APPENDIX A ENGINEERING APPENDIX

MT. SINAI MEDICAL CENTER, CONTINUTING AUTHORITIES PROGRAM (CAP) SECTION 14, PROJECT

DRAFT INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

September 2016

Engineering Appendix

For

Mount Sinai Medical Center

Miami Beach, Florida

Draft Integrated Feasibility Report

and Environmental Assessment

September 2016

US Army Corps of Engineers ® Jacksonville District

Engineering Division

Table of Contents

1.0	Purpose		4
2.0	Project	Background	4
2.1	Locatior	1	4
2.2	Existing	Conditions	5
2.3	Propose	ed Alternatives	6
2.4	Recomm	nended Plan	8
3.0	Geotech	nnical	10
3.1	History	of Existing Sea Wall	10
3.2	Historic	al Boring Data	11
3.3	Geology	/	12
	3.3.1	Regional Geology	12
3.4	Project	Specific Geotechnical Data	12
	3.4.1	Site-Specific Subsurface Conditions (Materials Encountered)	12
	3.4.2	Boring procedures notes	15
	3.4.3	Geotechnical Engineering data	16
	3.4.4	Laboratory testing	16
3.5	Prelima	nry Geotechnical Analyses	19
	3.5.1	Geotechnical Results - Engineering Parameters	19
	3.5.2	Recommendations	22
4.0	Coastal	Report	22
4.1	Site Cor	ditions	22
4.2	Descript	tion of Problem.	23
4.3	Water L	evels.	23
	4.3.1	Tides	23
	4.3.2	Datum Conversions	25
	4.3.3	Surge	25

4.3.4	Sea Level Rise	25
4.3.5	Calculation of SLR Rates	26
4.3.6	Bathymetric/Topographic Data	28

ATTACHMENTS

- Attachment A Geotechnical Addendum
- Attachment B Structural Addendum
- Attachment C Vertical Road Relocation

1.0 Purpose

The Purpose of this Engineering appendix is to discuss possible solutions to the seawall repair and overtopping conditions at Mount Sinai Medical Center, located in Miami Beach, Florida. This project was authorized under Section 14 of the Continuing Authorities Program (CAP). This appendix will include project background, geotechnical evaluations, coastal analysis, cost analysis, initial designs, and recommendations.

2.0 Project Background

2.1 Location

The project area is located in the City of Miami Beach, Florida, on a barrier island bordered to the east by the Atlantic Ocean and to the west by Biscayne Bay. The study area is the property of Mount Sinai Medical Center, located directly north of Julia Tuttle Causeway and extending approximately 0.57 miles along the bayside of the island, as shown in Figure 2.1.

2.2 Existing Conditions

The existing conditions of the project area include a parking lot, a perimeter road, and a perimeter seawall surrounding the seaward edge of the property. Mount Sinai Medical Center (MSMC) is the only hospital facility on the barrier island, making it a vital facility to the community as well as a critical staging area during disasters. A report entitled *Bulkhead Assessment, Mount Sinai Medical Complex, Miami Beach, Florida (2009, Bureau Veratis, Inc.)* found the existing seawall to be roughly 50 years old. The report indicated that portions of the seawall were in critical condition and would require immediate replacement. This facility is a private non-profit hospital and is considered eligible for this CAP Section 14 Emergency Streambank and Shoreline Erosion study in accordance with ER 1105-2-100 Planning Guidance Notebook published 22 April 2000.

The existing condition of the seawall is at risk of failure. Portions of the seawall have partially deteriorated from exposure (See Figure 2.2), and the supporting bank has eroded away due to rainfall, wave overtopping, loose geotechnical conditions, and tidal Inundation. The current state of the seawall is prone to inundation during extreme storm and high tide events. Inundation is the main driver of erosion, causing material to be transported through the existing seawall, leaving utilities, parking, roads and other critical facilities directly landward vulnerable to flooding and erosion. Overtopping is expected to increase with the current rate of sea level rise (See Figure 2.3 below). Most of the primary medical facilities of the MSMC are located away from the bayfront on higher ground with the exception of the Golden and Lowenstein buildings, which located in close proximity to the seawall. A limited repair to the seawall was performed in front of these two buildings in 2009. A two-lane paved road and parking facilities extend along most of the remaining length of the existing seawall. A grassy area from 8 to 15 feet wide extends along much of the area between the seawall and the road/parking lot. Trees and other vegetation exist along this grassy area, and there is evidence of steel tiebacks and possibly some underground utilities in this area. Areas of scouring damage are evident at many locations adjacent to the seawall, as a result of overtopping and/or wave action. In some areas gravel has been placed in the scour holes to restore surface elevations and prevent further damage.

Figure 2.2 Overtopping Conditions

Figure 2.3 Deteriorated Seawall

2.3 Proposed Alternatives

The main report describes objectives and constraints for the project. An evaluation of the current conditions led to the design of two alternatives and relocation option to prevent erosion during critical tide events.

Alternative 1 includes the placement of sheet pile seawall along the seaward edge of the property with a T-wall constructed along the northern edge of the property line (See Figure 2.4). The sheet pile seawall will be designed at elevation EI 4.0 (NAVD88) and would be placed 3 feet in front (seaward) of the existing seawall. Material would be placed between the existing seawall and the new sheet pile wall to reduce the load on the existing wall. The structure will transition from a sheet pile seawall to a T-wall on the north end. The T-wall will tie into 3.5 feet (NAVD88) landward on the north end. On the southern end, the sheet pile seawall will directly tie into the Julia Tuttle Causeway embankment at 4.0 feet (NAVD88) and will require an easement from the FDOT. The sheet pile will be partially coated with coal tar epoxy to prevent corrosion. The design of the seawall is anticipating a 50-year design life. Information on the design of the sheet pile seawall can be found within Attachment B. No easement is required for the T-wall at the northern end of the medical center.

Alternative 2 would include a 300 foot T-wall constructed along the northern edge of the property line. A sheet pile seawall will be placed along the seaward edge of the property and the addition of a 1.5-foot concrete lift added to 130-foot newer existing seawall segment. (See Figure 2.5)

Figure 2.4 Alternative 1 (Sheet Pile Wall with T-Wall)

Figure 2.5 Alternative 2 (Sheet Pile with T-wall and Concrete lift)

Relocation was considered in conjunction with the alternatives proposed above. The Relocation plan therefore consists of vertical relocation of the perimeter road adjacent to Biscayne Bay with constructed support for the portion of the existing seawall adjacent to the elevated road. Relocation also includes relocation of vulnerable parking to a new parking garage constructed on the medical center property.

2.4 Recommended Plan

Analyzing the proposed alternatives led to Alternative 2 (See Figure 2.5) to be the most feasible plan of action. The plan includes the construction of a 300-foot long T-wall along the northern edge of the property, a 1.5-foot concrete lift added to 130-foot newer existing seawall segment and the construction of a sheet pile seawall along the entire seaward edge of the property excluding the 130-foot newer existing segment. This alternative was selected per ER 1105-2-100 Appendix F, Section III, F-23, "the least cost alternative plan is considered to be justified if the total cost of the proposed alternative is less than the cost to relocate the threatened facility".

This page intentionally left blank

3.0 GEOTECHNICAL

3.1 HISTORY OF EXISTING SEA WALL

The general plans for Bulkhead – Dredging & Fill, dated 1966, indicate that Mount Sinai Hospital expanded its facilities during that time period, with part of that effort including construction of the existing seawall, as shown in Figure 3.1. The 1960s wall expanded a pre-existing (pre-1966) bulkhead by about 500 feet, from 2,622 feet to the current 3,150 foot long wall. This project was established by the City of Miami Beach Resolution # 11923.

The post-1966 added section of wall was composed of 14 inch diameter precast concrete piles, spaced 8 feet center to center, with a 6 inch thick concrete panel between them. The wall was anchored to wood piles through 1-1/4 inch metal rods. The concrete piles were driven to elevation -15 feet (1966 Mean Low Water or MLW), which was approximately equivalent to the top of a limestone layer.

Based on existing data from Bulkhead – Dredging & Fill (1966), the bayfront area of Mount Sinai was filled and raised from elevation -15 feet MLW to -2 feet or -3 MLW. The area was raised with fill from a nearby borrow source located within the bay, as shown in Figure 3.1.

Figure 3.1 Copy of 1966 permit drawing for new bulkhead, dredging and filling.

3.2 HISTORICAL BORING DATA

The only historical boring data presented herein was from a development of a building inside the Mount Sinai area. The Standard Penetration Test (SPT) borings, B-1 and B-2, were performed by Vertical V-Southeast, Inc. and NV5, Inc. (Vertical V-Southeast became New Vertical 5 or NV5), as part of a geotechnical exploration and evaluation for the project titled Warner Building Entrance Canopy, in 2012. The borings (B-1 and B-2) were located within the footprint of a canopy structure project, the objective B-1 and B-2 is to observe the nature, relative compactness and variability of the soil, rock and immediate groundwater levels underlying the project site. The geotechnical report indicates that a limestone layer, approximately 8 feet to 15 feet thick, was typically found

starting at depth of 21 feet and 23 feet. The boring location and the soil condition in borings encountered B-1 and B-2 are included in Addendum A.

3.3 Geology

3.3.1 Regional Geology

The landforms of the coastal area of Miami Dade County include barrier islands, lagoons, estuaries, and coastal ridges. The project site is a barrier island located along Eastern Biscayne Bay and north of Key Biscayne, on the Atlantic coast of Miami Dade County. Holocene sands that make up the island are underlain by the limestone units of the Miami Limestone Formation. The Miami Limestone consists of two facies, an oolitic facies and a bryozoan facies. The oolitic facies consists of white to orangish gray, poorly to moderately indurated, sandy, oolitic limestone (grainstone) with scattered concentrations of fossils. The bryozoan facies consists of white to orangish gray, poorly to well indurated, sandy, fossiliferous limestone (grainstone and packstone). Beds of quartz sand are also present as unindurated sediments and indurated limey sandstones. Broken shell is present in most samples.

3.4 PROJECT SPECIFIC GEOTECHNICAL DATA

3.4.1 Site-Specific Subsurface Conditions (Materials Encountered)

Project specific geotechnical data was obtained via three SPT borings, MSMC-CB15-01, MSMC-CB15-02 and MSMC-CB15-03 performed at the approximate locations shown on the site plan in Figure 3.2. Boring coordinate's data is shown in Table 3.1. USACE Mobile District's (SAM) drill unit performed drilling of borings. Borings were drilled from the existing ground surface to depths ranging between 30 feet and. 34.5 feet. See Figure 3.3 for the Boring Log Profile Fence. The boring logs are included in the Attachment A – Geotechnical Addendum, of this report.

	Table 5.1	Available OSACE BOIL	ing Data.
Designation	State Plane,	FL-East, NAD83	Draiast Location
Designation	Х	Y	Project Location
MSMC-CB15-01	539750	939212	Northern Area of Seawall
MSMC-CB15-02	538922	938259	Middle Area of Seawall
MSMC-CB15-03	537910	937331	Southern Area of Seawall

Table 2.1 Available USACE Boring Data

As shown in Figure 3.1, the circa 1966 structure was built into the bay, where site conditions, varied. The figure indicates that toward the center of the alignment of the wall, the bay bottom was approximately at elevation -22 feet. (MLW), rising to both the northeastern & southwestern ends to elevations -5 feet. and -3 feet., respectively. The depressed area toward the center would have required a significant amount of fill to bring it to the final grade, the fill consisting of excavated material from the nearby borrow pit shown in Figure 3.1. It appeared that the materials encountered at ground surface at the boring locations consist of fill material overlying sands, siltysands, lean clays and silts. Silt and clay N-Value's ranged from 1 to 5 blow per foot (bpf). Sand or silty-sand N-Value's ranged from 2 to 52 bpf. The sand, silty-sand, and silt typically contained a trace of shell and rock fragments. The sands, silty-sands, clays, and silts are underlain by a greenish gray to white oolitic limestone of the Miami Formation. The oolitic limestone was encountered at all boring locations between elevations of -11.8 feet to -23.7 feet NAVD88. The oolitic limestone is described as porous to pitted and contains various percentages of interbedded sand, silt, and fossils and was easily sampled using the SPT method with the rock broken by the spoon advancement. The oolitic limestone matrix (rock fragments recovered) consisted mostly of finegrained sand size quartz (grainstone), was highly to moderately weathered, and ranged in strength from soft to moderately hard. Sand or silty sand was generally encountered beneath the oolitic limestone. In boring MSMC-CB15-02, a weakly cemented sandstone was encountered below the limestone at elevation -33 feet NAVD88. In boring MSMC-CB15-01, three feet of limestone was cored from a depth of -25.3 to -28.3 feet NAD88. The cored limestone is described as pitted, moderately fractured, very fine mostly guartz sand, indurated (packstone) and soft and can easily be scratched by knife. An Unconfined Compressive Strength (ASTM C-617) test yielded a value of 191 psi on a tested sample selected from the drilled core.

Figure 3.2 Boring Log locations Mount Sinai Seawall Repair

Figure 3.3 Borings Log Profile Fence

The subsurface conditions shown on the boring logs represent the conditions at the boring locations. Subsurface variations between borings should be anticipated. The Unified Soil Classification shown on the borings logs is based on visual classifications and laboratory testing. The limestone encountered corresponds to a rock formation that typically offers high resistance to excavation, hence, special equipment and breaking tools may be required to excavate this limestone. The limestone is also difficult to dewater due to its high porosity and permeability. Limestone content provided for non-limestone material (e.g. SAND w/ little limestone fragments) is descriptive of the materials within the retrieved SPT sampler. The cohesionless/granular soils encountered during this investigation may cave during excavation or drilling, thus stabilization measures may be required.

3.4.2 Boring procedures notes

Borings MSMC-CB15-01 through MSMC-CB-03 were sampled using the Standard Penetration Test (SPT) procedure consisting of a 140 lb. hammer and a 30-inch drop using a 2.0-foot split spoon (1 3/8-inch I.D. and 2-inch O.D.) until refusal was encountered or until the spoon was advanced 18 inches. Refusal is defined as a total of 50 blows of the hammer within any 6-inch increment, a total of 100 blows of the hammer within any 1-foot increment, or no observed advancement of the

sampler after 10 successive blows of the hammer. When refusal was encountered, the borings were continued with a 4-inch x 5 1/2-inch diameter core barrel.

3.4.3 Geotechnical Engineering data

According to the previous section, the simplified soil profile of the project is defined by the soil conditions in boring MSMC-CB15-02, since the soil conditions at this boring were considered to be the least favorable from a geotechnical perspective.

Layer I: Fill – This layer consists of mostly fine gravel and coarse-grained sand-sized quartz and was encountered from elevation 1.8 to -5.7 (NAVD88). The fill is medium dense with SPT N-values between 13 and 21 bpf.

Layer II: Fill – This layer consists of gray, poorly graded sand, with some gravel and was encountered from elevation -5.7 to -16.2 (NAVD88). The SPT N-values varies from 2 to 12 bpf. The classification of the layer has been changed based on existing data from a project in 1966.

Layer III: ML\MH – This layer consists primarily of gray, inorganic sandy silt of varying plasticity and sand content with few organics, typically less than 5%, with SPT N values between 1 and 5 bpf. This layer was encountered from -16.2 to -23.7 (NAVD88).

Layer IV: SP – This layer consists of primarily gray, poorly graded sand, with SPT N-values between 7 and 10 bpf. This layer was encountered from -23.7 to -26.7 (NAVD88).

Layer V: Limestone – This layer consist of grey sandy, sparsely fossiliferous moderately hard, limestone, with SPT N-values between 64 and 88 bpf. This layer was encountered from -26.7 to - 32.7 (NAVD88).

3.4.4 Laboratory testing

Laboratory testing was performed on the soil and rock samples recovered from the three USACE borings to determine material classification and engineering properties. Laboratory physical testing consisted primarily of determination of the following:

Water Content – ASTM D2216 Organic Content – ASTM D2974 Method C Sieve Analysis – ASTM D422 Classification of Soils – Standard Practice for Classification of Soils for Engineering Purposes (United Soil Classification System) ASTM D2487

- 1. Atterberg Limits Multi Point ASTM D4318.
- 2. Unconfined Compression Strength (Rock) Unconfined Compression Tests of Rock Cores, ASTM D2938.

September 2016

The physical laboratory test results are summarized in Table 3.2 and the interpretation of these results are included in the following sections.

Boring Designation	Sample Number	Soil Classification (USCS)	Limit Liquid, LL (%)	Plastic Index, Pl (%)	Organic Content, OC (%)	Visual Shell (%)	Water content, W _n (%)	Munsell Color	Approximately Fines content (%)
MSMC-CB15-01	2	SP-SM	-	-	3.7	-	17.0	10YR 7/3	9
MSMC-CB15-01	7	SP	-	-	-	-	42.7	5YR 3/1	4
MSMC-CB15-01	8	SP	-	-	-	-	20.7	5YR 3/1	3
MSMC-CB15-01	11	SM	-	-	-	-	23.6	10YR 6/3	19
MSMC-CB15-01	15	SP-SM	-	-	-	-	19.6	10YR 7/2	7.5
MSMC-CB15-02	3	(SP-SM)g	-	-	-	-	18.9	-	6
MSMC-CB15-02	8	(SP)g	-	-	-	-	18.1	10YR 6/1	5
MSMC-CB15-02	14	ML	NP	NP	3.1	-	47.6	10Y 5/1	50
MSMC-CB15-02	16	MH	60	24	5.9	2	44.6	N 5	86
MSMC-CB15-02	22	SP-SM	-	-	-	13	13.7	N 7	8
MSMC-CB15-03	3	SP-SM	-	-	-	-	11.3	10YR 7/3	9
MSMC-CB15-03	7	SM	NP	NP	2.6	-	39.9	10Y 5/2	34.5
MSMC-CB15-03	11	SM	-	-	-	-	42.0	10Y 5/1	17.5
MSMC-CB15-03	15	GP-GM	-	-	-	-	28.4	N 9	15
MSMC-CB15-03	20	SP-SM	-	-	0.3	-	20.3	10YR 7/1	5
USCS: Unified Soil Classific	ation System;								

 Table 3.2 Summary of laboratory testing

3.5 PRELIMINARY GEOTECHNICAL ANALYSES

3.5.1 Geotechnical Results - Engineering Parameters

The following soil parameters are provided for the lateral design of a steel sheet pile wall. It is noted that the short-term and long-term condition should both be analyzed, and the most critical condition used for design purposes. The parameters provided for limestone strata assume that the intact rock has been pulverized into a sandy gravel, whether by the sheetpile installation, or by chisel-beam or other pre-cutting methods before sheet installation.

The following parameters have been developed using the soil conditions from SPT boring MSMC-CB15-02. In order to develop the table below, an average of the N-values were performed for simplicity of calculations, in addition, some engineering judgment were implement for considerations of the internal friction angle and cohesion of the soil.

Table 3.3 Soil Parameters (Undrained Condition or Q-Case)

					М	ount Sinai (Ui	ndrained co	ndition)				
Eleva (N	tion l AVD :	Range 88)	Soil Classification ⁽¹⁾	Saturated Unit Weight (γ _{sat}) (Ib/ft ³)	Moist Unit Weight (γ _{moist}) (Ib/ft ³)	Effective unit Weight (γ') (Ib/ft ³)	Angle of Internal Friction (φ)	At Rest Earth Pressure coefficient K _o	At Active Earth Pressure coefficient K _a	At Passive Earth Pressure coefficient K _p	Cohesion Undrained (psf)	Soil Steel Interface Wall Friction Angle (Delta)
1.8	to	-5.7	Fill	120	115	57.6	30	0.50	0.33	3	0	16
-5.7	to	-16.2	Fill	110	106	47.6	30	0.52	0.35	2.9	0	16
-16.2	to	-23.7	ML/MH	105	100	42.6	0	1	1	1	250	0
-23.7	to	-26.7	SP	115	110	52.6	31	0.48	0.32	3.12	0	17
-26.7	to	-32.7	Limestone	132	126	69.6	34	0.44	0.28	3.54	0	18
(1) US	CS :U	nified S	oil Classification S	ystem								

Table 3.4 Soil Parameters (Drained Condition or S-Case)

					М	ount Sinai (Dr	rained cond	ition)				
El (N	evati AVD 3	on 88)	Soil Classification ⁽¹⁾	Saturated Unit Weight (γ _{sat}) (Ib/ft ³)	Moist Unit Weight (γ _{moist}) (Ib/ft ³)	Effective unit Weight (γ') (Ib/ft³)	Angle of Internal Friction (φ)	At Rest Earth Pressure coefficient K _o	At Active Earth Pressure coefficient K _a	At Passive Earth Pressure coefficient K _p	Cohesion Drained (psf)	Soil Steel Interface Wall Friction Angle (Delta)
1.8	to	-5.7	Fill	120	115	57.6	30	0.50	0.33	3	0	16
-5.7	to	-16.2	Fill	110	106	47.6	29	0.52	0.35	2.9	0	16
-16.2	to	-23.7	ML/MH	105	100	47.6	26	0.56	0.39	2.56	0	14
-23.7	to	-26.7	SP	115	110	52.6	31	0.48	0.32	3.12	0	17
-26.7	to	-32.7	Limestone	132	126	69.6	34	0.44	0.28	3.54	0	18
(1) US	CS: U	nified S	oil Classification S	ystem								

3.5.2 Recommendations

Additional geotechnical analyses and design work is required to verify the preliminary subsurface conditions and their strength properties to further develop structural features of the Recommended Plan using project-specific geotechnical data. Additional geotechnical investigation, analyses and design work include:

Additional SPT borings logs to refine site characterization. Refine CWALSHT analysis for internal stability, based on additional data. Global slope stability analyses of the seawall using GeoSlope software or similar stability analysis. Lateral analysis of sheetpile seawall using the L-pile software. Documentation Preparation of construction level plans and specification.

4.0 Coastal Report

4.1 Site Conditions

Biscayne Bay is approximately 2.25 miles wide at this location, so the seawall is subject to windgenerated waves. However, a large shallow seagrass-covered shoal area is located directly offshore of the MSMC, covering a large amount of the surface area of the bay in this region. This shoal tends to greatly dissipate wave formation and propagation under normal water level conditions, but during periods of elevated water levels damaging wind-generated waves may still pass over this shoal with little effect. In addition to wind-generated waves, boat wakes are an additional design consideration. A boat channel is offset approximately 200 feet seaward of the seawall, and frequent use of this channel by large and/or high-speed vessels has been observed on numerous occasions. The transit of these vessels subjects the seawall to frequent boat wakes that can overtop the seawall as well.

The upper region of Biscayne Bay fronting the MSMC is connected to the Atlantic Ocean at Bakers Haulover Inlet, Government Cut/Miami Harbor, and the Intracoastal Waterway near downtown Miami. The upper bay is therefore readily influenced by water-level fluctuations in the open Atlantic Ocean caused by tides, storm surges, and sea level rise. The presence of numerous manmade islands and causeways constricts tidal flow and may tend to dampen short-period water level fluctuations to some degree, but longer period events can still directly affect water levels at MSMC.

4.2 Description of Problem

An existing seawall was constructed in several phases to prevent erosion of land. The existing seawall has been repaired in various locations but the majority of the wall is in imminent threat of damage by natural erosion processes. Loss of portions of the seawall will result in sudden, extreme erosion impacting existing infrastructure. The primary driver for current erosion problems is overtopping of the wall during extreme high tide events. Overtopping allows material to migrate through cracks in the existing compromised seawall and be carried over the wall as the water recedes. Erosion also contributes to subsidence of land behind the wall. After extreme high tide events, standing water remains in subsided areas complicating and compromising hospital operations and patient health (life risk.) These complications would be exacerbated during disaster events (storms, hurricanes, etc.) where conditions would be worsened by the natural event and increased use of hospital facilities as both an emergency care facility and a disaster staging area.

The primary cause of this erosion and subsequent periodic flooding is the low crest elevation of the existing seawall and the adjacent terrain. The crest elevation of the existing structure is at approximately 2.0 to 2.5 feet NAVD88 and average elevations along the adjacent roadway and parking lot are about 2.5 to 3.5 feet NAVD88. Although possibly adequate to prevent most overtopping when it was constructed in the 1960's, applying the historic rate of sea level rise (+2.3 mm/yr) results in present-day water levels that are about 4 to 5 inches higher than at the time of seawall construction. Given the relatively low elevation of the seawall even at the time of construction, this increased average water surface elevation results in greater overtopping during high tides and storm events.

4.3 Water Levels

All water levels and land surface elevations in this report will be referenced to North American Vertical Datum of 1988 (NAVD88), unless otherwise specified. References to other datums will be provided as necessary.

4.3.1 Tides

Tidal datums are provided for several gages throughout the region. The closest gages to the project site were located at Biscayne Creek (Station # 8723089), located 4.7 miles NNE of MSMC, and the Biscayne Bay gage (Station #8723165), located near downtown Miami, approximately 3.5 miles SW of the MSMC. These gages have periods of record of 29 and 22 months, respectively.

The longest-recording gage in the area is located at Virginia Key (Station 8723214). This gage was installed in January 1994 and remains operational to this day. The resulting period of record is therefore nearly 22 years. This gage is located 5.7 miles south of the MSMC at the confluence of Biscayne Bay and the Atlantic Ocean.

Tidal datums from each of the three references tidal stations are summarized in Table 4.1 below. These three gages span much of the extent of the tidally influenced portions of northern and central Biscayne Bay. As readily seen in this table, the tidal characteristics are relatively similar in spite of the variety of locations.

	Biscayne	Biscayne	Virginia
	Creek	Bay	Key
Datum	#8723089	#8723165	#8723214
Highest Obs.	1.24	1.51	2.79
MHHW	0.24	0.26	0.22
MHW	0.18	0.2	0.16
NAVD88	0	0	0
MTL	-0.9	-0.89	-0.85
MSL	-0.91	-0.89	-0.87
DTL	-0.93	-0.92	-0.88
MLW	-1.98	-1.98	-1.86
MLLW	-2.11	-2.11	-1.97
Lowest Obs.	-2.92	-3.24	-3.28

 Table 4.1 Tidal datums near the project area. NOAA Stations # 8723089, 8723165, and 8723214.

Although the differences between these gages are relatively small, these tidal datums will provide the foundation for the water level analysis that follows. Selection of representative tidal conditions at the MSMC site is therefore important. The Biscayne Bay and Virginia Key gages are both located in, or adjacent to, tidal inlets and therefore do not experience the level tidal dampening that could be expected deeper inside the bay. Of the three gages, only Biscayne Creek was located well within the confined area of Biscayne Bay, and thus experienced similar tidal forcing characteristics as are presently experienced at the MSMC site. Use of the Biscayne Creek gage (station # 8723089) is based on a 2.5-year record, and due to its location should more accurately represent tidal conditions at the project site. Tidal datums from this gage will therefore be used in project formulation and design with the exception of highest observed water level which will be conservatively obtained from the Virginia Key gage due to the longer record at that location.

The highest water level on record was examined at Biscayne Creek and Virginia Key gauges. At Biscayne Creek the maximum level was +1.24 feet NAVD88, but this low value may be due to the relatively short (<2 year) period of record in addition to the causeway effects. The Virginia Key gage recorded a maximum value of +2.79 feet NAVD88. This water level would overtop most of the length of the MSMC seawall and could lead to the level of flooding that is currently observed at the facility.

4.3.2 DATUM CONVERSIONS

Two primary vertical survey datums have been used: NAVD88 as described above, and the older National Geodetic Vertical Datum of 1929 (NGVD29). NGVD29 has been superseded by NAVD88, but is typically the reference datum for older elevation data. The conversion between these two datums varies by geographic location, but throughout this project area NGVD29 lies 1.56 feet below NAVD88. This conversion value will be used throughout the report.

Other common elevations of interest are mean lower low water and mean higher high water, which define the limits of the spring tidal range. These values are particularly important in defining the locations of tidally influenced water levels used in this report. Using the values shown for Station 8723089, MLLW lies at -2.11 feet NAVD88, and MHHW lies at 0.24 feet NAVD88.

4.3.3 SURGE

Surge levels are provided by FEMA's 2009 Flood Insurance Study (FIS). These values were originally referenced to the National Geodetic Vertical Datum of 1929 (NGVD29), but are converted to NAVD88 in Table 2 in order to be consistent with other vertical measurements.

Return	Surge	Surge
Frequency	Elevation	Elevation
(years)	(ft, NGVD29)	(ft, NAVD88)
10	5.4	3.8
50	6.7	5.1
100	7.2	5.6
500	8.1	6.5

 Table 4.2 Surge levels, from FEMA 2009 FIS.

4.3.4 SEA LEVEL RISE

General Information. Eustatic sea level change is defined as a global change in the water surface elevations of the world's oceans. The total relative sea level change is the combination of eustatic sea level change and changes in local land surface elevations. The eustatic sea level has varied widely over geologic time, and evidence suggests that sea levels in the past have been both much higher - and much lower - than present levels. Sea level rise is a very important issue for future project consideration, however due to the emergency nature of this project, funding limitations,

and the objective of preventing current erosion the Recommended Plan considers current day extreme water levels. Future sea level rise was considered, in order to recommend an alternative that can be adapted to future sea level change by the sponsor if necessary.

4.3.5 CALCULATION OF SLR RATES

Sea levels have been rising gradually throughout the study area during the entire period of record. The longest water-level record in the Miami Beach area was measured by NOAA gage #8723170. Recorded water levels from this gage span 50 years, extending from 1931 to 1981. During this period the average annual rate of sea level rise was 2.39 mm per year, +/- 0.43 mm/yr. Note that the gage used to establish the tidal datum used throughout this study (Biscayne Creek, station #8723089) was not used in this computation of sea level change rates due to its short period of record.

It is generally accepted that sea level will continue to rise and that the rate of rise may accelerate due to climatic changes. The Corps of Engineers provides guidance on the calculation of sea level rise and on its application to the design process. The Corps of Engineers' Engineering Regulation (ER) 1100-2-8162 was issued in December 2013 to establish procedures for projecting sea level rise into the future based on global sea level change rates, local historic sea level change rate, base year of project analysis, and number of years in the period of analysis. This ER requires that three scenarios be examined, which result in low, intermediate, and high predictions of sea level rise. The low value is based on an extrapolation of the local historic sea level rise rate. The intermediate and high values are based on the National Research Council (NRC) sea level rise predictive Curves I and III, respectively.

All three curves are based on the following basic equation for prediction of eustatic sea level rise due to ongoing glacial melting and thermal expansion of ocean water:

E(t) = 0.0017t + bt2

In this equation E(t) is the eustatic sea level rise (in meters); t is the time of the projection into the future using 1992 as a baseline year. 1992 is used as the baseline because it is the midpoint of the previous tidal epoch (1983-2001). The value b is a coefficient that varies for each of the three NRC curves (note that only curves I and III are used in this analysis). The coefficient b is equal to 2.71E-5 for Curve I; 7.00E-5 for Curve II, and 1.13E-4 for Curve III. This equation assumes a global mean sea level change rate of +1.7 mm/yr. The local sea level change rate for this location includes land subsidence and is +2.39 mm/yr. These parameters were used to calculate the three sea level rise prediction curves as required in ER 1100-2-8162. In Figure 4.1 the extrapolated historic rate is represented by the green line; the NRC Curves I and III predicted rates are represented by the blue

and red lines, respectively. These three curves correspond to the low, intermediate, and high predictions of sea level rise required by ER 1100-2-8162, referenced to the base year of 1992.

Figure 4.1 Summary of predicted relative sea level rise in Miami Beach by the year 2118.

In accordance with the methodology established in ER1100-2-8162, the year 1992 was chosen as the base year for calculations of sea level change rates for the Miami Beach area. The difference between the base year (1992) and the present (2018) is 26 years, and based on the calculations of RSLC values presented in Figure 4.1, water levels at year 2018 vary from +0.20 to +0.45 feet over the value in 1992. Since the increase in water levels as measured from the present time (2018) is of greater interest in project design than water levels measured from 1992, the values from Figure 4.1 were normalized to 2018 water levels. Table 4.3 presents these values, referenced to the year 2018. The RSLC values provided in Table 4.3 are projected over a 100-year interval, to the year 2118. The 50-year (2068) and 100-year (2118) projections are highlighted in gray.

	Estima Mt. Si	ted Rela inai Me	ative Se dical Ce	a Level enter CA	Change AP (14) 8	e in Feet 872317(t from 2 0, Mian	2018 To ni Beach	2118 1, FL		
		NC	JAA'S P	ublishe	a kate:	0.00784	i teet/y	r			
SLR Curve	2018	2028	2038	2048	2058	2068	2078	2088	2098	2108	2118
USACE-Low	0	0.08	0.16	0.24	0.31	0.39	0.47	0.55	0.63	0.71	0.78
USACE- Intermediate	0	0.13	0.28	0.45	0.64	0.85	1.07	1.31	1.57	1.84	2.14
USACE-High	0	0.31	0.69	1.15	1.68	2.28	2.96	3.72	4.54	5.44	6.42

 Table 4.3 Sea level rise rates referenced to 2018 levels.

4.3.6 BATHYMETRIC/TOPOGRAPHIC DATA

In general, two recent surveys were used for most of the design formulation for this project. Older surveys were utilized to provide historical trends, as-built project conditions for original construction, and other relevant information. The two primary surveys used in this study were performed in 2007 and 2015, and are described below.

A large-scale Lidar (Light Detection and Ranging) survey was performed in 2007 by FDEM (FL Division of Emergency Management. This survey covered the entire barrier island region, including the full extent of the MSMC. This survey produced elevation data at approximately 4-foot intervals across the entire MSMC property, and was used to define elevations for planning and design purposes. Excess elevation data beyond the boundaries of the study area were truncated in the interest of reducing file size and processing time; the limits of the truncated survey are shown in Figure 4.2.

Figure 4.2: 2007 Lidar Survey Boundary

A more limited, but project-specific profile survey was commissioned by Corps of Engineers following approval of the Federal Interest Determination (FID) in 2015. This survey was performed in order to define elevations along the waterfront in greater detail for project design purposes. The contractor was Whidden Surveying & Mapping, Inc., and field work was performed on 10 July 2015. The survey consisted of eight profiles crossing the shoreline, and two upland transects to define elevations along the north and south boundaries of the MSMC property. These profiles and transect lines are shown in Figure 4.2.

Comparisons of these two surveys were performed to determine the consistency of the elevation data which was gathered using two very different survey techniques. Both surveys were in very close agreement in areas where they overlapped, with maximum elevation differences on the order of a few inches or less. This provided a high level of confidence in both site condition surveys. In general, ground-surface elevations throughout the MSMC facility are very low and flat. The crest

of the existing seawall varies from about 2 to 2.5 feet NAVD88. Ground elevations landward of the seawall vary from about 2 to 4 feet in most areas. Elevations along both transects are equally low, ranging from the waterline up to maximum elevations of about 4 feet NAVD even at the farthest upland extent of the transects. This creates a potential problem with anchoring any erosion control structures into higher ground to protect against flanking. Initial indications are that any measures will have to wrap around most of the perimeter of the MSMC property to adequately protect the facility against elevated water levels and resulting erosion.

Example 1: FEMA BFE. Using the FEMA base flood elevation (BFE - 1 percent annual chance of exceedance) of 5.6 feet (with no allowance for wave overtopping or sea level rise), the existing bayfront seawall would require raising by up to 3.6 feet. Examination of the transect survey data shows that no surface elevations of +5.6 feet NAVD88 exist along either alignment, so this structure would be vulnerable to flanking. The flood-prevention structure could be anchored into the Julia Tuttle causeway embankment along the south side, but proper real estate easements would likely be required. No suitably high elevations exist along the northern MSMC property boundary to prevent flanking, and much of the MSMC would have to be encircled by flood control structures to prevent erosion by the 100-year event.

Based on elevations provided by the 2007 Lidar survey, the added distance required to anchor the south end of the protective structure into the +5.6-feet elevation contour is 55 feet. This wing wall would extend from the southern terminus of the seawall, southward to the +5.6-feet elevation contour along the Julia Tuttle Causeway embankment. The length of the wing wall required to prevent flanking around the north end of the seawall is much longer, due to extensive areas of low existing ground elevations in that area. To extend from the northern terminus of the existing seawall landward to the +5.6-feet contour would require an additional 1,150 feet of structure. The alignment of this structure would extend eastward along the northern perimeter of the MSMC property, then parallel to Alton Road, past the main entrance to the facility, and anchoring into the +5.6-feet contour in front of the south end of the existing parking garage. This wing wall extends along developed and/or constricted areas, and extends across the main entrance into the MSMC facility.

Example 2: FEMA+1. This alternative uses the FEMA base flood (1 percent chance of exceedance) elevation of 5.6 feet of elevation, plus a 1-foot allowance for wave overtopping and sea level rise effects. This alternative was suggested for future protective structures constructed throughout the northeast US in response to Hurricane Sandy. Using FEMA+1 the design flood-control structure elevation becomes 5.6 feet + 1.0 feet = 6.6 feet NAVD88. This alternative would require raising the existing seawall by up to 4.6 feet. The same problem exists with the lack of sufficiently high upland elevations to anchor the flanks of the structure into. As with the "FEMA BFE" option, the resulting structure would have to encircle most of the MSMC in order to prevent flanking.

The alignments of the wing walls required to properly anchor the reconstructed seawall into the +6.6-foot contour would be the same as for the previous option. The lengths of each wing wall would increase however, since they tie into slightly higher elevations. The total length of the south wing wall would be 60 feet, while the north wing wall length would increase to about 1,350 feet. As with the "FEMA BFE" option, this wing wall extends along developed and/or constricted areas, and extends across the main entrance into the MSMC facility.

Example 3: FEMA+3. This alternative uses the FEMA base flood (1 percent chance of exceedance) elevation of 5.6 feet of elevation, plus a 3-foot allowance for wave overtopping and sea level rise effects. This alternative is consistent with the City of Miami Beach's requirement for construction of flood control measures. Using FEMA+3 the design flood-control structure elevation becomes 5.6 feet + 3.0 feet = 8.6 feet NAVD88. This alternative would require raising the existing seawall by up to 6.6 feet above its present crest elevation. The problem created by the lack of sufficiently high upland elevations in which to anchor the flanks of the structure is exacerbated with this alternative.

Analysis of the 2007 Lidar survey shows that there are no ground elevations around the perimeter of the MSMC that are high enough to anchor wing walls into, to prevent flanking of the seawall. The protective structure would therefore have to encircle the entire facility. Such a structure would extend from one end of the seawall, around the outermost perimeter of the facility, and tie onto the other end of the seawall. The total length of such a structure (in addition to the 2,950-feet length of the seawall) is 4,100 feet. Much of this alignment extends along the Tuttle Causeway and Alton Road. This structure would also extend across both entrances to the MSMC facility.

Example 4: Local Observations. Anecdotal and photographic evidence provided by MSMC shows that water levels presently overtop the existing seawall by a foot or less during the annual "king tide" events that cause the inundation/erosion that is the basis for this study. The level of overtopping will certainly increase over time due to sea level rise, but at this time there is no evidence to suggest that water levels rise to more than a foot over the existing seawall elevation. Taking the upper limit of the existing seawall heights to be +2.5 feet NAVD88, this results in a maximum design water level during "king tide" events of +3.5 feet NAVD88. Based upon photo documentation provided by MSMC and the maximum recorded water level of +2.79 NAVD88 at the Virginia Key gage, it is rational to assume that a crest elevation of +3.5 will provide robust if not complete protection against the high water events which are resulting in the documented erosion along the MSMC bayfront.

A 3.5-feet elevation is coincident with the maximum existing ground elevations along the northern perimeter of the MSMC property, and would allow the structure to be tied into existing ground within a relatively short distance (about 50 feet) of the bayfront, versus some the higher design elevations that required much longer tieback lengths – some nearly encircling the entire MSMC facility. Based on the Virginia Key gage data, a crest elevation of +3.5 feet would prevent flooding

from the maximum measured water level event at that gage, would address the level of flooding observed at MSMC during "king tide" events, and would tie in more easily to the existing topography than previous alternatives and therefore would be more constructible.

The majority of the proposed structure lies along the exposed bayfront of MSMC and is subject to overtopping from wind-generated waves and from boat wakes. In order to minimize overtopping and protect against erosion an additional 0.5 feet can be added to the design crest elevation of the protective structure in order to reduce the amount of overtopping due to wave action. This would result in a crest elevation of +4.0 feet NAVD88. Since wind-generated waves and boat wakes will not propagate inland to the tie-in point, the structure can terminate at the +3.5-feet elevation contour at the northern end.

ATTACHMENT A – (GEOTECHNICAL ADDEDUM)

NIV 5	Vertical V- Southeast, Inc. 308 N.W. 170th Street North Mami Beach, Florida 33169 Telephone: 786 248 3180 Fax: 786 248 3190					BO	RIN	G NUMBER B-1 PAGE 1 OF 1
CLIENT Gryco	n, LLC	PROJECT	NAME	Warne	er Building I	Entrang	ce Can	opy
PROJECT NUM	BER 145862	PROJECT	LOCATI	ON_4	300 Alton I	Rd. Mi	ami Be	ach, Florida
DATE STARTE	D 9/7/12 COMPLETED 9/7/12	GROUND	ELEVAT	ION _			HOLE	SIZE 2 7/8- inches
DRILLING CON	TRACTOR F.G.D. INC	GROUND	WATER	LEVEI	_S:			
DRILLING MET	HOD 2 7/8-inch Tricone and Bentonite Solution	XAT	TIME OF	DRILL	ING 7.00	ft		
LOGGED BY	G. Miranda CHECKED BY M. Delgado	AT	END OF	DRILL	ING			
NOTES Drill E	quipment CME-45	AF	ter drii	LING				
DEPTH (ff) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
	ASPHALT Light brown fine to medium grained SAND, some limesto	ne fragments	SPT 1	33	18-6-8-6 (14)			•
			SPT 2	58	12-12-8-7 (20)	'		
			SPT 3	67	6-6-4-5 (10)			
0	2		SPT 4	50	8-7-8-5 (15)			
0	Color change: Light gray		SPT 5	33	4-3-1-1 (4)	_		A
O - 12 - O								
			SPT 6	25	2-1-1-1 (2)			
	Darkt brown fine to medium grained SAND with muck							
- 18 -			SP1	r 50	2-5-6-6	-		
- 20 -					(11)	_		
22					10-15-1	7_		
	Tan sandy LIMESTONE		8 8	1 100) 17 (32)	_		
	List and fine to modium grained SAND some limesto	ne fragments						
	Fibir disk me ro menori dismen ovive, some muese		SP 9	T 42	2-3-4-4 (7)	4		 ↑
1991 1991 1991 1991 1991 1991 1991 199	Brown fine to medium grained SAND							
015 LN			SF 1	рт 0 33	2-1-2- (3)	2		
<u>st 36</u>			SF 1	рт 50 1) 5-5-6- (11)	6		

i.

NV	Vertical V- Southeast, Inc. 308 N.W. 170th Street North Miami Beach, Florida 33169 Telephone: 786 248 3180					BO	RIN	G NUMBER B-2 PAGE 1 OF 1
-	Fax 786 248 3190	PROJECT	NAME	Warne	r Buildina I	Entran	ce Can	ору
CLIENT Gryo	ADED 445962	PROJECT	LOCAT	ION 4	300 Alton F	Rd. Mi	ami Be	ach, Florida
PROJECT NUM	ABER 143002 COMPLETED 9/7/12	GROUND	ELEVAT	ION			HOLE	SIZE 27/8-inches
DATE START		GROUND	WATER	LEVEL	S:			
DRILLING COI	THOP 2 7/8 inch Tricone and Bentonite Solution	ZAT	TIME OF	DRILL	ING 7.00	ft		
LOCCED BY	G Miranda CHECKED BY M. Delgado	AT	END OF	DRILL	NG			
NOTES Drill	Equipment CME-45	AF	ter Dri	LLING				
			ш	2		-;	Ŀ.	🛦 SPT N VALUE 🛦
DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYP NUMBER	RECOVERY ' (RQD)	BLOW COUNTS (N VALUE)	POCKET PEI (tsf)	DRY UNIT W (pcf)	20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80
	ASPHALT		SPT	33	9-6-5-6			*
2 0 0	Light brown fine to medium grained SAND, some limestone	tragments			(11)	-		
10	Color change: Tan		SPT 2	75	12-6-5-5			 †
	Color change: Light gray		SPT 3	33	4-3-3-4 (6)			
	∑ Color change: Tan		SPT 4	42	6-7-8-8 (15)			
	Light gray fine to medium grained SAND with limestone frag	iments	SPT 5	46	6-6-7-4 (13)			
	Light gray silty SAND, some limestone fragments		V SP1	r 21	2-1-1-1			
			6		(2)	-		
- 16 -	Darkt brown fine to medium grained SAND with muck							
上 1 11								
5 18 1			SP	T 50	2-2-3-7			
20	•	. ×	7		(5)			
-			-			_		
22	Tan sandy LIMESTONE		SP A	T 100	5-10-16-2	20		\
1				- -	9.17.00	20		
24			A 9	100	(37)			^
			SP	T ro	10-18-6	4		
20			10) 00	(24)	_		<i></i>
- 28	Light gray fine to medium grained SAND, some limestone	fragments		-				
E to C			SF	T 58	2-2-2-4	1		
<u>5 - 30 P</u> a				·	(-		
			SF	T 10	50/1"			
<u>s</u> 32 + T	LIGHE GRAY LINES I OVE			2				
	Bottom of borehole at 33.0 feet.		SF 1	7 10 3	0 \50/1"		ان	
- GIN			L					
LOTS								
HB								
ECH								
0								

September 2016

							Borir	ng Designation	MSMC-CB1	5-01	
DRILLING	G LOG	DIV	ISION		INSTA	LLATI	ON	1.2.2		SHEET 1	
PROJECT			South Atlantic		Jac	KSONV	ille Di		Bemarke	OF 3 SH	EETS
MSMC: S	eawall Ge	ectechn	nical Investigation: M	liami Beach, El	9. 512 10. C	OORDI	NATE	SYSTEM/DATUM	HORIZONTAL	VERTICAL	
Northern /	Area of S	eawall	near investigation, iv	iani boadi, i c		State	e Plan	e, FLE (U.S. Ft.)	NAD83	NAVD88	3
BORING DESI	GNATION	1	LOCATION COO	RDINATES	11. M	ANUF	ACTU	RER'S DESIGNATIO		AUTO HAMME	R
MSMC-CI	315-01		X = 939,212	Y = 539,750		Failir	ng 15	00		MANUAL HAM	MER
Corps of E	Engineers	- CES	AM	SATRACTOR FILE NO.	12. T	DTAL :	SAMP	LES	18	0	(00)
NAME OF DRI	LLER		1		13. T	OTAL	NUMB	ER CORE BOXES	0	•	
Charlie Br	own				14. E	LEVAT		ROUND WATER	-13 Ft		
DIRECTION O	F BORING	;	VERTICAL	BEARING					STARTED	COMPLETE	D
	2				15. D.	ATE B	ORING	3	09-15-15	09-15-1	5
THICKNESS (OF OVERE	URDEN	N/A		16. E	LEVAT	ION T	OP OF BORING	1.7 Ft.		
DEPTH DRILL	ED INTO	ROCK	N/A		17. T	OTAL	RECO	VERY FOR BORING	61 %		
	OF BOR	ING	30.0 Et		18. S	GNAT	URE	ND TITLE OF INSP	ECTOR		
			00.011.		<u> </u>	Laur	a Rœ	buck, Geologist			ш
LEV. DEPTH	LEGENI		CLASSIFICATION	OF MATERIALS	RÉC	BOX OF	RQD OR UD		REMARKS	BLOWS 0.5 FT.	N-VALU
17 00								17			
12 0.5	-111	SAND), silty, mostly fine-g	rained sand-sized	+			1.1		3	
-		brown	2, top soll, 10 frk 3/2 1 (SM)	: very dark grayish	1 40	1			SPT Sampler	3	
F		FILL,	mostly fine to mediu	um-grained sand-size	d			0.2		2	5
t i		fragm	ients, 10YR 7/3 very	y pale brown			1	0.2		4	
		At El.	0.2 Ft., some silt, 1	0YR 4/2 dark grayish	27	2			SPT Sampler	8	
, at a a		broam				1			or roumpler	6	14
-1.3 3.0	-1889	FILL.	mostly coarse grave	el-sized rock	X		1	-1.3		2	
E		fragm	nents, little silt		07				CDT Camalan		
-					21	3			SPT Sampler	5	10
-2.8 4.5	- XX	WOO	D. mostly organic m	natter, few fine-graine	a –	-	-	-2.8		5	
F		sand	sized quartz, few sil	t, organic odor,	- I					1	
F		2.516	< 4/4 redaish brown		67	4			SPT Sampler	1	2
Ē.	2	At El	-4.3 Et trace shell	fragments trace fine		-	-	-4.3		1	
Ē		gravel	I-sized rock fragmer	nts						1	
È.	\overline{a}				100	5			SPT Sampler	1	2
Ę			EOCh diamati	- fine manual sized			1	-5.8		1	-
L.	C.	rock f	ragments	e inte gravel-sized						1	
E .	(C)				73	6			SPT Sampler	1	3
-7.3 9.0	6						1	-7.3		2	
Ł	$\cdot \cdot \cdot$	SAND), poorly-graded, mo sized guartz, some	stly fine-grained shell fragments, little						1	
E	23	silt, tra	ace organic matter,	organic odor,	53	7			SPT Sampler	2	7
F	$\cdot \cdot \cdot$	STR 3	or i very dark gray (9P)				-8.8		5	1
F	1.5	At EL	-8.8 Ft., discontinue	e organic matter, wet,			1			4	
F	· · ·	3B 3/1	i very uark diursn gr	ay	53	8			SPT Sampler	11	
Ę.	100							-10.3		18	29
F		At El.	-10.3 Ft., 5BG 4/1	dark greenish gray		\vdash	1	-10.5		6	
E .					67	9			SPT Sampler	9	
						ľ			or roampier	10	19
11.8 13.5	A :I:	LIME	STONE, sandy, spa	rsely fossiliferous.	+	+		-11.8			
F	III	soft, h	highly weathered, po	rous, shelly sand fille	d	10			ODT Camala	0	
г	1 T 1	pores	, DIORELLOUE LO OFILI	auron, coralline,	1 6/	1 10			SPISAMDIE	1/	
	I I I	10YR	6/3 pale brown								39

DRI	LUNG	1.00	Gont Sheet)	ont Shoot) INSTALLATION SHEET 2						٦.			
DIN	LEINO	200	(oont: oneer)	Jackso	nville	Distri	ct			_	OF 3 Sł	IEETS	-
PROJEC	т	0		COORDINA	TE SI	STE	WDAT	UM	HORIZONTAL	VER	TICAL		L
MSN	C; Seawall	Geote	-	State P	iane,	FLE (0.8.	Ft.)	NAD83	i N	AVD88		-
LOCATIO X = 0	39 212	NATES	s 89 750	1 7 Ft	N TOP	OFE	ORIN	G					L
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIAI	.5	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS		BLOWS/ 0.5 FT.	N-VALUE	
					80	11		-14.8	SPT Sample	er	18 24 26	50	
					80	12		-16.3	SPT Sample	er	11 17 19	- 36	
-17.8	19.5 19.5				73	13		-17.8	SPT Sample	er	17 20 16	- 36	
			LIMESTONE, 10YR 8/2 very pale brow	vn	47	14		-19.3	SPT Sample	er	7 12 10	22	
-20.8	22.5		➤At El19.3 Ft., medium grained, mosi grains, 10YR 7/2 light gray	ly quartz	53	15		-20.8	SPT Sample	er	6 10 11	- 21	
-22.3	24.0		SAND, poorly-graded, trace silt, trace fragments, trace fine gravel-sized rock fragments, 7.5YR 7/2 pinkish gray (S	shell P)	67	16		-22.3	SPT Sample	er	6 7 4	11	
-22.0	24.0		SAND, poorly-graded, mostly fine to medium-grained sand-sized quartz, litt trace fine gravel-sized rock fragments, 10Y 5/1 greenish gray (SP)	le silt,	53	17		-22.0	SPT Sample	er	7 18 34	52	-2
		8			57	18	1	24.5	SPT Sample	er	37		Ē
-25.3	27.0		LIMESTONE coff mod wasthored w	ontino				-24.5	Advanced Bo w/ fishtail	ring bit			Ē
-28.3	30.0		grained, mostly quartz grains, moderal fractured, pitted, Coralline, 10YR 5/2 g brown	rely grayish	67		RQD 60	-28.3	4 x 5-1/2" Diamond Im DFR = 100	oregna %	ated Bit		
20.0		***	 NOTES: USACE Jacksonville is the custodia these original files. Soils are field visually classified in accordance with the Unified Soils Class System. Borehole tremie grouted with portla cement and water. Laboratory Testing Results 	an for sification nd				140# ha spoon (1 Abbrevia	mmer w/30" drop used I-3/8" I.D. x 2" O.D.). ations:	l with 2	2.0' split		3

DRILLING LOG (Cont. Sheet)					Jackso	nville	Distric	st.				E 3 5	HEETS
ROJEC	ст				COORDIN	ATE SY	STEN	VDAT	JM	HORIZONTAL	VERTI	CAL	
MSN	AC; Seawall G	ectechnica	I Investigation; Miam	i Beach, FL	State F	lane,	FLE (U.S. I	-t.)	NAD83	NA	VD88	
DCATI	ON COORDINA	TES			ELEVATIO	N TOP	OF B	ORIN	3				
X = !	939,212 Y =	= 539,750			1.7 Ft.								
LEV.	DEPTH	LEGEND	CLASSIFICATION	OF MATERIAL	.5	RÉC.	BOX OR SAMPLE	ROD OR UD		REMAR	cs	BLOWS/ 0.5 FT.	N-VALUE
	DEPTH	ID 2 7 8 11 15 * Lab curve ssamp11 grave of the encoor 5. Ada 4 7 8 11 15 6. Root SAMF ID 1	CLASSIFICATION (1.5/3.0 9.0/10.5 10.5/12.0 1.5.0/16.5 10.5/12.0 1.5.0/16.5 10.10/22.5 9 classification based 2. Sample Number 10 classification based 10 classification based 2. Sample Number 10 classification based 2. Sample Number 10 classification based 10 clas	CLASSIFIC SP-SI SP SP SP SM SP-SI d on gradatic 11 was teste s and soil in Sample Nur (SM) with so urate descrip limestone esting LABORAT TEST UCS	SATION M* M* on on on on this mber me tion	RÉC.	BOX			REMAR	(5	075 0.5	H-VA

							6	Borir	ng Designatio	n MSMC-CB1	5-02	
DRI	LLING	LOG	DIVISION	N		INSTAL	LATIO	DN			SHEET 1	
PPO	LECT	100	South	h Atlantic		Jac	sonvi	ille Di	strict		OF 3 SH	EETS
PRU			-technical I	a antiantian Min	ni Deceb II	9. SIZ		NATE	E OF BIT Se	e Remarks	VEDTICAL	
IV M	Iddle Area	of Seam	xecnnical li	investigation; Mia	m Beach, FL	10. 00	State	Dian	P FIE (IIS FI	NAD92	NAVD	8
BORI	ING DESIGN	ATION		LOCATION COORI	DINATES	11. M			RER'S DESIGNATI			R
M	ISMC-CB1	5-02		X = 938,259	Y = 538,922	CONTRACTOR CONTRACTOR	Failir	ng 150	00		MANUAL HAN	MER
DRIL	LING AGEN	ICY		CON	TRACTOR FILE NO.	12. TO	TAL S	SAMPI	ES	DISTURBED	UNDISTURBED	(UD)
C	orps of Eng	gineers.	CESAM							23	0	
C	harlie Brow	/n				13. TO	TAL	NUMB	ER CORE BOXES	0		
DIRE	CTION OF	BORING		DEG. FROM	BEARING	14. EL	EVAT	ION G	ROUND WATER	-0.1 Ft.		
	ERTICAL			VERTICAL		15. DA	TE B	DRING	•	STARTED	COMPLETE	5
	NOLINED	-		1	1	40 EI	EVAT			1 09-10-13	09-17-1	5
THIC	KNESS OF	OVERBL	RDEN	N/A		10. EL	EVAL	DECO	EPV FOR ROPIN	1.8 Ft.		
DEPT	TH DRILLED	INTO R	OCK N	N/A		17. 10	GNAT	IIRE A	VERY FOR BORIN	G 34 %		
тот	AL DEPTH C	F BORI	NG 34.	.5 Ft.		10. 01	Laun	a Roe	buck. Geologist	Leron		
LEV.	DEPTH	LEGEND	CL	ASSIFICATION OF	FMATERIALS	RÉC.	BOX OR SAMPLE	RQD OR UD	, 5	REMARKS	BLOWS/ 0.5 FT.	N-VALUE
						+						_
1.8	0.0		FILL, most	tly fine gravel-size	ed rock fragments.	—	\vdash		1.8		2	-
-	-		some fine t	to coarse-grained	d sand-sized quartz,					007.0		{
	_		uace shell	tragments, ary		47	1			SP1 Sampler	8	21
0.3	1.5	XXX.	-						0.3		13	
ŀ	-	I I I I I I I I I I I I I I I I I I I	duartz, son	me coarse gravel-	grained sand-sized -sized rock	¥					8	
ł	-		fragments,	, wet		47	2			SPT Sampler	8	45
F									-1.2		7	15
1	-							1			4	
	-					60	3			SPT Sampler	6	1
	-						- T				6	12
ł		₩.	At El2.7	Ft., little shell fra	aments.		-	1	-2.1		5	\vdash
ŀ	_		10YR 6/1 g	gray		1.17				OPTO		{
-	-					4/	4			SPT Sampler		13
	-	×		Et come fine to	medium grained		-		-4.2		7	
	-		sand-sized	quartz, trace silt	, 10YR 5/1 gray						6	
Ŀ	-					53	5			SPT Sampler	6	12
ŀ	_								-5.7		7	
-	-	×*	At El5.7 sand-sized	Ft., mostly fine to	o medium-grained						7	
	-		fragments,	, 10YR 6/1 gray	graver sized rock	13	6			SPT Sampler	6]
									-72		6	1 12
								1	1.16		3	
ŀ						0	7			SPT Sampler	1	1
ŀ	-					ľ	ľ		1010			2
F	-	₩\$	At El8.7	Ft., trace rock fra	agments, Low		\vdash		-8.7		1	-
-	_		Recovery	,							3	1
	-					27	8			SPT Sampler	5	9
ł	-								-10.2		4	<u> </u>
ł	-										6	
F	-					0	9			SPT Sampler	4	
	-	\otimes							-117		2	16
ł	2							1	1.7		3	
ł						0	10			SDT Sampler		1
- [1	10			or i oampier		2
	10.00	XXXX									4	

DRI	LLING	LO	G (Cont. Sheet)	INSTALLA	TION	Distri	~t			SHEE	T 2 3 SHE	ETS	1
	-			COORDIN	TERN	STER	A DAT	104	HOPIZONTAL	VERTICAL		210	Ł
MSM	C Segural	Gent	echnical Investigation: Miami Beach, FI	State D	lane	FIE	ILSI	Et)	NAD83	NAVD	8.8		L
DCATH		NATE	e e e e e e e e e e e e e e e e e e e	ELEVATIO	N TOP		0.0.)	I NADOO				ł
Y - C	38 250	V - 5	38 922	1 8 Et	NIUP	OFB	URIN	6					L
ELEV.	DEPTH		CLASSIFICATION OF MATERIA	LS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS		0.5 FT.	N-VALUE	
			❤FILL, mostly gravel to cobble-sized lim some fine-grained sand-sized quartz, 10YR 5/2 grayish brown	estone, rock fill,	13	11		-14.7	SPT Sample	er	1 1 1	2	
-16.2	18.0		OUT increasio L. mostly site little stor		0	12		-16.2	SPT Sample	er	3 2 1	3	
			fine-grained sand-sized quartz, trace r fragments, trace organic odor, 2.5Y 6/ (ML)	/, intre ock /1 gray	27	13		-17.7	SPT Sample	er	2 1 1	2	
			quartz, stratified in very thin layers, 10Y 5/1 greenish gray	rained	80	14		-19.2	SPT Sample	er	1 1 1	2	
-20.7	22.5		sand-sized quartz	and-sized	80	15		-20.7	SPT Sample	er <u>\</u>	1 VH 1	1	
	SILT, inorganic-H, little fine-graine quartz, trace rock fragments, organ N 5/ gray (MH)		quartz, trace rock fragments, organic o N 5/ gray (MH)	odor,	80	16		-22.2	SPT Sample	er	2 1 2	3	
-23.7	25.5				0	17		-23.7	SPT Sample	er	2 3 2	5	
-25.2	27.0		LINESTONE, sandy, sparsely tossilife moderately hard, moderately weathere grained, mostly quartz grains, vuggy, s sand filled vugs, broken due to drill act Corraline, 10Y 5/1 greenish gray	rous, ed, fine shelly tion,	27	18		-25.2	SPT Sample	er	3 3 4	7	
-26.7	28.5		SAND, poorty-graded, mostly fine-grai sand-sized quartz, little silt, little clay, t fragments, trace shell up to 1/4", 10Y greenish gray (SP)	ned trace shell 4/1 dark	7	19		-26.7	SPT Sample	er	2 4 6	10	
			LIMESTONE, sandy, sparsely tossifie moderately hard, highly weathered, po shelly sand filled pores, broken due to action, Corraline, 10Y 6/1 greenish gra	rous, rous, drill ay	33	20		-27.9 -28.2	SPT Sample	er	3 14 /0.2'	64+	
	Ta a				0	21		-29.0	SPT Sample	er90	25 /0.3'		l
-20.7	315	I I I						-20.7	Advanced Bor	ring			ţ
-31.2	33.0		►LIMESTONE, dolomitic, N 7/ light gray		67	22		-31.2	SPT Sample	er	10 42 46	88	
-32.7	34.5		SANDSTONE, moderately hard, ceme sand filled pores, broken due to drill ad 10Y 6/1 greenish gray From El31.6 to -31.7 Ft., thin hard r	nted ction, ock layer	53	23		-32.7	SPT Sample	er	40 14 13	27	
								14041					l

	LEING	LUU	Gont. Sneet)	In size	- ill - 1	Nate!	4				05.0	CULCER
			· · · · · · · · · · · · · · · · · · ·	Jackson	vile	Jistric	il VD			1.	OF 3	SHEETS
MON	T C: Seauch	Cont	schnicel Investigation: Miemi Deash	COORDINA	TE SY	STEN	DATI		NADAS	i ji	NAV/Dee	
WSW	ic, seawall	Geote	connical investigation; Miami Beach, FL	State Pl	ane, I	LE (0.5.1	-i.)	NAD83	1	NAVD88	
X - C	38 250	NATES	8 922	1.9 Et	TOP	OFB	URIN					
ELEV.	DEPTH	GEND	CLASSIFICATION OF MATERIAL	s	RÉC.	X OR MPLE			RE	MARKS	/SMO	ALUE
		LEC	NOTES:			SAI	UD				33	5 <u>2</u>
			NOTES: 1. USACE Jacksonville is the custodia these original files. 2. Soils are field visually classified in accordance with the Unified Soils Class System. 3. Borehole tremie grouted with portlar cement and water. 4. Laboratory Testing Results SAMPLE SAMPLE LABORAT ID DEPTH CLASSIFIC 3. 3.0/4.5 SP-SM 8. 10.5/12.0 SP* 14. 19.5/21.0 ML 16. 22.5/24.0 MH 22. 31.5/33.0 SP-SM *Lab classification based on gradation curve. Sample Numbers 3 and 8 werv on fill material encountered at these of Test result classifications indicate Sill (SP-SM) and Sand (SP) but could als classified as (SP-SM)g and (SP)g respectively. Sample Number 22 war on limestone rock samples and soil in sample. Test results for Sample Num indicate a Silty-Sand (SP-SM) and is accurate description of the porous an limestone encounterd. 5. Additional Laboratory Testing 3. Moisture Content 14. Moisture Content 14. Aiterberg 14. Percent Organic 16. Moisture Content 16. Additional Laboratory Testing 3. Moisture Content 16. Additional Laboratory Testing 3. Moisture Content 16. Moisture Content 17. Additional Laboratory Testing 3. Moisture Content 18. Moisture Content 19. Additional Laboratory Testing 3. Moisture Content 19. Additional Laboratory Testing 3. Moisture Content 4. Aiterberg 10. Percent Organic 11. Additional Content 12. Moisture Content 13. Moisture Content 14. Aiterberg 14. Percent Organic 15. Additional Content 16. Additional Content 17. Additional Content 18. Additional Content 19. Additional Content 19. Additional Content 10. Atterberg 10. Percent Organic 21. Moisture Content 22. Moisture Content 23. Moisture Content 24. Aiterberg 25. Additional Content 26. Additional Content 27. Moisture Content 28. Additional Content 29. Additional Content 20. Additional Content 20. Additional Content 20. Additional Content 21. Additional Content 22. Moisture Content 23. Additional Content 24. Additional Content 25. Additional Content 26. Additional Content 27. Additional Conten	n for sification nd TORY ATION A* n t tested tepths. ty Sand ico be s tested t this hoter 22 not an d pitted	REC.	BOY		spoon (1-	3/8" I.D. x 2" C	D.D.).		

			E	Borir	ng Designation	MSMC-CB1	5-03			
DRILLING	LOG	DIVISION	INS	STALL	ATIC	N			SHEET 1	
DRIEERICO	200	South Atlantic	_	Jacks	onvi	lle Dis	strict		OF 3 SH	EETS
PROJECT			9.	SIZE	AND	TYPE	E OF BIT See	Remarks		
MSMC; Seav	wall Geo	technical Investigation; Miami Beach, FL	10.		Nata	Dien	STSTEM/DATUM	HORIZONTAL	VERTICAL	
BORING DESIGN	a of Sea	AWAII	11.	. MAN		CTUR	E, FLE (U.S. FL)			5
MSMC-CB15	5-03	X = 937,331 Y = 537,910		F	ailin	g 150	00		MANUAL HAM	MER
DRILLING AGEN	CY	CONTRACTOR FILE	NO.						INDISTURBED	(UD)
Corps of Eng	jineers -	CESAM	12	. 101	AL 3	Ame	LES	20	0	
NAME OF DRILL	ER		13.	. тот	ALN	UMB	ER CORE BOXES	0		
DIRECTION OF E	BORING	DEG. FROM BEARING	14.	. ELE	VAT	ION G	ROUND WATER	-1.8 Ft.		
VERTICAL		VERTICAL	15	DAT	E BC	RING		STARTED	COMPLETE	D
			10.			- Alina		09-15-15	09-15-1	5
THICKNESS OF	OVERBU	RDEN N/A	16.	. ELE	VAT	ION T	OP OF BORING	4.2 Ft.		
DEPTH DRILLED	INTO R	OCK N/A	17.	. тот	AL F	ECO	ERY FOR BORING	62 %		
TOTAL DEDTH O		20.0 Et	18.	. SIG	NAT	JRE A	ND TITLE OF INSP	ECTOR		
TOTAL DEPTH O	FBORIN	13 30.0 Ft.			.aura	a Roe	buck, Geologist			
LEV. DEPTH	LEGEND	CLASSIFICATION OF MATERIALS		RĚC.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS	N-VALUE
42 00							4.2			
-		FILL, sandy, nonplastic, mostly fine to					7.2		1	
E I		coarse-grained sand-sized quartz, some gra	avel	67	1			SDT Sampler		
F	i kom	to 3', dry, top soil (02 ft.), 2.5Y 6/1 gray	" up	°'	·			SFT Sampler		21
F			ŀ	_	_		2.7		10	
È I			I						20	
Ł			I	80	2			SPT Sampler	12	24
F			I				1.2		12	24
F	888 h	At El. 1.2 Ft., little shell fragments, moist,	l l						19	
E I		10YR 7/2 light gray	I	80	3			SPT Sampler	24	
E I			I	~~ I	Ĭ		10110	or roumpier	40	42
F	×	At EL -0.3 Et mostly fine to medium-grain	ed	-	-		-0.3		10	
Ē.		sand-sized quartz, little shell fragments, littl	le						11	
È I	^ب 📖	gravel, trace silt, 2.5Y 5/1 gray	I	73	4			SPT Sampler	14	27
Ł			.				-1.8		13	-
F		At El1.8 Ft., mostly fine-grained sand-siz	red						2	
E I		shell fragments, wet, 5Y 6/1 gray	sizeu	53	5			SPT Sampler	5	
22575			I					,	5	10
5.5 7.5		SAND, silty, mostly fine-grained sand-sized	d	-	-		-3.3		4	
F	-1-1 -	quartz, some silt, trace shell fragments, tra	ice	40	0			CDT Cassalar		
F	iii '	ciay, for or greenish gray (Sivi)	I	40	6			SPT Sampler	4	8
4.7 - 8.9		CLAY, lean, mostly clay, some fine-grainer		\rightarrow			-4.8		4	
E .		sand-sized quartz, 10Y 6/1 greenish gray ((CL)						2	
E		SAND, silty, mostly silt, some clay, little		53	7			SPT Sampler	2	
6.3 10.5		fragments, 10Y 5/2 dark greenish gray (SI	M)				-6.3		2	4
-		SAND, silty, mostly fine-grained sand-sized	d						1	
F		quartz, some silt, little clay, trace shell fragments, N 5/ gray (SM)		73	8			SPT Sampler	1	
Ł	liiii '	generation gray (ann)		~	~			or i oumpion		2
F	HIL	At EL 7 8 Et mostly fine to medium grain		\rightarrow			-7.8		1	
E I		sand-sized quartz, some silt, little clay, little	efine						1	
Ł	to medium-grained sand-sized shell fragm 10Y 5/1 greenish gray		ents,	73	9			SPT Sampler	1	2
F							-9.3		1	2
	HIHI		ŀ						ī	
E I										
-	t+t+		I	0	10			SPT Sampler	4	
-				0	10			SPT Sampler	1	2

Draft Feasibility Report

DRI	LLING	LO	G (Cont. Sheet)	INSTALLA	TION						SHEET	2	Γ
			- (,	Jackso	nville	Distri	ct		1	1	OF 3	SHEET	s
PROJEC	T C: Socuroll	Cont	adminal Investigation: Miami Reach, El	COORDIN/	ATE SI	STE	WDAT		HORIZONTAL	VE			
	C, Seawall	Gea		State P	nane,		0.5.	ri.)	i NADOS		NAVDOO	,	-
X = 9	37 331	Y = 53	s 37 910	4 2 Ft	NIOP	UFE	OKIN	G					
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS		BLOWS/	N-VALUE	
		HH	At El10.8 Ft., mostly fine-grained sa	and-sized							1		Ŧ
		ttt	sand-sized shell fragments, trace clay	rained	73	11			SPT Sample	er	1		ŧ.
		111						40.0			1	2	F
							1	-12.5			1		ŧ.
		H			60	12			CDT Comple			-	F
		111			00	12			or i oampie	51		2	F
		Itt	At EL -13.8 Et some fine to coarse of	rained			1	-13.8			1	_	+
		HIT	sand-sized shell fragments, trace rock	(3	_	F
		1+I+	fragments up to 1-1/2", trace fine grav	/el-sized	60	13			SPT Sample	er	10	21	ιÈ
-15.3	19.5	1-11-						-15.3			11	0	1
	A	III	LIMESTONE, sandy, sparsely fossilife soft_biobly weathered_mostly quartz	arains							22	2	E
		III	porous, sand filled pores, broken due	to drill	73	14			SPT Sample	er	38	3	.F
		ITI	action, Corraline, N 9/ white					-16.8			26	5 64	ŁĘ.
		III					1	10.0			14	1	Ŧ
		III			100	15			SPT Sample	ər	25		E
		III			100			10.0	or r oumpi			52	² E
	pa	III			\vdash		1	-18.3			21		+
	athe	III							007.0			_	F
	y We	ITI			87	16			SPT Sample	er	26	56	ş F
	High	III	ALE 10.0 E				1	-19.8			30)	+
	1	III	-ALEI19.0 FL								21	1	È
		III			67	17			SPT Sample	er	26	5 47	, Ŀ
-21.3	25.5	III						-21.3			21	1	Ŀ
		III	LIMESTONE								16	5	E
		III			67	18			SPT Sample	er	22	2	F.
-22.8	27.0	ITI						-22.8			19	3 41	F
22.0	21.0	Ĩ	SAND, poorly-graded with silt, mostly				1				6		下
			fragments up to 1", little silt (SP-SM)	me rock	27	19			SPT Sample	er	6		ţ.
								24.2			5	11	۱Ŀ,
		:.	At El24.3 Ft., trace shell fragments,	trace	\vdash			-24.3			11		+
			rock fragments up to 1", trace silt,		22	20			CDT Carrol				F
			i si te tri i igite gi ay		1 33	20			SPT Sample	51		17	Ē
-25.8	30.0	<u> Pili</u>					-	-25.8			6		÷
			NOTES:		1			140# ha	mmer w/30" drop used	with	2.0' split	t	F
			 USACE Jacksonville is the custodi these original files. 	an for				spoor(- 570 1.D. X 2 (O.D.).				Ē
			 Soils are field visually classified in accordance with the Unified Soils Classified System. 	ssification									
			Borehole tremie grouted with portla cement and water.	and									Ē
			4. Laboratory Testing Results		1								F
				TORY	1								F
			CANFLE CANFLE LABORA										Ŀ

DR	ILLING	LO	G (Cont. Sheet)	INSTALL	TION	Distri		.g 200.g		010	SHEET 3	EETO	1
PROJEC	T			COORDIN	ATE S	STE	MDAT	UM	HORIZONTAL	VE	RTICAL		1
MSN	AC: Seawall	Geot	echnical Investigation: Miami Beach, FL	State	Plane.	FLE	U.S.	Ft.)	NAD83		NAVD88		L
LOCATI	ON COORDI	NATE	5	ELEVATIO	N TOP	OFE	ORIN	G					1
X = 5	937,331	r = 53	37,910	4.2 Ft.									
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS.	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS	1	BLOWS/	N-VALUE	1
			ID DEPTH CLASSIF 3 3.0/4.5 SP-3 7 9.0/10.5 SI 11 15.0/16.5 SN 15 21.0/22.5 GP-Q 20 28.5/30.0 SP-3 *Lab classification based on gradaticurve. Sample Number 15 was test limestone rock fragments and soil it sample. Test results for Sample Nuindicate a Sand-Gravel to Silty-GradGM) and is not an accurate descrip porous and pitted limestone encour 5. Additional Laboratory Testing 3 Moisture Content 7 Atterberg 7 Percent Organic 11 Moisture Content 20 Percent Organic 11 Moisture Content 20 Percent Organic 12 Moisture Content 20 Percent Organic 13 Moisture Content 20 Percent Organic	CATION M M M SM* SM* SM* SM* SM* SM*									

ATTACHMENT B – (STRUCTURAL ADDEDUM)

12	Mt Sinai Seawall C. Press April 2016
	Checked by H, Honobridge
	Posign Lite
	Assume 50-gr design life
	Max moment: 9,649 in-16 2 See CINIAISHT Royld.
	$5_{x-yeq} = 4.6 m^2$
	Correston Rates
D'	2 sides
INAPA	Sea water, temperate, high attack : 3.75 mm
R	Sed water, temperate, submerged: 1-75 mm
	5.50 mm 2 0.22 in
	Round 0.22 in up to 0.25 in of total section loss
	See LB Foster Section Modulus Reduction sheet
	PZC-13 with 0.25 in total section loss
	5x = 11-49 11 3 > 4-6 11 2 0K
	Corvesion analysis is conservative for two neasons
	1. Sheet pile will be partially coaled with coal tox epoxy.
	2. Location of maximum bending moment is not at the same elevation as location of high attack zones.

Mt. Sinai Seawall Feasibility Study CWALSHT Results Low Water: -2.11 PZC-13

h.

											Ste	eel
		Load Case	Condition	FS	Tip El	Length	λ	Moment	Shear	Scaled Def	Sx req	Defl
	Design 1	Low Water	Usual	1.50	-20.55	24.1	1.00	9,649 in-lb	3,824 lbs	1.67E+09	4.63 in²	0.38 in²
Short Term	Design 2	Low Water	Usual	1.50	-19.30	22.8	1.00	7,843 in-lb	3,361 lbs	1.25E+09	3.76 in²	0.28 in ²
renn	Construction	Low Water	Unusual	1.25	-17.44	20.9	1.33	7,175 in-lb	3,242 lbs	1.10E+09	2.59 in²	0.25 in ²
	Design 1	Low Water	Usual	1.50	-20.14	23.6	1.00	9,975 in-lb	3,910 lbs	1.80E+09	4.79 in²	0.41 in²
ong Term	Design 2	Low Water	Usual	1.50	-18.90	22.4	1.00	8,089 in-lb	3,196 lbs	1.34E+09	3.88 in²	0.30 in²
	Construction	Low Water	Unusual	1.25	-17.06	20.6	1.33	7,410 in-lb	3,048 lbs	1.18E+09	2.67 in ²	0.27 in²

LONG TERM Table 4. Soil Parameters (Drained Condition)

					Mo	unt Sinai (D	rained con	dition)				
EI (N/	Elevation (NAVD 88)		Soil Classification ⁽¹⁾	Saturated Unit Weight	Moist Unit Weight (γmoist)	Effective unit Weight	Angle of Internal Friction	At Rest Earth Pressure coefficient	At Active Earth Pressure coefficient	At Passive Earth Pressure coefficient	Cohesion Drained (psf)	Soil Steel Interface Wall Friction
				(γ _{sat}) (pc1)	(pcf)	(γ) (pcr)	(φ)	Ko	Ka	Kp		(Delta)
1.8	to	-5.7	Fill	120	115	57.6	30	0.50	0.33	3	0	16
-5.7	to	-16.2	Fill	110	106	47.6	29	0.52	0.35	2.9	0	16
-16.2	to	-23.7	ML/MH	110	105	47.6	26	0.56	0.39	2.56	0	14
-23.7	to	-26.7	SP	115	110	52.6	31	0.48	0.32	3.12	0 .	17
-26.7	to	-32.7	Limestone	132	126	69.6	34	0.44	0.28	3.54	0	18
(1) USC	CS: U	nified Soi	l Classification Systen	1								L

SHORT TERM

Table 3. Soil Parameters (Undrained Condition)

					Mou	int Sinai (Un	drained con	ndition)				
					Moist			At Past	At Active	At Dessive	Cohesion	Soil Steel
Eleva (NA	tion AVD	Range 88)	Soil Classification ⁽¹⁾	Saturated Unit Weight (γ _{sat}) (pcf)	Unit Weight (γ _{moist}) (pcf)	Effective unit Weight (γ') (pcf)	Angle of Internal Friction (φ)	Earth Pressure coefficient K _o	Earth Pressure coefficient K _a	Earth Pressure coefficient K _p	Undrained (psf)	Interface Wall Friction Angle (Delta)
1.8	to	-5.7	Fill	120	115	57.6	30	0.50	0.33	3	0	16
-5.7	to	-16.2	Fill	110	106	47.6	30	0.52	0.35	2.9	0	16
-16.2	to	-23.7	ML/MH	110	105	47.6	0	1	1	1	250	0
-23.7	to	-26.7	SP	115	110	52.6	31	0.48	0.32	3.12	0	17
-26.7	to	-32.7	Limestone	132	126	69.6	34	0.44	0.28	3.54	0	18
(1) US	CS :U	nified Soi	l Classification System	n						·····		

PZC SHEET PILING PROPERTIES

PZC sections are the "latest generation" of sheet piling profiles and were developed to be lighter, wider, and stronger than the older traditional PZ sections. PZC profiles are named for their strength in metric designations. For example, PZC 18 has a Section Modulus of 1,800 cm³/meter. **PZC profiles should always be the designer's first choice in order to provide the end user the most efficient retention wall with the most efficient ratio of section modulus to weight.**

							Per Single	e Section				Per Uni	t of Wall	
	Nominal Width	Wall Depth (Height)	Web Thickness	Flange Thickness	Агеа	Weight	Moment of Inertia	Section Modulus	Total Surface Area	Nominal Coating Ares*	Area	Weight	Moment of Inertia	Section Modulu
Section	in. (mm)	in. (mm)	in. (mm)	in. (ovn)	in.² (cvir ²)	lbs/ft _(Agy/m)	in.4 (cm²)	in³ (cm²)	n²/n (m²/m)	nt²/n (m²/m)	in. ² /tt (ccm ² /m)	lbs/tt ² (kg/m ²)	in. ⁴ /ti (cm ⁻ /m)	in.³/tt (car²/m)
19	27.88	12.56	0.375	0.375	14.82	50.4	353.0	56.2	6.10	5.60	6.38	21.7	152.0	24.2
	708	319	95	9.5	95.6	75.1	14,690	920	1.86	1,71	135.1	106.0	20,760	1,300
PZC 14	27.88	12.60	0.420	0.420	16.15	55.0	381.6	60.5	6.10	5.60	6.95	23.7	164.3	26.0
	708	320	10.7	10.7	104.2	81.8	15,890	990	1.86	1.71	147.2	115.5	22,440	1,400
21118	25.00	15.25	0.375	0.375	14.82	50.4	532.2	69.8	6.10	5.60	7,12	24.2	255.5	33.5
	635	387	9.5	9.5	95.6	75.1	- 22,150	1,145	1.86	1,71	150.6	118.2	34,890	1,800
PZC 19	25.00	15.30	0.420	0.420	16.16	55.0	576.3	75.3	6.10	5.60	7.75	26,4	276.6	36,1
	.635	388	10.7	10.7	104.2	81.8	23,990	1,235	1.86	1.71	164.1	128.8	37,780	1,94
070 25	27.88	17.66	0.485	0.560	20.40	69.4	938.7	106.3	6.65	6.15	8.78	29,9	404,1	45.7
	708	449	12,3	14.2	131.6	103.3	39,070	1,740	2.03	1.87	185.9	145.9	55,190	2,458
26	27.88	17.70	0.525	0.600	21.72	73.9	994.3	112,4	6.65	6.15	9.35	31,8	428,1	48,4
	708	450	13.3	15.2	140.1	110.0	41,390	1,840	2.03	1,87	197.9	155.4	58,460	2,60
PZC 28	27.88	17.75	0.570	0.645	23.22	79.0	1,057	119.1	6.65	6.15	10.00	34.0	455.1	51.3
	708	451	14.5	16.4	149.8	117.6	44,000	1,950	2.03	1.87	211.6	166.1	62,150	2,75
PZC 37	22.50	21,02	0.488	0.563	20.45	69.6	1,349	128.4	6.65	6.15	10.91	37.1	719.6	68.5
	572	534	12.4	14.3	132.0	- 103.6	56,160	2,100	2.03	1.87	230.9	181,2	98,270	3,68
	22.50	21.05	0.525	0.600	21.76	74.0	1,429	135.6	6.65	6.15	11.61	39.5	762.1	72.3
	572	535	13.3	15.2	140.4	110.2	59,480	2,220	2.03	1.87	245.6	192.8	104,100	3,89
PZC 41	22.50	21.09	0.561	0.636	23.03	78.4	1,507	142.7	6.65	6.15	12.28	41.8	803.6	76.1
	572	536	14.2	16.2	148.6	- 116.6	62,720	2,340	2.03	1.87	260.0	204.1	109,700	4,090

GERDAU AMERISTEEL	TABLE L	Loss of This	kness Due to	Corrosion for	Steel Sheet Pil	ngs (Ref4)*
Eurocode 3:	Soll, with or without groundwater:	d years	25 years	DESIGN LIFE 50 years	75 years	100 years
Design of Steel	Undisturbed natural solls	0.00 mm	0.30 mm	0.60 mm	0.90 mm	1.20 mm
Structures	Polluted natural soils and industrial grounds	0.15 mm	0.75 mm	1.50 mm	2.25 mm	3.00 mm
Part 5: Piling	Aggressive natural solis (swamp, marsh, peat)	0.20 mm	1.00 mm	1.75 mm	2.50 mm	8.25 mm
(ENV 1993-5)	Non-compacted and non-aggres- sive fills * (clay, schist, sand, silt)	0.18 mm	0.70 mm	1.20 mm	1.70 mm	2.20 mm
	Non-compacted and aggressive fills = (eshes, slag)	0.50 mm	2.00 mm	3.25 mm	4.50 mm	5.76 mm
Loss of Thickness	Water ^e : Common fresh water (river, ship canal-,) in the zone of high attack (water line)	0.15 mm	0.55 mm	0.90 mm	1.15 mm	1.40 mm
(mm)	Very polluted fresh water (sewage, industrial effluent-,) In the zone of high attack (water line)	0.30 mm	1.30 mm	2.30 mm	3.30 mm	4.30 mm
· · · · · · · · · · · · · · · · · · ·	Sea water in temperate climate in the zone of high attack (low water and splash zones)	0.55 mm	1.90 mm	3.75 mm	5.60 mm	7.50 mm
	Sea water in temperate climate in the submerged zone or tidal zone	0.25 mm	0.90 mm	1.75 mm	2.60 mm	3.50 mm
.BFoster	 Values are provided for general guidance and 25 years are based on measurement. Ecompacted AX. due convoice lower C. The higher corrotion met is usually in must cause, the higher beading stress. 	only. Local knowl wilarean other val should be divided d at the spirsh roo s occur in the solu	indge mary lead to t nas me extrapolata by rwa as of marine enviro merged pros.	the case of other val ef. consents or at the It	ues for design. The w water level in til	values girei for 5 ial waters. Howevez,

		Redu	ction	n froi	n 0.0	00" -	- 0.2	50"	
	Thickness	Sect	ion Moc	lulus (ir	1 ³ / ft)	Mom	ent of Ir	nertia (ir	n ⁴ / ft)
	Reduction (in.)	PZ27	PZC13	PZC18	PZC26	PZ27	PZC13	PZC18	PZC26
	0.0000	31.80	24.17	33.50	48.38	187.3	151.9	255.5	428.1
	0.0625	27.96	21.10	29.25	43.74	168.28	131.75	222.12	385.73
_ [0.1250	24.07	17.96	24.89	39.08	144.12	111.79	188.23	343.42
	0.1875	20.10	14.76	20.49	34.41	119.72	91.31	154.32	301.3
	0 2500	16.10	11.49	16.05	29.74	95.39	70.72	120.38	259.48

ATTACHMENT C – (VERTICAL ROAD RELOCATION)

MT. SINAI - VERTICAL ROAD RELOCATION ALTERNATIVE

CAP Project – Mount Sinai - Vertical Road Relocation									
	Simplifi	ed Quantity	Estimate						
General Road Properties	Quantity	Unit of Measure	Assumptions						
Road Length	1310	FT	1230 ft of new road construction. 4*20' of road transition to existing roads						
Road Width - Finish Pavement	20	FΤ							
Road Width - Subgrade	25	FΤ							
Sidewalk Length	1000	FT	Sidewalk is constructed between raised road and existing seawall to help control erosion						
Sidewalk Width - Finish Pavement	8	FT							
Sidewalk Width - Subgrade	10	FT							
Existing infrastructure	NA		Existing infrastructure (lights, electric lines, gates, gatehouses, etc) will not be impacted by construction						
Items to Cost	Quantity	Unit of Measure	Assumptions						
Demolition - Existing Pavement	2910	SY							
Demolition - Existing Curb and Gutter	2620	LF							
Demolition - Existing Storm Grates	2	EA							
Demolition - Existing Culverts	100	LF							
Imported Fill Material - Aggregate Base - Road	3640	Tons							
Imported Fill Material - Aggregate Base - Sidewalk	1110	Tons							
Pavement - Road - Asphalt - 2" thick	2910	SY							
Pavement - Curb and Gutter - Concrete	2620	LF							
Pavement - Sidewalk - Concrete	8000	SF							
Storm Grates - 2' x 20'	2	EA							
Storm Grates - 3' x 3'	8	EA							
Culvert Junction Box - Concrete - 3' Diameter, 2' Height	2	EA							
Culvert - 15" RCP	760	LF							
Traffic Control	1	EA							
Erosion Control	11	EA							