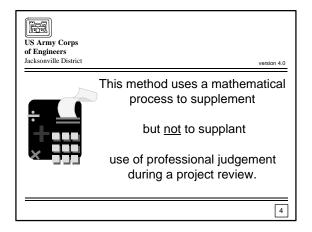
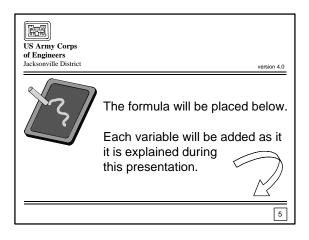


US Army Corps of Engineers Jacksonville District

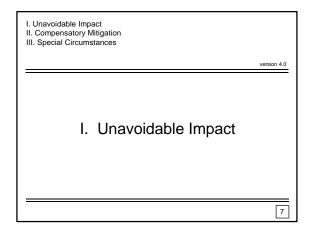
U E m w se

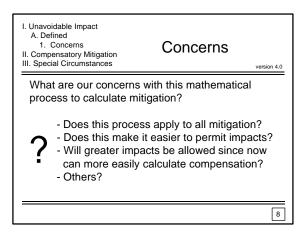

Under the U.S. Army Corps of Engineers Regulatory Program, mitigation is necessary to offset wetland impacts and/or to secondary or cumulative impacts.

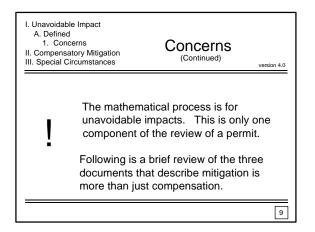
US Army Corps of Engineers Jacksonville District version 4.0 This presentation describes a method that has been developed to be used during a permit review to determine if a proposed mitigation plan is sufficient to offset impacts.

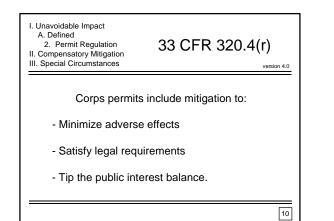

3

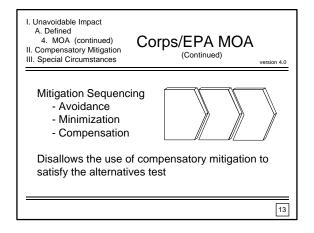

version 4.0

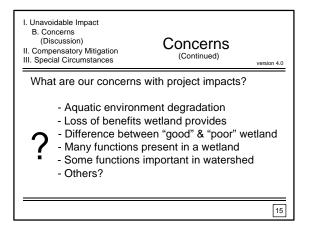

2

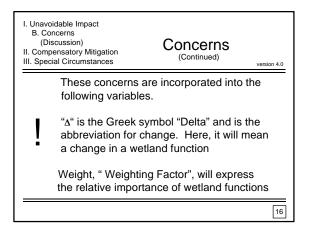


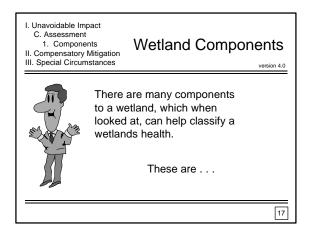


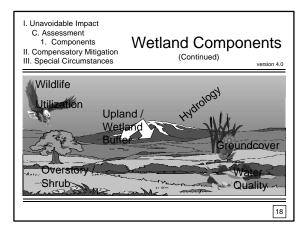


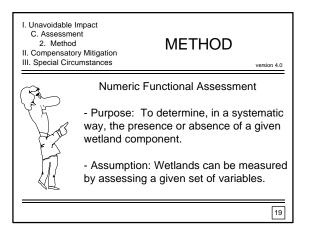


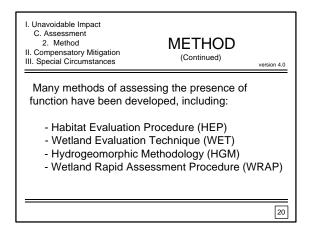

I. Unavoidable Impact A. Defined 3. 404(b)(1) II. Compensatory Mitigation III. Special Circumstances	404(b)(1) Guidelines
permitted if there is	ould have less adverse impact
must "include all app	 (iii) The proposed discharge propriate and practicable ze potential harm to the aquatic
	11

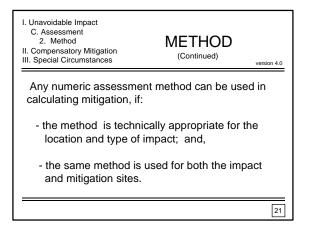

I. Unavoidable Impact A. Defined 4. MOA II. Compensatory Mitigation III. Special Circumstances	Corps/EPA MOA
	SS oss of values and functions" es will occur in some cases
	n-kind y margin (prefer restoration) reage replacement may be a
	12




I. Unavoidable Impact B. Concerns (Discussion) II. Compensatory Mitigation III. Special Circumstances	Concerns	version 4.0
After the applicant and discussing the avoidand aspects of the project, the discuss the compensate impacts	ce and minimization then they are ready to	ı



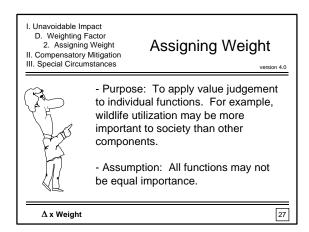




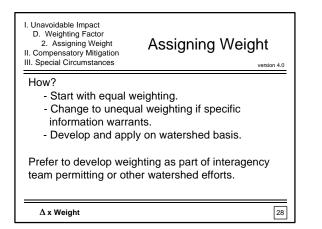
I. Unavoidable Impact C. Assessment 2. Method II. Compensatory Mitigation III. Special Circumstances	METHOD (Continued)	version 4.0
Federal Agencies are dev throughout United States. District has adopted WRA	In interim, Jackson	
An applicant is not require inclusion of WRAP or ano expedite the Corps' evalu	ther assessment wo	ould
Now, we will use WRAP to	o assess the impact	site

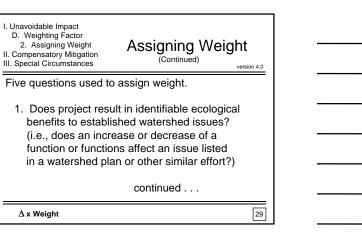
I. Unavoidable Impact C. Assessment 3. WRAP II. Compensatory Mitigation III. Special Circumstances	WRAP
The existing condition: U from 0 to 3 for each of th impact site as it exists to	
	Overstory - Ground Cover jy - Water Quality Input
	<u>n</u> : For a typical impact, the eliminated. Therefore the omponent will be 0.
	23

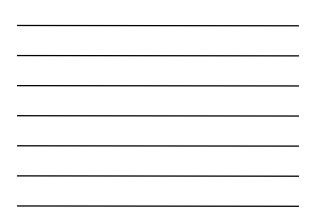
11.	Unavoidable C. Assessn 3. WRA . Compensat I. Special Cir	nent P tory Mitigatio		(Continued)			version 4.0
	Now calc	ulate the	e impact	site's o	change	e in funct	ions.
		Wildlife Utilization	Overstory	Ground Cover	Buffer	Hydrology	Water Quality
	Existing Condition	0 to 3	0 to 3	0 to 3	0 to 3	0 to 3	0 to 3
	With- Project	0	0	0	0	0	0
I	Difference	Δ	Δ	Δ	Δ	Δ	Δ
	This defi	nes the f	irst varia	able of	the eq	uation. S	2
	Δ						24

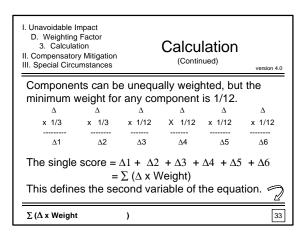


I. Unavoidable II C. Assessme 3. WRAP II. Compensator III. Special Circu	nt y Mitigation	WRAP (Continued)			version 4.0
We have s	ix separa	te "acco	ounts" to	keep trad	ck of!
Wildlife	Overstory	Ground	Buffer	Hydrology	Water
Utilization		Cover			Quality
Δ	Δ	Δ	Δ	Δ	Δ
WRAP scc each Δ by This is so t $\Delta/3$ Δ	3 so tha	it the nu be multi	mbers ra	ange from	n 0 to 1.
Δ					25




	I. Unavoidable Ir D. Weighting 1. How Co II. Compensator III. Special Circu	Factor mbine? y Mitigation	Н	ow Co	ombine	ersion 4.0	0
-	Wildlife Utilization	Overstory	Ground Cover	Buffer	Hydrology	Water Quality	-
	Δ	Δ	Δ	Δ	Δ	Δ	
	We will con score by m		each b	y a Weig	hting Fa	ctor.	
	Δ1	Δ2	Δ3	Δ4	Δ5	Δ6	
	Δ x Weight					26	ŝ


I. Unavoidable Impact D. Weighting Factor 2. Assigning Weight II. Compensatory Mitigation III. Special Circumstances	Assigning Weight (Continued) version 4.0	
adjacent lands/wate (e.g., is any functio	t in identifiable benefits to ers of regional importance? n particularly important to nt downstream waters?)	
Improves status of Federal and/or State listed threatened, endangered or candidate species?		
C	ontinued	
Δ x Weight	30	

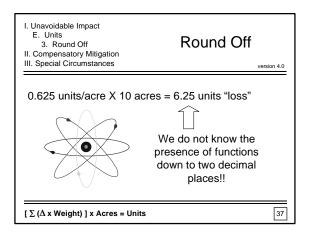


I. Unavoidable Impact D. Weighting Factor 2. Assigning Weight II. Compensatory Mitigation III. Special Circumstances	Assigning Weight (Continued) version 4.0
region? (e.g., will	nusual, unique or rare in restoration or impact affect nctions that have been
5. Special Considera	ations?
Δ x Weight	31

I. Unavoidable Impact D. Weighting Factor 3. Calculation II. Compensatory Mitigation III. Special Circumstances Calculation (Continued)		version 4.0
	+ Weight4 + Weight5 + Weight	
Δ Δ x 1/6 x 1/6 x	$\begin{array}{cccc} \Delta & \Delta & \Delta \\ 1/6 & x & 1/6 & x & 1/6 \end{array}$	Δ x 1/6
Δ1 Δ2	Δ3 Δ4 Δ5	Δ6
Δ x Weight		32

I. Unavoidable Impact E. Units 1. Units per Acre II. Compensatory Mitigation III. Special Circumstances
 The use of this equation at this point will result in the calculation of the "Units per Acre" These units relate to presence of function
 This represents the change, per acre, of the presence of function resulting from the mitigation or impact activities.
Σ (Δ x Weight) = Units per Acre 34

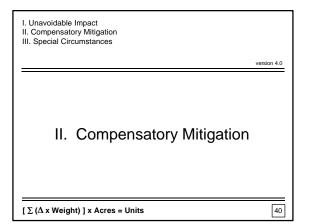
_

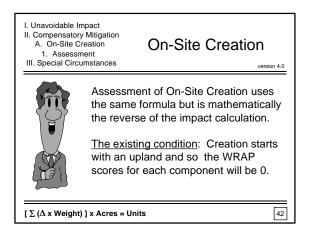


I	I. Unavoidable Impact E. Units 1. Units per Acre II. Compensatory Mitigation III. Special Circumstances Units per Acre (Continued)						
_	Here is an e	xample	e calcula	ation fo	r an ir	npact s	ite.
			Overstor				
	Existing Conditio	n 1.5	1.5	2.5	2.5	3.0	2.5
	With-project	0	0	0	0	0	0
	Δ	1.5					
	∆ divided by 3	1.5/3	1.5/3	2.5/3	2.5/3	3.0/3	2.5/3
	X Weight Factor	x 1/3	X 1/ 3	x 1/12	x1/12	x 1/12	x 1/12
	$(\Delta x Weight) =$	1.5/9	1.5/9	2.5 / 36	2.5 / 36	3.0/36	2.5 / 36
	Σ (Δ x Weigl	ht) = 22.5	/ 36 = 0.62	25 Units	per Acre	
	Σ (Δ x Weight)	= Units	per Acre				35

_	

I. Unavoidable Impact E. Units 2. Calculation II. Compensatory Mitigation III. Special Circumstances	Units
Multiplying the Units per acres over which the ac total number of units of functions resulting from 0.625 units/acre X 10 a	tivity occurs results in the 'loss" in the presence of the proposed impact.
[Σ (Δ x Weight)] x Acres = Units	36



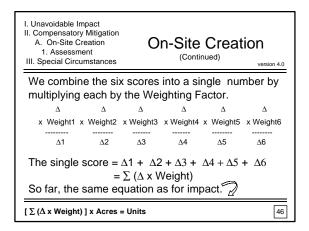


I. Unavoidable Impact E. Units 3. Round Off II. Compensatory Mitigation III. Special Circumstances	n 4.0		
Retain three decimal places to preserve accuracy a the Δ is multiplied several times within the formula			
Round the resulting number of units to the nearest integer, except for special circumstances (such as for an exceptionally large or small acreage project)			
0.625 units/acre X 10 acres = 6.25 6 units "loss"			
[Σ (Δ x Weight)] x Acres = Units	38		

I. Unavoidable Impact II. Compensatory Mitigation III. Special Circumstances	Next
Compensatory mitigation implemented to replace	0
[Σ (Δ x Weight)] x Acres = Units	39

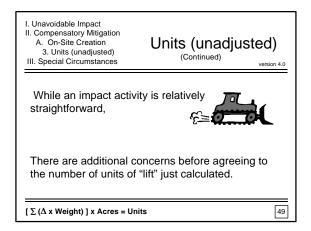
I. Unavoidable Impact II. Compensatory Mitigation III. Special Circumstances	Next	version 4.0	
There are many ways to	provide compensat	ory	
mitigation. One way is to create a replacement			
wetland.	F		
Now we will calculate the number of units provided by this newly created wetland			
[Σ (Δ x Weight)] x Acres = Units		41	

I. Unavoidable II. Compensat A. On-Site 1. Asses III. Special Ci	tory Mitigation Creation sment	On-Site Creation (Continued) version 4.0	
	WRAP to as each of the site as it is e Note that for may require	<u>oject condition</u> : Next, use ssign a score from 0 to 3 for six components at the creation expected to be at full maturity. r forested systems, the permit a final monitoring report at year naturity may not occur until long	
[Σ (Δ x Weight)] x Acres = Units 43			



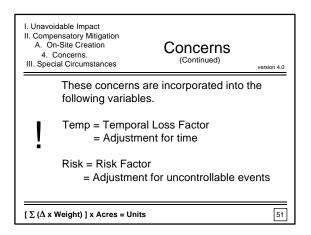
I. Unavoidable Impact II. Compensatory Mitigation A. On-Site Creation 1. Assessment III. Special Circumstances On-Site Creation (Continued)	-			
<u>Full Maturity</u> : The plant community when it has the maximum presence of functions given its landscape position. Forested canopy may not reach full maturity until 40 years or more.				
<u>Success Criteria</u> : The plant community at the point it has "proven" the success of the construction and is expected to continue maturing. This is the final permit monitoring report, usually at 3 to 5 years.				
[Σ (Δ x Weight)] x Acres = Units [44]				

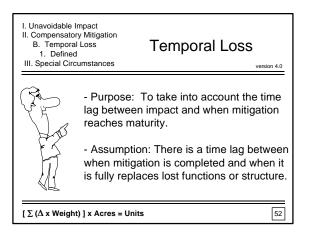
I. Unavoidable Impact II. Compensatory Mitigation A. On-Site Creation 1. Assessment III. Special Circumstances On-Site Creation (Continued)				N version 4.0		
Now calcu		Overstory			s created Hydrology	
Existing Condition With-	0	0	0	0	0	0
Project	0 to 3	0 to 3	0 to 3	0 to 3	0 to 3	0 to 3
Difference Adjust WRAP	Δ Δ/3	Δ Δ/3	Δ Δ/3	$\Delta \Delta / 3$	Δ Δ/3	Δ Δ/3
	Δ	Δ	Δ	Δ	Δ	Δ
$\Sigma (\Delta x \text{ Weight})] x \text{ Acres = Units}$						



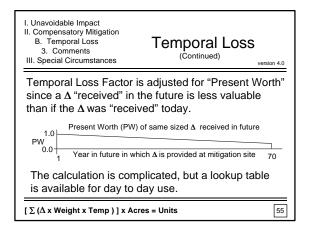

I. Unavoidable Impact II. Compensatory Mitiga A. On-Site Creation 2. Units per Acre III. Special Circumstan		Units	s pei	⁻ Acre	version 4.0
	llife Overstor	y Ground			Water
Utiliz Existing Condition (ation 0 0	Cover 0	0	0	Quality 0
With-project 2	-	2.5	0.5	2.0	2.0
Δ 2.	5 2.5	2.5	0.5	2.0	2.0
∆ divided by 3 2.5 /	3 2.5/3	2.5/3	0.5/3	2.0/3	2.0/3
X Weight Factor x 1/3	3 X 1/ 3	x 1/12	x1/12	x 1/12	x 1/12
$(\Delta x \text{ Weight}) = 2.5 / \Sigma (\Delta x W$	9 2.5 / 9 /eight) = 27.0				2.0 / 36
[Σ (Δ x Weight)] =	Units per Acr	e			47

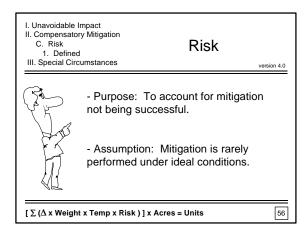
I. Unavoidable Impact II. Compensatory Mitigation A. On-Site Creation 3. Units (unadjusted) III. Special Circumstances	Units (unadjusted)		
acres that will be creat units of "lift" representin	er Acre by the number of ed will provide the number of ig the increase in the presence om the creation of the wetland.		
0.750 units/acre X 20 acres = 15 units "lift" (unadjusted) (unadjusted) The equation is still the same as for impact. But .			
[Σ (Δ x Weight)] x Acres = Units 48			



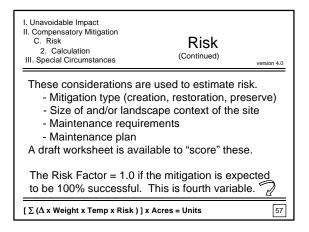


I. Unavoidable Impact II. Compensatory Mitigation A. On-Site Creation 4. Concerns. III. Special Circumstances	
- Some functions r - Events outside o affect full maturit	npact and full maturity mature sooner than others. f control of manager could y e foot of the created
[$\sum (\Delta x \text{ Weight})$] x Acres = Units	50




I. Unavoidable Impact II. Compensatory Mitigation B. Temporal Loss 2. Calculation III. Special Circumstances	Temporal Loss	version 4.0
This graph shows the W	RAP score as site mat	
1 Maturity	Years	70
This would be the grap	h with 'instant' maturity.	
0% +	Years	70
The Temporal Factor is area of the top graph divided by the bottom graph. This is third variable.		
[Σ (Δ x Weight x Temp)] x Acro	es = Units	53

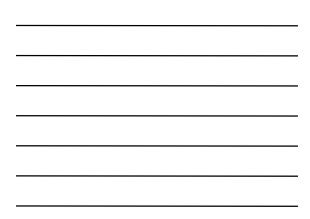
I. Unavoidable Impact II. Compensatory Mitigation B. Temporal Loss 3. Comments III. Special Circumstances	Temporal Loss (Continued) version 4.0	
	ctor allows mitigation that e counted as compensation.	
- The number of years for a plant community to reach maturity is based on local experience and literature. Also varies depending on climate, planting techniques & etc. Will generally be standardized within a region.		
[Σ (Δ x Weight x Temp)] x Acre	es = Units 54	



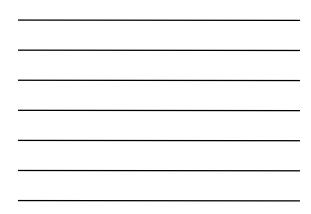


I. Unavoidable Impact II. Compensatory Mitigation C. Risk 3. Comments III. Special Circumstances	Ris (Continue			
	- The Risk Factor is related to the Temporal Loss Factor as the type of mitigation is varied.			
	Temporal	Risk		
Creation	Long	High		
Restoration	Short	Moderate		
Preservation	n.a.	Low		
- The administrative constraints on mitigation banks tend to reduce risk to nil (that is, 100% success).				
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres = Units 58				

I. Unavoidable Impact II. Compensatory Mitigation D. Temp & Risk 1. Calculation III. Special Circumstances	Temp & Risk
Note that Temp and Risk Factors are applied to each wetland "account" individually.	
 Some wetland functions mature earlier than others, e.g., hydrology could be fully established sooner than full maturity of the tree saplings. 	
 Some types of work is lest by outside influences, e.g. from installing a ditch bloc restoration of wildlife habit 	., hydrology restored k has less risk than
[Σ (Δ x Weight x Temp x Risk)] x	Acres = Units 59


I. Unavoidable Impact II. Compensatory Mitigation D. Temp & Risk 2. Units per Acre III. Special Circumstances	Units per Acre
	e for each account that we
calculated earlier for the e	example creation site. Now
we will modify these with	
	Ground Buffer Hydrology Water
Utilization	Cover Quality
	2.5/36 0.5/36 2.0/36 2.0/36
X Temp Factor x 0.4137 x 0.3312	x0.9324 x 0.9624 x0.9624 x0.9624
X Risk Factor x 0.67 x 0.67	x0.73 x 0.67 x0.67 x0.67
units per acre = 0.077 0.061	
[Σ (Δ x Weight x Temp x Ri	sk)] = 0.266 Units per Acre
[Σ (Δ x Weight x Temp x Risk)] =	Units per acre 60

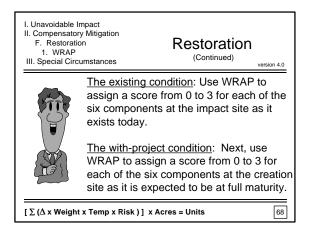
I. Unavoidable Impact II. Compensatory Mitigation D. Temp & Risk 2. Units per Acre III. Special Circumstances	Units per Acre (Continued)	
The Temp Factor for three of the accounts is 0.9654. - 0.9654 read from the lookup table for 3 years - 3 years based on estimate when the hydrology, buffer, and water quality functions will mature.		
The Temp Factor for overstory is 0.3312. - 0.3312 read from the lookup table for 41 years. - 41 years is estimated maturity of saplings.		
$[\Sigma (\Delta x \text{ Weight x Temp x Risk })] = \text{Units per acre}$		


I. Unavoidable Impact II. Compensatory Mitigation D. Temp & Risk 2. Units per Acre III. Special Circumstances	Units per Acre (Continued)	
The Risk Factors were all high because: - This example creation site is small - The example site will be surrounded by homes - Natural sheetflow is replaced by drainage system		
A worksheet could be used to mathematically score the risk or could use experience from other sites.		
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] = Units per acre		

	I. Unavoidable Impact II. Compensatory Mitigation D. Temp & Risk 3. Units III. Special Circumstances	Units	ersion 4.0
	acres that will be create units of "lift". This is the	er Acre by the number of ed will provide the numbe e increase in the presenc om the creation of the we	е
	0.266 units/acre X 20 acres = 5-32 ⁵ units "lift"		
Now we will compare this to impact site			
	[Σ (Δ x Weight x Temp x Risk)] x Acres = Units	63

I. Unavoidable Impact II. Compensatory Mitigation E. Project Total 1. Compare III. Special Circumstances	Project Total	
For the impact site: 0.625 units/acre X 10 acres = 6.25 6 units "loss"		
For the creation site: 0.266 units/acre X 20 acres = 5.32 ⁵ units "lift"		
The proposed project will result in a net change in the presence of functions: Net = (6 units "loss") - (5 units "lift") = 1 unit "loss"		
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres = Units 64		

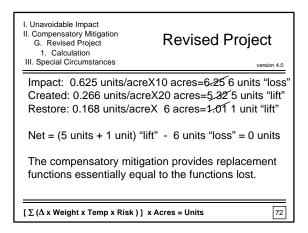
I. Unavoidable Impact II. Compensatory Mitigation E. Project Total 2. Adjust III. Special Circumstances	Project Total (Continued) version 4.0	
Created: 0.266 units/acre	X10 acres=6.25 6 units "loss" eX20 acres=5.32 5 units "lift" i units "lift") = 1 unit "loss"	
If the quantity of lift equals the loss, then the project is assumed to provide sufficient compensatory mitigation, subject to common sense (for example, creation of mangrove does not compensate for impacts to cypress).		
[Σ (Δ x Weight x Temp x Risk)] x Acres = Units 65		



I. Unavoidable Impact II. Compensatory Mitigation E. Project Total 2. Adjust III. Special Circumstances	Project Total (Continued) version 4.0	
Impact: 0.625 units/acreX10 acres=6.25 6 units "loss" Created: 0.266 units/acreX20 acres=5.32 5 units "lift" Net = (6 units "loss") - (5 units "lift") = 1 unit "loss"		
Options to bring the Net to zero: - Adjust number of acres - Change management of work to reduce risk or other variable - Add another mitigation location		
[Σ(Δ x Weight x Temp x Risk)] x Acres = Units 66		

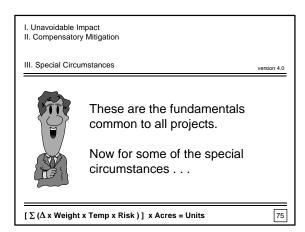
I. Unavoidable Impact II. Compensatory Mitigation E. Project Total 2. Adjust III. Special Circumstances	Project Total (Continued) version 4.0		
Created: 0.266 units/ac	eX10 acres=6-25 6 units "loss" reX20 acres=5-32 5 units "lift" (5 units "lift") = 1 unit "loss"		
For our example, we will add another mitigation location to the project. However, instead of creating a wetland, we will restore an existing wetland.			
 [Σ(Δ x Weight x Temp x Risk))	x Acres = Units 67		

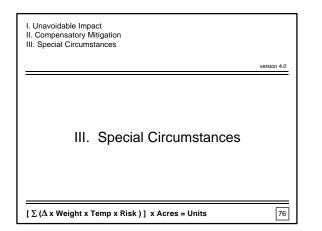
I. Unavoidable Impact II. Compensatory Mitigation F. Restoration 1. WRAP III. Special Circumstances		Restora (Continue		
	Note the WRAP scores to calculate Δ vary depending on the type of activity.			
		Existing Condition	With-Project	
a Via	Impact	0 to 3	0	
	Creation	0	0 to 3	
	Restoration	0 to 3	larger 0 to 3	
The formula is the same for each type of activity!				
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres = Units 69				

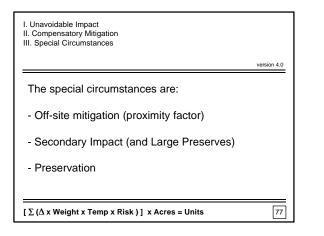


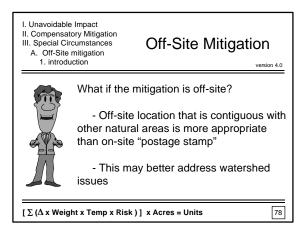
I. Unavoidable Im II. Compensatory F. Restoration 2. Units III. Special Circur	Mitigation			Unit	S	version 4.0
Sample calo	culatio	n for ou	r restor	ation s	ite.	
	Wildlife Utilizatio	Oversto	ry Ground Cover	Buffer	Hydrology	Quality
Existing Condition		0.5	1.0	0.5	2.0	2.0
With-project	2.5	2.5	2.5	2.0	2.5	2.5
Δ	1.5		1.5			
∆ divided by 3					0.5/3	
X Weight Factor	x 1/3	X 1/ 3	x 1/12	x1/12	x 1/12	x 1/12
$(\Delta x Weight) =$	1.5/9	2.0/9	1.5 / 36	1.5 / 36	0.5 / 36	0.5 / 36
			Contir	nued n	ext pag	je
[Σ (Δ x Weight x	Temp x	Risk)] x	Acres =	Units		70

I. Unavoidable Impact II. Compensatory Mitigation F. Restoration 2. Units III. Special Circumstances	(Continued)	version 4.0
Continued		
Wildlife Utilization		Water Quality
X Temp Factor x 0.4137 > X Risk Factor x 0.67 > 	x 0.3312 x 0.9324 x 0.9624 x 0.9624 x x 0.67 x	0.67
•	0.049 0.028 0.027 0.009 0. [emp x Risk)] = 0.168 Units per Acre	.009
0.168 units/acr	re X 6 acres = 1.01 units "lift"	
[Σ (Δ x Weight x Temp x F	Risk)] x Acres = Units	71

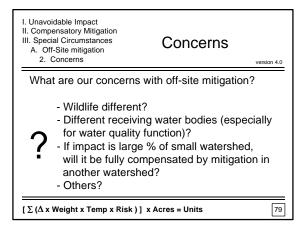


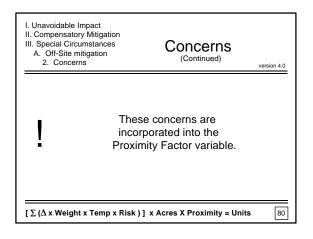


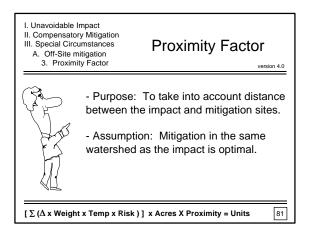

I. Unavoidable Impact II. Compensatory Mitigation G. Revised Project 2. Ratio III. Special Circumstances	Ratio			
	e this to the mitigation ratio is based on acres. "lift" / 10acres "loss" = 2.6:1			
$[\Sigma (\Delta x \text{ Weight x Temp x Risk })] \times \text{Acres = Units}$ $[73]$				

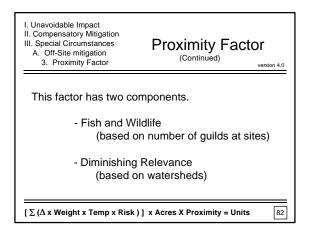


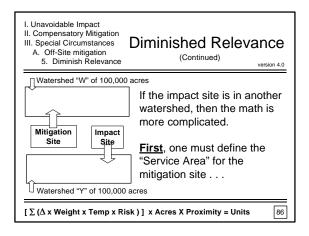
I. Unavoidable II. Compensato G. Revised 3. Tally Pe III. Special Circ	ry Mitigation Project olygon	Та	ally F	Polygo	N version 4.0	
Each activi	,	0		a "Polygo	n"	
A project is	subdivide	d into poly	gons.			
The mitigat	ion plan w	ill include a	tally c	f the poly	/gons.	
_			-		-	
Polygon D	escription	units/acre 2	X acres	s = units	type	
1 1	npact	0.625	10	6.256	"loss"	
2 0	reation	0.266	20	5.325	"lift"	
3 F	Restore	0.168	6	1.011	"lift"	
Net = (5 units + 1 unit) "lift" - 6 units "loss" = 0 units						
		,		-		
$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })] x \text{ Acres = Units}$ 74						
	-					



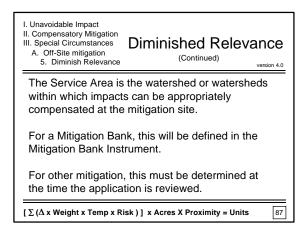


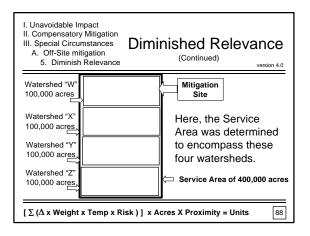




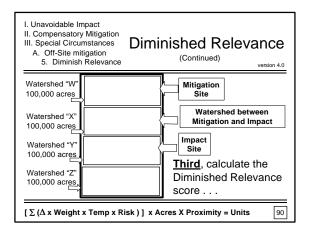

I. Unavoidable Impact II. Compensatory Mitigation III. Special Circumstances A. Off-Site mitigation 4. Fish & Wildlife	Fish & Wildlife
questions. Question A: Is the g	component is based on two juild represented at the impact r yes or no for each guild.
Neotropical Migrants Wading Birds Raptors Waterfowl Amphibians	Reptiles Freshwater Fish Small Mammals Large Mammals Invertebrates
[Σ (Δ x Weight x Temp x F	Risk)] x Acres X Proximity = Units 83

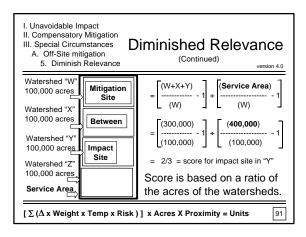
I. Unavoidable Impact II. Compensatory Mitigation III. Special Circumstances A. Off-Site mitigation 4. Fish & Wildlife		Fish & Wild	dlife	version 4.0		
Question B: D	oes le	ocatio	on of the mitigati	on re	ative	
			lity to mitigate th			
	A	В	,	A	В	
Neotropicals	no		Reptiles	yes	no	
Wading Birds	yes	yes	Freshwater Fish	yes	no	
Raptors	no		Small Mammals	yes	yes	
Waterfowl	yes	no	Large Mammals	no		
Amphibians	yes	no	Invertebrates	yes	no	
Fish & Wildlife Score = B yes's ÷ A yes's = 2 / 7						
[Σ (Δ x Weight x Te	[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres X Proximity = Units 84					

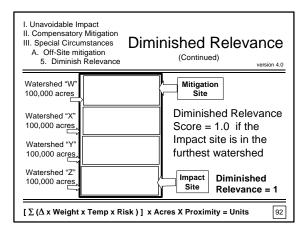


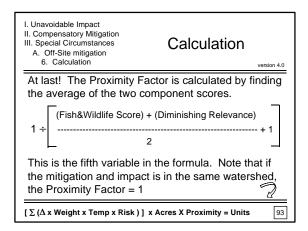


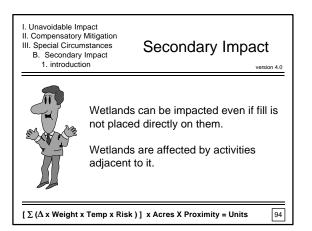


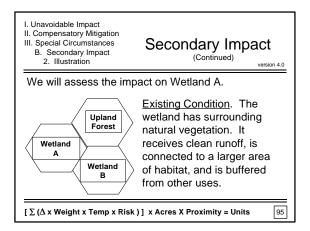


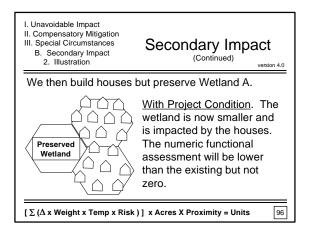


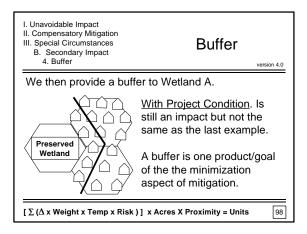


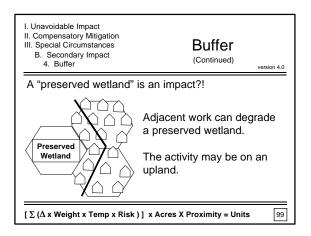


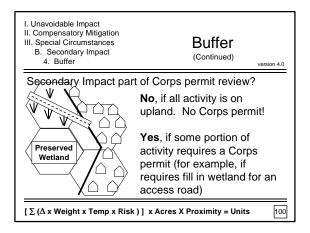


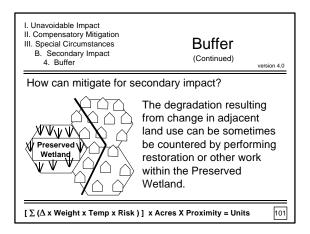


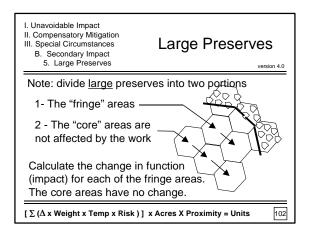


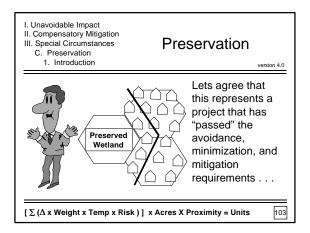


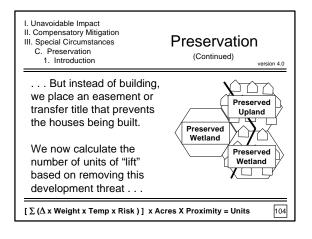


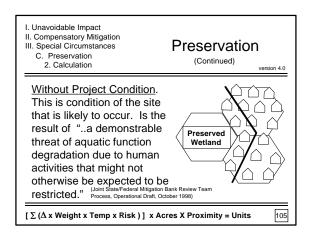

I. Unavoidable II. Compensate III. Special Cir B. Second 3. Comp	ory Mitigation cumstances ary Impact	Types of Ac	ctivities	
	We add one comparison	more type of ac table.	tivity to our	
		Existing Condition	With-Project	
	Impact	0 to 3	0	
¢,₩}≥	Creation	0	0 to 3	
F13	Restoration	0 to 3	larger 0 to 3	
	Secondary Impact	0 to 3	smaller 0 to 3	
[Σ (Δ x Weight x Temp x Risk)] x Acres X Proximity = Units [97]				

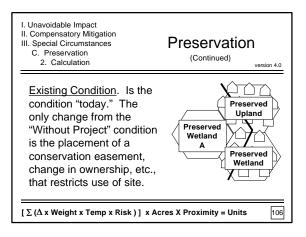


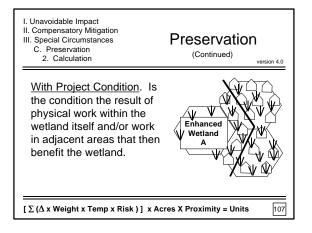


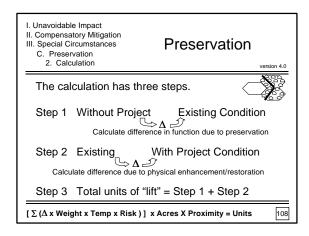


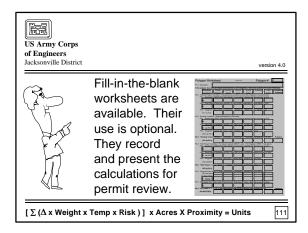


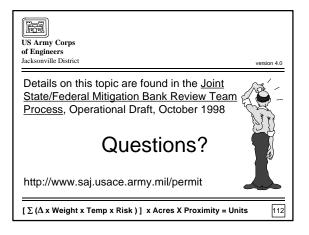











II. Compo III. Speci C. Pr	dable Impact ensatory Mitigation al Circumstances eservation Comparison	Types	of Ac	tivities		
Now add this to our comparison table.						
	5	Without Project	Existing	With-Project		
	Impact	Not applicable	0 to 3	0		
	Creation	Not applicable	0	0 to 3		
	Restoration	Not applicable	0 to 3	larger 0 to 3		
	Secondary Impact	Not applicable	0 to 3	smaller 0 to 3		
	Preservation	smaller 0 to 3	0 to 3	larger 0 to 3		
Ga 2						
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres x Proximity = Units 109						

II. Comp III. Spec C. P	idable Impact ensatory Mitigation ial Circumstances reservation Comparison	Types of Activities				
		Without Project	Existing	With-Project		
	Impact	Not applicable	0 to 3	0		
	Creation	Not applicable	0	0 to 3		
	Restoration	Not applicable	0 to 3	larger 0 to 3		
	Secondary Impact	Not applicable	0 to 3	smaller 0 to 3		
	Preservation	smaller 0 to 3	0 to 3	larger 0 to 3		
A preservation polygon $\begin{tabular}{c} \mathbb{A}_{Δ} & $						
[$\sum (\Delta x \text{ Weight } x \text{ Temp } x \text{ Risk })$] x Acres x Proximity = Units 110						

