	MdW-C-5/11	5.0	11.0	SP	0	0	0	0.5	2.66	20.6	75.6	2.6	1.7	0.9	7.04	0.3	9.5
CP14-IRC44-TP-515	UW-R-5/7	5.0	7.0	SC	28	15	13	1.5	2.63	11.7	68.4	19.9	6.5	13.4	14.21	0	8.6
CP14-IRC44-TP-515	UW-R-9/11	9.0	11.0	SW-SM	0	0	0	1.2	2.67	5.6	84.1	10	0.6	9.4	1.95	0	8.5







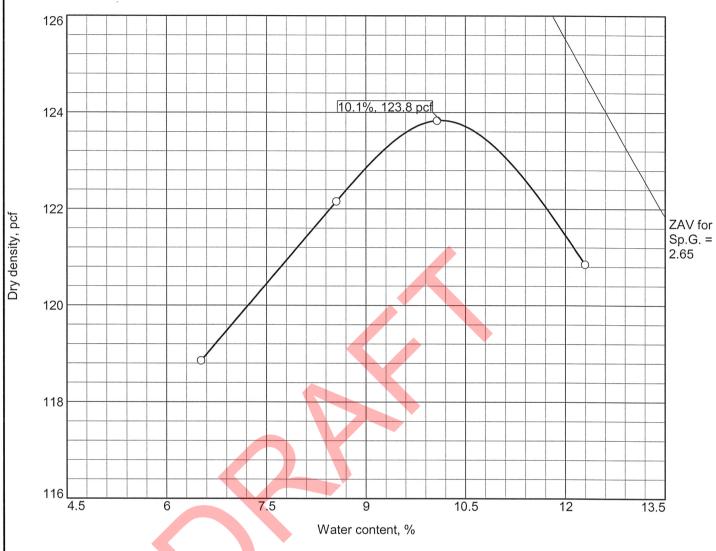
	Summary of Soil Cement Testing at 100% Compaction											
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)				
			СР	14-IRC44-1	P-515 UW-S	-2/5						
	1	7	0.72	123.1	10.4	124.3	8.7	715				
	2	7	0.72	123.1	10.4	124.9	8.7	950				
	3	7	0.84	123.1	10.4	122.8	10.1	955				
14%	4	28	0.84	123.1	10.4	123.4	10.1	NT				
	5	28	0.73	123.1	10.4	124.3	8.8	NT				
	6	28	0.73	123.1	10.4	124.6	8.8	NT				
			CP1	14-IRC44-T	P-515 UW-C-	5/11						
	1	7	0.84	118.3	12.3	120.1	10.3	835				
	2	7	0.84	118.3	12.3	120.1	10.3	625				
4.407	3	7	0.85	118.3	12.3	120.3	10.4	765				
14%	4	28	0.85	118.3	12.3	120.0	10.4	NT				
	5	28	0.98	118.3	12.3	118.3	12.1	NT				
	6	28	0.98	118.3	12.3	118.3	12.1	NT				


	Summary of Soil Cement Testing at 100% Compaction										
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)			
			СР	14-IRC44-	TP-515 LW-S	-2/5					
	1	7	0.75	123.8	10.1	124.8	9.2	1250			
	2	7	0.78	123.8	10.1	124.3	9.5	1305			
	3	7	0.78	123.8	10.1	124.4	9.5	1660			
14%	4	28	0.73	123.8	10.1	124.7	8.9	NT			
	5	28	0.79	123.8	10.1	124.0	9.6	NT			
	6	28	0.78	123.8	10.1	124.1	9.5	NT			
	I		CP ⁻	14-IRC44-T	P-515 LW-C-	-5/11	l				
	1	7	0.81	125.7	9.9	125.1	9.9	940			
	2	7	0.81	125.7	9.9	125.1	9.9	1135			
	3	7	0.79	125.7	9.9	125.6	9.6	995			
14%	4	28	0.79	125.7	9.9	125.3	9.6	NT			
	5	28	0.82	125.7	9.9	125.0	10.0	NT			
	6	28	0.82	125.7	9.9	125.0	10.0	NT			

		Sum	mary of So	il Cement	Testing AT 1	00% Compac	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-T	P-515 MdW-	S-2/5		
	1	7	0.78	125.0	8.3	123.7	9.6	950
	2	7	0.78	125.0	8.3	123.7	9.6	910
	3	7	0.80	125.0	8.3	123.5	9.8	990
14%	4	28	0.80	125.0	8.3	123.2	9.8	1365
	5	28	0.81	125.0	8.3	123.6	9.9	1380
	6	28	0.81	125.0	8.3	123.0	9.9	1500
			CP1	4-IRC44-TF	2-515 MdW-C	-5/11		
	1	7	0.83	124.3	10.1	123.9	10.2	1115
	2	7	0.83	124.3	10.1	124.1	10.2	1070
4.407	3	7	0.82	124.3	10.1	124.1	10.1	1210
14%	4	28	0.82	124.3	10.1	124.5	10.1	NT
	5	28	0.82	124.3	10.1	124.7	10.1	NT
	6	28	0.82	124.3	10.1	124.5	10.1	NT

Summary of Soil Cement Testing at 95% Compaction										
Test Pit No. PSI* AVG.*										
10	est Pit No.	1	2	3	AVG.*					
TP-515	UW-S-2/5									
TP-515	LW-S-2/5	1275	1333	1197	1268					
TP-515	MdW-S-2/5	1020	930	925	958					
TP-515	UW-C-5/11									
TP-515	LW-C-5/11									
TP-515	MdW-C-5/11	850	880	1000	910					

^{*} Testing still in progress



Elev/	Classit	ication	Nat.	Sp.G.		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP-SC	A-1-b			20	5	24.6	8.0

TEST RESULTS	MATERIAL DESCRIPTION			
Maximum dry density = 123.1 pcf	SAND, p-g w/clay, mostly fine-grained sand- sized quartz, some sand to gravel-sized			
Optimum moisture = 10.4 %	limestone, few clay			
Project No. 6734149799 Client: USACE	Remarks:			
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V				
○ Location: CP14-IRC44-TP-515 Sample Number: UW-S-2/5				
AMEC E&I				
Jacksonville, Florida	Figure			

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

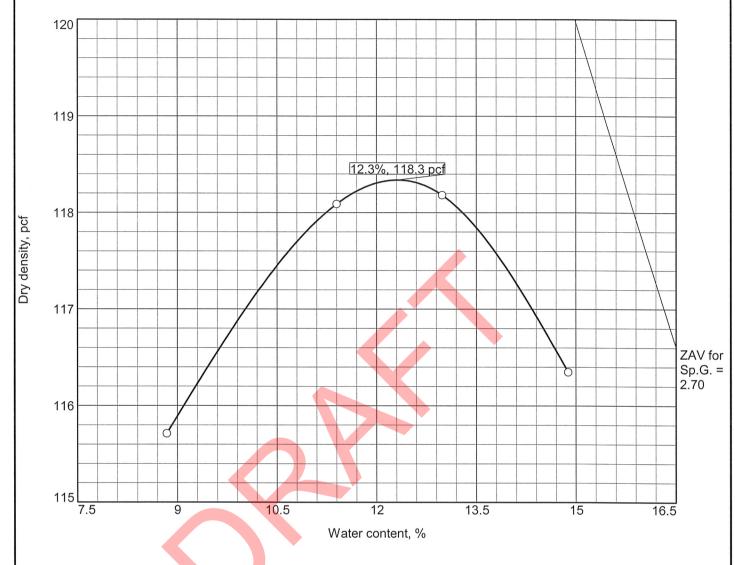
COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.	Sp.G.	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP	A-3			NP	NP	26.2	3.4

	7	EST RESULTS			N N	MATERIAL DESCRIPTION			
Maximu	Maximum dry density = 123.8 pcf				SAND, poorly-graded, mostly fine-grain sand-sized quartz, some sand to gravel-si				
Optimum moisture = 10.1 % limestone, trace silt									
Project No. 6734149799 Client: USACE				Remark	Remarks:				
Project:	C-44 RSTA Contract 2 Ge	eotechnical Investigation - I	Phase V						
○ Locatio	on: CP14-IRC44-TP-515	Sample Number: I	W-S-2/5						
		AMEC E&I	***************************************						
	Jack	sonville, Florida					Figure		

COMPACTION TEST REPORT

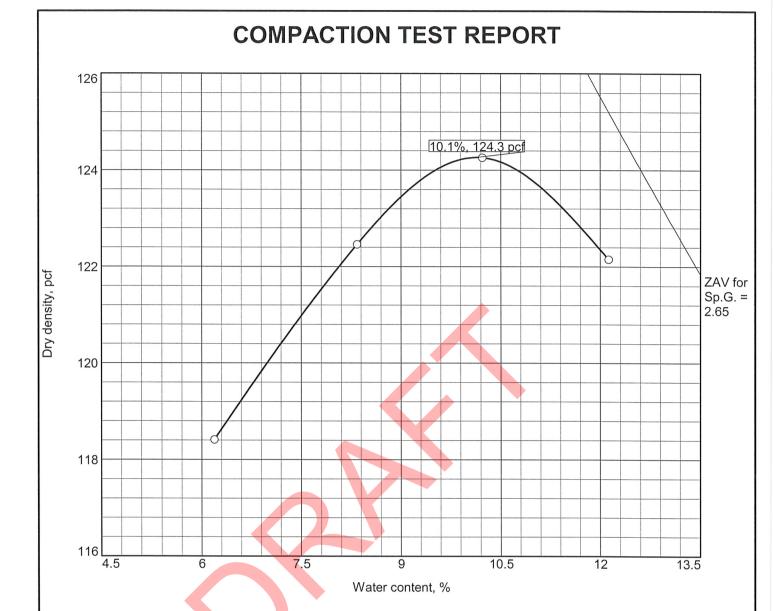


Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.	S= C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP	A-3			NV	NP	0.0	2.5

	Т	EST RESULTS			N	MATERIAL DESCRIPTION				
Maximu	Maximum dry density = 125.0 pcf				SAND, poorly-graded, mostly fine-grain sand-sized quartz, little medium to coal					
Optimur	Optimum moisture = 8.3 %					ed sand-size	ed limestone,	trace silt		
Project N	Project No. 6734149799 Client: USACE					Remarks:				
Project:	C-44 RSTA Contract 2 Ge	otechnical Investigation - I	Phase V							
o Locatio	n: CP14-IRC44-TP-515	Sample Number: N	1dW-S-2/5							
		AMEC E&I								
	Jacksonville, Florida					Figure				

Elev/	Classi	fication	Nat.	Sp.G.	1.1	LL PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SC	A-2-6(0)			24	12	8.7	14.6


Т	EST RESULTS			N N	MATERIAL DESCRIPTION				
					SAND, clayey, mostly fine to medium- grained sand-sized quartz, some sand to				
Optimum moisture = 12.3 %					avel-sized li	mestone, litt	le clay		
Project No. 6734149799 Client: USACE					Remarks:				
Project: C-44 RSTA Contract 2 Ge	otechnical Investigation - I	Phase V							
○ Location: CP14-IRC44-TP-515	Sample Number: U	W-C-5/11							
	AMEC E&I								
Jack	sonville, Florida					Figure			

Elev/	Classi	fication	Nat.	C C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-1-b			NV	NP	21.2	4.2

	Т	EST RESULTS			N	MATERIAL DESCRIPTION					
Maximu	m dry density = 125.7		SAND, poorly-graded, mostly fine to medium-grained sand-sized quartz, some								
Optimum	n moisture = 9.9 %	to gr	avel-sized	limestone, tra	ace shell						
Project No	o. 6734149799 Client:	USACE			Remark	Remarks:					
Project:	C-44 RSTA Contract 2 Ge	otechnical Investigation - l	Phase V								
○ Location	n: CP14-IRC44-TP-515	Sample Number: L	.W-C-5/11								
		AMEC E&I									
	Jack	sonville, Florida					Figure				

Elev/	Classit	fication	Nat.	Sp.G.		DI	% >	% <
Depth	USCS	AASHTO	Moist.	3 μ .σ.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-3			NP	NP	21.8	2.6

Т	EST RESULTS		N	IATERIAL	DESCRIPT	TION
Maximum dry density = 124.3	pcf				graded, mostl d sized quart	y fine to z, some sand
Optimum moisture = 10.1 %			to g	ravel-sized	limestone, tr	ace silt
Project No. 6734149799 Client:	USACE		Remark	s:		-
Project: C-44 RSTA Contract 2 Ge	eotechnical Investigation - 1	Phase V				
○ Location: CP14-IRC44-TP-515	Sample Number: N	1dW-C-5/11				
	AMEC E&I					
Jack	sonville, Florida				Figure	

		S	Summary of	Wet/Dry and	Freeze/Tha	w Testing				
			CP14	1-IRC44-TP-	515 UW-S-2/5	5				
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)	
Wetting and	14	0.77	123.1	10.40	123.8	9.3	NT	NT		
Drying	14	0.77	123.1	10.40	124.4	9.3	NT	NT		
Freezing and	4.4	0.80		10.40	123.9	9.7	NT	NT		
Thawing	14	0.80	123.1	10.40	123.9	9.7	NT	NT		
	1		CP14	-IRC44-TP-5	15 UW-C-5/1	1	l			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)	
Wetting and	14	1.01	118.3	12.30	117.9	12.1	NT	NT		
Drying	14	1.01	118.3	12.30	118.0	12.1	NT	NT		
Freezing and	14	0.96	118.3	12.30	119.1	11.6	NT	NT		
Thawing	14	0.96	118.3	12.30	119.1	11.6	NT	NT		

			Summary o	f Wet/Dry and	l Freeze/Tha	w Testing			
			СР	14-IRC44-TP-	515 LW-S-2/	5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting	14	0.77	123.8	10.10	124.5	9.3	130.8	NT	
and Drying	14	0.77	123.8	10.10	124.4	9.3	130.1	NT	
Freezing and	14	0.80	123.8	10.10	123.8	9.8	NT	NT	
Thawing	14	0.80	123.8	10.10	124.2	9.8	NT	NT	
			CP1	4-IRC44-TP-5	15 LW-C-5/1	11			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting	14	0.94	120.9	11.50	120.3	11.5	NT	NT	
and Drying	14	0.94	120.9	11.50	120.8	11.5	NT	NT	
Freezing and	14	0.92	120.9	11.50	120.9	11.3	NT	NT	
Thawing	17	0.92	120.9	11.50	120.7	120.7 11.3		NT	

		S	Summary of	Wet/Dry and	Freeze/Tha	w Testing			
			CP14	-IRC44-TP-5	15 MdW-S-2/	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.82	125.0	8.30	123.0	10.0	NT	NT	
Drying	14	0.82	125.0	8.30	123.0	10.0	NT	NT	
Freezing and	14	0.83	125.0	8.30	122.8	10.2	NT	NT	
Thawing	14	0.83	125.0	8.30	122.8	10.2	NT	NT	
			CP14-	IRC44-TP-51	5 MdW-C-5/	11		I	
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.79	124.3	10.10	124.6	9.6	NT	NT	
Drying	14	0.79	124.3	10.10	124.6	9.6	NT	NT	
Freezing and	4.4	0.84	124.3	10.10	124.1	10.3	NT	NT	
Thawing	14	0.84	124.3	10.10	124.3	10.3	NT	NT	

	Summary of Sand Clea	anliness a	nd Sand E	quivalent	Testing	
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)
	CF	14-IRC44	-TP-515			•
		1	13.9	2.4	18	
	UW-S-2/5	2	14.1	2.6	19	19
		3	14.2	2.6	19	
		1	11.9	3.4	29	
2-5	LW-S-2/5	2	12.1	3.5	29	29
		3	11.8	3.5	30	
		1	6.5	3.4	53	
	MdW-S-2/5	2	6.5	3.4	53	53
		3	6.4	3.4	54	
		1	13.3	2.5	19	
	UW-C-5/11	2	13.6	2.3	17	18
		3	13.6	2.2	17	
		1	13.0	3.1	24	
5-11	LW-C-5/11	2	13.0	3.4	27	26
		3	13.0	3.6	28	
		1	11.5	3.8	33	
	MdW-C-5/11	2	12.0	3.8	32	33
		3	11.7	3.8	33]

Test Pit 515 View W

Test Pit 515 View NE – Depth Measurement

Test Pit 515 View E - Depth Measurement

Test Pit 515 View S

Test Pit 515 View E

Test Pit 515 View N

Test Pit 515 View W

Test Pit 515 View W – Sampling and Staging Area

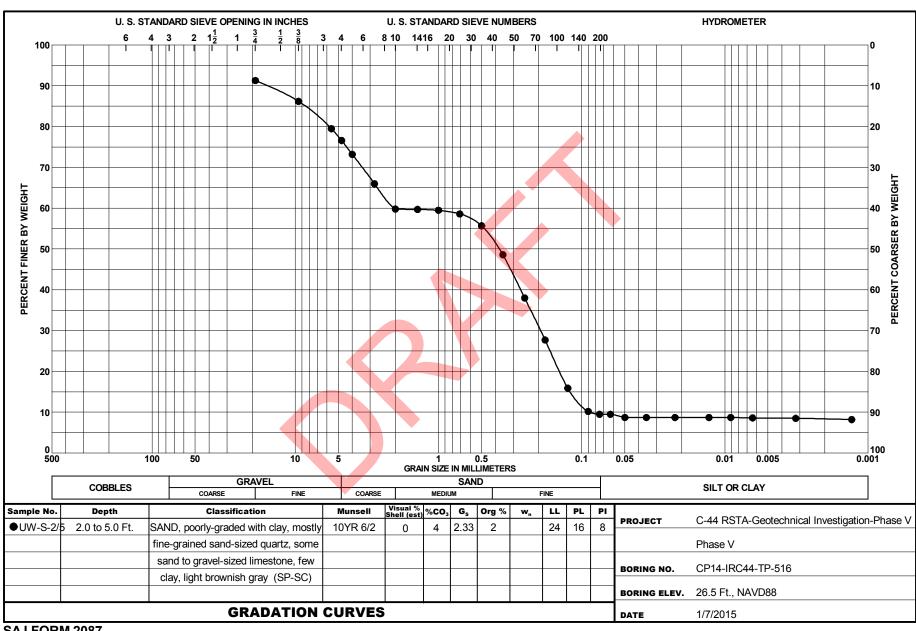
Test Pit 515 View E – Backfilled Condition

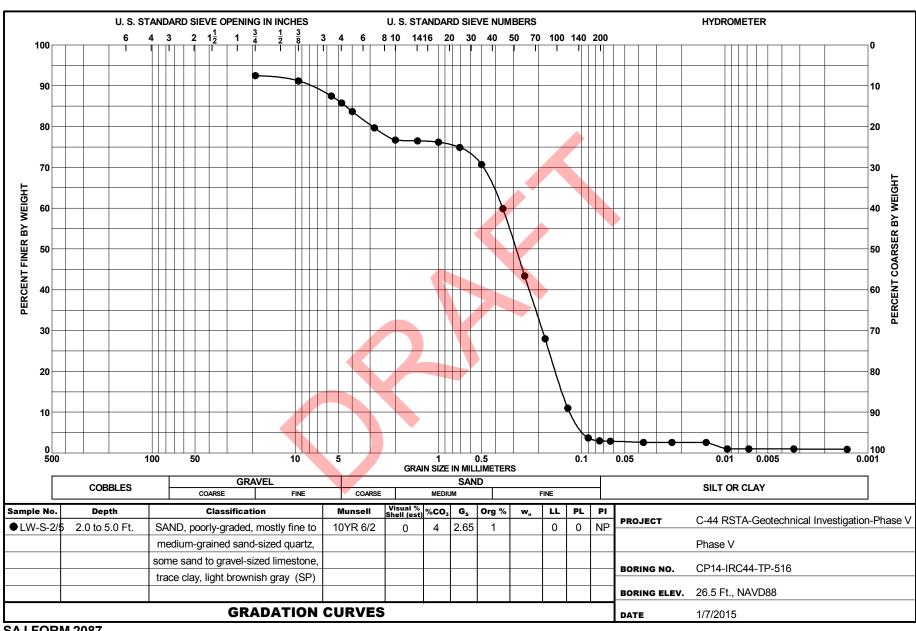
Boring Designation CP14-IRC44-TP-516

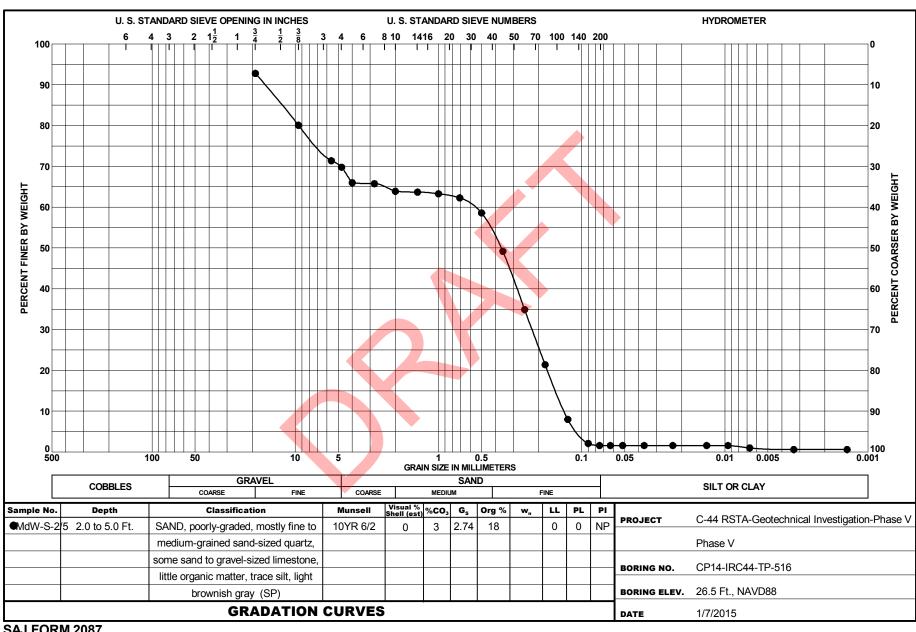
DDI	LLING	LOG	DIVISION		INS	TALLATI	ON			SHE	ET 1	٦
		LUG	South Atlantic		J	ackson	ille Di	strict		OF	2 SHEET	s
1. PRO									ee Remarks			
		Geotec	nnical Investigation-Pha	ase V	10.			SYSTEM/DATUM	!			
-	hase V	NATION	LOCATION C	OORDINATES	144			ne, FLE (U.S. Ft. RER'S DESIGNAT	,		AVD88	4
	:P14-IRC44		i	,372 Y = 837,233	1			210 LC	ION OF DRILL	☐ AUTO H ☐ MANUA	AMMER L HAMMER	,
	LING AGEN		7 1,001	CONTRACTOR FILE NO.	†				DISTURBED		JRBED (UD	_
	hillips & Jo			6734-14-9799	12.	TOTAL	SAMP	LES	8	0		
	E OF DRILL				13.	TOTAL	NUME	ER CORE BOXES	0			
	huck Floyd		DEC EDOL	1 BEARING	14.	ELEVA	TION (ROUND WATER				
	VERTICAL	BUKING	DEG. FROM VERTICAL	BEAKING	<u> </u>			_	STARTED	СОМ	PLETED	1
<u>_</u>	INCLINED				15.	DATE B	ORING		12-10-1	4 12	2-10-14	
6. THIC	KNESS OF	OVERB	JRDEN N/A		16.	ELEVA.	TION 1	TOP OF BORING	26.5 Ft.			
7. DEPI	TH DRILLED	INTO R	OCK N/A		17.	TOTAL	RECO	VERY FOR BORIN	IG N/A			
					18.	SIGNAT	URE	AND TITLE OF IN	SPECTOR			٦
8. TOT/	AL DEPTH C	OF BORI	NG 11.5 Ft.		Ц,		_	naway, Geotech	nical Engineer			_
ELEV.	DEPTH	LEGEND	CLASSIFICATIO	ON OF MATERIALS	R	BOX OR SAMPLE	RQD OR UD		REMARKS	S	BLOWS/ 1 FT. N-VALUE	:
-00.5	0.0							00.5				٦
26.5	0.0	1.111	SAND, poorly-graded v	vith silt, mostly	_		\	26.5				\pm
-	_	.:	fine-grained sand-sized	d quartz, few silt,			Y					F
25.5	1.0	<u> -::: </u>	10YR 3/2 very dark gra	• • •	_				Jest Pit			þ
-	_		SAND, poorly-graded, sand-sized quartz, trace			$X \setminus A$		>	Cont.			Ŀ
24.5	2.0	$[\cdots]$	10YR 9/1.5 yellowish v				$\langle \rangle$	24.5	Matth 18			ŀ
	_	1.//	SAND, poorly-graded v				1×	24.5	•			7
	-		fine-grained sand-sized gravel-sized limestone	d quartz, some sand to , few clay, 10YR 6/2 <mark>lig</mark> h	nt			24.5				Ŀ
ŀ			brownish gray (SP-SC					\nearrow				ŀ
-	_				M	MdW-S	-2/5					F
	- 					LW-S- UW-S-	2/5	a)t ^o				ļ
	-					(V - 3	Tate /					Ŀ
21.5	5.0		/			Merc	1	21.5				ŀ
	_		SAND, clayey, mostly to quartz, some sand to g	fine-grained sand-sized		OST RO	1	21.5 21.5				7
	-		little clay, 10YR 6/3 pa		\ Se	9).		21.5				ŀ
	-				X	UW-R-	5/7					ļ
ŀ	_											Ŀ
ŀ	_		-At FI 19.5/Ft mostly	fine to medium grained			4					ŀ
	-		sand-sized quartz, little	medium to								ļ
	- 		coarse grained sand-s	ized limestone	,	MdW-C	5/11					ļ
ŀ	_			state l'		LW-C-	5/11					ŀ
17.5	9.0			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		UW-C-	5/11	17.5				F
	-		SAND, silty, mostly fin				1					丰
ŀ	_	$\parallel \parallel \parallel \parallel \parallel$	quartz, little medium to sand-sized limestone,									Ŀ
}	_	ШШЬ	matter, 10YR 2/1 black	(SM)		UW-R-	9/11					ŀ
	_	HHH	-At El. 16.5 Ft., 10GY 6	6/1 greenish gray								F
	_						1					þ
15.0	11.5							15.0				╁
	-		NOTES:					Abbreviations	:			Ī
	<u>-</u>		1. USACE Jacksonvill these original files.	e is the custodian for								ŀ
	- - -		2. Soils are field visua accordance with the U System.	lly classified in nified Soils Classification	n							-
	_		3. Laboratory Testing	Results								ļ

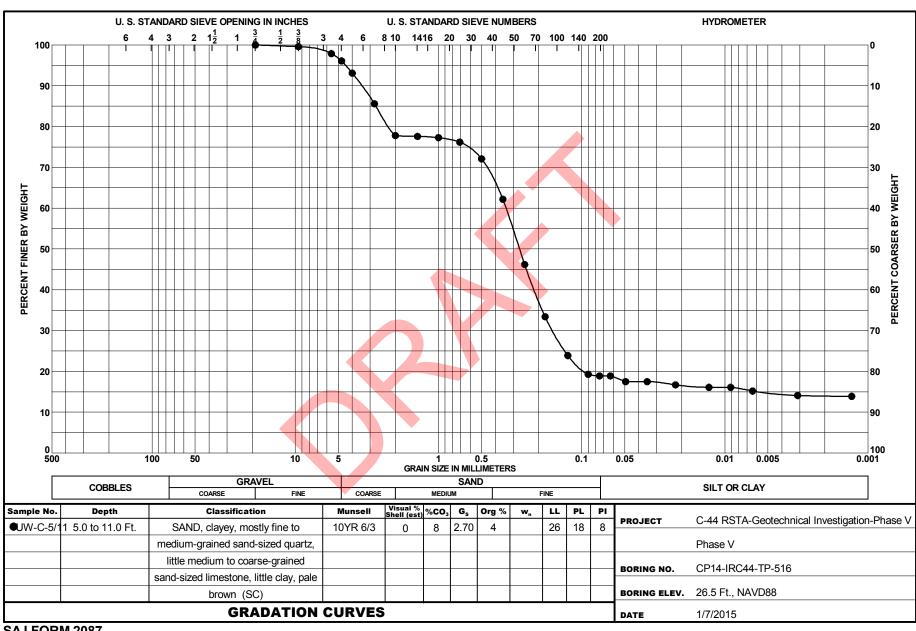
SAJ FORM 1836 JUN 02

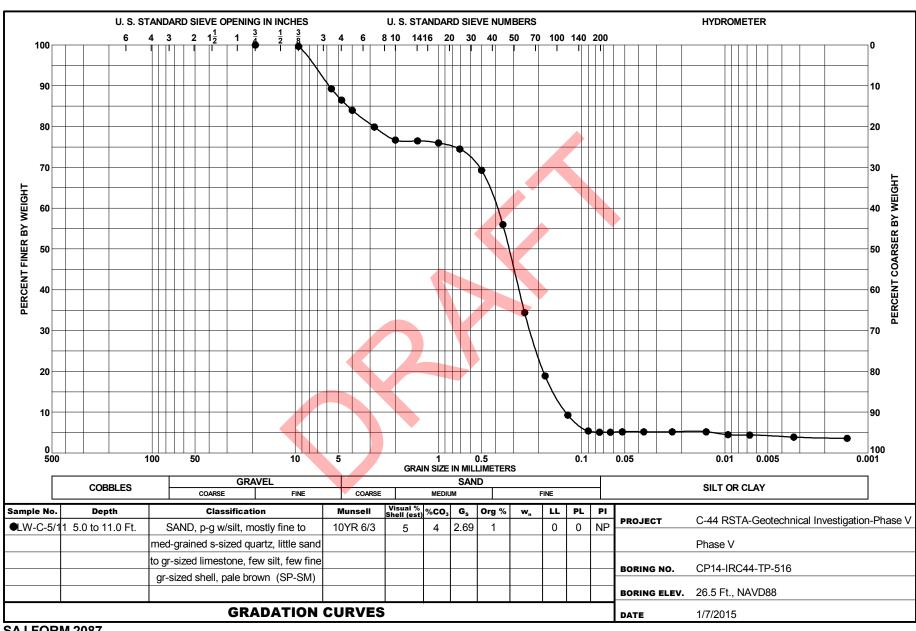
2

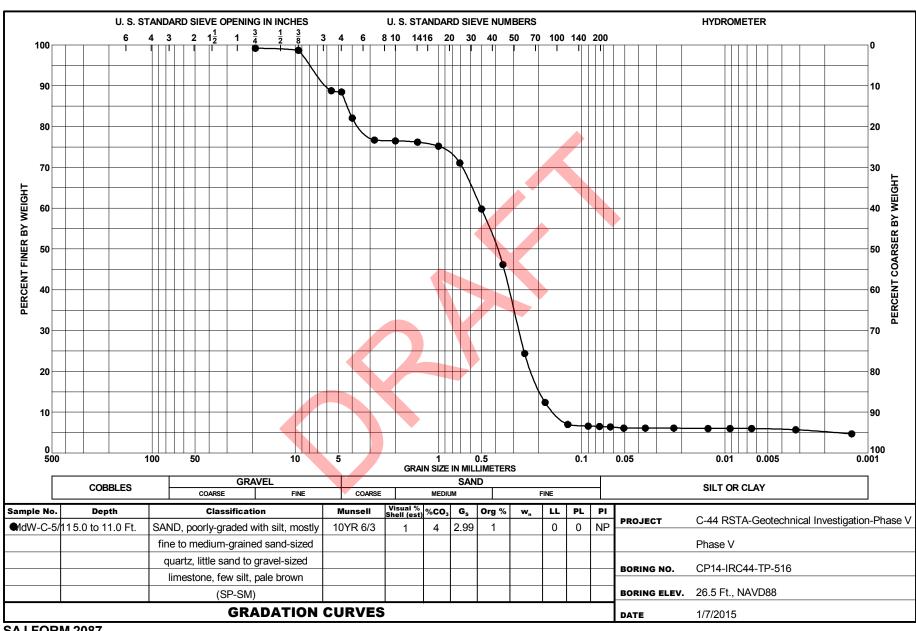

5

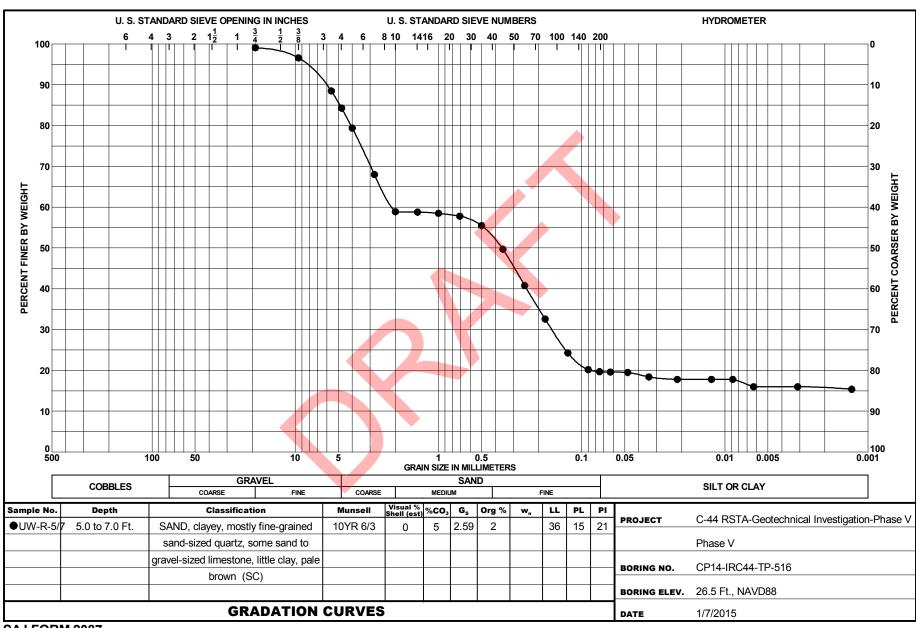

9

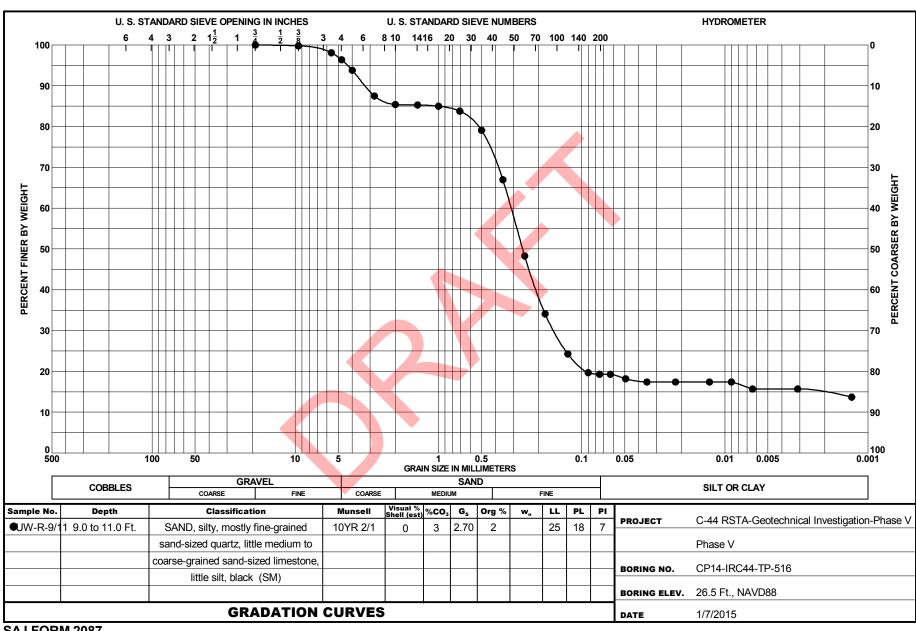

10


Boring Designation CP14-IRC44-TP-516


						Su	ımmar	y of Classific	ation Testi	ing							
		•	le Depth (ft)		Atte	erberg	Limits										
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Gravel (%)	Sand (%)	Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-516	UW-S-2/5	2.0	5.0	SP-SC	24	16	8	2.2	2.33	14.7	67.1	9.5	0.9	8.6	4.08	0	8.6
CP14-IRC44-TP-516	LW-S-2/5	2.0	5.0	SP	0	0	0	0.6	2.65	6.7	82.8	3	2	1	3.63	0.2	8.6
CP14-IRC44-TP-516	MdW-S-2/5	2.0	5.0	SP	0	0	0	18	2.74	23	68.2	1.6	1	0.6	3.48	0.1	9.6
CP14-IRC44-TP-516	UW-C-5/11	5.0	11.0	SC	26	18	8	3.8	2.7	3.9	77.2	18.9	4.1	14.7	7.61	0.4	8.6
CP14-IRC44-TP-516	LW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.69	13.5	81.4	5.1	1	4.1	3.83	5.3	9.0
CP14-IRC44-TP-516	MdW-C-5/11	5.0	11.0	SP-SM	0	0	0	1.2	2.99	10.7	82	6.5	0.5	6	3.72	0.5	8.6
CP14-IRC44-TP-516	UW-R-5/7	5.0	7.0	SC	36	15	21	2.4	2.59	14.8	64.6	19.7	3.7	16	4.9	0	8.6
CP14-IRC44-TP-516	UW-R-9/11	9.0	11.0	SM	25	18	7	1.7	2.7	3.6	77.1	19.3	3.6	15.7	3.17	0.1	8.5

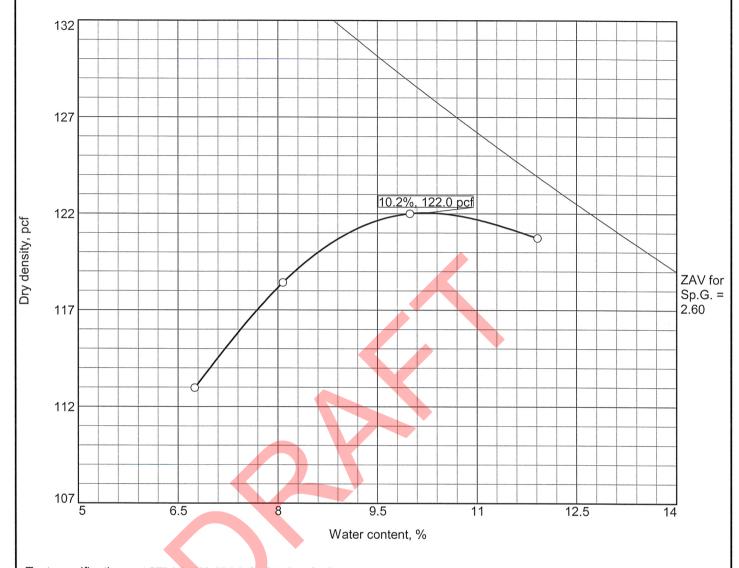






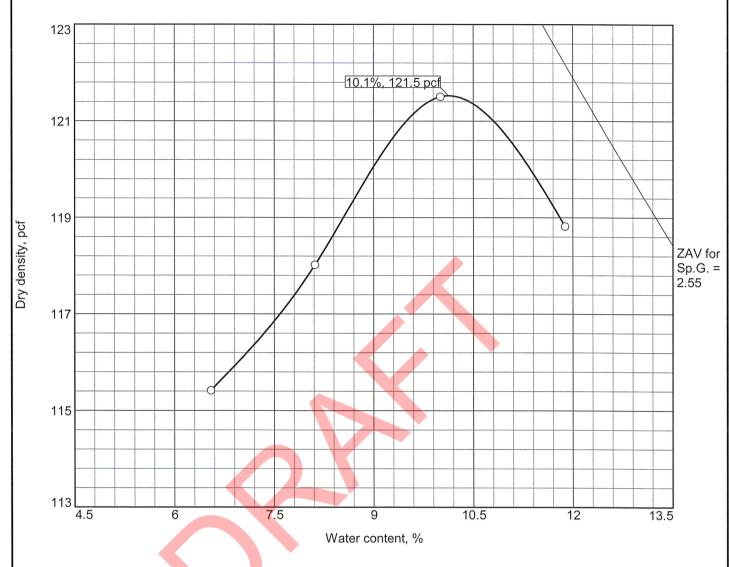
		Sun	nmary of Sc	oil Cement	Testing at 10	00% Compac	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			СР	14-IRC44-1	rP-516 UW-S	-2/5		
	1	7	0.81	122.0	10.2	121.7	9.9	915
	2	7	0.81	122.0	10.2	122.3	9.9	815
	3	7	0.79	122.0	10.2	121.9	9.7	840
14%	4	28	0.79	122.0	10.2	122.3	9.7	NT
	5	28	0.76	122.0	10.2	122.3	9.4	NT
	6	28	0.76	122.0	10.2	122.5	9.4	NT
			CP1	14-IRC44-T	P-516 UW-C-	-5/11		
	1	7	1.23	118.0	13.3	111.4	15.1	355
	2	7	1.23	118.0	13.3	111.4	15.1	460
4.40/	3	7	1.20	118.0	13.3	112.2	14.8	435
14%	4	28	1.20	118.0	13.3	112.3	14.8	NT
	5	28	1.16	118.0	13.3	112.9	14.2	NT
	6	28	1.16	118.0	13.3	118.7	14.2	NT

		Sun	nmary of So	oil Cement	Testing at 10	00% Compact	ion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			СР	14-IRC44-1	ΓP-516 LW-S	-2/5		
	1	7	0.85	121.5	10.1	120.6	10.5	1095
	2	7	0.85	121.5	10.1	120.9	10.5	1295
	3	7	0.80	121.5	10.1	121.3	9.8	1065
14%	4	28	0.80	121.5	10.1	121.2	9.8	NT
	5	28	0.80	121.5	10.1	121.2	9.8	NT
	6	28	0.80	121.5	10.1	121.7	9.8	NT
			CP1	14-IRC44-T	P-516 LW-C-	5/11		
	1	7	0.91	121.8	11.7	122.2	11.2	715
	2	7	0.91	121.8	11.7	122.2	11.2	605
4.407	3	7	0.86	121.8	11.7	122.8	10.6	750
14%	4	28	0.86	121.8	11.7	122.9	10.6	975
	5	28	1.02	121.8	11.7	120.8	12.5	1065
	6	28	1.02	121.8	11.7	120.4	12.5	970


		Sun	nmary of Sc	oil Cement	Testing at 10	00% Compac	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (Degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-T	P-516 MdW-	S-2/5		
	1	7	0.75	122.4	10.2	123.4	9.2	1585
	2	7	0.74	122.4	10.2	123.5	9.2	1465
	3	7	0.74	122.4	10.2	123.2	9.2	1665
14%	4	28	0.74	122.4	10.2	123.8	9.2	NT
	5	28	0.73	122.4	10.2	123.6	9.0	NT
	6	28	0.73	122.4	10.2	124.1	9.0	NT
			CP1	4-IRC44-TF	P-516 MdW-C	-5/11		
	1	7	0.70	122.0	10.3	123.7	8.6	1070
	2	7	0.70	122.0	10.3	123.7	8.6	950
4.407	3	7	0.69	122.0	10.3	124.4	8.4	970
14%	4	28	0.69	122.0	10.3	124.4	8.4	NT
	5	28	0.68	122.0	10.3	123.8	8.4	NT
	6	28	0.68	122.0	10.3	123.8	8.4	NT

	Summary	of Soil Cemen	t Testing at 95%	6 Compaction						
_	Test Pit No. PSI* AVG.*									
I.	est Pit No.	1	2	3	AVG.					
TP-516	UW-S-2/5									
TP-516	LW-S-2/5	1165	1045	1110	1107					
TP-516	MdW-S-2/5	940	970	1065	992					
TP-516	UW-C-5/11									
TP-516	LW-C-5/11									
TP-516	MdW-C-5/11									

^{*} Testing still in progress



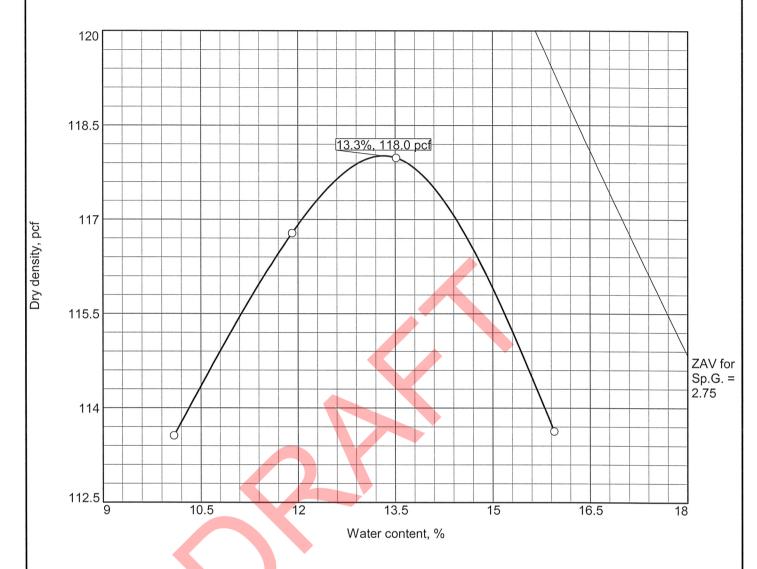
Elev/	Classi	fication	Nat.	S= C	1.1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SP-SC	A-2-4(0)			24	8	23.4	9.5

	Т	EST RESULTS		N			ΓΙΟΝ
Maximum dry dens	ity = 122.0	pcf					
Optimum moisture	= 10.2 %			gr	SAND, poorly-graded with clay, mostly f grained sand-sized quartz, some sand t gravel-sized limestone, few clay		
Project No. 6734149	799 Client:	USACE		Remarks:			
Project: C-44 RSTA	Contract 2 Ge	otechnical Investigation -	Phase V				
o Location: CP14-IRC	44-TP-516	Sample Number: \(\)	JW-S-2/5				
		AMEC E&I					
	Jack	sonville, Florida		 Figure			

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

Elev/	Classi	fication	Nat.	Sp.G.	11	11	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
2.0'- 5.0'	SP	A-3			NP	NP	14.2	3.0	

			<u> </u>			J		L
	Т	EST RESULTS			1	DESCRIP1	ΓΙΟΝ	
Maximu	m dry density = 121.5	pcf					graded, mostl d sized quart	y fine to z, some sand
Optimur	m moisture = 10.1 %				to g	ravel-sized	limestone, tra	ace clay
Project N	roject No. 6734149799 Client: USACE				Remark	s:		
Project:	oject: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V							
o Locatio	n: CP14-IRC44-TP-516	Sample Number: I	W-S-2/5					
CECCATIO	III. CI 14-INC44-11-510	AMEC E&I	7 44 -5-2/5					
	AWEC E&I							
	Jacksonville, Florida					Figure		

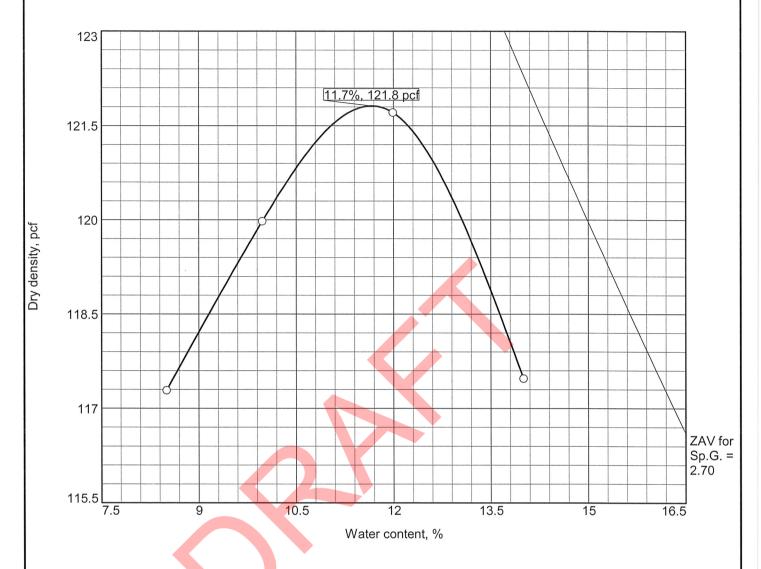


Elev/	Classi	fication	Nat.	Sp.G.	LL	11	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
2.0'- 5.0'	SP	A-3			NP	NP	30.2	1.6	

Water content, %

			l			L	L	
	Т	EST RESULTS			N	IATERIAL	DESCRIP	ΓΙΟΝ
Maximu	m dry density = 122.4	pcf					graded, most d sized quar	ly fine to z, some sand
Optimun	m moisture = 10.2 %				to g	gravel-sized	limestone, tr	race silt
Project N	oject No. 6734149799 Client: USACE				Remark	s:		
Project:	oject: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V							
⊙ Locatio	n: CP14-IRC44-TP-516	Sample Number: M	/IdW-S-2/5					
		AMEC E&I						
	Jack	sonville, Florida					Figuro	
	Jack	John Hile, Florida					Figure	

COMPACTION TEST REPORT


Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	ication	Nat.	Sp.G.	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SC	A-2-4(0)			26	8	3.9	18.9

	Т	EST RESULTS			MATERIAL DESCRIPTION SAND, clayey, mostly fine to medius grained sand-sized quartz, little medius coarse-grained sand-sized limestone, l Remarks:			ΓΙΟΝ		
Maximum dry de	nsity = 118.0	pcf								
Optimum moistu	e = 13.3 %									
Project No. 673414	oject No. 6734149799 Client: USACE					Remarks:				
Project: C-44 RST.	roject: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V									
o Location: CP14-II	RC44-TP-516	Sample Number: U	JW-C-5/11							
		AMEC E&I								
	Jacksonville, Florida Figure									

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

Elev/	Elev/ Classification		Nat.	Sp.G.		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP-SM	A-3			NV	NP	13.5	5.1

			<u> </u>					L		
	Т	EST RESULTS			N	MATERIAL DESCRIPTION				
Maximu	m dry density = 121.8	pcf				SAND, p-g w/silt, mostly fine to medium- grained s-sized quartz, little sand to gr-sized				
Optimur	m moisture = 11.7 %		limestone	limestone, few silt, few fine gravel-sized sl						
Project N	lo. 6734149799 Client:	Remark	Remarks:							
Project:	C-44 RSTA Contract 2 Ge	eotechnical Investigation - I	Phase V							
o Locatio	n: CP14-IRC44-TP-516	Sample Number: I	.W-C-5/11							
		AMEC E&I								
	Jack			Figure						

Elev/	Classi	fication	Nat.	C C	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP-SM	A-3			NP	NP	11.5	6.5

	TEST RESULTS			N	MATERIAL DESCRIPTION					
Maximum dry density = 122.0	Maximum dry density = 122.0 pcf									
Optimum moisture = 10.3 %			limestone, f	tz, little sand ew silt						
Project No. 6734149799 Client	:: USACE			Remark	s:					
Project: C-44 RSTA Contract 2 G	eotechnical Investigation - 1	Phase V								
○ Location: CP14-IRC44-TP-516	Sample Number: N	1dW-C-5/11								
	AMEC E&I									
Jac			Figure							

	Summary of Sand Clea	anliness a	nd Sand E	quivalent	Testing	
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)
	CF	14-IRC44	-TP-516			•
		1	14.0	2.4	18	
	UW-S-2/5	2	14.1	2.4	17	18
		3	13.9	2.4	18	
		1	10.4	3.7	36	
2-5	LW-S-2/5	2	10.4	3.4	33	35
		3	10.4	3.6	35	
		1	11.2	3.5	32	
	MdW-S-2/5	2	11.4	3.7	33	32
		3	11.4	3.6	32	
		1	13.8	3.4	25	
	UW-C-5/11	2	13.7	3.4	25	25
		3	13.8	3.4	25	
		1	13.8	2.4	18	
5-11	LW-C-5/11	2	13.4	2.0	15	16
		3	13.6	2.1	16	
		1	14.3	3.1	22	
	MdW-C-5/11	2	14.2	3.0	22	22
		3	14.3	3.0	21	

Test Pit 516 View N

Test Pit 516 View W

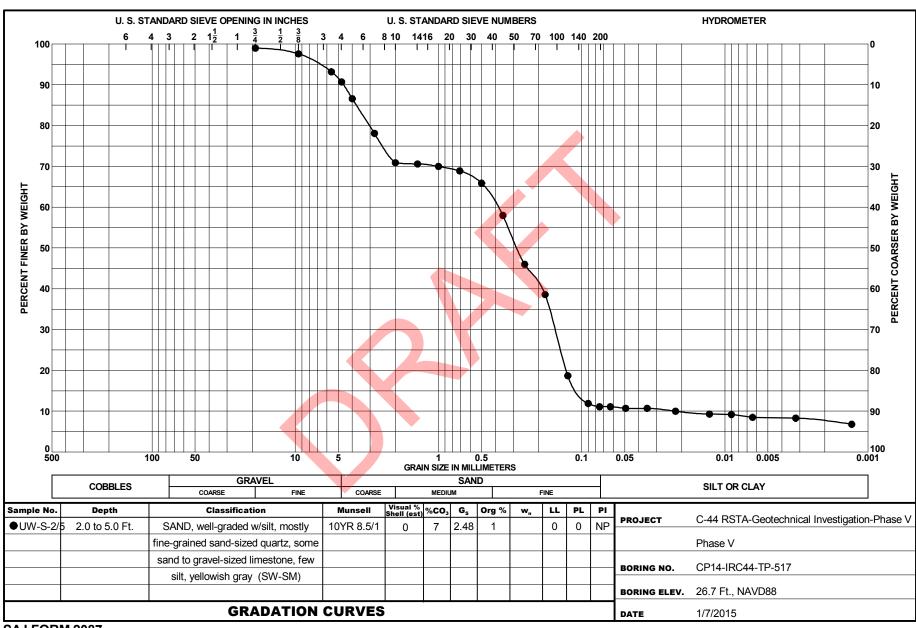
Test Pit 516 View S

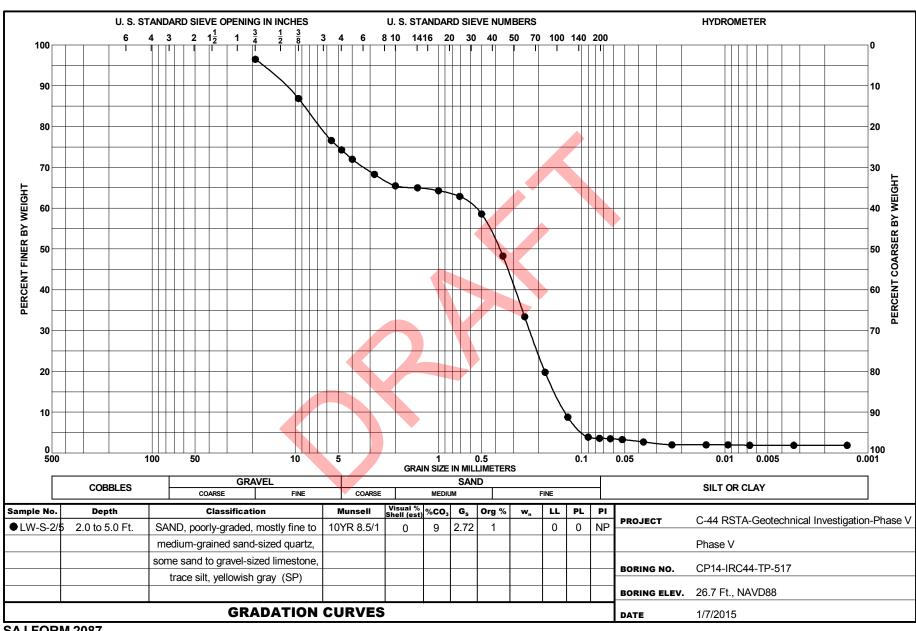
Test Pit 516 View E

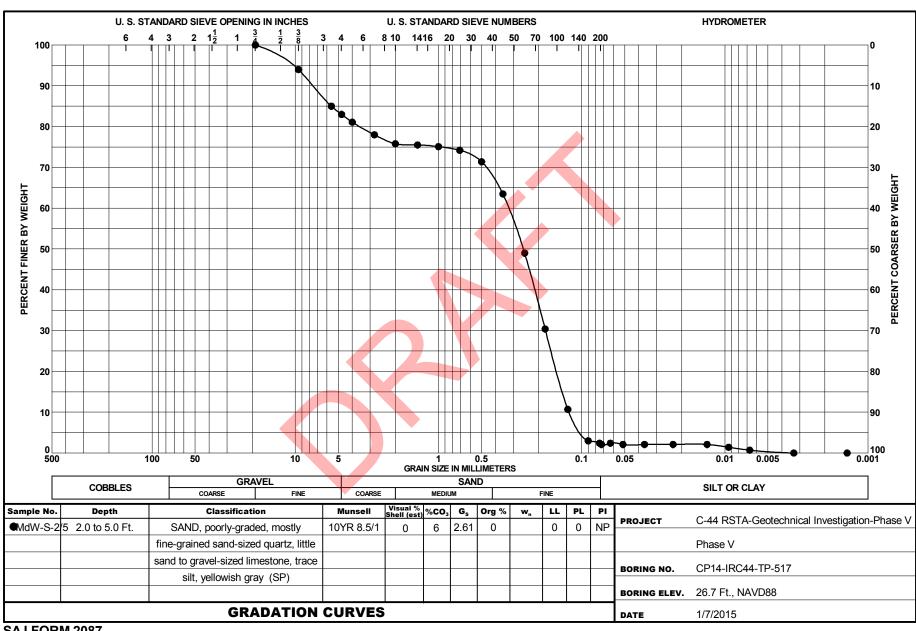
Test Pit 516 View SE – Sampling and Staging Area

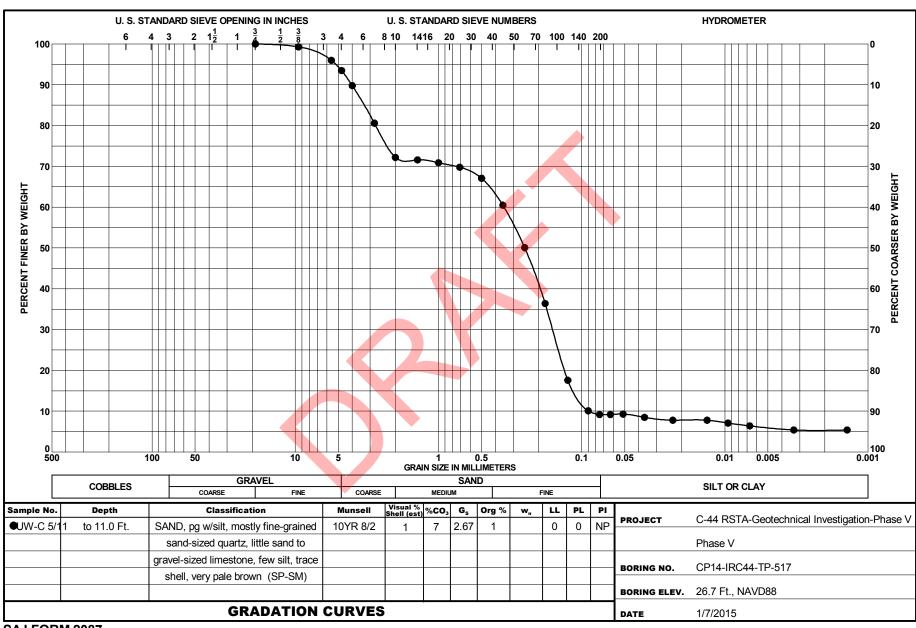
Test Pit 516 View NW – Backfilled Condition

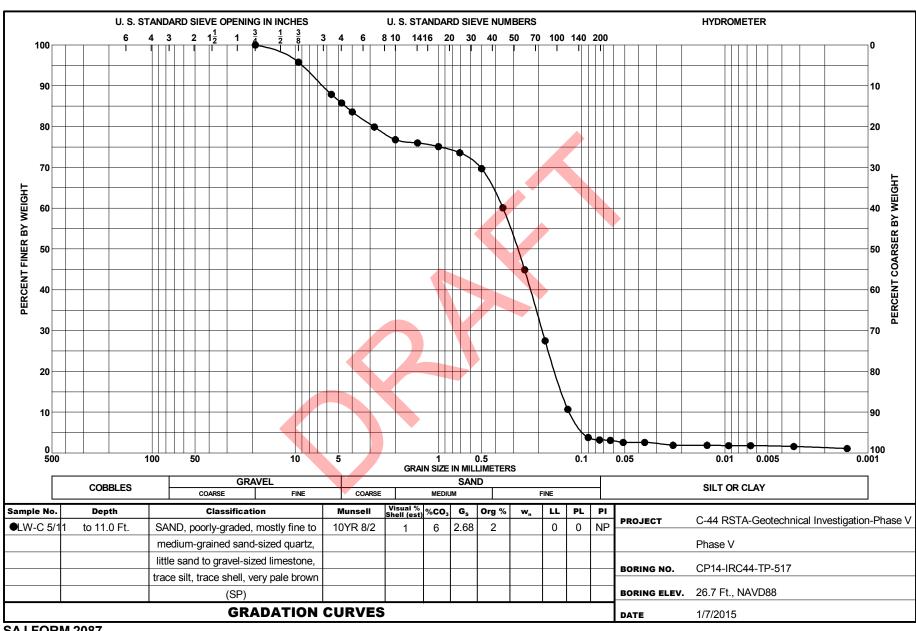
DDI	LLING	LOG	DIVISION		INS	TALLATI	ON	<u> </u>		SHEET	r 1	٦
			South Atlantic		-	lacksonv				OF 2	SHEETS	5
1. PRO		_							ee Remarks			╝
		Geotec	hnical Investigation-Phase	V	10.			SYSTEM/DATUM	:	1		
	hase V				ļ.,			ne, FLE (U.S. Ft.)			VD88	4
	ING DESIGN P14-IRC44		LOCATION COOL		111.			RER'S DESIGNATI 210 LC	ON OF DRILL	MANUAL		
	LING AGEN		,,	38 Y = 835,210 INTRACTOR FILE NO.	\vdash	KOH	iaisu i	2 10 LC	DISTURBED	UNDISTUR		_
	hillips & Jo		i -	6734-14-9799	12.	TOTAL	SAMP	LES	8	0	(0_,	
	E OF DRILL		<u> </u>		13.	TOTAL	NUME	BER CORE BOXES	0			٦
С	huck Floyd	l			_			GROUND WATER				┪
	CTION OF I	BORING	DEG. FROM VERTICAL	BEARING		ELEVA	1014	SKOOND WATER	STARTED	COMPL	ETED	4
	INCLINED				15.	DATE B	ORIN	G	12-10-14		10-14	
 6. THIC	KNESS OF	OVERBI	URDEN N/A	•	16.	ELEVA	TION 1	TOP OF BORING	26.7 Ft.	· , ·=		٦
					╄			VERY FOR BORIN				┪
/. DEP	TH DRILLED	INTOR	ROCK N/A					AND TITLE OF INS				┪
в. тот	AL DEPTH C	F BORI	NG 11.0 Ft.			Bria	n Hatl	haway, Geotechr	nical Engineer			
ELEV.	DEPTH	LEGEND	CLASSIFICATION (OF MATERIALS	R	SAMPLE	RQD OR UD		REMARKS	BLOWS	1 FT. N-VALUE	
		t			-						$\overline{}$	┪
26.7	0.0	1	SAND, poorly-graded with	eilt moetly	\dashv		1	26.7			$-\!\!\!\!\!+\!\!\!\!\!\!-$	4
	- -	[:·] <u>†</u> ∦	fine-grained sand-sized qu	uartz, few silt, trace								
25.7	1.0		organic matter, 10YR 2/2						T\$ 4 D#			
	-	$\overline{\cdots}$	(SP-SM) SAND, poorly-graded, mo	etly fine grained	-1			· ·	Test Pit			
	-		sand-sized quartz, trace s	ilt, 10YR 4/2 dark				<u></u>	aglax*			
24.7	2.0		grayish brown (SP)		\angle $+$		1	24.7 24.7	rativ .		$-\!\!\!\!+\!\!\!\!-$	4
	-		SAND, well-graded with s		d	\	$\langle \cdot \rangle$	24.7				
	-	0	sand-sized quartz, some s limestone, few silt, 10YR			7						
	-	°	(SW-SM)	oler i yelletiligi gi ay				/ /				
	_				1	MdW-S	2/5	8				
	_					LW-S- UW-S-						
	= =	000					Cite					
21.7	5.0	0 1				Menco	1	21.7				
	-	$[\cdot]$	SAND, poorly-graded with medium-grained sand-size	silt, mostly fine to	_	agy Ma	1	21.7				٦
	<u>-</u> -	1.11	gravel-sized limestone, fe	w silt. 10YR 8/2 verv	.0	970		21.7 21.7				
	_		pale brown (SP-SM)	,	\mathcal{A}	UW-R-	5/7					
	-											
	-			ote ⁸								
	-	1.1[[]	At El. 19.7 Ft., mostly fine guartz, trace shell	grained sand sized								
	-		qualitz, trace silen	a Ent's								
	_	·:		2 Inate		MdW-C-						
	-			ptrito.		LW-C-	5/11 5/11					
17.7	9.0		04115	<u></u>		0,70	1''	17.7			\bot	
	_		SAND, well-graded with sand-sized quartz, little sa		u							
	-		limestone, few silt, 10YR				1					
	- -					UW-R-9	9V11					
	-											
15.7	11.0	P. 11			\dashv		+	15.7			$-\!\!\!\!+\!\!\!\!-$	4
	- -		NOTES:					Abbreviations:				
	-		1 LICACE lookoonsille is	the quotedies for								
	-		 USACE Jacksonville is these original files. 	ine custodian for			1					
	-		· ·									
	_		2. Soils are field visually of									
	- -		accordance with the Unific System.	eu ooiis Ciassification	'		1					
	_		•									
	-		3. Laboratory Testing Res	sults								
	_		SAMPLE SAMPLE	LABORATORY								ŀ

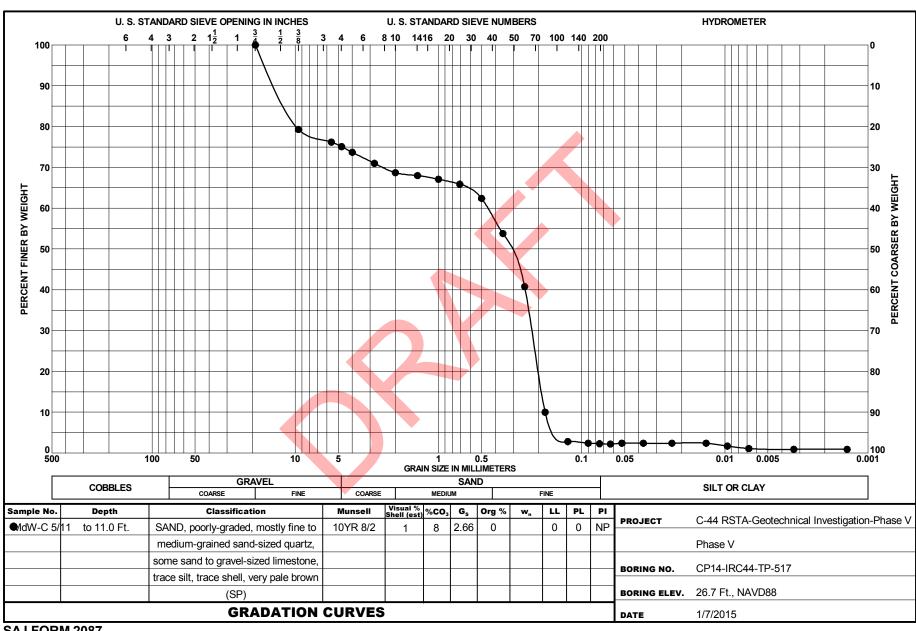

2

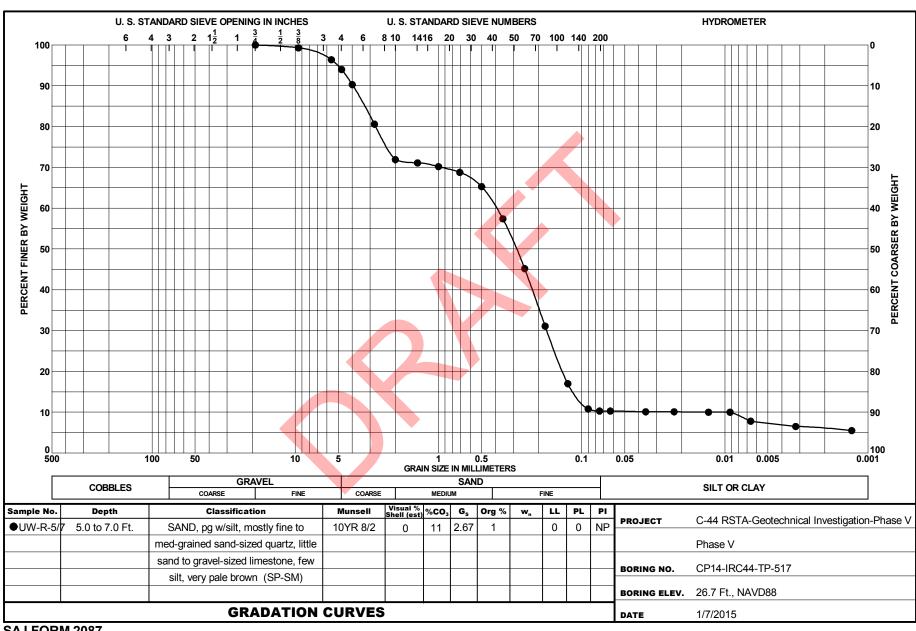

5

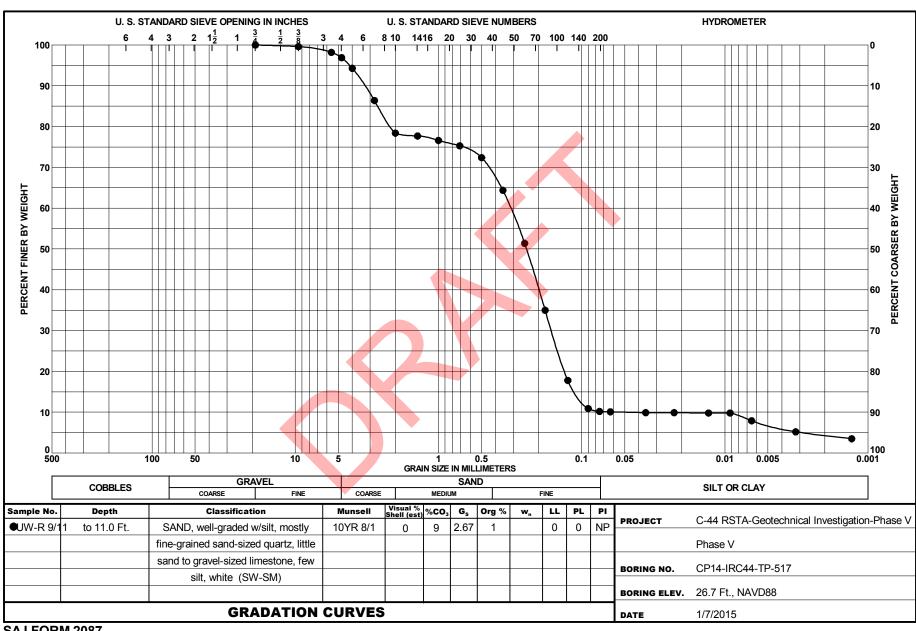

Boring Designation CP14-IRC44-TP-517


DRILLING LOG (Cont.	Sheet)	Jacksor		Distric	ct		SHEET 2 OF 2 SHEETS
ROJECT		COORDINA				M HORIZONTAL	VERTICAL
C-44 RSTA-Geotechnical Investiga	ation-Phase V	State Pl	ane, l	FLE (U.S. F	t.) NAD83	NAVD88
OCATION COORDINATES		ELEVATIO	и тор	OF B	ORING		
X = 1,000,988 Y = 835,210		26.7 Ft					
ELEV. DEPTH	ASSIFICATION OF MATERI	ALS	" REC.	BOX OR SAMPLE	RQD OR UD	REMARKS	BLOWS/ 1 FT. N-VALUE
ID	2.0/5.0 SW 2.0/5.0 S 2.0/5.0 S 2.0/5.0 S 2.0/5.0 S 2.0/5.0 S /11.0 SP- /11.0 SP- /11.0 SP- /11.0 SW I /11.0 SW erberg limits. nal Laboratory Testing Specific Gravity Atterberg Percent Carbonate Percent Visual Shell Specific Gravity Atterberg Percent Organic Percent Carbonate Percent Visual Shell Specific Gravity SAtterberg SPercent Carbonate Percent Carbonate Percent Carbonate Percent Carbonate Specific Gravity 1Specific Gravity 1Atterberg 1Percent Organic 1Percent Visual Shell 1Specific Gravity 1Atterberg 1Percent Organic 1Percent Carbonate 1Percent Visual Shell 1Specific Gravity 11Atterberg 1Percent Organic 1Percent Carbonate 1Percent Carbonate 1Percent Carbonate 1Percent Carbonate 1Percent Carbonate 1Percent Carbonate 1Percent Organic 11Percent Organic 11Percent Organic 11Percent Organic 11Percent Carbonate 11Percent Carbonate 11Percent Organic 11Percent Organic 11Percent Organic 11Percent Carbonate 11Percent Carbonate 11Percent Carbonate 11Percent Organic 11Percent Organic 11Percent Carbonate 11Percent Carbonate 11Percent Carbonate 11Percent Carbonate 11Percent Organic 11Percent Organic 11Percent Carbonate 11Percent Organic 11Percent Organic 11Percent Carbonate	FICATION	sea ton de la companya de la company		the state of the s	D. Destate de de la constante	


	Summary of Classification Testing																
			le Depth (ft)		Atte	erberg	Limits	_									
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Gravel (%)	Sand (%)	Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-517	UW-S-2/5	2.0	5.0	SW-SM	0	0	0	1.4	2.48	8.3	79.6	11.1	2.6	8.5	7.47	0	8.8
CP14-IRC44-TP-517	LW-S-2/5	2.0	5.0	SP	0	0	0	0.7	2.72	22.2	70.7	3.6	1.7	1.9	9.31	0	8.6
CP14-IRC44-TP-517	MdW-S-2/5	2.0	5.0	SP	0	0	0	0.4	2.61	17.0	80.6	2.4	2.1	0.3	6.06	0	8.5
CP14-IRC44-TP-517	UW-C 5/11	5.0	11.0	SP-SM	0	0	0	1.1	2.67	6.5	84.3	9.2	3.3	5.9	7.23	0.6	8.8
CP14-IRC44-TP-517	LW-C 5/11	5.0	11.0	SP	0	0	0	1.7	2.68	14.2	82.6	3.2	1.5	1.7	5.91	1.4	9.4
CP14-IRC44-TP-517	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.4	2.66	24.9	72.8	2.3	1.3	1	7.74	0.5	8.4
CP14-IRC44-TP-517	UW-R-5/7	5.0	7.0	SP-SM	0	0	0	0.6	2.67	6.0	83.7	10.3	3.5	6.8	10.91	0	8.9
CP14-IRC44-TP-517	UW-R 9/11	9.0	11.0	SW-SM	0	0	0	0.5	2.67	3.1	86.7	10.2	3.6	6.6	8.77	0.3	8.9

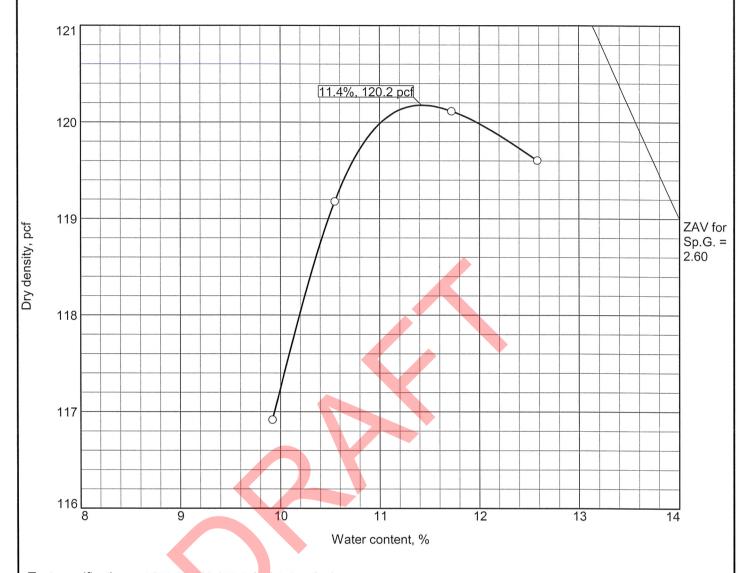






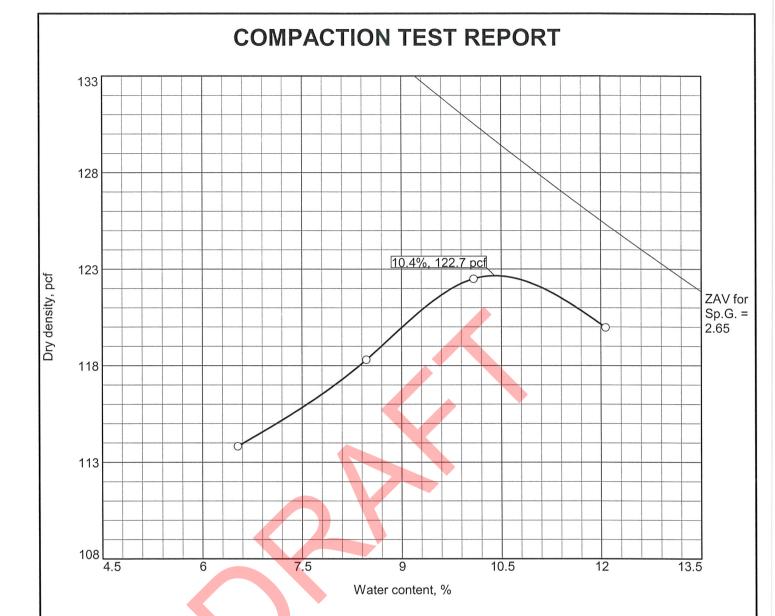
		Sun	nmary of Sc	oil Cement	Testing at 10	00% Compact	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			СР	14-IRC44-1	P-517 UW-S	-2/5		
	1	7	0.87	120.2	11.4	121.3	10.7	1025
	2	7	0.87	120.2	11.4	121.3	10.7	850
	3	7	0.83	120.2	11.4	121.8	10.1	1000
14%	4	28	0.83	120.2	11.4	121.8	10.1	NT
	5	28	0.80	120.2	11.4	122.0	9.9	NT
	6	28	0.80	120.2	11.4	122.1	9.9	NT
			CP1	14-IRC44-T	P-517 UW-C-	5/11		
	1	7	0.87	123.4	11.0	121.3	10.7	1025
	2	7	0.87	123.4	11.0	121.3	10.7	850
	3	7	0.83	123.4	11.0	121.8	10.1	1000
14%	4	28	0.83	123.4	11.0	121.8	10.1	NT
	5	28	0.80	123.4	11.0	122.0	9.9	NT
	6	28	0.80	123.4	11.0	122.1	9.9	NT

		Sun	nmary of Sc	il Cement	Testing at 10	00% Compac	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			СР	14-IRC44-1	ΓP-517 LW-S	-2/5		
	1	7	0.75	122.7	10.4	123.8	9.2	1315
	2	7	0.75	122.7	10.4	123.8	9.2	1100
	3	7	0.75	122.7	10.4	123.7	9.3	1240
14%	4	28	0.75	122.7	10.4	124.3	9.3	NT
	5	28	0.74	122.7	10.4	124.1	9.0	NT
	6	28	0.74	122.7	10.4	124.0	9.0	NT
			CP1	14-IRC44-T	P-517 LW-C-	5/11		
	1	7	0.70	122.6	9.5	123.4	8.6	NT
	2	7	0.70	122.6	9.5	123.9	8.6	NT
4.407	3	7	0.72	122.6	9.5	123.1	8.8	NT
14%	4	28	0.72	122.6	9.5	123.1	8.8	NT
	5	28	0.71	122.6	9.5	123.1	8.8	NT
	6	28	0.71	122.6	9.5	123.2	8.8	NT


		Sun	nmary of So	il Cement	Testing at 10	00% Compact	tion	
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Test Sample Density (pcf)	Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)
			CP1	4-IRC44-T	P-517 MdW-	S-2/5		
	1	7	0.75	122.2	10.2	122.9	9.3	1265
	2	7	0.75	122.2	10.2	123.3	9.3	1190
	3	7	0.76	122.2	10.2	123.2	9.4	1385
14%	4	28	0.76	122.2	10.2	123.1	9.4	NT
	5	28	0.76	122.2	10.2	122.9	9.3	NT
	6	28	0.76	122.2	10.2	123.4	9.3	NT
			CP1	4-IRC44-TF	2-517 MdW-C	-5/11		
	1	7	0.66	123.3	9.1	123.8	8.1	1365
	2	7	0.66	123.3	9.1	123.8	8.1	1305
4.407	3	7	0.65	123.3	9.1	123.9	8.0	1465
14%	4	28	0.65	123.3	9.1	124.4	8.0	NT
	5	28	0.68	123.3	9.1	123.4	8.4	NT
	6	28	0.68	123.3	9.1	124.1	8.4	NT

Summary of Soil Cement Testing at 95% Compaction												
Test Pit No. PSI* AVG.*												
I.	AVG.*											
TP-517	UW-S-2/5											
TP-517	LW-S-2/5	940	1250	1210	1133							
TP-517	MdW-S-2/5	975	805	965	915							
TP-517	UW-C-5/11											
TP-517	LW-C-5/11											
TP-517	MdW-C-5/11											

^{*} Testing still in progress



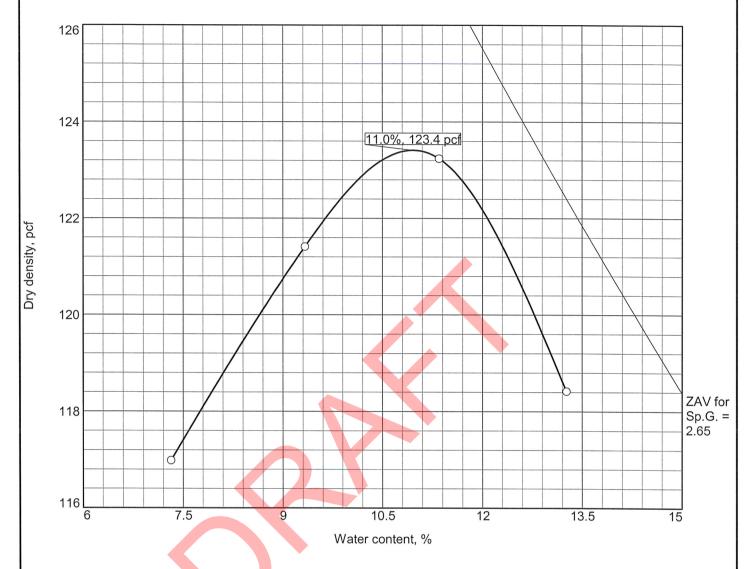
Elev/	Classi	ication	Nat.	Nat. Sp.G.	LL PI	% >	% <	
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
2.0'- 5.0'	SW-SM	A-2-4(0)			NV	NP	9.3	11.1

TEST RESULTS					N	MATERIAL DESCRIPTION				
Maximum dry density = 120.2 pcf					SAND, well-graded, mostly fine to medium grained sand sized quartz, some sand to					
Optimum moisture = 11.4 %				gı	gravel-sized limestone, few silt					
Project No. 6734149799 Client: USACE					Remark	Remarks:				
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V										
○ Location: CP14	1-IRC44-TP-517	Sample Number: U	JW-S-2/5							
AMEC E&I										
Jacksonville, Florida							Figure			

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

Elev/	Classi	fication	Nat.	Sp.G. LL		1.1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
2.0'- 5.0'	SP	A-3			NV	NP	25.7	3.6	

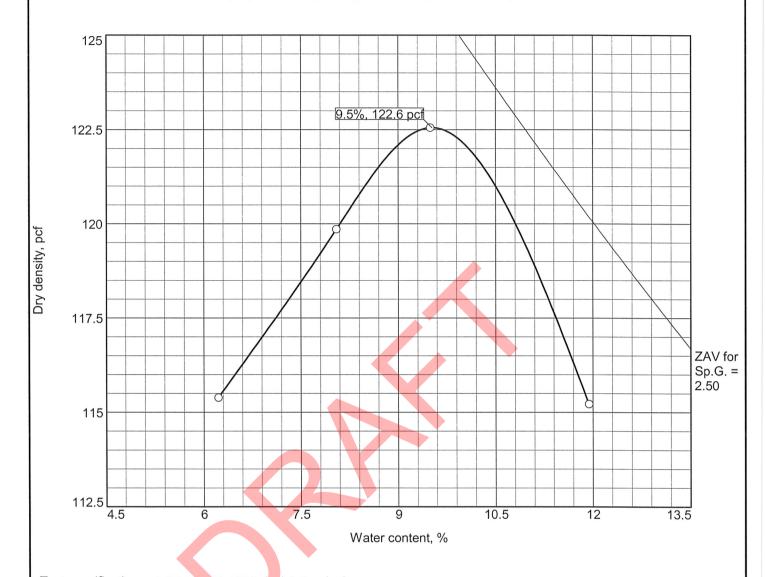
						<u> </u>			
TEST RESULTS					N.	MATERIAL DESCRIPTION			
Maximum	Maximum dry density = 122.7 pcf						graded, mostl d-sized quart	y fine to z, some sand	
Optimum moisture = 10.4 %				to g	ravel-sized	limestone, t	race silt		
Project No. 6734149799 Client: USACE				Remark	Remarks:				
Project: C-4	Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V								
a Location (Course CD14 ID C44 TD 517								
○ Location: CP14-IRC44-TP-517 Sample Number: LW-S-2/5 AMEC E&I									
AWIEC Edi									
Jacksonville, Florida						Figure			



Elev/	Classit	fication	Nat.	Sn C	Sp.G.	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	5p.G.	LL	PI	#4	No.200	
2.0'- 5.0'	SP	A-3			NP	NP	17.0	2.4	

			<u> </u>								
TEST RESULTS					l N	MATERIAL DESCRIPTION					
Maximum dry density = 122.2 pcf						SAND, poorly-graded, mostly fine-grained sand-sized quartz, little sand to gravel-sized					
Optimum moisture = 1	0.2 %			limestone, trace silt							
Project No. 6734149799 Client: USACE					Remark	Remarks:					
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V											
o Location: CP14-IRC44-7	ГР-517	Sample Number: N	/IdW-S-2/5								
AMEC E&I											
	Jacksonville, Florida						Figure				

COMPACTION TEST REPORT

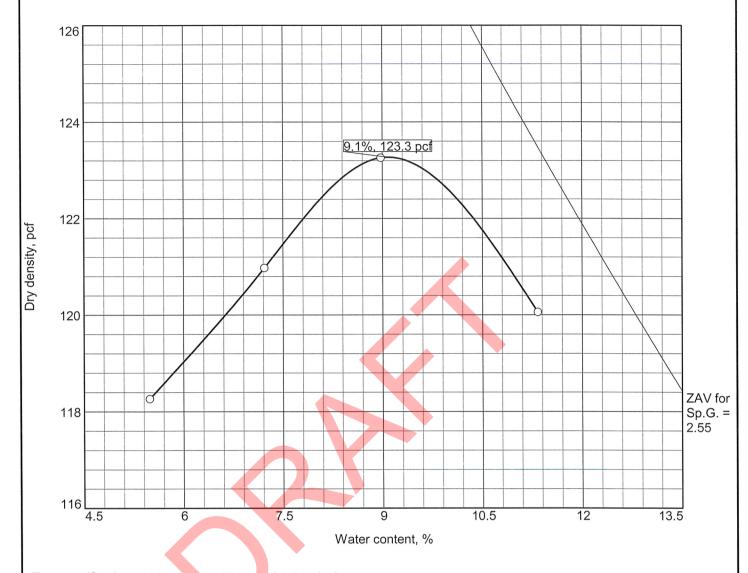

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	Nat. Sp.G.			DI.	% >	% <	
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP-SM	A-3			NP	NP	6.5	9.2

	Т	EST RESULTS			N	MATERIAL DESCRIPTION				
Maximun	n dry density = 123.4		SAND, pg w/silt, mostly fine-grained sar sized quartz, little sand to gravel-sized							
Optimum	moisture = 11.0 %	1	limestone, few silt, trace shell							
Project No	o. 6734149799 Client:	USACE			Remark	s:				
Project: 0	C-44 RSTA Contract 2 Ge	otechnical Investigation - l	Phase V							
○ Location	n: CP14-IRC44-TP-517	Sample Number: U	JW-C-5/11							
		AMEC E&I								
	Jack	sonville, Florida					Figure			

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

COMPACTION TEST REPORT


Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	Nat.	Sp.G.	1.1	PI	% >	% <	
Depth	USCS	AASHTO	Moist.	3p.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-3			NP	NP	14.2	3.2

	~				111	111	11.2	3.2			
	7	EST RESULTS			N	MATERIAL DESCRIPTION					
Maximu	m dry density = 122.6	pcf			fine to medi	um-grained gravel-sized					
Optimur	m moisture = 9.5 %		li	limestone, trace silt, trace shell							
Project N	lo. 6734149799 Client	Remark	Remarks:								
Project:	C-44 RSTA Contract 2 Go	eotechnical Investigation -	Phase V					*			
o Locatio	on: CP14-IRC44-TP-517	Sample Number: I	LW-C-5/11								
		AMEC E&I									
	Jack	sonville, Florida					Figure				

Tested By: W. Martin Checked By: Stephanie Setser, P.E.

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classif	Nat.	Sp.G.	1.1	DI	% >	% <		
Depth	USCS	AASHTO	Moist.	3 μ. G .	LL	FI	#4	No.200	
5.0'- 11.0'	SP	A-3			NV	NP	24.9	2.3	

5.0'- 11.0' SP	A-3			NV	NV NP 24.9 2.3						
	TEST RESULTS			N	MATERIAL DESCRIPTION						
Maximum dry density = 123.	3 pcf			med-gra	ined sand-s	ized quartz,	nostly fine to little sand to				
Optimum moisture = 9.1 %		gravel-s	sized limesto	one, trace sil	t, trace shell						
Project No. 6734149799 Client	:: USACE			Remark	s:						
Project: C-44 RSTA Contract 2 G	eotechnical Investigation -	Phase V									
o Location: CP14-IRC44-TP-517	Sample Number: N	1dW-C-5/11									
	AMEC E&I										
Jac	ksonville, Florida					Figure	ntout Analogo on south of the Royal And or State Analogo				

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

Summary of Wet/Dry and Freeze/Thaw Testing CP14-IRC44-TP-517 UW-S-2/5 Max Test Type Cement **Initial Test Initial Test** Water/ **Optimum Final Test Final Test** Final **Cement Ratio Moisture** Loss (%) Content **Density** Sample Sample Sample Sample (%) (pcf) Content Moisture **Moisture Density** Density (%) (pcf) Content (pcf) Content (%) (%) 11.40 121.5 NT NT 120.2 10.0 0.83 Wetting and 14 Drying 0.83 120.2 11.40 121.5 10.0 NT NT 120.2 11.40 121.6 NT NT 10.1 0.84 Freezing and 14 **Thawing** 0.84 120.2 11.40 121.6 NT NT 10.1 CP14-IRC44-TP -517 UW-C-5/11 **Test Type** Cement Water/ Max **Optimum Initial Test Initial Test Final Test Final Test Final Loss** Content **Cement Ratio Density** Moisture Sample Sample Sample Sample (%) (%) (pcf) Content Density Moisture Density Moisture (%) (pcf) Content (pcf) Content (%) (%) NT NT NT NT NT NT NT NT Wetting and 14 **Drying** NT Freezing and 14 Thawing NT NT NT NT NT NT NT NT

		5	Summary of	Wet/Dry and	l Freeze/Tha	w Testing				
			CP14	1-IRC44-TP-	517 LW-S-2/5	5				
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)	
Wetting and	14	0.78	122.7	10.40	123.3	9.5	130.8	0.0		
Drying	14	0.78	122.7	10.40	123.2	9.5	130.1	0.0		
Freezing and	14	0.76	122.7	10.40	123.7	9.3	NT	NT		
Thawing	14	0.76	122.7	10.40	123.7	9.3	NT	NT		
			CP14	-IRC44-TP-5	17 LW-C-5/1	1	L		-	
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)	
Wetting and	14	0.78	122.6	9.50	121.8	10.0	NT	NT		
Drying	14	0.78	122.6	9.50	121.6	10.0	NT	NT		
Freezing and	14	0.82	122.6	9.50	122.1	9.6	NT	NT		
Thawing	14	0.82	122.6	9.50	122.1	9.6	NT	NT		

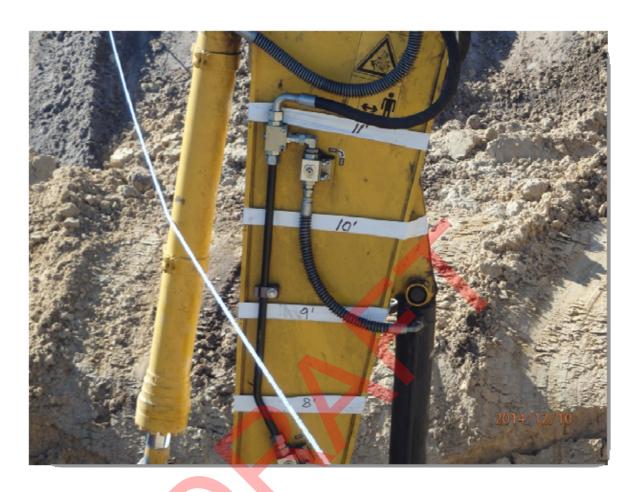
^{*}NT: Not tested as of date of report preparation.

		Ş	Summary of	Wet/Dry and	I Freeze/Tha	w Testing			
			CP14	-IRC44-TP-5	17 MdW-S-2/	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.76	122.2	10.20	123.5	9.4	NT	NT	
Drying	14	0.76	122.2	10.20	123.0	9.4	NT	NT	
Freezing and	14	0.75	122.2	10.20	123.4	9.3	NT	NT	
Thawing	14	0.75	122.2	10.20	123.5	9.3	NT	NT	
			CP14-	IRC44-TP-51	7 MdW-C-5/	11			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.72	123.3	9.10	123.1	8.8	NT	NT	
Drying	14	0.72	123.3	9.10	123.1	8.8	NT	NT	
Freezing and	14	0.71	123.3	9.10	123.8	8.7	NT	NT	
Thawing	1-7	0.71	123.3	9.10	123.8	8.7	NT	NT	

^{*}NT: Not tested as of date of report preparation.

	Summary of Sand Clea	anliness a	nd Sand E	quivalent	Testing	
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)
	CF	14-IRC44	-TP-517			'
		1	14.3	2.2	16	
	UW-S-2/5	2	14.2	2.1	15	15
		3	14.1	2.0	15	
		1	11.3	3.6	32	
2-5	LW-S-2/5	2	11.1	3.3	30	30
		3	11.2	3.2	29	
		1	10.6	3.8	36	
	MdW-S-2/5	2	10.5	3.9	38	37
		3	10.5	3.9	38	
		1	13.6	2.8	21	
	UW-C-5/11	2	13.2	2.4	19	20
		3	13.2	2.6	20	
		1	8.1	3.0	37	
5-11	LW-C-5/11	2	8.7	3.1	36	36
		3	8.7	3.0	35	
		1	6.2	3.5	57	
	MdW-C-5/11	2	6.3	3.2	51	56
		3	6.2	3.6	59]

Drainage Canal Running North/South Located East of Test Pit 517


Test Pit 517 View NW - Excavation

Test Pit 517 View N

Test Pit 517 View W – Depth Measurement

Test Pit 517 View W – Depth Measurement

Test Pit 517 View N

Test Pit 517 View W

Test Pit 517 View S

Test Pit 517 View E

Test Pit 517 View E - Sampling

Test Pit 517 View SE

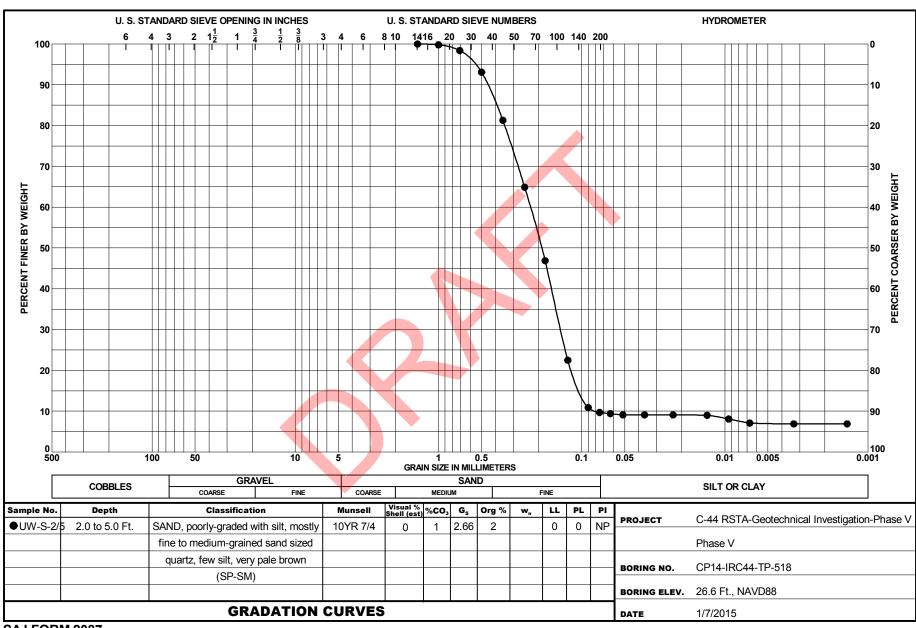
Test Pit 517 View SE – Sampling and Staging Area

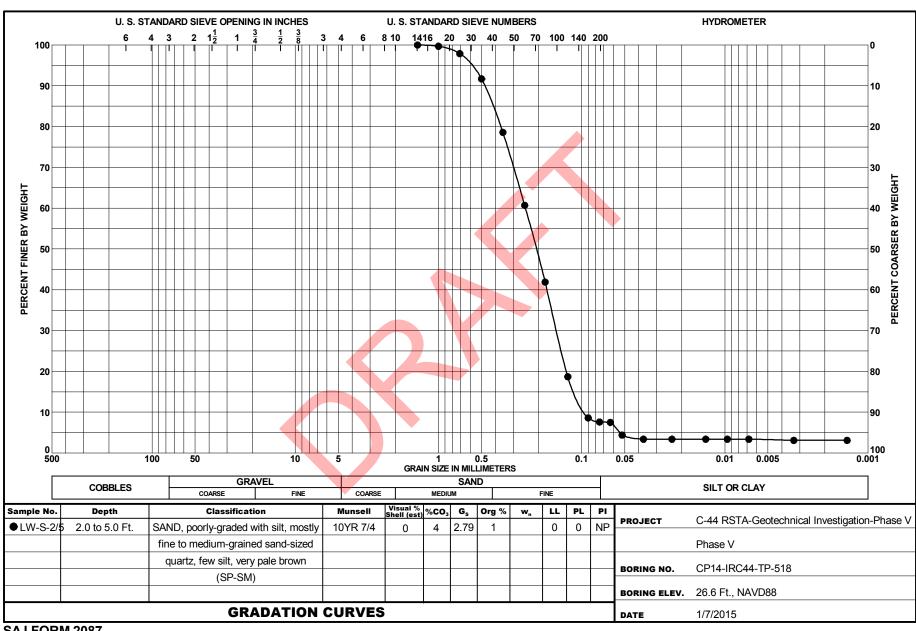
Test Pit 517 View NW - Backfilled Condition

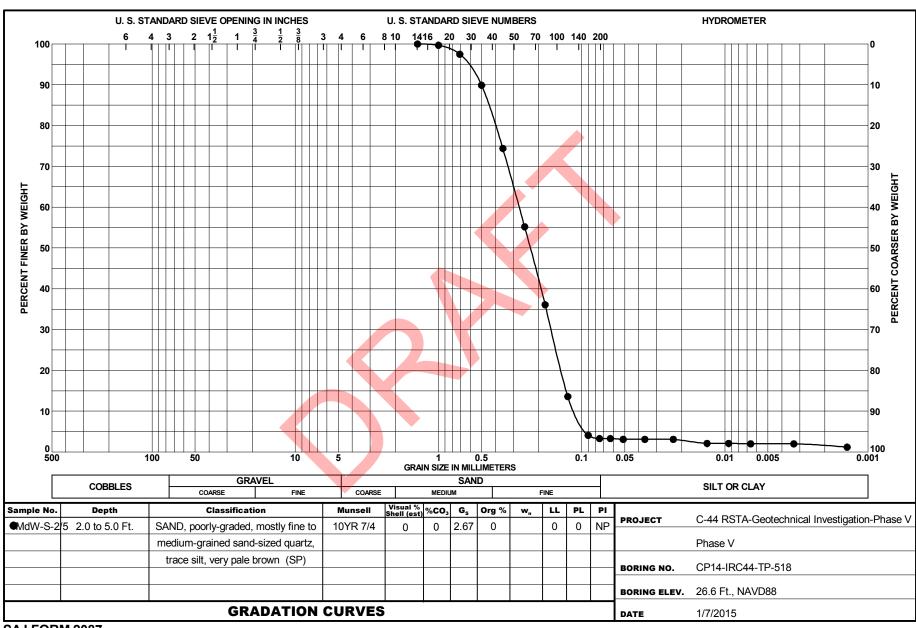
DBI	LLING	106	DIVISION	INS	TALLA	ION			SHEET	1
		LUG	South Atlantic	J	Jacksor	ville D	istrict		OF 2 S	HEETS
1. PRO								Remarks		
		-Geotec	hnical Investigation-Phase V	10.			E SYSTEM/DATUM	HORIZONTA	ļ.	
	hase V	NATION	LOCATION COORDINA	TES 11.			ne, FLE (U.S. Ft.) RER'S DESIGNATION	NAD83	NAVE : NAVE	
	P14-IRC44		i				210 LC	[MANUAL HA	
3. DRIL	LING AGEN	ICY	1	TOR FILE NO.	TOTA	SAME		ISTURBED	UNDISTURB	ED (UD)
	hillips & Jo		6734-	14-9799	IUIA	JAIVIF	LES	8	0	
	E OF DRILL			13.	TOTA	NUM	BER CORE BOXES	0		
	Chuck Floyd		DEG. FROM BE	ARING 14.	ELEV	TION	GROUND WATER			
	VERTICAL INCLINED		VERTICAL	15.	DATE	BORIN	G	STARTED 12-11-14	COMPLET 12-11	
6. THI	CKNESS OF	OVERB	URDEN N/A	16.	ELEV	MOIT	TOP OF BORING	26.6 Ft.		
7. DEP	TH DRILLED	INTO F	ROCK N/A	17.	TOTA	RECO	VERY FOR BORING	N/A		
				18.	SIGNA	TURE	AND TITLE OF INSPE	CTOR		
8. ТОТ	AL DEPTH C	OF BORI	NG 11.0 Ft.			_	haway, Geotechnic	al Engineer		
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MAT	TERIALS R	%C. ON NO.	RQE OR UD		REMARKS	BLOWS/	N-VALUE
26.6	0.0						26.6			
26.6	0.0	 	SAND, poorly-graded with silt, m				26.6			+
	-	 -:	fine-grained sand-sized quartz, f 7.5YR 4/2 brown (SP-SM)	ew silt,						
25.6	1.0	<u> </u>	SAND, poorly-graded, mostly fin	e-grained				Test Pit		F
		$ \cdot \cdot $	sand-sized quartz, trace silt, 10\			X//	1.	. ***		
24.6	2.0		brown (SP)			<u> </u>	24.6			
	_		SAND, poorly-graded with silt, m medium-grained sand-sized qua	nostly fine to		\nearrow	24.6 24.6			T
	-	1:-111	10YR 7/4 very pale brown (SP-	SM)			24.0			
	_		,			\	/ // /			
	_				MdW-	S-2/5	.8			-
	_	:-			LW-S	-2/5 3-2/5 °	g Ke			
		$\ \cdot\ \ $			ν-3	5-4/5 U	1			
21.6	5.0					6)3	21.6			-
	-		SAND, well-graded with silt, mos gravel-sized limestone, some fin		284 Ba		21.6			\top
	_		sand-sized quartz, few clay, 10Y	R 9/2 pale	10/10		21.6 21.6			
	_		orange yellow (SW-SM)	$\langle \langle \rangle \rangle \langle \gamma \rangle \langle \gamma \rangle$	UW-F	R- \$ /7				
	_			$\backslash \rangle$. $/ \parallel$						-
19.6	7.0		SAND, clayey, mostly fine-graine	ad sand sized		4				
	<u>-</u>		quartz, some sand to gravel-size	d limestone,						
	_		little clay, trace silt, 10YR 9/2 pa	le orange	MdW-0					<u> </u>
	<u> </u> -		yellow (SC)	´	LW-C	-5/11				F
	-		Tritt		UW-C	-5/11	17.6			
	-		-At El. 17.6 Ft., 5GY 6/1 greenish	n gray	\dashv	_	17.0			$+\pm$
	_									-
	_		∽At El. 16.6 Ft., 2.5Y 7/3 pale yel	low	UW-R	-9/11				F
	<u>-</u>		л. с 10.0 г., 2.0 г. 1/3 раке уек							
15.6	11.0						15.6			<u> </u>
	-		NOTES:				Abbreviations:			
	- - -		1. USACE Jacksonville is the cuthese original files.	ustodian for						[
	- - - -		2. Soils are field visually classifi accordance with the Unified Soil System.	ed in s Classification						
	_		Laboratory Testing Results							F
	-									
	F	1	SAMPLE SAMPLE LA	BORATORY		1				_ -

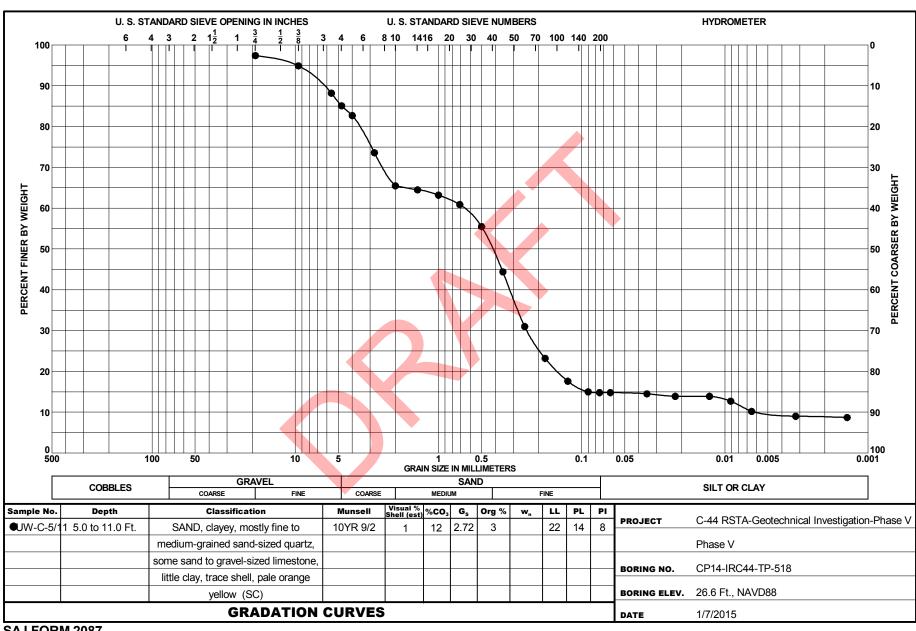
2

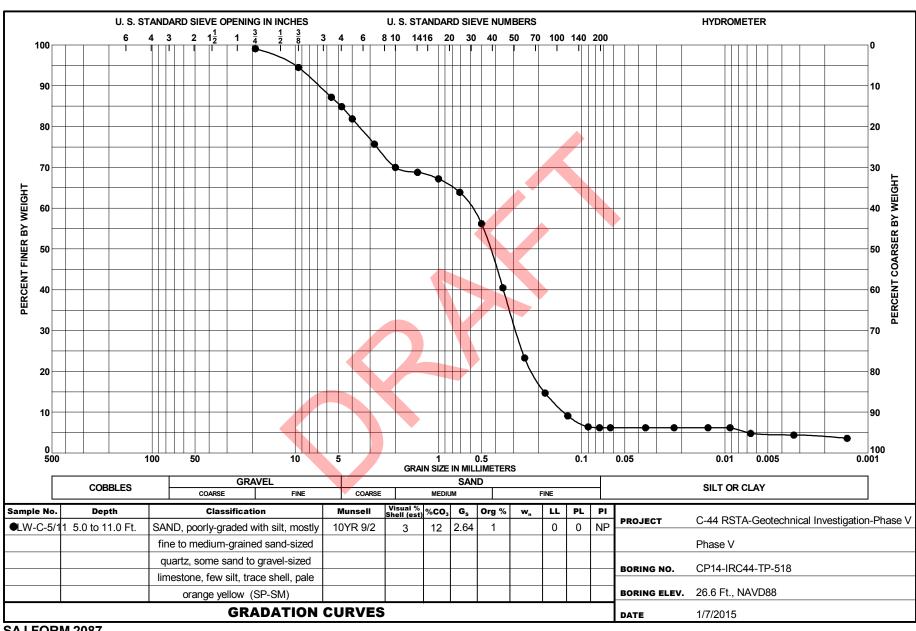
5

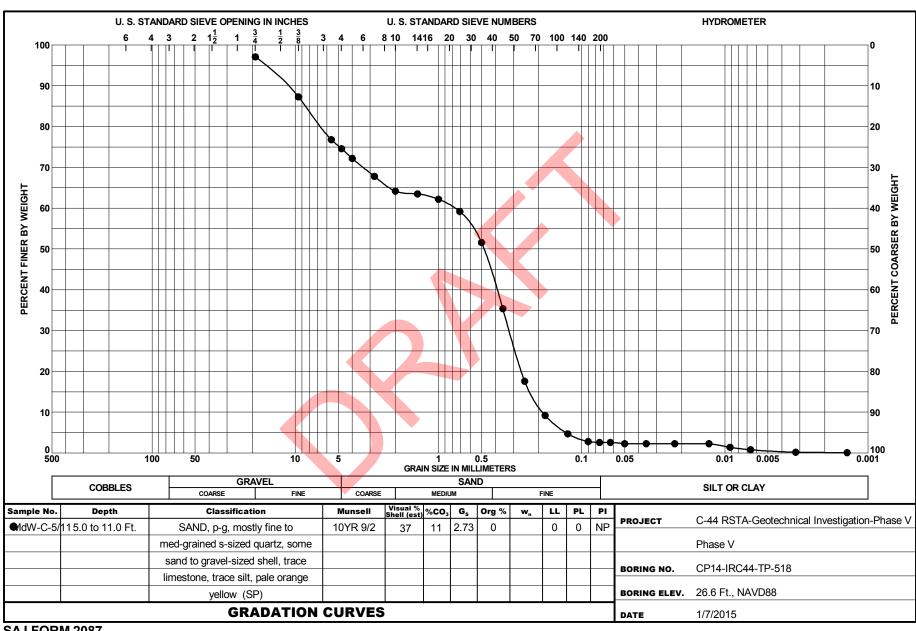

9

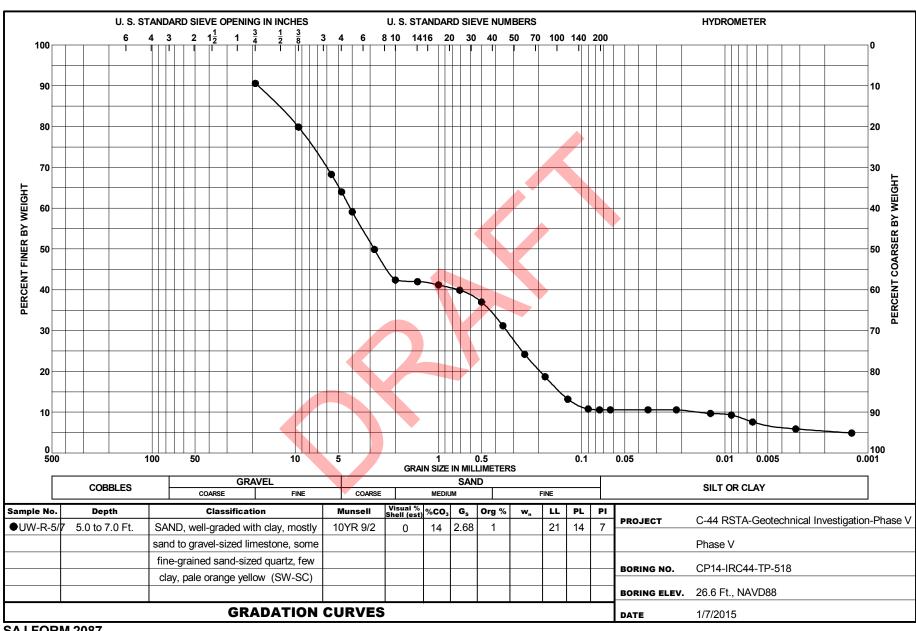

10

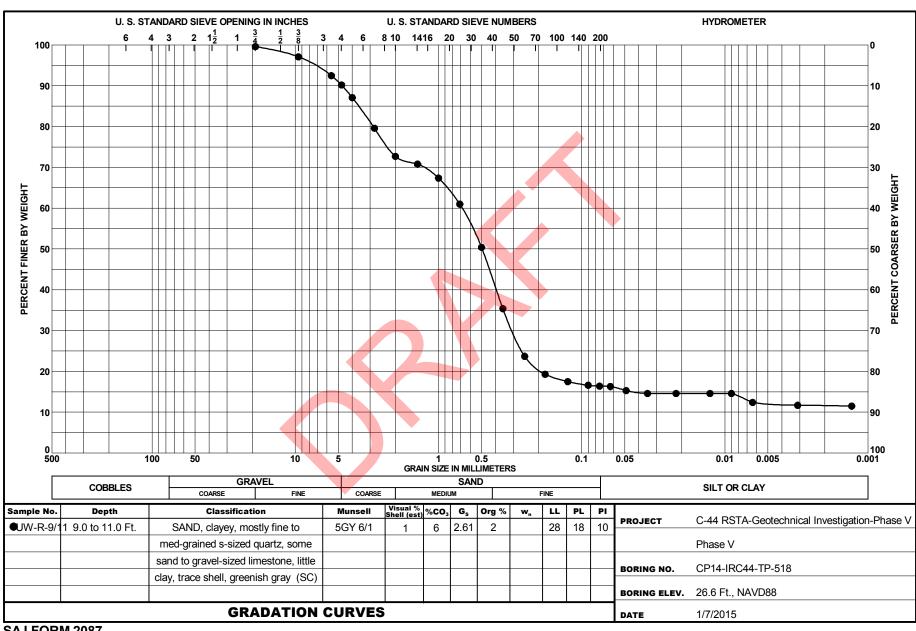

Boring Designation CP14-IRC44-TP-518


DRILLING	LO	G (Cont. Sheet)	Jacksonvil		trict		SHEET 2 OF 2 SHEETS
PROJECT			COORDINATE			IM HORIZONTAL	VERTICAL
C-44 RSTA-Geo	otechr	nical Investigation-Phase V	State Plan	e, FLE	E (U.S. F	t.) NAD83	NAVD88
OCATION COORDI			ELEVATION T	OP OF	BORING	<u> </u>	
X = 1,000,116		837,236	26.6 Ft.				
ELEV. DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	S RE	EC. SOR	SAMPLE OD DOD DOD	REMARKS	BLOWS/ 1 FT. N-VALUE
		ID DEPTH CLASSIFIC	ATION				
		UW-S-2/5 2.0/5.0 SP-SM LW-S-2/5 2.0/5.0 SP-SM MdW-S-2/5 2.0/5.0 SP UW-C-5/11 5.0/11.0 SC LW-C-5/11 5.0/11.0 SP-SM MdW-C-5/11 5.0/11.0 SP-SM MdW-C-5/11 5.0/11.0 SP UW-R-5/7 5.0/7.0 SW-SG UW-R-9/11 9.0/11.0 SC not on atterberg limits. 4. Additional Laboratory Testing UW-S-2/5Specific Gravity UW-S-2/5Atterberg UW-S-2/5Percent Organic UW-S-2/5Percent Visual Shell LW-S-2/5Specific Gravity LW-S-2/5Percent Organic LW-S-2/5Percent Organic LW-S-2/5Percent Organic LW-S-2/5Percent Organic LW-S-2/5Percent Organic LW-S-2/5Percent Organic MdW-S-2/5Percent Organic MdW-S-2/5Percent Organic MdW-S-2/5Percent Organic MdW-S-2/5Percent Organic MdW-S-2/5Percent Visual Shell UW-C-5/11Specific Gravity UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-C-5/11Percent Organic LW-C-5/11Percent Organic LW-C-5/11Percent Organic LW-C-5/11Percent Organic LW-C-5/11Percent Organic LW-C-5/11Percent Organic LW-C-5/11Percent Organic UW-C-5/11Percent Organic UW-R-5/7Percent Organic UW-R-5/7Percent Organic UW-R-5/7Percent Organic UW-R-9/11Percent Organic UW-R-9/11Specific Gravity	M M	and the state of t	and the state of t	The date of the Control of the Contr	


						Su	ımmar	y of Classific	ation Testi	ng							
		•	le Depth (ft)		Atte	Atterberg Limits		_									
Test Pit No.	Sample No.	Тор	Bottom	USCS	LL	PL	PI	Organic Content (%)	Specific Gravity	Gravel (%)	Sand (%)	Minus 200 (%)	Silt (%)	Clay (%)	Carbonate (%)	Shell (%)	рН
CP14-IRC44-TP-518	UW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.7	2.66	0	90.3	9.7	2.7	7	1.48	0	8.2
CP14-IRC44-TP-518	LW-S-2/5	2.0	5.0	SP-SM	0	0	0	1.4	2.79	0	92.4	7.6	4.3	3.3	3.68	0	8.9
CP14-IRC44-TP-518	MdW-S-2/5	2.0	5.0	SP	0	0	0	0	2.67	0	96.7	3.3	1.1	2.2	0.45	0	9.1
CP14-IRC44-TP-518	UW-C 5/11	5.0	11.0	SC	22	14	8	2.5	2.72	12.3	70.3	14.8	5.1	9.7	12.15	1	8.6
CP14-IRC44-TP-518	LW-C 5/11	5.0	11.0	SP-SM	0	0	0	0.6	2.64	14.2	78.7	6.2	1.5	4.7	11.9	3	8.9
CP14-IRC44-TP-518	MdW-C 5/11	5.0	11.0	SP	0	0	0	0.2	2.73	22.5	72	2.6	2	0.6	10.5	36.5	9.4
CP14-IRC44-TP-518	UW-R-5/7	5.0	7.0	SW-SC	21	14	7	1.4	2.68	26.6	53.4	10.6	4	6.6	13.5	0	8.7
CP14-IRC44-TP-518	UW-R-9/11	9.0	11.0	SC	28	18	10	1.6	2.61	9.4	73.8	16.4	4.3	12.1	5.93	0.6	8.3

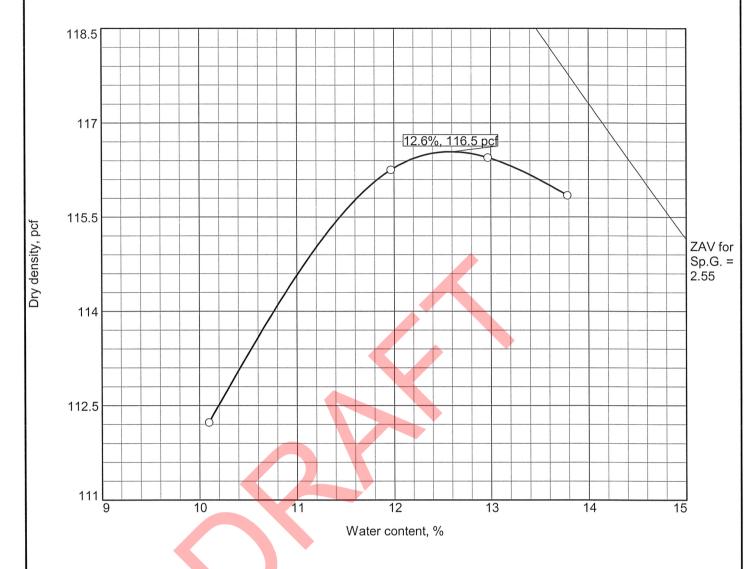






	Summary of Soil Cement Testing at 100% Compaction									
Cement Content	Samnia		Water / Cement Ratio	Max Density (pcf)	Optimum Test Moisture Sample Content (%) (pcf)		Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)		
			СР	14-IRC44-1	ΓP-518 UW-S	-2/5				
	1	7	0.75	116.5	12.6	120.0	9.2	845		
	2	7	0.75	116.5	12.6	119.9	9.2	900		
	3	7	0.77	116.5	12.6	119.8	9.5	795		
14%	4	28	0.77	116.5	12.6	119.8	9.5	NT		
	5	28	0.77	116.5	12.6	119.8	9.4	NT		
	6	28	0.77	116.5	12.6	119.7	9.4	NT		
		•	CP1	4-IRC44-T	P-518 UW-C-	-5/11				
	1	7	0.81	121.6	12.2	124.0	9.9	NT		
	2	7	0.81	121.6	12.2	124.0	9.9	NT		
4.407	3	7	1.00	121.6	12.2	121.5	12.3	NT		
14%	4	28	1.00	121.6	12.2	121.3	12.3	NT		
	5	28	0.84	121.6	12.2	123.4	10.3	NT		
	6	28	0.84	121.6	12.2	123.5	10.3	NT		

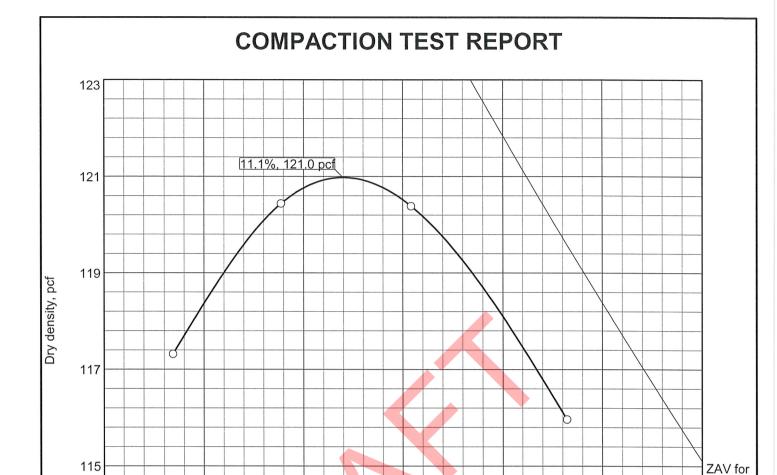
	Summary of Soil Cement Testing at 100% Compaction									
Cement Content	Samnia		Water / Cement Ratio	Max Density (pcf)	Optimum Test Moisture Sample Content Density (%) (pcf)		Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)		
			СР	14-IRC44-1	ΓP-518 LW-S	-2/5				
	1	7	0.81	121.0	11.1	122.2	9.9	1050		
	2	7	0.81	121.0	11.1	122.6	9.9	935		
	3	7	0.82	121.0	11.1	122.2	10.1	1000		
14%	4	28	0.82	121.0	11.1	121.9	10.1	NT		
	5	28	0.81	121.0	11.1	122.2	9.9	NT		
	6	28	0.81	121.0	11.1	122.0	9.9	NT		
			CP1	14-IRC44-T	P-518 LW-C-	5/11				
	1	7	0.77	126.2	10.3	127.0	9.5	NT		
	2	7	0.77	126.2	10.3	127.3	9.5	NT		
14%	3	7	1.08	126.2	10.3	122.6	13.3	NT		
	4	28	1.08	126.2	10.3	122.6	13.3	NT		
	5	28	0.81	126.2	10.3	126.4	9.9	NT		
	6	28	0.81	126.2	10.3	126.5	9.9	NT		


	Summary of Soil Cement Testing at 100% Compaction									
Cement Content	Sample	Age	Water / Cement Ratio	Max Density (pcf)	Optimum Test Moisture Sample Content Density (%) (pcf)		Test Sample Moisture Content (degrees)	Unconfined Compressive Strength (psi)		
			CP1	4-IRC44-T	P-518 MdW-	S-2/5				
	1	7	0.76	118.0	10.7	119.6	9.3	1110		
	2	7	0.76	118.0	10.7	119.2	9.3	1150		
	3	7	0.81	118.0	10.7	118.6	10.0	1190		
14%	4	28	0.81	118.0	10.7	118.7	10.0	NT		
	5	28	0.80	118.0	10.7	119.2	9.9	NT		
	6	28	0.80	118.0	10.7	119.2	9.9	NT		
			CP1	4-IRC44-TF	2-518 MdW-C	-5/11				
	1	7	0.76	123.6	10.4	124.1	9.3	1140		
	2	7	0.76	123.6	10.4	124.1	9.3	1215		
14%	3	7	0.78	123.6	10.4	123.8	9.6	1265		
	4	28	0.78	123.6	10.4	124.4	9.6	NT		
	5	28	0.77	123.6	10.4	124.3	9.5	NT		
	6	28	0.77	123.6	10.4	124.6	9.5	NT		

Summary of Soil Cement Testing at 95% Compaction								
-	PSI*							
Test Pit No.		1	2	3	AVG.*			
TP-518	UW-S-2/5							
TP-518	LW-S-2/5	905	800	935	880			
TP-518	MdW-S-2/5	1360	945	1355	1220			
TP-518	UW-C-5/11							
TP-518	LW-C-5/11							
TP-518	MdW-C-5/11				-			

^{*} Testing still in progress

COMPACTION TEST REPORT



Test specification: ASTM D 698-07 Method A Standard

Elev/	Classification		Nat.	Sp.G.	1.1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	Pi	#4	No.200
2.0'- 5.0'	SP-SM	A-3			NP	NP	0.0	9.7

TEST RESULT	N	MATERIAL DESCRIPTION						
Maximum dry density = 116.5 pcf				SAND, poorly-graded with silt, mostly fine medium-grained sand sized quartz, few sil				
Optimum moisture = 12.6 %								
Project No. 6734149799 Client: USACE	Remarks:							
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V								
○ Location: CP14-IRC44-TP-518 Sample I								
AMEC E&								
Jacksonville, F			Figure					

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

Test specification: ASTM D 698-07 Method A Standard

113 _____ 7.5

Elev/	Classit	fication	Nat.	Sn C	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	ГІ	#4	No.200
2.0'- 5.0'	SP-SM	A-3			NP	NP	0.0	7.6

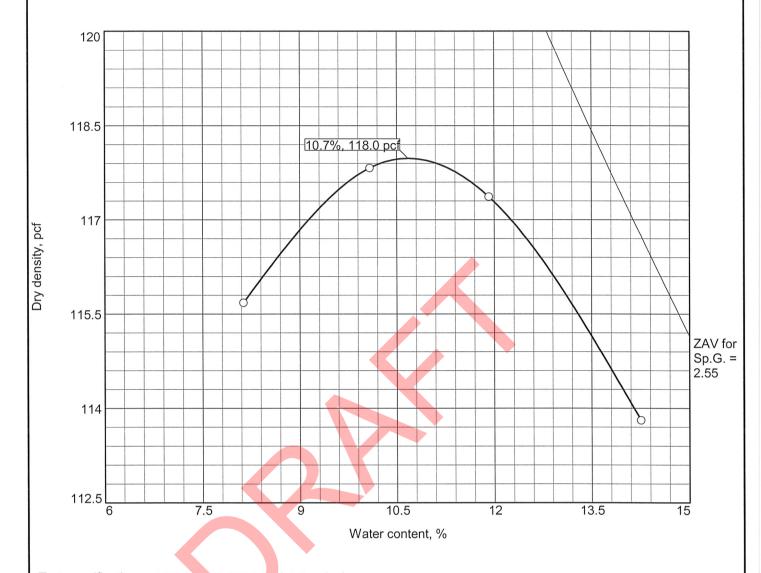
12

Water content, %

13.5

15

Sp.G. = 2.65


16.5

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 121.0 pcf	SAND, poorly-graded with silt, mostly fine medium-grained sand-sized quartz, few sil
Optimum moisture = 11.1 %	
Project No. 6734149799 Client: USACE	Remarks:
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V	
○ Location: CP14-IRC44-TP-518 Sample Number: LW-S-2/5 AMEC E&I	
AIVIEC EQI	
Jacksonville, Florida	Figure

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

10.5

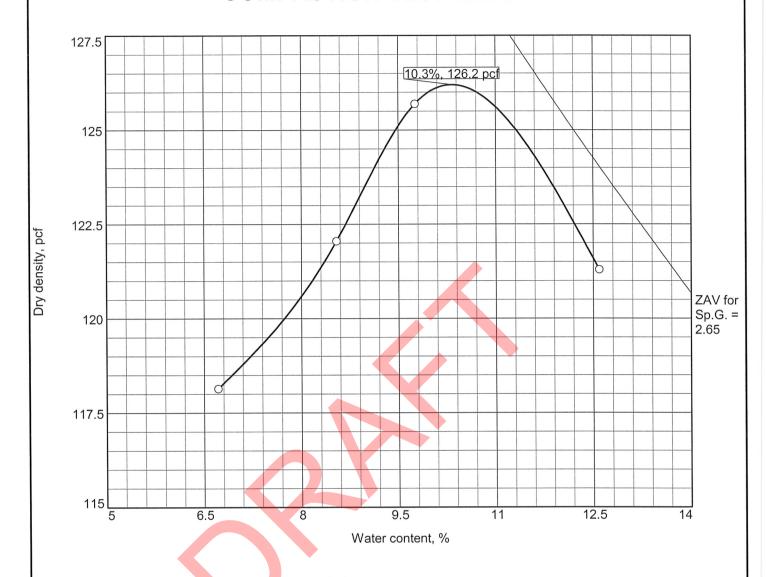
COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classit	fication	Nat.	Sp.G.	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	3ρ.G.	LL PI		#4	No.200
2.0'- 5.0'	SP	A-3			NP	NP	0.0	3.3

			L				<u> </u>		
	Т	EST RESULTS			N.	IATERIAL	DESCRIPT	TION	
Maximu	m dry density = 118.0	pcf			SAND, poorly-graded, mostly fine t medium-grained sand sized quartz, trace				
Optimur	m moisture = 10.7 %								
Project N	lo. 6734149799 Client:	USACE			Remarks:				
Project:	C-44 RSTA Contract 2 Ge	otechnical Investigation - I	Phase V						
○ Locatio	n: CP14-IRC44-TP-518	Sample Number: N	/IdW-S-2/5						
		AMEC E&I		•					
	Jack	sonville, Florida					Figure		

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

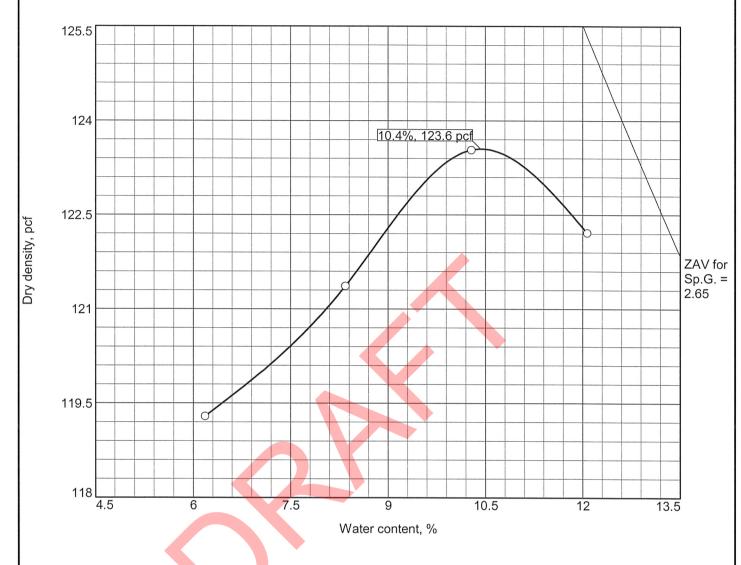

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classi	fication	Nat.	S= C		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SC	A-2-4(0)			22	8	14.9	14.8

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 121.6 pcf	SAND, clayey, mostly fine to medium- grained sand-sized quartz, some sand to
Optimum moisture = 12.2 %	gravel-sized limestone, little clay, trace shell
Project No. 6734149799 Client: USACE	Remarks:
Project: C-44 RSTA Contract 2 Geotechnical Investigation - Phase V	
○ Location: CP14-IRC44-TP-518 Sample Number: UW-C-5/11	
AMEC E&I	
Jacksonville, Florida	Figure

Tested By: J. Tarpley Checked By: Stephanie Setser, P.E.

COMPACTION TEST REPORT


Test specification: ASTM D 698-07 Method A Standard

Elev/	Classit	fication	Nat.	Sp.G.	1.1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	3ρ.G.	LL	FI	#4	No.200
5.0'- 11.0'	SP-SM	A-1-b			NV	NP	15.1	6.2

		L					
	TEST RESULTS		N	IATERIAL	DESCRIP	TION	
Maximum dry density = 126.	2 pcf		SAND, poorly graded with silt, mostly f medium-grained sand-sized quartz, some				
Optimum moisture = 10.3 %			to gravel-sized limestone, trace shell, tra				
Project No. 6734149799 Clien	t: USACE		Remark	Remarks:			
Project: C-44 RSTA Contract 2 C	Geotechnical Investigation -	Phase V					
○ Location: CP14-IRC44-TP-518	Sample Number: I	.W-C-5/11					
	AMEC E&I						
Jac	ksonville, Florida				Figure		

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

COMPACTION TEST REPORT

Test specification: ASTM D 698-07 Method A Standard

Elev/	Classit	fication	Nat.	S= C	1.1	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
5.0'- 11.0'	SP	A-1-b			NV	NP	25.4	2.6

	Т	EST RESULTS			l N	MATERIAL DESCRIPTION					
Maximu	m dry density = 123.6		SAND, poorly-graded, mostly fine to medium-grained sand-sized quartz, some san								
Optimu	m moisture = 10.4 %		to gravel-sized limestone, trace silt								
Project N	lo. 6734149799 Client:	USACE			Remark	Remarks:					
Project:	C-44 RSTA Contract 2 Ge	eotechnical Investigation - I	Phase V								
o Locatio	n: CP14-IRC44-TP-518	Sample Number: N	/IdW-C-5/11								
		AMEC E&I									
	Jack	sonville, Florida					Figure				

Tested By: A. Coleman Checked By: Stephanie Setser, P.E.

Summary of Wet/Dry and Freeze/Thaw Testing CP14-IRC44-TP-518 UW-S-2/5 **Test Type** Cement Water/ Max **Optimum Initial Test Initial Test Final Test Final Test Final Loss** Content **Cement Ratio Density** Moisture Sample Sample Sample Sample (%) (%) (pcf) Content Density **Moisture Moisture Density** (%) (pcf) Content (pcf) Content (%) (%) 116.5 12.60 NT NT 119.5 9.5 0.80 Wetting and 14 **Drying** NT 0.80 116.5 12.60 119.8 9.5 NT 12.60 NT NT 116.5 119.9 9.3 0.79 Freezing and 14 **Thawing** 0.79 116.5 9.3 NT NT 12.60 119.4 CP14-IRC44-TP-518 UW-C-5/11 Test Type Water/ Initial Test **Final Test Final Test** Final Loss **Optimum** Cement Max **Initial Test Cement Ratio** Moisture Content **Density** Sample Sample Sample Sample (%) Moisture (%) (pcf) Content Density **Density Moisture** (%) (pcf) Content (pcf) Content (%) (%) NT 121.6 12.20 119.3 13.9 NT 1.15 Wetting and 14 **Drying** 119.3 14.2 NT NT 1.18 121.6 12.20 122.2 12.20 11.5 NT NT 121.6 0.95 Freezing and 14 Thawing 0.95 121.6 12.20 122.3 11.5 NT NT

^{*}NT: Not tested as of date of report preparation.

		5	Summary of	Wet/Dry and	d Freeze/Tha	w Testing							
	CP14-IRC44-TP-518 LW-S-2/5												
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)				
Wetting and	14	0.86	121.0	11.10	121.2	10.5	130.8	0.0					
Drying	'-	0.86	121.0	11.10	121.7	10.5	130.1	0.0					
Freezing and	14	0.84	121.0	11.10	121.5	10.2	NT	NT					
Thawing	''	0.84	121.0	11.10	121.9	10.2	NT	NT					
	1		CP14	-IRC44-TP-5	18 LW-C-5/1	1			<u> </u>				
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)				
Wetting and	14	0.85	126.2	10.30	126.9	9.6	NT	NT					
Drying	'4	0.85	126.2	10.30	127.0	9.6	NT	NT					
Freezing and	14	0.79	126.2	10.30	125.6	10.3	NT	NT					
Thawing	14	0.79	126.2	10.30	125.6	10.3	NT	NT					

NT: Not tested as of date of report preparation.

		5	Summary of	Wet/Dry and	l Freeze/Tha	w Testing			
			CP14	-IRC44-TP-5	18 MdW-S-2/	/5			
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.80	118.0	10.70	119.2	10.0	NT	NT	
Drying	14	0.80	118.0	10.70	119.2	10.0	NT	NT	
Freezing and	d ₁₄	0.82	118.0	10.70	118.7	10.2	NT	NT	
Thawing		0.82	118.0	10.70	118.9	10.2	NT	NT	
			CP14-	IRC44-TP-51	8 MdW-C-5/	11			<u> </u>
Test Type	Cement Content (%)	Water/ Cement Ratio	Max Density (pcf)	Optimum Moisture Content (%)	Initial Test Sample Density (pcf)	Initial Test Sample Moisture Content (%)	Final Test Sample Density (pcf)	Final Test Sample Moisture Content (%)	Final Loss (%)
Wetting and	14	0.79	123.6	10.40	124.8	9.3	NT	NT	
Drying	14	0.79	123.6	10.40	125.1	9.3	NT	NT	
Freezing and	14	0.77	123.6	10.40	124.2	9.6	NT	NT	
Thawing	14	0.77	123.6	10.40	124.5	9.6	NT	NT	

NT: Not tested as of date of report preparation.

Summary of Sand Cleanliness and Sand Equivalent Testing						
Sample Depth Range (feet)	Sample No.	Trial No.	Clay Reading	Sand Reading	Sand Equivalent (%)	Average Sand Equivalent (%)
	CF	14-IRC44	-TP-518	•	•	•
2-5	UW-S-2/5	1	14.5	1.7	12	13
		2	14.5	1.8	13	
		3	14.6	1.9	13	
	LW-S-2/5	1	11.2	2.9	26	26
		2	12.0	3.0	25	
		3	11.7	3.1	27	
	MdW-S-2/5	1	13.5	3.7	28	28
		2	13.5	3.6	27	
		3	13.4	3.7	28	
5-11	UW-C-5/11	1	14.8	2.3	16	18
		2	14.1	2.7	20	
		3	14.3	2.6	19	
	LW-C-5/11	1	13.0	3.6	28	27
		2	12.8	3.4	27	
		3	12.7	3.4	27	
	MdW-C-5/11	1	10.4	3.8	37	36
		2	10.4	3.7	36	
		3	10.6	3.7	35	


Test Pit 518 View SW – Site Preparation

Test Pit 518 View S - Excavation

Test Pit 518 View E – Depth Measurement

Test Pit 518 View E – Depth Measurement

Test Pit 518 View S

Test Pit 518 View E

Test Pit 518 View N

Test Pit 518 View W

Test Pit 518 View NW – Sampling and Staging Area

Test Pit 518 View S – Backfilled Condition