Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment J

Civil Design Impacts: Traffic Study, Harbor Crossing Utilities Drawings, Dredged and Excavated Material Disposal Sites Drawing

Rev Date: September 2012

Northside a Port Canav	nd South veral, Flor	side Traffic Study, rida
Final Report		
		Prepared for: Canaveral Port Authority
		Prepared by: Ghyabi & Associates May 2006
G Asso Enginee 7575 Dr. Phillips F	hyabi & ciates, Inc. ring & Planning Ivd. Suite 225, Orlando, FL 3281	

7575 Dr. Phillips Blvd. Suite 225, Orlando, FL 32819 Telephone: (407) 351-8733 Fax: (407) 351-8247

PROFESSIONAL ENGINEERING CERTIFICATION

I hereby certify that I am a Professional Engineer properly registered in the State of Florida practicing with Ghyabi & Associates, Inc., a corporation authorized to operate as an engineering business, EB 00007311, by the State of Florida Department of Professional Regulation, Board of Professional Engineers, and that I have prepared or approved the evaluations, findings, opinions, conclusions, or technical advice attached hereto for:

PROJECT:	CPA/North and South Side Traffic Study
LOCATION:	Port Canaveral, Florida
CLIENT:	Canaveral Port Authority

I hereby acknowledge that the procedures and references used to develop the results contained in these computations are standard to the professional practice of Transportation Engineering as applied through professional judgment and experience.

Ghyabi & Associates, Inc. C.A. #7311 214 East New York Avenue DeLand, FL 32724

Mark D. Tobin, P.E. #57304

Ghyabi & Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS	I
LIST OF FIGURESI	I
LIST OF TABLES II	I
SECTION 1 INTRODUCTION	l
Location	1 1 3
SECTION 2 EXISTING ROADWAY CONDITIONS	5
INTERSECTION ANALYSIS	l 5
SECTION 3 FUTURE TRAFFIC CONDITIONS 17	7
BACKGROUND TRAFFIC GROWTH 17 TRIP GENERATION 17 TRIP ASSIGNMENTS 19 FUTURE CONDITIONS ANALYSIS 20	7 7 9 0
WEAVING ANALYSIS	5
SECTION 4 CONCLUSION	5
Appendix A- Link Volumes	
Appendix B - Turning Movement Counts	
Appendix C- HCS Worksheets – Existing Conditions	
Appendix D - HCS Worksheets- Future Conditions (2010)	
Appendix E - HCS Worksheets- Future Conditions (2025)	

Appendix F – Central Boulevard Analysis

LIST OF FIGURES

Figure 1: General Location Map
Figure 2: Existing Geometry
Figure 3: Existing (Year 2005) Roadway Volumes
Figure 4: Opening Year (2010) Roadway Volumes
Figure 5: Design Year (2025) Roadway Volumes
Figure 6: Existing Year (2005) AM Peak Hour Turning Movements
Figure 7: Existing Year (2005) Mid-day Peak Hour Turning Movements
Figure 8: Existing Year (2005) PM Peak Hour Turning Movements
Figure 9: Opening Year (2010) AM Peak Hour Turning Movements
Figure 10: Opening Year (2010) Mid-day Peak Hour Turning Movements
Figure 11: Opening Year (2010) PM Peak Hour Turning Movements
Figure 12: Design Year (2025) AM Peak Hour Turning Movements
Figure 13: Design Year (2025) Mid-day Peak Hour Turning Movements
Figure 14: Design Year (2025) PM Peak Hour Turning Movements
Figure 15: Existing Year (2005) Level of Service
Figure 16: Opening Year (2010) Level of Service
Figure 17: Design Year (2025) Level of Service
Figure 18: Opening Year (2010) Geometry
Figure 19: Design Year (2025) Geometry

LIST OF TABLES

Table 1: Existing AM/Mid-day/PM Peak Hour Level of Service	12
Table 2: Existing Level of Service – Weaving Section	16
Table 3: Future Trip Generation	18
Table 4: Future AM/Mid-day/PM Peak-Hour Level of Service for Intersection	22
Table 5: Future Peak-Hour Level of Service for Weave Analysis	35

Section 1 --- Introduction

Ghyabi & Associates, Inc. (G&A) has been retained by the Canaveral Port Authority (CPA) to provide transportation engineering services for Port Canaveral located in Brevard County, Florida.

Location

The project is located in Port Canaveral, Brevard County, Florida. Figure 1 presents the general location of the project site.

Study Area

For this study, Ghyabi & Associates evaluated conceptual land use/access alternatives and their associated impacts to the operating conditions for the north-side and south-side Port Canaveral internal roadway system. The study limits for the north cargo area extends from the Inlet Bridge to the USAF gate on SR 401. The study area for the south side of Port Canaveral includes the internal roadway system from SR 528 to Jetty Park, notably George King Boulevard, Scallop Drive and Mullet Drive. Port Canaveral area currently includes several land uses including cruise ship terminals, cargo piers, tanker berths, a marina, public boat ramps and various retail and commercial uses.

Land Use Assumptions and Analysis Periods

Future land use for both the North and South sides of the Port was provided to G&A by the CPA. Some of the information provided included estimated opening years. For phasing and build-out information that was not available from the CPA, G&A made assumptions.

South side port expansion projects include the aggregate conveyor and storage area which is expected to open initially in 2006 and have 150 daily truck trips. This site is expected to increase to full operation with 300 daily truck trips by 2009. The Premier Office Building is expected to be fully occupied by 2008. In the Cove area, east of Dave Nesbit Drive, future land uses are evolving. For this study, it is assumed to include a hotel (Milrose), a museum and small amount of retail land use. The Milrose Hotel is assumed to initially open with 115 rooms by 2007 and add 60 rooms by 2010. The museum is assumed to be 15,000 square feet while the retail uses at this location are assumed to be 25,000 square feet. Both were assumed to be open by 2010.

Additionally on the South side, at the west end of George King Boulevard and adjacent to the Banana River is the proposed Ron Jon World project. This project is proposed to include a 400-room hotel, a 25,000 square foot conference center, a 73,000 square foot store, a 10,000 square foot restaurant, approximately 11.5 acre surf/water park and board sports venue and a 1200-vehicle parking garage. Also associated with Ron Jon World is a proposed 5,000 square foot retail site at the current Jetty Park.

Other South side expansion projects include the opening of Cruise Terminals 3 and 4 which are expected to be operating by Fall 2006 and Fall 2008, respectively. Cruise Terminal 3 would serve 2-day cruises while Terminal 4 would serve 3- and 4-day cruises.

North side port expansion includes the opening of Cruise Terminals 6 and 7 by 2008 to accommodate 3 ships per week. Cruise Terminals 11 and 12 are expected to be open by 2012 and accommodate 3 ships

Ghyabi & Associates, Inc.

per week as well. Cargo Piers 5 and 6 are expected to be fully operational by 2015. These cargo piers would have an upland container staging area of 18.45 acres (assumed to be operating by 2010) then expand fully to 53.6 acres by 2015. The future land use of the North Side of the Port also includes a 30-acre fuel tank farm expected to be open by 2009 and generate 500 truck trips per day.

Traffic analysis was performed for the following time periods: current year (2005), opening year (2010) and design year (2025).

Study Procedures

Standard engineering and planning procedures were used to determine the impacts of this project. Reference data was obtained from the Canaveral Port Authority, the Florida Department of Transportation, and the Institute of Transportation Engineers (ITE). Traffic volumes and turning movement counts were collected by G&A in August 2005.

The methodology used in this report includes:

- Determination of the existing Daily traffic volumes and AM peak hour, Mid-day peak hour, and PM peak hour volumes and turning movements for the study areas and the intersections within it, based on collected data.
- Development of opening year (2010) and design year (2025) traffic volume forecasts for the conceptual land use improvements.
- Evaluation of the existing and future traffic conditions.
- Level of Service analysis for the study area intersections for existing and future conditions (opening and design years).
- Recommendations for improvements to accommodate the anticipated travel demand with the study are based on Level of Service analysis.

Section 2 --- Existing Roadway Conditions

An analysis of the existing traffic conditions was conducted using the 24 hour volume counts, 72 hour classification counts and the turning movement counts collected by G&A at the segments and intersections, respectively listed below. The turning movement counts were conducted for eight hours. Figure 2 shows the existing intersection geometry. The 2005 AM, Mid-day and PM peak-hour turning movement counts are shown in Figures 6, 7 and 8. The volume count summaries, classification count summaries and turning movement count summaries are attached in Appendix A.

North Cargo Area of Port Canaveral:

- 24-Hour Volume Counts
 - 1. SR 401 NB Off Ramp to Charles Rowland Drive
 - 2. SR 401 SB On Ramp from Charles Rowland Drive
 - 3. SR 401 West of Charles Rowland Drive
 - 4. Grouper Road South of SR 401
- 72-Hour Classification Counts
 - 1. SR 401 East of Charles Rowland Drive
 - 2. SR 401 East of Grouper Road
- Turning Movement Counts
 - 1. SR 401 @ Charles Rowland Drive
 - 2. SR 401 @ Grouper Road

South Cargo Area of Port Canaveral:

- 24-Hour Volume Counts
 - 1. George King Boulevard East of Dave Nisbet Drive
 - 2. George King Boulevard East of Flounder Street
 - 3. George King Boulevard East of Glen Cheek Drive
 - 4. Jetty Park Drive East of George King Boulevard
 - 5. Christopher Columbus Drive East of Glen Cheek Drive
 - 6. Atlantic Avenue South of George King Boulevard
 - 7. Glen Cheek Drive East of Dave Nisbet Drive
 - 8. Dave Nisbet Drive North of George King Boulevard
 - 9. Scallop Drive West of Dave Nisbet Drive
 - 10. Mullet Road West of Dave Nisbet Drive

- 11. Mullet Road West of Scallop Drive
- 12. Mullet Road West of SR 401 (Bridge)
- 72-Hour Classification Counts
 - 1. George King Boulevard East of Pompano Street
- Turning Movement Counts
 - 1. George King Boulevard @ Dave Nisbet Drive
 - 2. George King Boulevard @ Flounder Street
 - 3. George King Boulevard @ Marlin Street
 - 4. George King Boulevard @ N Atlantic Avenue
 - 5. George King Boulevard @ Christopher Columbus Road
 - 6. George King Boulevard @ Jetty Park Drive
 - 7. Scallop Drive @ Mullet Road
 - 8. Mullet Road @ Dave Nisbet Drive
 - 9. Scallop Drive @ Dave Nisbet Drive

Intersection Analysis

Intersection operational analyses were performed based on the AM, Mid-day and PM peak hours. All intersections were analyzed using the most current adopted procedures as outlined in the Transportation Research Board's Special Report 209 – <u>Highway Capacity Manual (HCM)</u>. Roadway levels of service describe the operating condition determined from the number of vehicles passing over a given section of roadway during a specified time period. It is a qualitative measure of several factors which include: speed, travel time, traffic interruptions, freedom to maneuver, driver comfort, convenience, safety and vehicle operating costs. Six levels of service have been established as standards by which to gauge roadway performance, designated by the letters A through F. The level of service categories are defined as follows:

Level of Service A:	Free flow, individual users virtually unaffected by the presence of others
Level of Service B:	Stable flow with a high degree of freedom to select operating conditions
Level of Service C:	Flow remains stable, but with significant interactions with others
Level of Service D:	High-density stable flow in which the freedom to maneuver is severely
	restricted
Level of Service E:	This condition represents the capacity level of the road
Level of Service F:	Forced flow in which the traffic exceeds the amount that can be served

Intersection levels of service use quantitative measures to describe the operating condition at an intersection. Length of delay due to the traffic signal cycle timings at a signalized intersection or due to traffic conditions at an unsignalized intersection determine intersection level of service. This delay is measured in seconds.

The operating conditions at the intersections were evaluated using the Highway Capacity Software 2000 (HCS). This utilizes the methodology outlined in Chapters 16 and 17 of the *Highway Capacity Manual*. Table 1 shows the existing levels of service for the study intersection for the AM, Mid-day and PM peak-hours. The HCS worksheets for the existing conditions are located in Appendix C.

Table 1 shows the current level of service for the 11 intersections studied as part of this report. All of the intersections operate at level of service A or B, except for George King Blvd and Dave Nisbet Drive which operates at level of service C during the Mid-day and PM peak hours.

Intersection	Am Peal	k	Mid-day P	eak	PM Peak		
Intersection	Delay (sec)	LOS	Delay (sec)	LOS	Delay (sec)	LOS	
Charles Rowland Drive and SR 401	7.6	А	4.4	А	6.8	А	
Grouper Road and SR 401	8.4	А	9.4	А	8.4	А	
George King Blvd and Dave Nisbet Drive	14.5	В	17.3	C	17.5	С	
George King Blvd and Flounder St	8.8	А	10.6	В	10.6	В	
George King Blvd and Marlin Avenue	11.4	В	12.3	А	11.6	В	
George King Blvd and N Atlantic Avenue	17.8	В	16.6	В	16.2	В	
George King Blvd and Christopher Columbus Road	10.6	В	10.0	А	9.7	А	
George King Blvd and Jetty Park Drive	10.2	В	9.1	А	9.5	А	
Scallop Drive and Mullet Road	9.0	А	9.1	А	9.2	А	
Scallop Drive and Dave Nisbet Drive	8.8	А	9.4	А	10.2	В	
Mullet Road and Dave Nisbet Drive	8.9	Α	9.7	Α	10.8	В	

Table 1: Existing AM/Mid-day/PM Peak Hour Level of Service

Weave Analysis

Weaving occurs when two or more streams of traffic moving in the same general direction merge and then diverge over a short distance, resulting in crossings of portions of the traffic streams. As in this study, weaving is typically found when an on-ramp is followed by an off-ramp. Some portions of the road are usually multilane and much of the traffic is not involved in the weaving movement.

When performing a weave analysis, sufficient length and width of the weaving section need to be provided so that the speed of any non-weaving traffic is not adversely affected. When sufficient space is not available it can be expected that the speed of all traffic passing through the weaving section will be lower than on the open road.

Higher densities are usually obtained for any given LOS obtained on a weaving section. This is due to the fact that drivers expect and accept higher densities along these areas. Factors that affect weaving include the length of the roadway segment, number of lanes, types of weaving configurations, as well as types of terrain or grade conditions.

A weave analysis of the area along George King Boulevard, from the A1A eastbound off-ramp to Dave Nisbet Drive was evaluated using the Highway Capacity Software 2000 (HCS). This utilizes the methodology outlined in Chapter 24 of the *Highway Capacity Manual*. Table 2 shows the existing levels of service for the weaving section for the AM, Mid-day and PM peak-hours. The HCS worksheets for the weave analysis are located in Appendix C.

Weaving Section	AM Peak-Hour			Mid-da	ay Peak Ho	our	PM Peak-Hour			
	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS	
GKB from A1A Off-ramp to Dave Nisbet Dr.	31.79	10.68	В	32.08	11.22	В	34.40	6.64	А	

Table 2: Existing	Level of Service -	Weaving Section
-------------------	--------------------	------------------------

SECTION 3 --- FUTURE TRAFFIC CONDITIONS

Background Traffic Growth

Traffic on the roadway network within Port Canaveral and along roadways adjacent to or providing access to the Port (i.e., SR 528, SR A1A and North Atlantic Avenue) will continue to grow due to local development approvals. The counts taken by Ghyabi and Associates were used to determine the future growth rate of the background trips. However there was insufficient historical data available to conduct a trend analysis. In order to project future traffic growth associated with a high degree of new development both within the Port's boundaries and in areas in close proximity to the Port, a mixed annual growth rate was used to develop future background traffic. A 4% annual growth rate was used for the first five years (2006-2010) and a 3 % annual growth rate was used for the next 15 years (2011-2025).

Trip Generation

The trip generation for this development was determined using the trip generation rates published by the Institute of Transportation Engineers (ITE) in their *Trip Generation Manual*, 7^{th} *Edition*. For land uses not found in the *Trip Generation Manual*, data was obtained from the Canaveral Port Authority for estimated number of trips for the aggregate plant/storage site, the fuel tank farm and the cruise ship terminals. In addition, to approximate trip generation rates for the proposed conference center, ITE code 710, General Office Building was used. Similarly, a land use does not exist for museums. The ITE code 590, Library, was used to approximate the trip generation of the maritime museum. These were chosen based on similarities in size and possible traffic generation. The trip generation for the library and the movie theater without a matinee are shown in Table 3.

Table 3:	Future	Trip	Generation
----------	--------	------	------------

				Rates					Dai	ly Tri	ips			PN	A Pea	k			Al	M Pea	ık	
	ITE								Dir.	Split	Dir.	Trips		Dir.	Split	D Tr	ir. ips		Dir.	Split	Dir.	Trips
Parcel	Cod			PM	AM			Total					Total					Total				1
No.	e	Land Use	Daily	Peak	Peak	Units	Size	Trips	In	Out	In	Out	Trips	In	Out	In	Out	Trips	In	Out	In	Out
1	814	Specialty Retail Center	44.3	5.02	6.84	SF	25,000	1,108	50%	50%	544	544	126	56%	44%	70	55	171	48%	52%	82	89
2	590	Library	54	7.09	1.06	SF	15,000	810	50%	50%	405	405	107	48%	52%	51	56	16	52%	48%	9	7
3	030	Aggregate Plant (1)	300					300	50%	50%	150	150	25	47%	53%	12	13	27	40%	60%	11	16
4	710	Premier Office	11	1.49	1.55	SF	68,480	754	50%	50%	377	377	102	17%	83%	17	85	106	88%	12%	93	13
5	310	Hotel (Milrose)	8.17	0.59	0.56	Room	175	1,430	50%	50%	715	715	103	53%	47%	55	49	98	61%	39%	60	38
6	310	Hotel (Ron Jon)	8.17	0.59	0.56	Room	400	3,268	50%	50%	1634	1634	236	53%	47%	125	111	224	61%	39%	137	87
6		Conference Center (2)	81	11	11.4	SF	25,000	2,025	50%	50%	1,013	1,013	274	53%	47%	145	129	285	61%	39%	174	111
6	814	Retail	44.3	5.02	6.84	SF	20,000	886	50%	50%	443	443	100	56%	44%	56	44	137	48%	52%	66	71
6	932	Restaurant	127.15	11.52	10.92	SF	8,000	1,017	50%	50%	509	509	92	61%	39%	56	36	87	52%	48%	45	42
7	010	Cargo Pier/Contai ner Area (1)	11.9			Acres	18	220	50%	50%	110	110	18	47%	53%	8	9	20	60%	40%	12	8
8	010	Cargo Pier/Contai ner Area (1)	11.9			Acres	54	640	50%	50%	320	320	51	47%	53%	24	27	58	60%	40%	35	23
9	030	Fuel Tank Farm (3)				Acres	30	500	50%	50%	250	250	40	47%	53%	19	21	44	60%	40%	26	18
10		Cruise Terminal 6 & 7 (3)						990	50%	50%	495	495	80	47%	53%	38	42	99	60%	40%	59	40
11		Cruise Terminal 11 & 12 (3)						990	50%	50%	495	495	80	47%	53%	38	42	99	60%	40%	59	40
12		Cruise Terminal 3 (3)						670	50%	50%	335	335	54	47%	53%	25	29	67	60%	40%	40	27
13		Cruise Terminal 4 (3)						1,130	50%	50%	565	565	90	47%	53%	42	48	113	60%	40%	68	45
14	814	Retail (Jetty Park	44.3	5.02	6.84	SF	5,000	222	50%	50%	111	111	25	56%	44%	14	11	34	48%	52%	16	18
Total								16,960	50%	50%	8,480	8,480	1,603	56%	44%	796	807	1685	56%	44%	99	693

1 Used ITE Code 030 Truck Terminal to determine AM and PM trip rates

2 Daily and peak hour trips were estimated using data from Prime Osborn Convention Center Traffic Impact Study

3 Daily trip volumes provided by Canaveral Port Authority; peak hour trips assumed.

Ghyabi & Associates, Inc.

CPA/North and South Side Traffic Study, Port Canaveral, Florida Page 18

Trip Assignments

The final step in the analysis is to assign the new traffic from future land uses at the Port to the road network. Figures 4 and 5 show the results of the Daily, AM, Mid-day and PM peak-hour assignments to the roadway network for 2010 (opening year) and 2025 (design year).

Future Conditions Analysis

Eleven critical intersections and the segment of George King Boulevard from SR A1A to the intersection of Dave Nisbet Drive were analyzed based on the existing roadway geometry to determine potential impacts and to investigate mitigation possibilities, if necessary. The total projected traffic volumes, which consist of future background traffic and project trips, were assigned to the road network.

Intersection Analysis

The operating conditions of the intersections were analyzed using Chapters 16 and 17 of the *Highway Capacity Manual*. The results of the HCS analyses of the intersection for the future conditions for 2010 and 2025 and during the AM, Mid-day and PM peak-hours are presented in Table 4.

The 11 intersections analyzed as part of this study show that all except one, George King Boulevard and Dave Nisbet Drive, will operate at acceptable levels of service with their current lane configurations in 2010. The HCS analysis shows that George King Boulevard and Dave Nisbet Drive will operate at LOS F during the PM peak hour in 2010 if it remains unsignalized. Installing a traffic signal at this intersection will improve the LOS to D during the PM Peak hour at this intersection. During the AM Peak hour this intersection will operate at LOS C.

By 2025, this intersection, George King Boulevard and Dave Nisbet Drive, will need an additional leftturn lane for the eastbound to northbound movement to maintain the LOS at D. A signal at the intersection of George King Boulevard and Marlin Street will be needed to accommodate volumes expected by 2025. In addition, George King Boulevard will need to be widened to provide 2 throughlanes in each direction between Atlantic Avenue North and the interchange with SR A1A. Other improvements required on the south side of the Port by 2025 are additional lanes at Mullett Road and Dave Nesbit Drive. While this intersection can remain unsignalized, a through lane in the southbound direction and the widening of the eastbound approach to provide a left- turn and a right- turn lane will be needed by 2025.

On the Port's north side, the signalized intersections of SR 401 and Charles Rowland Drive, and SR 401 and Grouper Road, will operate at acceptable levels of service provided the signal cycles are lengthened in 2010. An interim year analysis (2015) was performed for these two intersections to determine if improvements would be needed sooner than 2025. By 2015, it is expected that SR 401 will need to be widened to 3 lanes in each direction. By 2025, the intersection of SR 401 and Grouper Road will require a second northbound-left turn lane to maintain an adequate level of service in both the AM and PM peak hours.

Figures 9 through 14 show the future years turning movements for the time periods analyzed (AM peak, mid-day peak and PM peak).

Central Boulevard Analysis

An analysis of the potential impact on Central Boulevard in the City of Cape Canaveral for traffic generated by the proposed Ron Jon World project was performed. Using trip generation data for the proposed land uses at Ron Jon World and the Central Florida Regional Planning Model II to determine trip distribution, it has been estimated that at the full build out of Ron Jon World approximately 60 vehicles would use Central Boulevard between SR A1A and Atlantic Avenue North during the PM peak hour. These 60 vehicles would be nearly evenly split between eastbound and westbound. Worksheets and model output can be found in Appendix F.

Future AM/Mid-day/PM Peak Hour Level of Service (2010)										
	AM Pe	eak	Mid-day F	Peak	PM Peak					
Intersection	Delay				Delay					
	(sec)	LOS	Delay (sec)	LOS	(sec)	LOS				
Charles Rowland Drive and SR 401	11.0	В	5.3	А	8.7	А				
Grouper Road and SR 401	21.4	С	9.7	А	9.8	А				
George King Blvd and Dave Nisbet Drive	10.6	В	12.5	В	31.3	С				
George King Blvd and Flounder St	10.4	В	11.2	В	12.2	В				
George King Blvd and Marlin Avenue	19.3	С	17.4	С	16.7	В				
George King Blvd and N Atlantic Avenue	19.9	В	20.7	С	21.1	С				
George King Blvd and Christopher Columbus Road	9.0	A	10.8	В	10.5	В				
George King Blvd and Jetty Park Drive	11.8	В	10.3	В	10.2	В				
Scallop Drive and Mullet Road	9.3	А	9.4	А	9.6	А				
Scallop Drive and Dave Nisbet Drive	8.9	A	9.6	A	10.7	В				
Mullet Road and Dave Nisbet Drive	9.9	Α	11.4	В	13.4	В				

Table 4: Future AM/Mid-day/PM Peak-Hour Level of Service for Intersection

Future AM/Mid-day/I	PM Peak Ho	ur Level	of Service (2	2025)		
	AM Pe	ak	Mid-day F	Peak	PM Pea	ık
Intersection	Delay		Delay		Delay	
	(sec)	LOS	(sec)	LOS	(sec)	LOS
Charles Rowland Drive and SR 401	48.6	D	5.4	А	36.8	D
Grouper Road and SR 401	45.2	D	16.3	В	36.5	D
George King Blvd and Dave Nisbet Drive	19.0	В	29.4	С	35.3	D
George King Blvd and Flounder St	26.2	С	30.0	С	21.8	С
George King Blvd and Marlin Avenue	33.7	С	32.3	С	10.9	В
George King Blvd and N Atlantic Avenue	34.9	C	24.8	C	33.4	C
George King Blvd and Christopher Columbus Road	19.6	С	10.8	В	11.5	В
George King Blvd and Jetty Park Drive	16.6	С	12.6	В	11.2	В
Scallop Drive and Mullet Road	9.8	А	9.5	А	10	В
Scallop Drive and Dave Nisbet Drive	9.4	A	12.1	В	18.3	C

Ghyabi & Associates, Inc.

CPA/North and South Side Traffic Study, Port Canaveral, Florida Page 22

Mullet Road and Dave Nisbet Drive 10.6 B 14.5 B 20.6 C
--

Weaving Analysis

The section of George King Blvd. between the A1A Off-ramp and Dave Nisbet Dr. was analyzed to accommodate the total projected traffic in 2010 and in 2025. The operating conditions of this segment were analyzed according to Chapter 24 of the Highway Capacity Manual. The results of the HCS weaving analyses of the roadway segment are presented in Table 5.

	AM Pe	ak-Hour (20	10)	Mid-da	ay Peak-Hou	r (2010)	PM Peak-H	Hour (2010)
Weaving Section	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS
GKB from A1A Off-ramp to Dave Nisbet Dr.	31.6	16	В	32.7	15	В	31.0	18	В
	AM Peak-Hour (2025) Mid-day Peak-Hour (2			r (2025)	5) PM Peak-Hour (2025)				
Weaving Section	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS	Speed (mph)	Density (pc/mi/ln)	LOS
GKB from A1A Off-ramp to Dave Nisbet Dr.	29.9	25	C	28.9	30	D	29.3	30	D

Table 5: Future	e Peak-Hour	Level of Ser	rvice for	Weave A	Analysis
-----------------	-------------	--------------	-----------	---------	----------

SECTION 4 --- CONCLUSION

This study was conducted to analyze the effect that future land use changes at both Port Canaveral North side and South side would have on the Port's transportation infrastructure. North side Port expansion includes the opening of Cruise Terminals 6 and 7 by 2008 to accommodate 3 ships per week. Cruise Terminals 11 and 12 are expected to be open by 2012 and accommodate 3 ships per week as well. Cargo Piers 5 and 6 are expected to be fully operational by 2015. These cargo piers would have an upland container staging area of 18.45 acres (assumed to be openating by 2010) then expand fully to 53.6 acres by 2015. The future land use of the North side of the Port also includes a 30-acre fuel tank farm expected to be open by 2009 and generate 500 truck trips per day.

South side Port expansion projects include the aggregate conveyor and storage area which is expected to open in 2006 and have 150 daily truck trips, then increase to full operation with 300 daily truck trips by 2009. The Premier Office Building is expected to be fully occupied by 2008. In the Cove area, east of Dave Nesbit Drive, future land uses are evolving. For this study, the Cove is assumed to include a hotel (Milrose), a museum and small amount of retail land use. The Milrose Hotel is assumed to initially open with 115 rooms by 2007 and add 60 rooms by 2010. The museum is assumed to be 15,000 square feet while the retail uses at this location are assumed to be 25,000 square feet. Both were assumed to be open by 2010.

Also on the South side is a Hotel and Conference Center at the west end of George King Blvd. and adjacent to the Banana River (the proposed Ron-Jon project). This project is proposed to include a 400-room hotel, a 25,000 square foot conference center, a 25,000 square foot store, a 10,000 square foot restaurant and a 1200-vehicle parking garage. Also associated with this Hotel and Conference Center would be a 5,000 square foot retail site at the current Jetty Park.

Other south side expansion projects include the opening of Cruise Terminals 3 and 4 which are expected to be operating by fall 2006 and 2008, respectively. Cruise Terminal 3 would serve 2-day cruises while Terminal 4 would serve 3- and 4-day cruises.

The results of the traffic impacts are summarized below:

- By 2010, the proposed developments at both the North side and South side will generate approximately 15,330 new daily trips with 1472 occurring during the PM peak hour and 1528 occurring during the AM peak hour at build-out. Table 3 illustrates the future project trip generation as it is proposed.
- By 2025, the proposed developments at both the North side and South side will generate approximately an additional 1,630 new daily trips with 131 additional trips occurring during the PM peak hour and 157 additional trips occurring during the AM peak hour at build-out. This will result in a total of 16,960 new daily trips, 1603 new PM peak hour trips and 1685 AM peak hour trips.
- The intersection of George King Boulevard and Dave Nisbet Drive will require a traffic signal at this intersection by 2010.

Ghyabi & Associates, Inc.

- George King Boulevard and Dave Nisbet Drive will need an additional left-turn lane for the eastbound to northbound movement by 2025.
- George King Boulevard will need to be widened to provide 2 through-lanes in each direction (eastbound and westbound) between Atlantic Avenue North and the interchange with SR A1A.
- At the intersection of Mullett Drive and Dave Nesbit Drive, a through lane in the southbound direction and the widening of the eastbound approach to provide a left- turn and a right- turn lane will be needed by 2025.
- The signalized intersections of SR 401 and Charles Rowland Drive, and SR 401 and Grouper Road will operate at acceptable levels of service provided the signal cycles are lengthened in 2010.
- By 2015, it is expected that SR 401 will need to be widened to 3 lanes in each direction.
- By 2025, the intersection of SR 401 and Grouper Road will require a second northbound-left turn lane to maintain an adequate level of service in both the AM and PM peak hours.
- The weave analysis conducted for the segment of George King Blvd. between the A1A eastbound off-ramp and Dave Nisbet Drive indicates that this segment of roadway currently operates at a LOS B during the AM and Mid-day Peak hours and a LOS A during the PM Peak hour. In 2010, the analysis indicates that this weave section is expected to operating at a LOS B for all three peak hours (AM, Mid-day and PM). In 2025, this weave section will continue to operate at LOS C during the AM peak hour and will operate at LOS D during the mid-day and PM peak hours.
- At this time the analysis does not indicate a need to modify the segment of George King Boulevard between the A1A off-ramp and Dave Nisbet Drive. This segment appears to adequately accommodate the weaving vehicles and should continue to do so through the design year (2025).
- Using trip generation data for the proposed land uses at Ron Jon World and the Central Florida Regional Planning Model III to determine trip distribution, it has been estimated that at the full build out of Ron Jon World approximately 60 vehicles would use Central Boulevard between SR A1A and Atlantic Avenue North during the PM peak hour. These 60 vehicles would be nearly evenly split between eastbound (28) and westbound (32).

APPENDICES

Appendix A

Existing Link Volumes

File: D0803026.prn City: #11 County: BREVARD

TIME	1 NORTH	2 NORTH	3 NORTH	4 SOUTH	Total
01:00	0	0	20	154	174
02:00	0	0	12	36	48
03:00	0	0	23	28	51
04:00	0	0	15	18	33
05:00	0	0	26	24	50
06:00	0	0	61	25	86
07:00	0	0	158	64	222
08:00	0	0	242	101	343
09:00	0	0	228	119	347
10:00	0	0	196	149	345
11:00	0	0	224	165	389
12:00	0	0	204	209	413
13:00	0	0	219	235	454
14:00	0	1	185	197	383
15:00	0	0	186	186	372
16:00	0	0	208	219	427
17:00	0	0	158	321	479
18:00	0	0	193	271	464
19:00	0	0	238	187	425
20:00	0	0	97	162	259
21:00	0	0	118	129	247
22:00	0	0	73	111	184
23:00	0	0	45	59	104
24:00	0	0	34	38	72
DAY TOTAL	0	1	3163	3207	6371
PERCENTS	0.0%	0.1%	49.6%	50.3%	100%
AM Times			07:45	11:15	
AM Peaks			273	209	
PM Times		12:45	18:00	16:30	
PM Peaks		1	243	348	

Page: 1

Site Reference: CCOLEOFATL37 Site ID: 000055010001 Location: CRHISTOPHER COLUMBUS E.OF GLEN CHEEK DR File: D0803024.prn City: #10 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	18	6	24
02:00	2	4	б
03:00	1	3	4
04:00	1	1	2
05:00	1	0	1
06:00	1	4	5
07:00	1	0	1
08:00	12	8	20
09:00	4	9	13
10:00	11	16	27
11:00	11	28	39
12:00	3	8	11
13:00	3	6	9
14:00	1	7	8
15:00	6	13	19
16:00	7	10	17
17:00	25	14	39
18:00	б	15	21
19:00	10	20	30
20:00	6	6	12
21:00	5	4	9
22:00	1	2	3
23:00	1	1	2
24:00	0	4	4
DAY TOTAL	137	189	326
PERCENTS	42.1%	57.9%	100%
AM Times	00:30	09:45	
AM Peaks	19	28	
PM Times	16:00	17:45	
PM Peaks	26	21	

Site Reference: 00000000015 Site ID: 00000000054 Location: DAVE NISBET DR N.OF GEORGE KING BLVD File: D0803031.prn City: #13 County: BREVARD

TIME	1 NORTH	2 SOUTH	Total
01:00	32	241	273
02:00	4	25	29
03:00	7	25	32
04:00	2	9	11
05:00	б	7	13
06:00	56	8	64
07:00	105	35	140
08:00	172	58	230
09:00	152	95	247
10:00	206	118	324
11:00	239	161	400
12:00	202	211	413
13:00	208	214	422
14:00	174	208	382
15:00	142	165	307
16:00	155	218	373
17:00	188	409	597
18:00	181	190	371
19:00	248	157	405
20:00	80	103	183
21:00	53	100	153
22:00	43	54	97
23:00	30	57	87
24:00	19	69	88
DAY TOTAL	2704	2937	5641
PERCENTS	48.0%	52.0%	100%
AM Times	10:00	00:15	
AM Peaks	252	241	
PM Times	18:15	16:00	
PM Peaks	248	423	

Site Reference: 00000000007 Site ID: 00000000037 Location: GEORGE KING BLVD E.OF FLOUNDER STREET File: D0803032.prn City: #7 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	122	277	399
02:00	46	38	84
03:00	23	20	43
04:00	23	27	50
05:00	41	43	84
06:00	111	92	203
07:00	183	235	418
08:00	342	279	621
09:00	369	266	635
10:00	399	312	711
11:00	486	356	842
12:00	384	336	720
13:00	359	388	747
14:00	333	357	690
15:00	335	337	672
16:00	340	365	705
17:00	374	670	1044
18:00	346	364	710
19:00	457	256	713
20:00	178	135	313
21:00	170	119	289
22:00	108	78	186
23:00	77	50	127
24:00	67	33	100
DAY TOTAL	5673	5433	11106
PERCENTS	51.1%	48.9%	100%
AM Times	10:00	10:00	
AM Peaks	512	358	
PM Times	18:15	16:30	
PM Peaks	457	687	

File: D0803020.prn City: #8 County: BREVARD

TIME	1	Total
	WEST	
01:00	245	245
02:00	14	14
03:00	3	3
04:00	3	3
05:00	4	4
06:00	12	12
07:00	44	44
08:00	49	49
09:00	62	62
10:00	77	77
11:00	104	104
12:00	105	105
13:00	128	128
14:00	147	147
15:00	123	123
16:00	130	130
17:00	319	319
18:00	147	147
19:00	93	93
20:00	65	65
21:00	48	48
22:00	34	34
23:00	29	29
24:00	20	20
DAY TOTAL	2005	2005
PERCENTS	100.0%	100%
AM Times	00:15	
AM Peaks	245	
PM Times	16:30	
PM Peaks	329	

Site Reference: GEOKGEOFAT03 Site ID: 00000000020 Location: GEORGE KING BLVD E.OF GLEN CHEEK DRIVE File: D0803034.prn City: #8 County: BREVARD

TIME	1 EAST	Total
01:00	15	15
02:00	5	5
03:00	4	4
04:00	2	2
05:00	1	1
06:00	4	4
07:00	36	36
08:00	52	52
09:00	142	142
10:00	129	129
11:00	165	165
12:00	152	152
13:00	129	129
14:00	132	132
15:00	111	111
16:00	103	103
17:00	86	86
18:00	101	101
19:00	166	166
20:00	65	65
21:00	68	68
22:00	48	48
23:00	41	41
24:00	27	27
DAY TOTAL	1784	1784
PERCENTS	100.0%	100%
AM Times	09:45	
AM Peaks	181	
PM Times	18:00	
PM Peaks	168	

Site Reference: 0000000037 Site ID: 00000000075 Location: GLEN CHEEK DRIVE E.OF DAVE NISBET DRIVE File: D0803029.prn City: #12 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	24	164	188
02:00	3	20	23
03:00	2	17	19
04:00	3	8	11
05:00	4	4	8
06:00	9	2	11
07:00	25	8	33
08:00	29	18	47
09:00	51	37	88
10:00	94	51	145
11:00	146	61	207
12:00	106	74	180
13:00	97	103	200
14:00	61	100	161
15:00	87	66	153
16:00	71	67	138
17:00	155	155	310
18:00	145	92	237
19:00	202	88	290
20:00	74	66	140
21:00	42	47	89
22:00	44	30	74
23:00	29	30	59
24:00	19	28	47
DAY TOTAL	1522	1336	2858
PERCENTS	53.3%	46.7%	100%
AM Times	10:00	00:15	
AM Peaks	154	164	
PM Times	18:15	16:30	
PM Peaks	202	166	

File: D0803027.prn City: #4 County: BREVARD

TIME	1 NORTH	2 SOUTH	Total
01:00	4	6	10
02:00	б	6	12
03:00	8	6	14
04:00	18	13	31
05:00	22	16	38
06:00	20	55	75
07:00	56	127	183
08:00	65	168	233
09:00	90	129	219
10:00	103	116	219
11:00	115	80	195
12:00	146	156	302
13:00	149	149	298
14:00	131	118	249
15:00	91	85	176
16:00	141	86	227
17:00	120	53	173
18:00	101	33	134
19:00	53	19	72
20:00	14	13	27
21:00	16	17	33
22:00	8	9	17
23:00	10	10	20
24:00	11	13	24
DAY TOTAL	1498	1483	2981
PERCENTS	50.3%	49.7%	100%
AM Times	11:15	07:00	
AM Peaks	146	189	
PM Times	12:15	12:30	
PM Peaks	149	156	

Page: 1

File: D0803025.prn City: #9 County: BREVARD

TIME	1	2	Total
	EAST	WEST	
01:00	1	1	2
02:00	4	4	8
03:00	0	0	0
04:00	4	3	7
05:00	3	4	7
06:00	2	2	4
07:00	14	10	24
08:00	19	15	34
09:00	27	19	46
10:00	29	22	51
11:00	37	35	72
12:00	60	41	101
13:00	43	37	80
14:00	43	78	121
15:00	30	50	80
16:00	27	53	80
17:00	14	25	39
18:00	17	18	35
19:00	24	22	46
20:00	23	21	44
21:00	15	17	32
22:00	11	13	24
23:00	7	11	18
24:00	5	7	12
DAY TOTAL	 459	508	967
PERCENTS	47.5%	52.5%	100%
AM Times	11:00	11:15	
AM Peaks	62	41	
PM Times	12:30	13:15	
PM Peaks	49	78	

File: D0803028.prn City: #15 County: BREVARD

TIME	l EAST	2 WEST	Total
01:00	5	3	8
02:00	3	2	5
03:00	1	1	2
04:00	3	1	4
05:00	4	1	5
06:00	9	39	48
07:00	18	66	84
08:00	31	95	126
09:00	64	88	152
10:00	59	96	155
11:00	101	84	185
12:00	133	106	239
13:00	115	116	231
14:00	97	99	196
15:00	78	68	146
16:00	126	76	202
17:00	111	76	187
18:00	91	42	133
19:00	47	29	76
20:00	32	30	62
21:00	43	12	55
22:00	15	16	31
23:00	14	9	23
24:00	7	1	8
DAY TOTAL	1207	1156	2363
PERCENTS	51.1%	48.9%	100%
AM Times	11:15	11:15	
AM Peaks	133	106	
PM Times	15:30	12:15	
PM Peaks	128	116	

File: D0804017.prn City: #16 County: BREVARD

TIME	 1 FAST	2 ₩₽\$₽	Total
	I GAU	1 GTM	
01:00	1	1	2
02:00	3	1	4
03:00	2	2	4
04:00	0	0	0
05:00	0	0	0
06:00	3	8	11
07:00	5	4	9
08:00	12	30	42
09:00	18	31	49
10:00	5	14	19
11:00	45	48	93
12:00	55	48	103
13:00	52	37	89
14:00	42	51	93
15:00	34	36	70
16:00	37	33	70
17:00	36	39	75
18:00	31	24	55
19:00	20	26	46
20:00	22	19	41
21:00	33	17	50
22:00	10	6	16
23:00	6	6	12
24:00	3	4	7
DAY TOTAL	475	485	960
PERCENTS	49.5%	50.5%	100%
AM Times	11:15	10:45	
AM Peaks	55	50	
PM Times	12:15	13:15	
PM Peaks	52	51	

File: D0804016.prn City: #17 County: BREVARD

Diric Diric Diric 01:00 0 0 0 02:00 0 0 0 03:00 0 0 0 04:00 0 0 0 05:00 0 0 0 06:00 0 1 1 07:00 2 1 3 08:00 3 4 7 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 19:00 10 9 19 16:00 7 7 14 17:00 6 8 11 19:00 2 6 8 19:00 2 6 8 22:00 1 1 2 23:00 1 1	TIME	1 FAST	2 WFST	Total
01:00 0 0 0 0 03:00 0 0 0 0 04:00 0 0 0 0 05:00 0 1 1 1 07:00 2 1 3 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 21:00 1 1 2 23:00 1 1 2 24:00 1 1 2 24:00 1				
01:00 0 0 0 0 02:00 0 0 0 0 03:00 0 0 0 0 04:00 0 0 0 0 05:00 0 1 1 1 07:00 2 1 3 4 07:00 2 2 4 7 09:00 2 2 4 7 10:00 3 4 7 11 12:00 8 13 21 13 13:00 10 5 15 14 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 12:00 1 1 2 23:00 1 1 2 24:00 1				
02:00 0 0 0 0 03:00 0 0 0 0 04:00 0 0 0 0 04:00 0 0 0 0 05:00 0 1 1 1 07:00 2 1 3 3 08:00 3 4 7 1 09:00 2 2 4 7 11:00 3 4 7 1 12:00 8 13 21 1 13:00 10 5 15 1 14:00 3 8 11 1 15:00 10 9 19 1 16:00 7 7 14 1 17:00 6 5 11 1 18:00 2 6 8 2 22:00 1 1 2 2 24:00 <td>01:00</td> <td>0</td> <td>0</td> <td>0</td>	01:00	0	0	0
03:00 0 0 0 0 04:00 0 0 0 0 05:00 0 1 1 07:00 2 1 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 2 <td>02:00</td> <td>0</td> <td>0</td> <td>0</td>	02:00	0	0	0
04:00 0 0 0 0 05:00 0 1 1 07:00 2 1 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 1 1 2 23:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 2 24:00 1 1 1 <	03:00	0	0	0
05:00 0 0 0 0 07:00 2 1 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 1 1 2 24:00 1 1 2 24:00 1 1 2 13 11:15 11:15 100* AM Times 11:15 14:30 14:30	04:00	0	0	0
06:00 0 1 1 07:00 2 1 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 1 1 2 23:00 1 1 2 24:00 1 1 2 AM Times 11:15 13 PERCENTS 47.5% 52.5% 100% AM Peaks 8 <td>05:00</td> <td>0</td> <td>0</td> <td>0</td>	05:00	0	0	0
07:00 2 1 3 08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 24:00 1 2 10% M Peaks 158 PERCENTS 47.5% 52.5% 100% AM Feaks 8 13 10% PM Peaks 8 13 10%	06:00	0	1	1
08:00 3 4 7 09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 2 23:00 1 1 2 24:00 1 2 1 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 100%	07:00	2	1	3
09:00 2 2 4 10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 24:00 1 2 2 11:15 11:15 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	08:00	3	4	7
10:00 3 4 7 11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 19:00 4 1 5 21:00 4 1 2 23:00 1 1 2 24:00 1 1 2 24:00 1 1 2 1 1 2 10% AM Times 11:15 11:15 AM Times 11:15 11:15 AM Peaks 8 13 PM Peaks 10 12	09:00	2	2	4
11:00 5 6 11 12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 24:00 1 2 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Peaks 10 12	10:00	3	4	7
12:00 8 13 21 13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 23:00 1 1 2 24:00 1 2 10 PERCENTS 47.5% AM Times 11:15 11:15 AM Peaks 8 13 PM Peaks 10 12	11:00	5	б	11
13:00 10 5 15 14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 24:00 1 2 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	12:00	8	13	21
14:00 3 8 11 15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 2 1 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	13:00	10	5	15
15:00 10 9 19 16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 PERCENTS 47.5% M Times 11:15 11:15 AM Times 12:15 14:30 PM Times 10 12	14:00	3	8	11
16:00 7 7 14 17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 2 1 DAY TOTAL 75 83 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 100% AM Times 12:15 14:30 PM Peaks 10 12	15:00	10	9	19
17:00 6 5 11 18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	16:00	7	7	14
18:00 2 6 8 19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 10% AM Peaks 8 13 10 PM Times 12:15 14:30 12	17:00	6	5	11
19:00 5 2 7 20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 100% PM Times 12:15 14:30 12	18:00	2	б	8
20:00 2 6 8 21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 100% PM Times 12:15 14:30 12	19:00	5	2	7
21:00 4 1 5 22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 10% PM Times 12:15 14:30 12	20:00	2	6	8
22:00 1 1 2 23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	21:00	4	1	5
23:00 1 1 2 24:00 1 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	22:00	1	1	2
24:00 1 2 DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	23:00	1	1	2
DAY TOTAL 75 83 158 PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	24:00	1	1	2
PERCENTS 47.5% 52.5% 100% AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	DAY TOTAL	75	83	158
AM Times 11:15 11:15 AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	PERCENTS	47.5%	52.5%	100%
AM Peaks 8 13 PM Times 12:15 14:30 PM Peaks 10 12	AM Times	11:15	11:15	
PM Times 12:15 14:30 PM Peaks 10 12	AM Peaks	8	13	
PM Peaks 10 12	PM Times	12:15	14:30	
	PM Peaks	10	12	

File: D0803030.prn City: #14 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	4	5	9
02:00	0	0	0
03:00	5	3	8
04:00	1	1	2
05:00	0	3	3
06:00	12	19	31
07:00	27	40	67
08:00	25	46	71
09:00	36	31	67
10:00	67	42	109
11:00	53	58	111
12:00	97	55	152
13:00	84	71	155
14:00	40	62	102
15:00	74	59	133
16:00	98	61	159
17:00	87	49	136
18:00	49	36	85
19:00	49	18	67
20:00	22	17	39
21:00	21	18	39
22:00	6	5	11
23:00	20	5	25
24:00	2	5	7
DAY TOTAL		709	1588
PERCENTS	55.4%	44.6%	100%
AM Times	11:15	10:00	
AM Peaks	97	66	
PM Times	15:30	12:30	
PM Peaks	108	75	

TIME	1 NORTH	2 North	3 East	4 WEST	Total
01.00	0	0	0	1 2	15
02:00	0	0	2	1	10
02:00	0	0	5	1	5
04:00	0	0	0	1	1
04.00	0	0	11	1 2	16
05:00	0	0	303	9	332
07:00	0	0	1256	27	1202
07:00	0	0	1142	56	1198
09:00	0	0	365	80	115
10:00	0	0	194	105	299
11:00	0	0	107	157	297
12:00	0	0	168	418	586
13:00	0	0	277	219	496
14:00	0	0	206	180	386
15:00	0	0	126	436	562
16:00	0	0	62	1139	1201
17:00	0	0	50	936	986
18:00	0	0	26	474	500
19:00	0	0	28	213	241
20:00	0	0	9	97	106
21:00	0	0	14	51	65
22:00	0	0	40	28	68
23:00	0	0	16	72	88
24:00	0	0	11	57	68
21.00	0	Ŭ	**	57	00
 DAY TOTAL	0	0	4493	4782	9275
PERCENTS	0.0%	0.0%	48.5%	51.5%	100%
AM Times			06:45	11:15	
AM Peaks			1488	418	
PM Times			12:15	15:45	
PM Peaks			277	1292	

Site Reference: 401NBONRAMP1 Site ID: 000056940001 Location: SR-401 NB OFF RAMP TO CHARLES ROLAND DR File: D0803023.prn City: #2 County: BREVARD

TIME	1	Total
	NORTH	
01:00	0	0
02:00	0	0
03:00	0	0
04:00	2	2
05:00	42	42
06:00	81	81
07:00	152	152
08:00	176	176
09:00	189	189
10:00	153	153
11:00	264	264
12:00	271	271
13:00	315	315
14:00	311	311
15:00	67	67
16:00	11	11
17:00	13	13
18:00	1	1
19:00	0	0
20:00	0	0
21:00	0	0
22:00	0	0
23:00	0	0
24:00	0	0
AY TOTAL	2048	2048
RCENTS	100.0%	100%
1 Times	11:15	
1 Peaks	271	
M Times	12:45	
M Peaks	344	

Page: 1

File: D0803019.prn City: #1 County: BREVARD

TIME	1	Total
	SOUTH	
21.02		
01:00	3	3
02:00	3	3
03:00	1	
04:00	1	
05:00		
06:00	8	8
07:00		
08:00	54	54
09:00	175	175
10:00	418	418
11:00	265	265
12:00	135	135
13:00	111	111
14:00	124	124
15:00	22	22
16:00	21	21
17:00	26	26
18:00	3	3
19:00	2	2
20:00	0	0
21:00	0	0
22:00	2	2
23:00	1	1
24:00	3	3
DAY TOTAL	1392	1392
PERCENTS	100.0%	100%
AM Times	09:30	
AM Peaks	439	
PM Times	13:15	
PM Peaks	124	

File: D0803022.prn City: #3 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	14	19	33
02:00	9	8	17
03:00	14	10	24
04:00	17	23	40
05:00	70	28	98
06:00	413	23	436
07:00	1402	77	1479
08:00	1327	143	1470
09:00	475	267	742
10:00	307	277	584
11:00	215	303	518
12:00	323	538	861
13:00	429	343	772
14:00	303	355	658
15:00	220	517	737
16:00	119	1290	1409
17:00	79	1043	1122
18:00	59	578	637
19:00	48	265	313
20:00	22	119	141
21:00	36	70	106
22:00	50	38	88
23:00	27	83	110
24:00	23	72	95
DAY TOTAL	6001	6489	12490
PERCENTS	48.1%	51.9%	100%
AM Times	06:45	11:15	
AM Peaks	1673	538	
PM Times	12:30	15:30	
PM Peaks	449	1404	

Ghyabi & Associates VOLUME SUMMARY THU 08/11/2005

Site Reference: 401CLASS0072 Site ID: 000072090004 Location: SR-401 E.OF CHARLES ROLAND DR 1=OUT 2=IN File: D0811015.prn City: #18 County: BREVARD

 TIME	1	2	 Total
	WEST	WEST	
01.00		15	40
01:00	25	15	40
02.00	8	2	10
03:00	9	/	τθ
04.00	2 11	5	5 17
05:00	27	6	22
07:00	27 45	17	62
08:00	92	37	129
09:00	63	33	96
10:00	106	76	182
11:00	113	120	233
12:00	260	193	453
13:00	174	116	290
14:00	144	101	245
15:00	283	253	536
16:00	591	535	1126
17:00	450	417	867
18:00	295	231	526
19:00	143	111	254
20:00	73	34	107
21:00	39	25	64
22:00	19	9	28
23:00	37	23	60
24:00	36	17	53
 DAY TOTAL	3045	2387	5432
PERCENTS	56.1%	43.9%	100%
AM Times	11:15	11:15	
AM Peaks	260	193	
PM Times	15:45	15:30	
PM Peaks	639	592	

File: D0809006.prn City: #6 County: BREVARD

TIME	1 EAST	2 WEST	Total
01:00	60	298	358
02:00	26	37	63
03:00	14	24	38
04:00	31	32	63
05:00	48	58	106
06:00	127	76	203
07:00	249	185	434
08:00	356	228	584
09:00	395	219	614
10:00	343	234	577
11:00	540	290	830
12:00	494	363	857
13:00	346	383	729
14:00	369	334	703
15:00	307	300	607
16:00	306	384	690
17:00	317	549	866
18:00	280	402	682
19:00	429	259	688
20:00	183	161	344
21:00	138	127	265
22:00	87	106	193
23:00	59	74	133
24:00	56	47	103
 DAY TOTAL		5170	10730
PERCENTS	51.9%	48.1%	100%
AM Times	10:15	11:00	
AM Peaks	540	363	
PM Times	18:15	16:30	
PM Peaks	429	558	

Site Reference: GEORGE000037 Site ID: 000055010001 Location: GEORGE KING BLVD E.OF POMPANO ST File: D0810015.prn City: #19 County: BREVARD

				_
TIME	1 EAST	2 WEST	Total	
				_
01:00	71	214	285	
02:00	27	26	53	
03:00	16	14	30	
04:00	10	15	25	
05:00	9	16	25	
06:00	33	58	91	
07:00	113	164	277	
08:00	231	237	468	
09:00	247	219	466	
10:00	222	249	471	
11:00	322	210	532	
12:00	246	219	465	
13:00	212	255	467	
14:00	229	227	456	
15:00	217	226	443	
16:00	213	243	456	
17:00	234	471	705	
18:00	278	325	603	
19:00	341	254	595	
20:00	175	168	343	
21:00	116	98	214	
22:00	104	70	174	
23:00	57	45	102	
24:00	55	34	89	
 DAY TOTAL	3778	4057	 7835	_
PERCENTS	48.3%	51.7%	100%	
AM Times	10:00	09:30		
AM Peaks	324	261		
PM Times	18:15	16:30		
PM Peaks	341	497		

Ghyabi & Associates VOLUME SUMMARY THU 08/11/2005

Site Reference: GEORGE000037 Site ID: 000055010001 Location: GEORGE KING BLVD E.OF POMPANO ST

File: D0811006.prn City: #19 County: BREVARD

TIME	l EAST	2 WEST	Total
01:00	62	250	312
02:00	38	33	71
03:00	21	15	36
04:00	12	13	25
05:00	15	25	40
06:00	37	94	131
07:00	109	168	2777
08:00	217	232	449
09:00	294	200	494
10:00	259	298	557
11:00	334	249	583
12:00	198	271	469
13:00	228	277	505
14:00	238	228	466
15:00	209	220	429
16:00	192	285	477
17:00	236	406	642
18:00	238	268	506
19:00	319	241	560
20:00	141	127	268
21:00	105	97	202
22:00	90	65	155
23:00	47	37	84
24:00	43	34	77
DAY TOTAL	3682	4133	7815
PERCENTS	47.2%	52.8%	100%
AM Times	10:00	09:15	
AM Peaks	351	298	
PM Times	18:15	16:00	
PM Peaks	319	436	

Site Reference: GEORGE000037 Site ID: 000055010001 Location: GEORGE KING BLVD E.OF POMPANO ST File: D0809007.prn City: #19 County: BREVARD

TIME	1 EAST	2 WEST	Total	. –
01:00	81	218	299	
02:00	26	30	56	
03:00	5	18	23	
04:00	14	19	33	
05:00	15	22	37	
06:00	39	67	106	
07:00	115	170	285	
08:00	165	187	352	
09:00	216	194	410	
10:00	213	187	400	
11:00	332	243	575	
12:00	272	231	503	
13:00	238	280	518	
14:00	215	234	449	
15:00	191	216	407	
16:00	211	253	464	
17:00	268	413	681	
18:00	252	291	543	
19:00	342	224	566	
20:00	141	139	280	
21:00	114	79	193	
22:00	100	47	147	
23:00	59	46	105	
24:00	46	30	76	
 DAY TOTAL	3670	3838	7508	
PERCENTS	48.9%	51.1%	100%	
AM Times	10:15	11:00		
AM Peaks	332	251		
PM Times	18:15	16:30		
PM Peaks	342	452		

Site Reference: 401CLASS0032 Site ID: 000056940005 Location: SR-401 E.OF CHARLES ROLAND DR 1=OUT 2=IN File: D0809004.prn City: #18 County: BREVARD

TIME	1 EAST	2 EAST	Total	
01:00	25	23	48	
02:00	18	20	38	
03:00	24	22	46	
04:00	46	19	65	
05:00	58	50	108	
06:00	299	171	470	
07:00	820	301	1121	
08:00	808	285	1093	
09:00	365	186	551	
10:00	165	120	285	
11:00	137	71	208	
12:00	171	54	225	
13:00	272	133	405	
14:00	193	113	306	
15:00	111	86	197	
16:00	78	32	110	
17:00	33	11	44	
18:00	60	11	71	
19:00	29	10	39	
20:00	14	7	21	
21:00	10	12	22	
22:00	21	39	60	
23:00	12	10	22	
24:00	б	б	12	
 DAY TOTAL	3775	1792	5567	
PERCENTS	67.9%	32.1%	100%	
AM Times	06:45	06:30		
AM Peaks	940	310		
PM Times	12:30	12:15		
PM Peaks	279	133		

Site Reference: 401CLASS0072 Site ID: 000072090004 Location: SR-401 E.OF CHARLES ROLAND DR 1=OUT 2=IN File: D0809017.prn City: #18 County: BREVARD

TIME	1 WEST	2 WEST	Total
01:00	10	5	15
02:00	9	2	11
03:00	6	3	9
04:00	14	9	23
05:00	12	4	16
06:00	47	13	60
07:00	72	43	115
08:00	85	54	139
09:00	91	46	137
10:00	121	65	186
11:00	136	85	221
12:00	213	210	423
13:00	188	168	356
14:00	125	143	268
15:00	251	202	453
16:00	575	488	1063
17:00	513	446	959
18:00	346	266	612
19:00	192	115	307
20:00	71	30	101
21:00	42	23	65
22:00	22	20	42
23:00	50	20	70
24:00	40	25	65
 DAY TOTAL	3242	2485	5727
PERCENTS	56.7%	43.3%	100%
AM Times	11:15	11:15	
AM Peaks	213	210	
PM Times	15:45	15:45	
PM Peaks	632	553	

File: D0810013.prn City: #18 County: BREVARD

			Total
TIME		2	
		1 GAJ	
01:00	21	12	33
02:00	16	13	29
03:00	21	17	38
04:00	33	21	54
05:00	55	59	114
06:00	269	154	423
07:00	854	291	1145
08:00	851	279	1130
09:00	337	170	507
10:00	193	110	303
11:00	148	70	218
12:00	134	64	198
13:00	229	127	356
14:00	192	146	338
15:00	123	69	192
16:00	85	21	106
17:00	47	6	53
18:00	50	6	56
19:00	23	17	40
20:00	21	23	44
21:00	24	19	43
22:00	38	54	92
23:00	29	7	36
24:00	19	15	34
 DAY TOTAL	3812	1770	5582
PERCENTS	68.3%	31.7%	100%
AM Times	06:45	06:45	
AM Peaks	1000	303	
PM Times	12:30	13:15	
PM Peaks	238	146	

Site Reference: 401CLASS0072 Site ID: 000072090004 Location: SR-401 E.OF CHARLES ROLAND DR 1=OUT 2=IN

File: D0810024.prn City: County: BREVARD

TIME	1 WEST	2 WEST	Total	
01:00	18	5	23	
02:00	7	4	11	
03:00	6	4	10	
04:00	7	5	12	
05:00	14	б	20	
06:00	23	12	35	
07:00	58	34	92	
08:00	79	43	122	
09:00	80	47	127	
10:00	100	55	155	
11:00	124	100	224	
12:00	249	199	448	
13:00	195	166	361	
14:00	186	127	313	
15:00	282	234	516	
16:00	578	490	1068	
17:00	503	440	943	
18:00	309	249	558	
19:00	145	100	245	
20:00	61	32	93	
21:00	24	12	36	
22:00	24	13	37	
23:00	54	21	75	
24:00	44	30	74	
 DAY TOTAL	3170	2428	 5598	
PERCENTS	56.7%	43.3%	100%	
AM Times	11:15	11:15		
AM Peaks	249	199		
PM Times	15:45	15:30		
PM Peaks	623	562		

Ghyabi & Associates VOLUME SUMMARY THU 08/11/2005

Site Reference: 401CLASS0032 Site ID: 000056940005 Location: SR-401 E.OF CHARLES ROLAND DR 1-OUT 2=IN File: D0811004.prn City: #18 County: BREVARD

	1	۲ ۲	Total	
1.TWE	EAST	EAST	IOLAL	
01:00	27	30	57	
02:00	43	19	62	
03:00	35	23	58	
04:00	41	25	66	
05:00	84	65	149	
06:00	279	176	455	
07:00	729	313	1042	
08:00	702	265	967	
09:00	303	209	512	
10:00	167	135	302	
11:00	117	80	197	
12:00	131	49	180	
13:00	200	148	348	
14:00	215	136	351	
15:00	116	79	195	
16:00	76	34	110	
17:00	36	26	62	
18:00	56	24	80	
19:00	21	17	38	
20:00	31	10	41	
21:00	14	12	26	
22:00	34	34	68	
23:00	18	15	33	
24:00	10	5	15	
 DAY TOTAL	3485		5414	
PERCENTS	64.4%	35.6%	100%	
AM Times	06:45	06:45		
AM Peaks	817	336		
PM Times	12:45	12:30		
PM Peaks	249	155		
Appendix B

Existing Turning Movement Counts

								1	5 MINUTE	TURNING			ITS (AUTO	OS & TRU	CKS)								
	DATE:		Augus	t 24, 2005								_			-	CITY:	CAPE CANA	VERAL					
	LOCAT	ION:	SCALLO	P DR & MU	ILLET RD							_			_	COUNTY	BREVARD						
					SCA	LLOP DR										MUI	LLET RD						
	-						-													-			
TIME			NORTHBO		TOT	Р			JND	TOT	N/S		<u> </u>	ASTBOU		TOT		WE	STBOUN		TOT	E/W	GRAND
BEGIN 7:00	R			PEDS	101	R			PEDS	101	101	R			PEDS	0	R 2			PEDS	101	101	101AL
7:15	0	0	0	0	0	2	0	2	0	5	5	0	2	0	0	2	2	7	0	0	9	11	16
7:30	0	Ő	0	0	ő	0	0	2	0	2	2	0 0	4	0 0	0	4	4	4	0	0	8	12	14
7:45	0	0	0	0	0	1	0	2	0	3	3	0	6	0	0	6	1	4	0	0	5	11	14
TOTAL	0	0	0	0	0	6	0	10	0	16	16	0	12	0	0	12	9	17	0	0	26	38	54
8:00	0	0	0	0	0	3	0	4	0	7	7	0	3	0	0	3	5	14	0	0	19	22	29
8:15	0	0	0	0	0	0	0	4	0	4	4	0	1	1	0	2	2	3	0	0	5	7	11
8:30	0	0	0	0	0	1	0	2	0	3	3	0	4	2	0	6	4	4	0	0	8	14	17
8:45	0	0	0	0	0	1	0	3	0	4	4	0	4	0	0	4	3	4	0	0	7	11	15
TOTAL	0	0	0	0	0	5	0	13	0	18	18	0	12	3	0	15	14	25	0	0	39	54	72
10:30	0	0	0	0	0	2	0	5	0	7	7	0	5	1	0	6	6	3	0	0	9	15	22
10:45	0	0	0	0	0	3	0	4	0	7	7	0	7	2	0	9	8	4	0	0	12	21	28
TOTAL	0	0	0	0	0	5	0	9	0	14	14	0	12	3	0	15	14	7	0	0	21	36	50
11:00	0	0	0	0	0	1	0	6	0	7	7	0	4	1	0	5	4	3	0	0	7	12	19
11:15	0	0	0	0	0	3	0	5	0	8	8	0	1	0	0	1	0	3	0	0	3	4	12
11:30	0	0	0	0	0	4	0	8	0	12	12	0	9	1	0	10	11	5	0	0	16	26	38
11:45	0	0	0	0	0	1	0	3	0	4	4	0	7	0	0	7	3	5	0	0	8	15	19
TOTAL	0	0	0	0	0	9	0	22	0	31	31	0	21	2	0	23	18	16	0	0	34	57	88
12:00	0	0	0	0	0	2	0	1	0	3	3	0	5	1	0	6	2	1	0	0	3	9	12
12:15	0	0	0	0	0	4	0	6	0	10	10	0	16	0	0	16	5	5	0	0	10	26	36
TOTAL	0	0	0	0	0	6	0	7	0	13	13	0	21	1	0	22	7	6	0	0	13	35	48
16:00	0	0	0	0	0	3	0	5	0	8	8	0	10	1	0	11	7	8	0	0	15	26	34
16:15	0	0	0	0	0	5	0	2	0	7	7	0	10	1	0	11	2	5	0	0	7	18	25
16:30	0	0	0	0	0	1	0	6	0	7	7	0	6	2	0	8	5	7	0	0	12	20	27
16:45	0	0	0	0	0	0	0	3	0	3	3	0	5	0	0	5	3	12	0	0	15	20	23
TOTAL	0	0	0	0	U	9	0	16	0	25	25	0	31	4	0	35	17	32	0	0	49	84	109
17:00	0	0	0	0	0	1	0	1	0	2	2	0	9	0	0	9	1	5	0	0	6	15	17
17:15	0	0	0	0	0	3	0	5	0	8	8	0	5	1	0	6	2	6	0	0	8	14	22
17:30	0	0	0	0	0	2	0	2	0	4	4	0	9	2	0	11	1	2	0	0	3	14	18
17:45	0	0	0	0	0	1	0	1	0	2	2	0	7	1	0	8	2	1	0	0	3	11	13
TOTAL	0	0	0	0	0	7	0	9	0	16	16	0	30	4	0	34	6	14	0	0	20	54	70
Am Peak																							
7:15 - 8:15	0	0	0	0	0	7	0	10	0	17	17	0	15	0	0	15	12	29	0	0	41	56	73
Off Peak																					Peak Hou	Ir Factor:	0.63
11:30 - 12:30	0	0	0	0	0	11	0	18	0	29	29	0	37	2	0	39	21	16	0	0	37	76	105
Pm Peak																					Peak Hou	Ir Factor:	0.69
4:00 - 5:00	0	0	0	0	0	9	0	16	0	25	25	0	31	4	0	35	17	32	0	0	49 Peak Hou	84 Ir Factor:	109 0.80

									15 M	INUTE TU	JRNING MO	OVEMENT	COUNTS	(TRUCK	S)								
	DATE:		Augus	t 24, 2005								-			-	CITY:	CAPE CANA	VERAL					
	LOCA	TION:	SCALLC	OP DR & MU	LLET RD							_			-	COUNTY	: BREVARD						
					SCA	LLOP DR										MUL	LET RD						
711.45			NODTUD								N/0			LATRO				14/5				E A A /	0.54115
REGIN	P	т	NORTHBO		TOT	P	<u>т</u>	JUTHBOU		TOT	N/S	P	т			TOT	P				TOT	E/W	
7:00	0	0			0	0	0			0	0	0	0			0	0	0			0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00	0	0	0	0	0	0	0	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
8:15	0	0	0	Ő	0	0	0	0	0	0	0	0	0	Ő	0	Ő	0	0	0	0	Ő	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	Ő	0	0	0	0	ŏ	0	0	0	0	0	õ	0	0	0	0	Ő	0	ů 0
11:30	0	0	0	0	0	1	0	1	0	2	2	0	1	0	0	1	0	0	0	0	0	1	3
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
TOTAL	0	0	0	0	0	1	0	1	0	2	2	0	1	0	0	1	0	1	0	0	1	2	4
12:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	1	0	0	1	2	2
12:15	0	0	0	0	0	0	0	1	0	1	1	0	1	0	0	1	0	0	0	0	0	1	2
TOTAL	0	0	0	0	0	0	0	1	0	1	1	0	2	0	0	2	0	1	0	0	1	3	4
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	1
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· - ·																							
Am Peak 7:15 - 8:15	0	0	0	0	0	0	0	2	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
Off Peak																					Peak Ho	ur Factor:	0.25
11:30 - 12:30	0	0	0	0	0	1	0	2	0	3	3	0	3	0	0	3	0	2	0	0	2 Peak Ho	5 ur Factor:	8 0.67
Pm Peak 4:00 - 5:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1 Peak Ho	1 ur Factor:	1 0.25

									15 M	INUTE TU	JRNING M	OVEMENT		(TRUCK	S)								
	DATE:		Augus	t 24, 2005								-				CITY:	CAPE CANA	VERAL					-
	LOCAT	ION:	DAVE NI	SBET DRIV	/E & SCALI	LOP DRIVE						_				COUNTY	: BREVARD						_
					DAVE N	ISBET DR	IVE									SCALL	OP DRIVE						
70.45			NODTUD								11/0			LATEOL					OTDOUNU				
LIME	P		NORTHBO		тот	Р				тот	N/S	В	- т	LASIBOU		тот	Р		SIBOUN		тот	E/W	GRAND
Z:00	R			PEDS	101	R 0			PEDS	0	101	R 0			PEDS	0	R			PEDS	0	0	101AL
7:15	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
7:30	0	0	0	0	ő	0	Ó	0	0	o	0	0	0	0	0	ő	0	0	0	0	o	ő	0
7:45	0	0	0	0	0	0	1	0	0	1	1	0 0	0 0	1	0	1	0	0	0 0	0	0	1	2
TOTAL	0	0	1	0	1	0	2	0	0	2	3	0	0	1	0	1	0	0	0	0	0	1	4
9.00	0	0	0	0	0	1	1	0	0	2	1 2	0	0	2	0	2	0	0		0	0	<u> </u>	4
8:00	0	0	0	0	0	1	1	0	0	2	2	0	0	2	0	2	0	0	0	0	0	2	4
8.30	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:45	0	0	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	0	0	ő	1	2
TOTAL	0	0	1	0	1	1	3	0	0	4	5	1	0	2	0	3	0	0	0	0	0	3	8
	1 -	— —			-			1								-	1 .	-	1 -		1 -		
10:30	0	0	0	0	0	0	1	1	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
10:45	0	0	0	0	0	0	1	2	0	3	3	1	0	0	0	1	0	0	2	0	2	3	6
TOTAL	0	0	0	U	U	0	2	3	0	5	э		0	0	0	1	0	0	2	0	2	3	0
11:00	1	1	2	0	4	0	0	0	0	0	4	0	0	0	0	0	1	0	0	0	1	1	5
11:15	0	0	1	0	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	1	2
11:30	0	1	1	0	2	1	0	0	0	1	3	0	0	0	0	0	0	0	3	0	3	3	6
11:45	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	1	2	4	0	1	1	1	0	0	2	9	1	0	0	0	1	1	0	3	0	4	5	14
12:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2	2
12:15	0	1	0	0	1	1	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	2
TOTAL	0	1	0	0	1	1	0	0	0	1	2	2	0	0	0	2	0	0	0	0	0	2	4
10:00																•	0						
16:00	0	1	0	0	1	0	6	0	0	0	2	2	0	0	0	2	0	0	0	0	0	1	9
16:30	0	0	0	0	0	0	2	0	0	0		0	0	0	0	0	0	0	0	0	0		0
16:45	0	0	0	0	ő	0	0	0	0	ő	0	0	0	0	0	ő	0	0	0	0	o	ő	0
TOTAL	0	1	0	0	1	0	8	0	0	8	9	3	0	0	0	3	0	0	0	0	0	3	12
	I -		1 .	I .	I -	I -		I -	I -	-	1 -		1 -			-	I -	1		Ι	I .		
17:00	0	0	0	0	0	0	2	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
17:15	1	0	0	0	1	0	2	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	3
17:30	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	1	0	1	1	2
TOTAL	1	0	0	0	1	0	5	0	0	5	6	0	0	0	0	0	0	0	1	0	1	1	7
	. ·	Ů	Ű	ů		Ŭ	Ŭ	Ű	Ů	Ţ	Ŭ	Ű	Ŭ	Ŭ	Ŭ	Ŭ	Ű	Ŭ	·	Ű			
Am Peak																							
8:00 - 9:00	0	0	1	0	1	1	3	0	0	4	5	1	0	2	0	3	0	0	0	0	0	3	8
Off Peak																					Peak Ho	ur Factor:	0.50
11:30 - 12:30	0	2	1	0	3	2	1	0	0	3	6	2	0	0	0	2	0	0	3	0	3	5	11
Dm Deek																					Peak Ho	ur Factor:	0.46
4:00 - 5:00	0	1	0	0	1	0	8	0	0	8	9	3	0	0	0	3	0	0	0	0	0 Peak Ho	3 ur Factor:	12 0.33

								1	15 MINUTE	TURNING	G MOVEM	ENT COU	NTS (AUT	OS & TRU	ICKS)								
	DATE:		August	t 24, 2005								_			_	CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	DAVE N	SBET DRIV	E & SCALI	OP DRIVE										COUNTY	: BREVARD						
					DAVE N	ISBET DR	IVE					_			-	SCAL	LOP DRIVE						-
												1					-					=	
TIME			NORTHBC		тот	Р				тот	N/S	B	E	ASTBOUN		тот	Р	WE			тот	E/W	GRAND
7:00	0	6		FED3	101	0 0	1		PED3	101	13	4			PED3	5	0			PED3	0	5	101AL
7:15	Ő	6	6	0	12	1	3	0 0	0	4	16	2	0	Ő	0	2	0	0	0	0	ō	2	18
7:30	0	6	8	0	14	3	4	0	0	7	21	1	0	0	0	1	0	0	0	0	0	1	22
7:45	0	8	14	0	22	1	3	0	0	4	26	4	0	2	0	6	0	0	0	0	0	6	32
TOTAL	0	26	34	0	60	5	11	0	0	16	76	11	1	2	0	14	0	0	0	0	0	14	90
8:00	0	7	12	0	19	1	1	0	0	2	21	2	0	2	0	4	0	0	0	0	0	4	25
8:15	0	10	6	0	16	0	4	0	0	4	20	2	0	0	0	2	0	0	0	0	0	2	22
8:30	1	6	8	0	15	0	5	0	0	5	20	7	0	1	0	8	0	0	1	0	1	9	29
8:45	0	21	5	0	26	2	10	0	0	12	38	5	0	1	0	6	0	0	0	0	0	6	44
TOTAL	1	44	31	0	76	3	20	0	0	23	99	16	0	4	0	20	0	0	1	0	1	21	120
10:30	0	22	7	0	29	1	11	1	0	13	42	6	0	0	0	6	0	0	0	0	0	6	48
10:45	2	27	11	0	40	3	14	2	0	19	59	8	0	4	0	12	1	0	2	0	3	15	74
TOTAL	2	49	18	0	69	4	25	3	0	32	101	14	0	4	0	18	1	0	2	0	3	21	122
11:00	1	10	9	0	20	4	6	0	0	10	30	7	0	3	0	10	1	0	0	0	1	11	41
11:15	0	17	9	0	26	6	13	1	0	20	46	8	0	1	0	9	0	0	1	0	1	10	56
11:30	0	28	8	0	36	4	12	0	0	16	52	8	0	4	0	12	0	0	3	0	3	15	67
11:45	0	21	7	0	28	3	17	0	0	20	48	8	0	6	0	14	0	0	0	0	0	14	62
TOTAL	1	76	33	0	110	17	48	1	0	66	176	31	0	14	0	45	1	0	4	0	5	50	226
12:00	1	8	6	0	15	2	24	0	0	26	41	12	0	5	0	17	0	0	0	0	0	17	58
12:15	0	21	8	0	29	8	20	0	0	28	57	6	0	4	0	10	0	0	0	0	0	10	67
TOTAL	1	29	14	0	44	10	44	0	0	54	98	18	0	9	0	27	0	0	0	0	0	27	125
16:00	0	15	9	0	24	0	128	0	0	128	152	20	0	2	0	22	0	0	0	0	0	22	174
16:15	Ő	16	5	0	21	0	44	0	0	44	65	10	0	3	0	13	0	0	0	0	Ō	13	78
16:30	2	26	6	0	34	3	26	0	0	29	63	3	0	4	0	7	0	0	2	0	2	9	72
16:45	1	16	8	0	25	2	17	0	0	19	44	13	0	3	0	16	0	0	1	0	1	17	61
TOTAL	3	73	28	0	104	5	215	0	0	220	324	46	0	12	0	58	0	0	3	0	3	61	385
17:00	0	21	2	0	23	2	23	0	0	25	48	3	0	3	0	6	0	0	0	0	0	6	54
17:15	1	15	3	0	19	2	20	1	0	23	42	10	0	3	0	13	0	0	1	0	1	14	56
17:30	0	26	3	0	29	2	19	0	0	21	50	5	0	3	0	8	0	0	1	0	1	9	59
17:45	0	30	5	0	35	2	16	0	0	18	53	4	0	5	0	9	0	0	0	0	0	9	62
TOTAL	1	92	13	0	106	8	78	1	0	87	193	22	0	14	0	36	0	0	2	0	2	38	231
L																							
Am Peak 8:00 - 9:00	1	44	31	0	76	3	20	0	0	23	99	16	0	4	0	20	0	0	1	0	1	21	120
	-		2.	-		-	20	•	÷		50		÷	·	2	_•	·	÷	•	•	Peak Hou	Ir Factor:	0.68
Off Peak 11:30 - 12:30	1	78	29	0	108	17	73	0	0	90	198	34	0	19	0	53	0	0	3	0	3	56	254
	-			•				•	÷			•••	÷		•		·	÷	÷	•	Peak Hou	Ir Factor:	0.95
Pm Peak 4:00 - 5:00	3	73	28	0	104	5	215	0	0	220	324	46	0	12	0	58	0	0	3	0	3	61	385
	÷			•		÷		•	÷				÷		•		·	÷	÷	÷	Peak Hou	Ir Factor:	0.55

									15 M	IINUTE TU	JRNING M	OVEMEN		(TRUCK	S)								
	DATE:		August	t 24, 2005								-				CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	DAVE NI	SBET DRIV	/E & MULL	ET DRIVE						-				COUNTY	BREVARD						-
					DAVE N	ISBET DR	IVE									MULL	ET DRIVE						
TIME			NORTHBO	DUND			S	OUTHBOL	JND		N/S			EASTBOL	IND			WE	STBOUN	D		E/W	GRAND
BEGIN	R	Т	L	PEDS	TOT	R	Т	L	PEDS	TOT	TOT	R	Т	L	PEDS	TOT	R	Т	L	PEDS	TOT	TOT	TOTAL
7:00	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
7:15	0	0	0	0	0	0	1	0	0	1	1	2	0	0	0	2	0	0	0	0	0	2	3
7:30	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	1
7:45 TOTAL	0	2	1	0	3	0	2	0	0	2	5	3	0	0	0	3	0	0	0	0	0	3	8
TOTAL	0	2		0	3	0	2	0	0	2	5	3	0	0	0	3	0	0	0	0	U	3	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	0	0	0	0	0	2	2
8:30	0	1	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1
8:45	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	0	1	0	0	1	0	1	0	0	1	2	2	0	0	0	2	0	0	0	0	0	2	4
																							-
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	0	0	0	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
11:00		0	0				0		0				0		0	0	0	0	0	0			
11:00	0	2	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
11:15	0	1	0	0	1	0	2	0	0	2	1	1	0	0	0	1	0	0	0	0	0	1	5
11:30	0	0	0	0		0	0	0	0	0	4	1	0	0	0	1	0	0	0	0	0	1	1
TOTAL	0	0	0	0	4	0	3	0	0	3	7	2	0	0	0	2	0	0	0	0	0	2	9
TOTAL	Ŭ	-	0	Ŭ	-	Ū	Ŭ	0	Ū	Ŭ		-	Ū	0	U	-	Ŭ	v	Ŭ	Ŭ	Ŭ		
12:00	0	0	1	0	1	0	1	0	0	1	2	1	0	0	0	1	0	0	0	0	0	1	3
12:15	0	0	1	0	1	0	0	0	0	0	1	2	0	0	0	2	0	0	0	0	0	2	3
TOTAL	0	0	2	0	2	0	1	0	0	1	3	3	0	0	0	3	0	0	0	0	0	3	6
16:00	0	0	1	0	1	0	8	0	0	8	9	0	0	0	0	0	0	0	0	0	0	0	9
16:15	0	0	0	0	0	0	2	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	1	0	1	0	10	0	0	10	11	0	0	0	0	0	0	0	0	0	0	0	11
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	ő	0	1	0	ő	1	1	0	0	0	0	0	0	0	0	0	ő	0	1
17:30	ő	0	0	Ő	ő	0	1	0	ő	1	1	ő	0	0	0 0	ő	0	ő	ő	ő	ő	ő	1
17:45	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	0	ŏ	ŏ	o i	0	ŏ	ŏ	ŏ	0	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ő	o i
TOTAL	0	0	0	0	0	0	2	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2
											1											1	
Am Peak 8-00 - 9-00	0	1	0	0	1	0	1	0	0	1	2	2	0	0	0	2	0	0	0	0	0	2	4
0.00 - 0.00	U	'	U	U	'	0		U	U		4	2	U	0	0	2	U	U	U	U	Peak Ho	our Factor:	0.50
Off Peak												_				_							
11:30 - 12:30	0 0	1	2	0	3	0	4	0	0	4	7	5	0	0	0	5	0	0	0	0	0 Book He	5	12
Pm Peak																					Feak Ho	ur Factor:	0.00
4:00 - 5:00	0	0	1	0	1	0	10	0	0	10	11	0	0	0	0	0	0	0	0	0	0	0	11
																					Peak Ho	our Factor:	0.31

								1	15 MINUTE	TURNING	G MOVEM	ENT COU	NTS (AUT	OS & TRU	JCKS)								
	DATE:		August	t 24, 2005								_			_	CITY:	CAPE CANA	VERAL					-
	LOCAT	ION:	DAVE NI	SBET DRIV	E & MULLE	ET DRIVE										COUNTY	: BREVARD	1					
					DAVE N	ISBET DR	IVE					_			_	MUL	LET DRIVE						_
TIME		I	NORTHBC	DUND	TOT			DUTHBOU	JND	TOT	N/S		E	ASTBOUN	ND			WE	STBOUN)	TOT	E/W	GRAND
BEGIN 7:00	R	12	L 15	PEDS	27	R	6		PEDS	101	101	R			PEDS	101	R			PEDS	101	101	101AL
7:15	0	12	10	0	30	0	0	0	0	4	34	9	0	0	0	9	0	0	0	0	0	9	42
7:30	o	14	25	0	39	1	6	0	0	7	46	5	0	0	0	5	0	0	0	0	o	5	51
7:45	0	23	26	0	49	0	9	0	0	9	58	10	0	1	0	11	0	0	0	0	0	11	69
TOTAL	0	61	84	0	145	1	25	0	0	26	171	30	0	1	0	31	0	0	0	0	0	31	202
8.00	0	19	23	0	42	0	13	0	0	13	55	14	0	1	0	15	0	0	0	0	0	15	70
8:15	0	17	26	0	43	1	4	0	0	5	48	11	0	0	0	11	0	0	0	0 0	0	11	59
8:30	0	13	23	0	36	1	11	0	0	12	48	13	0	1	0	14	0	0	0	0	0	14	62
8:45	0	25	15	0	40	1	12	0	0	13	53	15	0	2	0	17	0	0	0	0	0	17	70
TOTAL	0	74	87	0	161	3	40	0	0	43	204	53	0	4	0	57	0	0	0	0	0	57	261
10:30	0	20	15	0	35	1	17	0	0	18	53	17	0	3	0	20	0	0	0	0	0	20	73
10:45	0	42	19	0	61	3	20	0	0	23	84	16	0	4	0	20	0	0	0	0	0	20	104
TOTAL	0	62	34	0	96	4	37	0	0	41	137	33	0	7	0	40	0	0	0	0	0	40	177
11:00	0	19	22	0	41	2	14	0	0	16	57	15	0	1	0	16	0	0	0	0	0	16	73
11:15	0	21	25	0	46	3	16	0	0	19	65	31	0	4	0	35	0	0	0	0	0	35	100
11:30	0	32	21	0	53	2	20	0	0	22	75	30	0	7	0	37	0	0	0	0	0	37	112
11:45	0	26	19	0	45	5	24	0	0	29	74	29	0	2	0	31	0	0	0	0	0	31	105
TOTAL	0	98	87	0	185	12	74	0	0	86	2/1	105	0	14	0	119	0	0	0	0	U	119	390
12:00	0	15	29	0	44	2	35	0	0	37	81	29	0	1	0	30	0	0	0	0	0	30	111
12:15	0	28	27	0	55	3	21	0	0	24	79	21	0	1	0	22	0	0	0	0	0	22	101
TOTAL	0	43	00	0	99	5	00	0	0	01	160	50	0	2	U	52	U	U	0	0	U	52	212
16:00	0	23	21	0	44	2	144	0	0	146	190	27	0	2	0	29	0	0	0	0	0	29	219
16:15	0	21	15	0	36	3	58	0	0	61	97	26	0	2	0	28	0	0	0	0	0	28	125
16:30	0	31	22	0	53	1	28	0	0	29	82	28	0	4	0	32	0	0	0	0	0	32	114
16:45	0	28	75	0	45	5	29	0	0	34	79	102	0	1	0	111	0	0	0	0	0	111	101
TOTAL	0	103	75	0	178		233	0	0	270	440	102	0	5	0		0	0	0	0	U		333
17:00	0	25	9	0	34	4	24	0	0	28	62	22	0	1	0	23	0	0	0	0	0	23	85
17:15	0	24	11	0	35	1	31	0	0	32	67	28	0	0	0	28	0	0	0	0	0	28	95
17:30	0	32	5	0	37	0	19	0	0	19	56	21	0	0	0	21	0	0	0	0	0	21	77
17:45 TOTAL	0	117	30	0	41	5	96	0	0	101	248	85	0	2	0	15	0	0	0	0	0	15	70
TOTAL	0	117	50	Ū	147	5	30	Ū	Ū	101	240	00	0	2	Ŭ	01	0	Ū	Ū	Ŭ	Ū	07	555
Am Peak																							
8:00 - 9:00	0	74	87	0	161	3	40	0	0	43	204	53	0	4	0	57	0	0	0	0	0 Peak Ho	57 ur Factor	261 0.93
Off Peak																					i cuit i lo		0.00
11:30 - 12:30	0	101	96	0	197	12	100	0	0	112	309	109	0	11	0	120	0	0	0	0	0 Peak Ho	120 ur Factor:	429 0.96
Pm Peak	0	102	75	0	470	44	250	•	0	270	449	102	•		0		0	0	0	•	0		550
4.00 - 5:00	U	103	15	U	170		209	U	U	270	440	102	U	э	U		U	U	U	U	Peak Ho	Jr Factor:	0.64

									15 M	INUTE TU	JRNING M	OVEMEN		(TRUCK	S)								
	DATE:		Augus	t 25, 2005								_				CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	GEORG	E KING BLV	D & FLOU	NDER ST/C	OLUMBIA	RD				_				COUNTY	: BREVARD						_
				FLC	OUNDER S	ST/COLUN	IBIA RD									GEORGE	KING BLVD)					
TIME			NORTHB	OUND			S	OUTHBOL	JND		N/S			EASTBOL	IND			WE	STBOUN	D		E/W	GRAND
BEGIN 7:00	R 0	T 0	L 0	PEDS	TOT 0	R 0	T 0	L 0	PEDS 0	TOT 0	TOT 0	R 0	T 10	L 0	PEDS 0	TOT 10	R 0	T 7	L 0	PEDS 0	TOT 7	TOT 17	TOTAL
7:15	0	0	0	0	0	0	0	0	0	0	0	0	11	0	0	11	0	4	0	0	4	15	15
7:45	0	0	1	0	1	0	0	0	0	0	1	0	14	1	0	15	0	13	0	0	13	28	29
TOTAL	0	0	1	0	1	0	0	0	0	0	1	0	39	1	0	40	0	35	1	0	36	76	77
8:00	0	0	0	0	0	1	0	0	0	1	1	0	12	0	0	12	0	7	0	0	7	19	20
8:15 8:30	0	0	0	0	0	0	0	0	0	0	0	1	7 10	1	0	9 11	0	8 14	0	0	8 14	17 25	17 26
8:45	0	0	0	0	0	1	0	0	0	1	1	0	19	1	0	20	0	11	0	0	11	31	32
TOTAL		0	0	0	1 1	2	0	0	0	2	3		48	3	U	52	0	40	0	0	40	92	90
10:30 10:45	0	0	1	0	1	0	0	0	0	0	1	0	10 10	0	0	10 12	1	9 12	0	0	10 12	20 24	21 28
TOTAL	0	0	3	0	3	0	0	2	0	2	5	0	20	2	0	22	1	21	0	0	22	44	49
11:00	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	10	0	9	0	0	9	19	19
11:15	0	1	0	0	1	0	0	1	0	1	2	0	8	0	0	8	0	6	0	0	6	14	16
11:45	0	0	0	0	0	0	0	0	0	0	0	0	14	0	0	14	0	8	0	0	8	23	20
TOTAL	0	1	0	0	1	0	1	1	0	2	3	0	46	0	0	46	0	34	0	0	34	80	83
12:00	0	0	0	0	0	0	0	0	0	0	0	0	8	2	0	10	0	17	0	0	17	27	27
TOTAL	0	0	0	0	0	0	0	0	0	0	0	1	19	2	0	22	0	30	0	0	30	25 52	25 52
16:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	2	0	0	2	4	4
16:15	0	0	0	0	Ő	0	0	0	0	0	0	0	1	1	0	2	0	2	0	0	2	4	4
16:30 16:45	0	0	0	0	0	0	0	1	0	1	1	1	2	0	0	3 2	0	4	0	0	4	7 9	8 9
TOTAL	0	0	0	0	0	0	0	1	0	1	1	1	7	1	0	9	0	15	0	0	15	24	25
17:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	3	0	0	3	4	4
17:15 17:30	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	4	0	0	4	7	7
17:45	0	0	1	0	1	0	0	1	0	1	2	0	2	0	0	2	0	2	0	0	2	4	6
TOTAL	0	0	1	0	1	0	0	1	0	1	2	1	7	0	0	8	0	11	0	0	11	19	21
Am Peak																							
7:30 - 8:30	0	0	1	0	1	1	0	0	0	1	2	1	37	2	0	40	0	39	1	0	40 Peak Ho	80 our Factor:	82 1.03
Off Peak 11:30 - 12:30	0	0	0	0	0	0	1	0	0	1	1	1	47	2	0	50	0	49	0	0	49	99	100
Pm Peak																					Peak Ho	ur Factor:	0.93
4:45 - 5:45	0	0	0	0	0	0	0	0	0	0	0	1	7	0	0	8	0	16	0	0	16 Peak Ho	24 our Factor:	24 0.67

								1	5 MINUTE	TURNING	G MOVEM	ENT COU	NTS (AUT	OS & TRU	JCKS)								
	DATE:		Augus	t 25, 2005								_				CITY:	CAPE CANA	AVERAL					_
	LOCAT	ION:	GEORGE	E KING BLV	D & FLOU	NDER ST/C	OLUMBIA	RD				_				COUNTY	: BREVARD)					_
				FLO		ST/COLUN	IBIA RD									GEORG	E KING BLV	D					
TIME			NORTHBO	DUND	TOT			<u>OUTHBOL</u>	JND	TOT	N/S		E	ASTBOUN	ND	TOT		WE	STBOUN	D	TOT	E/W	GRAND
BEGIN	R			PEDS	101	R			PEDS	101	101	R	50		PEDS	101	R	62		PEDS	67	101	101AL
7:15	0	1	2	0	3	1	0	1	0	2	5	3	60	2	0	75	6	60	1	0	76	154	159
7:30	0	0	1	0	1	2	0	1	0	3	4	6	75	3	0	84	4	72	3	0	79	163	167
7:45	1	0	3	0	4	0	0	0	0	Ő	4	14	95	8	0 0	117	5	53	1	0	59	176	180
TOTAL	2	1	6	0	9	5	0	4	0	9	18	29	298	16	0	343	18	257	6	0	281	624	642
8:00	1	1	2	0	4	7	0	3	0	10	14	7	97	4	0	108	5	50	2	0	57	165	179
8:15	0	1	1	0	2	3	1	3	0		9	6	81	5	0	92	5	62	2	0	69	161	1/0
8:30	2	0	1	0	2	5	0	2	0	4	0		66	0	0	75	5	52	0	0	64 57	137	144
TOTAL	4	2	5	0	11	16	1	11	0	28	39	19	306	23	0	348	18	225	4	0	247	595	634
	- · ·		Ţ	Ţ	1		1 -		÷						I					÷			
10:30	1	1	2	0	4	3	0	6	0	9	13	6	74	12	0	92	13	45	0	0	58	150	163
10:45	0	0	5	0	5	6	1	8	0	15	20	8	69	17	0	94	7	43	0	0	50	144	164
TOTAL	1	1	7	0	9	9	1	14	0	24	33	14	143	29	0	186	20	88	0	0	108	294	327
11:00	2	0	6	0	8	4	0	7	0	11	10	1	61	21	0	86	0	53	0	0	62	1/18	167
11:15	1	1	3	0	5	11	0	9	0	20	25	10	66	19	0	95	13	41	0	0	54	149	174
11:30	2	0	5	0	7	10	1	6	Ő	17	24	5	73	20	õ	98	10	57	0 0	0 0	67	165	189
11:45	1	0	6	0	7	8	2	10	0	20	27	6	74	20	0	100	5	49	0	0	54	154	181
TOTAL	6	1	20	0	27	33	3	32	0	68	95	25	274	80	0	379	37	200	0	0	237	616	711
	_																						
12:00	1	2	16	0	19	20	1	12	0	33	52	4	77	27	0	108	13	85	1	0	99	207	259
12:15	0	0	25	0	9	5 25	1	9 21	0	15	24	11	120	13	0	82	10	151	0	0	175	158	182
TOTAL		2	23	0	20	23	2	21	0	40	70		135	40	0	190	23	131		0	175	305	441
16:00	1	0	2	0	3	9	0	8	0	17	20	2	52	9	0	63	9	35	0	0	44	107	127
16:15	0	0	0	0	0	11	1	9	0	21	21	0	49	9	0	58	6	33	0	0	39	97	118
16:30	3	0	5	0	8	12	0	8	0	20	28	5	54	8	0	67	9	53	0	0	62	129	157
16:45	0	0	4	0	4	15	0	9	0	24	28	1	48	11	0	60	7	57	0	0	64	124	152
TOTAL	4	0	11	0	15	47	1	34	0	82	97	8	203	37	0	248	31	178	0	0	209	457	554
17:00	1	0	Q	0	10	8	0	13	0	21	31	2	53	10	0	65	10	98	0	0	108	173	204
17:15	1	0	2	0	3	21	0	11	0	32	35	4	66	20	0	90	15	71	1	0	87	177	212
17:30	0	0	6	0	6	8	0	10	0	18	24	4	58	18	0	80	18	62	2	0	82	162	186
17:45	1	0	5	0	6	14	0	6	0	20	26	1	49	12	0	62	23	28	0	0	51	113	139
TOTAL	3	0	22	0	25	51	0	40	0	91	116	11	226	60	0	297	66	259	3	0	328	625	741
Am Peak																							
7:30 - 8:30	2	2	7	0	11	12	1	7	0	20	31	33	348	20	0	401	19	237	8	0	264	_665	696
Off Peak																					Peak Ho	ur Factor:	0.97
11:30 - 12:30	4	2	36	0	42	43	5	37	0	85	127	22	286	80	0	388	38	257	1	0	296	684	811
																					Peak Ho	ur Factor:	0.78
Pm Peak 4:45 - 5:45	2	0	21	n	22	52	n	12	0	95	119	11	225	50	0	205	50	288	2	0	3/1	626	754
4.45 - 5.45	-	v	21	v	25	32	v	45	v	35	110		223	33	0	235	30	200	5	0	Peak Ho	ur Factor:	0.89

									15 M	IINUTE TU	JRNING M	OVEMEN	r counts	G (TRUCK	5)								
	DATE:		Augus	t 24, 2005								_				CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	GEORGE	E KING BL\	/D & MARL	IN STREET	-					_				COUNTY	: BREVARD						_
					MARL	IN STREE	т									GEORGE	KING BLVD						
TIME			NORTHBO	DUND			S	OUTHBO	UND		N/S			EASTBOU	ND			WE	STBOUN	D		E/W	GRAND
BEGIN	R	T	L	PEDS	TOT	R	T	L	PEDS	TOT	TOT	R	T	L	PEDS	TOT	R	T	L	PEDS	TOT	TOT	TOTAL
7:00	2	0	0	0	2	0	0	0	0	4	6	0	0	0	0	4	0	3	0	0	3	7	13
7:30	0	o	0	0	0	2	0	0	0	2	2	0	6	0	0	6	0	2	0	0	2	8	10
7:45	0	0	1	0	1	2	0	0	0	2	3	0	3	0	0	3	0	3	0	0	3	6	9
TOTAL	2	0	1	0	3	8	0	0	0	8	11	0	13	0	0	13	0	9	0	0	9	22	33
8:00	0	0	0	0	0	3	0	0	0	3	3	1	5	0	0	6	0	2	0	0	2	8	11
8:15	0	0	2	0	2	3	0	0	0	3	5	1	0	0	0	1	0	4	0	0	4	5	10
8:30	0	0	1	0	1	0	0	0	0	0	1	2	4	0	0	6	0	2	0	0	2	8	9
8:45	1	0	2	0	3	2	0	0	0	2	5	2	3	0	0	5	0	6	0	0	6	11	16
TOTAL	1	0	5	0	6	8	0	0	0	8	14	6	12	0	0	18	0	14	0	0	14	32	46
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	2	0	2	4	0	0	0	4	6	2	3	0	0	5	1	2	0	0	3	8	14
TOTAL	0	0	2	0	2	4	0	0	0	4	6	2	3	0	0	5	1	2	0	0	3	8	14
11:00	0	0	0	0	0	4	0	0	0	4	4	1	1	0	0	2	1	2	0	0	3	5	9
11:15	0	0	0	0	0	1	0	1	0	2	2	0	5	0	0	5	1	5	0	0	6	11	13
11:30	0	0	1	0	1	5	0	1	0	6	7	0	6	0	0	6	1	2	0	0	3	9	16
11:45 TOTAL	0	0	1	0	0	3 12	0	0	0	15	3	0	5	0	0	19	1	5	0	0	19	26	14
TOTAL	0	0	1	0		13	0	2	0	15	10	1	17	0	0	10	4	14	0	0	10	50	J2
12:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	2	0	0	2	4	4
12:15	0	0	0	0	0	4	0	0	0	4	4	0	5	0	0	5	0	3	0	0	3	8	12
TOTAL	0	0	0	0	0	4	0	0	0	4	4	0	1	0	0	7	0	5	0	0	5	12	16
16:00	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0	1	0	2	0	0	2	3	4
16:15	0	0	0	0	0	2	0	0	0	2	2	0	1	0	0	1	0	1	0	0	1	2	4
16:30	0	1	0	0	0	2	0	0	0		2	- 1	1	0	0	1	0	1	0	0	1	5	4
TOTAL	0	1	0	0	1	9	0	0	0	9	10	1	3	0	0	4	0	8	0	0	8	12	22
17:00	1	0	1	0	2	1	0			1	2	0	1	0	0	4	0	2	0		2	4	7
17:15	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	0	2	0	0	2	4	4
17:30	0	0	0	0	ō	0	0	0	0	0	0	1	2	Ő	0 0	3	0	3	0	0	3	6	6
17:45	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	1	0	0	1	4	4
TOTAL	1	0	1	0	2	1	0	0	0	1	3	2	7	0	0	9	0	9	0	0	9	18	21
Am Peak 7:15 - 8:15	2	0	1	0	3	11	0	0	0	11	14	1	18	0	0	19	0	10	0	0	10	29	43
Off Peak																					Peak Ho	ur Factor:	0.83
11:30 - 12:30 Pm Peak) 0	0	1	0	1	12	0	1	0	13	14	0	18	0	0	18	2	12	0	0	14 Peak Ho	32 ur Factor:	46 0.72
4:45 - 5:45	1	1	1	0	3	5	0	0	0	5	8	3	4	0	0	7	0	12	0	0	12 Peak Ho	19 our Factor:	27 0.68

								1	15 MINUTE	TURNING	MOVEM	ENT COU	NTS (AUT	OS & TRU	JCKS)								
	DATE:		August	24, 2005								_				CITY:	CAPE CAN	AVERAL					_
	LOCAT	ION:	GEORGE	KING BLV	/D & MARL	IN STREET	-					_				COUNTY	: BREVARD)					_
					MARL	IN STREE	т					_				GEORG	E KING BLV	D					_
711.45	-										" 	1		<u> </u>	10		1			<u></u>			
BEGIN	R	т	NORTHEC	PEDS	тот	R	T		PEDS	тот	TOT	R	<u>т</u>	ASTBOUN	PEDS	тот	R		I STBOUNL	PEDS	TOT	E/W TOT	TOTAL
7:00	0	0	0	0	0	6	2	2	0	10	10	3	39	8	0	50	7	35	2	0	44	94	104
7:15	9	2	0	0	11	12	0	0	0	12	23	1	44	23	0	68	2	52	7	0	61	129	152
7:30	0	0	0	0	0	4	1	0	0	5	5	5	58	15	0	78	3	54	1	0	58	136	141
TOTAL	9	3	1	0	13	25	4	2	0	31	44	10	224	73	0	307	14	178	10	0	202	509	553
8:00	1	1	0	0	2	5	1	0	0	6	8	1	73	26	0	100	4	58	3	0	65	165	173
8:15	6	0	3	0	4	5	1	3	0	9 10	13	3	52 60	20	0	75 82	4	38 50	6	0	42 57	117	130
8:45	4	0	3	0	7	2	1	0	0	3	10	7	48	24	0	79	5	56	0	0	61	140	150
TOTAL	11	2	8	0	21	21	3	4	0	28	49	14	233	89	0	336	14	202	9	0	225	561	610
10.30	1	2	1	0	4	2	0	3	0	5	9	0	11	5	0	40	2	10	0	0	51	100	109
10:45	0	1	2	0	3	6	0	1	0	7	10	3	50	24	0	77	5	47	0	0	52	129	139
TOTAL	1	3	3	0	7	8	0	4	0	12	19	3	94	29	0	126	7	96	0	0	103	229	248
11:00	2	1	0	0	2	6	2	2	0	10	12	2	40	12		64	4	44	0	0	40	112	125
11:15	1	0	5	0	6	5	0	3	0	8	13	1	49 52	4	0	57	1	37	0	0	38	95	109
11:30	0	0	1	0	1	6	0	1	0	7	8	1	62	7	0	70	3	44	0	0	47	117	125
11:45	0	1	1	0	2	5	0	6	0	11	13	2	55	4	0	61	5	65	1	0	71	132	145
TOTAL	3	2	7	0	12	22	2	12	0	36	48	6	218	28	0	252	13	190	1	0	204	456	504
12:00	0	0	0	0	0	0	0	0	0	0	0	0	49	4	0	53	2	67	0	0	69	122	122
12:15	0	0	3	0	3	7	0	4	0	11	14	1	44	4	0	49	3	70	0	0	73	122	136
TOTAL	0	0	3	0	3	7	0	4	0	11	14	1	93	8	0	102	5	137	0	0	142	244	258
16:00	0	0	1	0	1	5	0	2	0	7	8	1	38	1	0	40	1	45	0	0	46	86	94
16:15	0	0	3	0	3	7	0	1	0	8	11	1	46	0	0	47	1	48	0	0	49	96	107
16:30	0	0	3	0	3	4	0	1	0	5	8	1	44	2	0	47	0	47	0	0	47	94	102
16:45 TOTAI	1	1	10	0	5	9 25	1	1	0	11	16	3	49	1	0	53	1	49	0	0	192	103	119 422
TOTAL			10	Ū		20		0	Ŭ	01	40	Ŭ			Ŭ	107	Ŭ	100	Ű	Ŭ	102	010	
17:00	2	0	2	0	4	10	0	2	0	12	16	0	46	1	0	47	1	94	0	0	95	142	158
17:15	0	0	1	0	1	8	0	0	0	8	9	1	60	3	0	64	0	67	0	0	67	131	140
17:30	0	0	3	0	2	4	0	3	0	6	9	0	53 41	0	0	54 41	2	38	0	0	40	81	90
TOTAL	3	0	7	0	10	25	0	5	0	30	40	2	200	4	0	206	4	269	0	0	273	479	519
Am Peak		_							_			_											
7:15 - 8:15	10	4	1	0	15	24	3	0	0	27	42	8	258	91	0	357	11	201	11	0	223 Peak Hou	580 ur Factor:	622 0.90
Off Peak			-			10																	
11:30 - 12:30	0	1	5	0	6	18	0	11	0	29	35	4	210	19	0	233	13	246	1	0	260 Peak Hou	493 ur Factor:	528 0.91
Pm Peak			-		10				•	05	47	-		-		040	•					504	540
4:45 - 5:45	4	1	1	U	12	31	1	3	U	35	41	5	208	5	U	218	3	280	U	U	283 Peak Hou	JIT Factor:	548 0.87

									15 M	IINUTE TU	JRNING M	OVEMEN	T COUNTS	(TRUCK	S)								
	DATE:		Augus	t 24, 2005								-				CITY:	CAPE CANA	VERAL					-
	LOCA	FION:	GEORGE	E KING BLV	/D & ATLA	NTIC AVEN	IUE					_				COUNTY	: BREVARD						_
					ATLAN	TIC AVEN	UE									GEORGE	KING BLVD)					
TIME			NORTHBO	DUND			S	OUTHBO	UND		N/S			EASTBOU	ND			WE	STBOUN	D		E/W	GRAND
BEGIN	R	T	L	PEDS	TOT	R	T	L	PEDS	TOT	TOT	R	T	L	PEDS	TOT	R	T	L	PEDS	TOT	TOT	TOTAL
7:00	1	0	1	0	2	0	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	2	6
7:30	2	0	3	0	5	0	0	0	0	0	5	1	1	3	0	5	0	0	1	0	1	6	11
7:45	0	0	1	0	1	1	0	0	0	1	2	3	0	2	0	5	0	0	1	0	1	6	8
TOTAL	3	0	5	0	8	3	0	0	0	3	11	4	1	7	0	12	0	0	2	0	2	14	25
8:00	0	0	4	0	4	0	1	0	0	1	5	5	1	0	0	6	0	1	2	0	3	9	14
8:15	0	0	2	0	2	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	2
8:30	0	1	3	0	4	1	0	0	0	1	5	1	2	3	0	6	0	1	1	0	2	8	13
8:45	0	0	3	0	3	3	0	0	0	3	6	2	0	1	0	3	0	1	0	0	1	4	10
TOTAL	0	1	12	0	13	4	1	0	0	5	18	8	3	4	0	15	0	3	3	0	6	21	39
10:30	0	0	2	0	2	2	1	0	0	3	5	2	0	1	0	3	0	0	0	0	0	3	8
10:45	0	0	1	0	1	1	0	0	0	1	2	1	1	1	0	3	0	0	0	0	0	3	5
TOTAL	0	0	3	0	3	3	1	0	0	4	7	3	1	2	0	6	0	0	0	0	0	6	13
11:00	1	0	1	0	2	5	0	0	0	5	7	1	0	0	0	1	1	1	2	0	4	5	12
11:15	0	0	6	0	6	2	1	0	0	3	9	3	1	2	0	6	0	0	0	0	0	6	15
11:30	0	0	2	0	2	3	1	0	0	4	6	2	2	1	0	5	0	0	0	0	0	5	11
11:45 TOTAL	2	0	5	0	17	6 16	1	0	0	10	14	1	0	5	0	6 19	0	1	0	0	1	/ 22	21
TOTAL	5	0	14	0	17	10	5	0	0	19	50	,	5	0	0	10		2	2	0	5	25	- 55
12:00	0	0	4	0	4	2	0	0	0	2	6	3	1	2	0	6	0	0	0	0	0	6	12
12:15	1	0	3	0	4	3	0	0	0	3	7	2	0	3	0	5	0	0	1	0	1	6	13
TOTAL	1	0	7	0	8	5	0	0	0	5	13	5	1	5	0	11	0	0	1	0	1	12	25
16:00	0	0	1	0	1	2	0	0	0	2	3	0	0	2	0	2	0	0	0	0	0	2	5
16:15	0	0	1	0	1	1	0	0	0	1	2	2	0	0	0	2	0	0	0	0	0	2	4
16:30	0	0	1	0	1	1	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	2
TOTAL	0	0	4	0	4	6	0	0	0	6	10	2	0	2	0	4	0	0	0	0	0	4	14
			- I		1	1								1		-	1				1		
17:00	0	0	1	0	1	2	0	0	0	2	3	2	0	0	0	2	0	0	0	0	0	2	5
17:15	0	0	0	0	0	2	0	0	0	2	2	1	0	0	0	1	0	0	0	0	0	1	3
17:45	0	0	1	0	1	0	0	0	0	0	1	1	1	0	0	2	0	0	0	0	0	2	3
TOTAL	0	0	4	0	4	5	0	0	0	5	9	5	1	0	0	6	0	0	0	0	0	6	15
Am Peak			10		40			•		•				-	•	10					-		25
7:30 - 8:30	2	0	10	0	12	1	1	0	0	2	14	9	2	5	0	16	0	1	4	0	5 Peak Ho	21 ur Factor:	35 0.63
Off Peak 11:30 - 12:30) 3	0	14	0	17	14	2	0	0	16	33	8	3	11	0	22	0	1	1	0	2	24	57
Pm Peak																					Peak Ho	ur Factor:	0.68
4:45 - 5:45	0	0	4	0	4	7	0	0	0	7	11	4	0	0	0	4	0	0	0	0	0 Peak Ho	4 our Factor:	15 0.75

									15 MINUTE	TURNING	MOVEM	ENT COU	NTS (AUT	OS & TRU	ICKS)								
	DATE:		August	24, 2005								_				CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	GEORGE	KING BLV	/D & ATLAI	NTIC AVEN	UE					_			-	COUNTY	: BREVARD						_
					ATLAN	TIC AVEN	UE									GEORG	E KING BLV	D					
	-					1	50				N/S	1		ASTROUM			1		STROUM	<u> </u>			GRAND
BEGIN	R	T	L	PEDS	TOT	R	T	L	PEDS	TOT	TOT	R		L	PEDS	тот	R	T	L	PEDS	TOT	TOT	TOTAL
7:00	11	3	26	0	40	3	1	1	0	5	45	9	5	7	0	21	1	7	3	0	11	32	77
7:15	14	2	29	0	45	4	3	2	0	9	54	7	9	8	0	24	0	5	7	0	12	36	90
7:30	25	2	44	0	71	4	0	0	0	4	75	20	20	11	0	51 84	1	8	2	0	11	62	137
TOTAL	78	14	138	0	230	14	4	4	0	22	252	53	89	38	0	180	3	31	17	0	51	231	483
-	-					1		1												-	-		
8:00	15	9	41	0	65	8	3	1	0	12	77	27	35	5	0	67	0	10	3	0	13	80	157
8:15	28	3	33	0	64	3	3	0	0	6	70	18	29	5	0	52	1	8	4	0	13	65	135
8:30	8	3	30	0	41	2	3	1	0	6	47	15	24	8	0	47	1	18	5	0	23	70	117
TOTAL	59	16	142	0	217	20	10	3	0	33	250	74	110	23	0	207	2	43	20	0	65	272	522
-																-				-			
10:30	9	2	19	0	30	5	2	0	0	7	37	16	24	3	0	43	1	16	8	0	25	68	105
10:45	11	1	16	0	28	5	2	1	0	8	36	11	31	4	0	46	1	18	9	0	28	74	215
TOTAL	20	3	- 35	0	50	10	4		0	15	13	21	55	/	U	09	2	- 34	17	0	55	142	215
11:00	9	1	23	0	33	5	2	0	0	7	40	21	23	3	0	47	1	15	11	0	27	74	114
11:15	6	2	32	0	40	6	3	0	0	9	49	26	22	6	0	54	0	13	3	0	16	70	119
11:30	15	0	23	0	38	8	4	1	0	13	51	34	17	7	0	58	0	7	7	0	14	72	123
11:45 TOTAL	11	0	33	0	44	9 28	3	1	0	13	5/	20	20	12	0	52 211	1	14	8	0	23	75	132
TOTAL	41	5		0	155	20	12	2	0	42	157	101	02	20	0	211	2	43	25	0	00	231	400
12:00	9	4	36	0	49	8	3	1	0	12	61	46	20	5	0	71	0	19	16	0	35	106	167
12:15	19	3	41	0	63	5	1	0	0	6	69	25	17	5	0	47	0	17	6	0	23	70	139
TOTAL	28	7	77	0	112	13	4	1	0	18	130	71	37	10	0	118	0	36	22	0	58	176	306
16:00	4	3	24	0	31	9	3	0	0	12	43	48	17	9	0	74	2	24	11	0	37	111	154
16:15	5	3	25	0	33	5	4	0	0	9	42	45	14	3	0	62	0	23	6	0	29	91	133
16:30	6	0	19	0	25	2	0	0	0	2	27	34	11	0	0	45	0	17	10	0	27	72	99
16:45	3	2	25	0	30	9	3	0	0	12	42	39	9	1	0	49	0	14	16	0	30	79	121
TOTAL	18	8	93	0	119	25	10	0	0	35	154	166	51	13	0	230	Z	78	43	0	123	353	507
17:00	5	2	36	0	43	9	12	1	0	22	65	44	12	0	0	56	0	23	11	0	34	90	155
17:15	6	1	26	0	33	9	4	0	0	13	46	40	15	5	0	60	1	23	8	0	32	92	138
17:30	7	1	33	0	41	10	3	1	0	14	55	32	19	2	0	53	0	24	8	0	32	85	140
17:45	6	1	16	0	23	1	2	1	0	4	27	20	14	2	0	36	0	17	12	0	29	65	92
TOTAL	24	5	111	0	140	29	21	3	0	53	193	136	60	g	0	205	1	87	39	0	127	332	525
Am Peak 7:30 - 8:30	96	21	157	0	274	18	6	2	0	26	300	82	139	33	0	254	3	37	14	0	54	308	608
0" D- 1			-	-		-	-		-	-		-			-	-	-	-		-	Peak Ho	ur Factor:	0.85
Off Peak 11:30 - 12:30	54	7	133	0	194	30	11	3	0	44	238	125	74	29	0	228	1	57	37	0	95	323	561
	2.	•		-				÷	÷						-		•		5.	-	Peak Ho	ur Factor:	0.84
Pm Peak 4:45 - 5:45	21	6	120	0	147	37	22	2	0	61	208	155	55	8	0	218	1	84	43	0	128	346	554
0.70		v	.20	3				-	v	51	200		50	0	2	2.0		94			Peak Ho	ur Factor:	0.89

									15 M	INUTE TU	JRNING M	OVEMENT	COUNTS	(TRUCKS	S)								
	DATE:		Augus	t 24, 2005								-				CITY:	CAPE CANA	VERAL					-
	LOCAT	ION:	CHRIST	OPHER CO	LUMBUS B	LVD & GEO	ORGE KING	BLVD				-				COUNTY	: BREVARD						_
				CHRI	STOPHER		BUS BLVD)								GEORGE	KING BLVD						
TIME		-	NORTHBO	DUND			S	OUTHBOU	IND		N/S		-	ASTBOU	ND	TOT		WE	STBOUN)		E/W	GRAND
2:00	R 0	0		PEDS	0	- К 1	0		PEDS	101	101	R 0	0		PEDS	0	R 0	0		PEDS	0	0	101AL
7:15	0	0	0	0	0	1	0	0	0	1	1	0	1	0	0	1	0	0	0	0	0	1	2
7:30	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1
7:45 TOTAL	0	0	0	0	0	2	0	0	0	2	2	0	0	0	0	0	0	2	0	0	2	2	4
TOTAL	0	0	0	0	U	4	0	0	0	4	4	0	2	0	0	2	0	2	0	0	2	4	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	2	0	0	2	4	4
8:45 TOTAI	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	2	0	0	2	6	1
TOTAL	Ū	v	Ŭ	Ŭ	v	Ū	Ū	Ŭ	Ū	v	, v	Ŭ	Ū		Ŭ	-	0	2		Ŭ		Ů	Ŭ
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
10:45	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1
TOTAL	0	0	0	0	U	0	0	0	0	U	U	0	1	0	0	1	0	1	0	0	1	2	2
11:00	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	2	0	0	2	3	4
11:15	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1
11:30	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	0	0	0	0	0	2	2
11:45 TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	2	0	0	2	4	4
TOTAL	0	0	U	0	U	1	0	0	0			0	2	4	0	0	0	4	0	0	4	10	
12:00	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	0	0	0	0	0	2	2
12:15	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1
TOTAL	0	0	0	0	0	1	0	0	0	1	1	0	2	0	0	2	0	0	0	0	0	2	3
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45 TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	U	0	U	0	0	0	0	U	U	0	0	0	0	U	0	0	0	0	U	0	U
Am Peak 7:30 - 8:30	0	0	0	0	0	2	0	0	0	2	2	0	2	0	0	2	0	2	0	0	2	4	6
0# Dr-1																					Peak Ho	ur Factor:	0.38
011 Peak 11:30 - 12:30	0	0	0	0	0	1	0	0	0	1	1	0	3	3	0	6	0	2	0	0	2	8	9
Pm Poak																					Peak Ho	ur Factor:	0.56
5:00 - 6:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 Peak Ho	0 our Factor:	0 0.00

								1	5 MINUTE	TURNING	G MOVEM	ENT COU	NTS (AUT	OS & TRU	JCKS)								
	DATE:		August	t 24, 2005								_			-	CITY:	CAPE CANA	VERAL					-
	LOCAT	ION:	CHRISTO	OPHER COL	UMBUS B	LVD & GEO	RGE KING	BLVD								COUNTY	: BREVARD						
				CHRI	STOPHER		SUS BLVD)				_			_	GEORG	E KING BLVI	D					_
TIN 45						1						1			10		1						
BEGIN	R	т	NORTHBC	PEDS	TOT	R	T		PEDS	TOT	TOT	R	<u>т</u>	ASTBOUN		TOT	R		STBOUNL	PEDS	TOT	E/W TOT	GRAND
7:00	0	0	0	0	0	3	0	0	0	3	3	0	7	4	0	11	1	5	0	0	6	17	20
7:15	0	0	0	0	0	4	0	0	0	4	4	0	14	12	0	26	0	8	0	0	8	34	38
7:30	0	0	0	0	0	3	0	0	0	3	3	0	42	19	0	61	0	13	0	0	13	74	77
7:45	0	0	0	0	0	8	0	0	0	8	8	0	53	21	0	74	0	14	0	0	14	88	96
TOTAL	0	0	0	0	U	18	0	0	0	18	18	0	116	56	0	172	1	40	0	0	41	213	231
8:00	0	0	0	0	0	4	0	0	0	4	4	0	52	8	0	60	0	11	0	0	11	71	75
8:15	0	0	0	0	0	1	0	0	0	1	1	0	36	8	0	44	0	13	0	0	13	57	58
8:30	0	0	0	0	0	3	0	0	0	3	3	0	25	5	0	30	0	19	0	0	19	49	52
8:45	0	0	0	0	0	0	0	0	0	0	0	0	18	6	0	24	0	14	0	0	14	38	38
TOTAL	0	0	0	0	U	8	0	0	0	8	8	0	131	27	0	158	0	57	0	0	57	215	223
10:30	0	0	0	0	0	6	0	0	0	6	6	0	16	7	0	23	0	18	0	0	18	41	47
10:45	0	0	0	0	0	8	0	0	0	8	8	0	20	8	0	28	1	23	0	0	24	52	60
TOTAL	0	0	0	0	0	14	0	0	0	14	14	0	36	15	0	51	1	41	0	0	42	93	107
11:00	0	0	0	0	0	8	0	0	0	8	8	0	22	4	0	26	0	19	0	0	19	45	53
11:15	0	0	0	0	0	7	0	1	0	8	8	0	25	3	0	28	0	12	0	0	12	40	48
11:30	0	0	0	0	0	3	0	0	0	3	3	0	24	8	0	32	0	13	0	0	13	45	48
11:45	0	0	0	0	0	5	0	0	0	5	5	0	22	6	0	28	0	24	0	0	24	52	57
TOTAL	0	0	0	0	0	23	0		0	24	24	0	93	21	0	114	0	00	0	0	00	102	200
12:00	0	0	0	0	0	9	0	0	0	9	9	29	0	6	0	35	0	28	0	0	28	63	72
12:15	0	0	0	0	0	3 12	0	1	0	4	4	37	0	3	0	40	1	24 52	0	0	25	05	69 141
TOTAL	0	0	0	v	v	12	Ū	1 '	U	10	10	00	Ū	5	, o	15		52	0	Ū	55	120	1.41
16:00	0	0	0	0	0	7	0	1	0	8	8	0	20	0	0	20	1	31	0	0	32	52	60
16:15	0	0	0	0	0	5	0	0	0	5	5	0	18	2	0	20	2	23	0	0	25	45	50
16:30	0	0	0	0	0	2	0	0	0	2	2	0	13	1	0	14	1	25	0	0	26	40	42
TOTAL	0	0	0	0	0	17	0	1	0	18	18	0	63	4	0	67	4	103	0	0	107	174	40
	~			. ×																			
17:00	0	0	0	0	0	4	0	0	0	4	4	0	13	5	0	18	2	30	0	0	32	50	54
17:15	0	0	0	0	0	2	0	0	0	2	2	0	13	6	0	19	0	23	0	0	23	42	44
17:30	0	0	0	0	0	5	0	0	0	5	5	0	17	7	0	24	0	24	0	0	24	48	53
TOTAL	0	0	0	0	0	4	0	0	0	4	4	0	56	24	0	80	3	98	0	0	101	181	40
TOTAL	Ŭ	Ŭ	Ŭ	Ŭ	Ů	10	Ŭ	Ŭ	Ū	10	10	Ŭ	00	27	Ŭ	00	0	00	Ű	Ŭ	101		100
Am Peak																							
7:30 - 8:30	0	0	0	0	0	16	0	0	0	16	16	0	183	56	0	239	0	51	0	0	51 Book Hor	290	306
Off Peak																					геак по	I Factor:	0.00
11:30 - 12:30	0	0	0	0	0	20	0	1	0	21	21	66	46	23	0	135	1	89	0	0	90 Peak Ho	225 ur Factor	246 0.85
Pm Peak							_	-				_			_					-			
5:00 - 6:00	0	0	0	0	0	15	0	0	0	15	15	0	56	24	0	80	3	98	0	0	101 Peak Ho	181 ur Factor:	196 0.91

									15 M	IINUTE TU	JRNING M	OVEMEN	r counts	G (TRUCKS	5)								
	DATE:		Augus	t 24, 2005								_				CITY:	CAPE CANA	VERAL					
	LOCAT	TION:	GEOERO	GE KING BI	LVD/SHOR	EWOOD DF	R & JETTY	PARK DR/	GEORGE K	ING BLVD		_				COUNTY	: BREVARD						
				GEORG	E KING B	LVD/SHO	REWOOD	DR							JETTY	PARK DR/	GEORGE KI	NG BLVD					
TIME	-		NODTUD			1					N/C	1					1						
BEGIN	R	т	INUKIND	PEDS	TOT	R	т		PEDS	TOT	TOT	R	т	LASIBUU	PEDS	тот	R	T		PEDS	TOT	TOT	TOTAL
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1
			-														-						-
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
8:45	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	1	2
TOTAL	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	1	2	3
101712	Ű	Ű	Ŭ	v	Ť	. ·	Ŭ	Ů	v			Ŭ	Ŭ	· ·	Ű		Ŭ	. ·	v	Ű	. ·	<u> </u>	, i
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			-																				-
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	2	0	1	0	0	1	3	4
11.30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
TOTAL	0	0	0	0	0	1	0	0	0	1	1	1	0	1	0	2	0	2	0	0	2	4	5
		Ţ	-	÷	÷		÷	Ţ	÷			. ·	÷				-		÷	Ţ			Ţ
12:00	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	1	2	3
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	1	0	0	1	2	3
10.00									1			-							1				
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1
											1						•					<u>, </u>	
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	2	2
Am Peak																							
7:45 - 8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	2	2	2
Off Peak																					Реак Но	ur Factor:	0.50
11:30 - 12:30	0	0	0	0	0	1	0	0	0	1	1	0	0	1	0	1	0	2	0	0	2	3	4
																					Peak Ho	ur Factor:	0.33
Pm Peak	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	0	0	0	2	2
4.15 - 4.45	U	0	U	0	U	0	U	U	U	U	U	v	U	4	U	4	U	U	0	U	Peak Ho	ur Factor:	0.50

L

								1	15 MINUTE	TURNING	MOVEM	ENT COU	NTS (AUT	OS & TRU	JCKS)								
	DATE:		Augus	st 24, 2005								_				CITY:	CAPE CANA	VERAL					_
	LOCAT	ION:	GEORG	E KING BL\	D/SHORE	NOOD DR	& JETTY P	ARK DR/G	EORGE KIN	IG BLVD		_				COUNTY	: BREVARD						_
				GEORG	E KING B	LVD/SHO	REWOOD	DR							JETTY	PARK DR	/GEORGE K	ING BLVD					
TIME	1		NODTUD			1			IND		N/C	1					T	14/6		D			
BEGIN	R	т			TOT	R	 т			TOT	TOT	R		ASTBUUI		TOT	R	T		PEDS	TOT		
7:00	0	0			0	0	0			0	0	1	3	4		8	0	1			1	9	9
7:15	Ő	0	Ő	0	0	0	0	0	Ő	Ő	0	2	1	2	õ	5	0	1	0	Ő	1	6	6
7:30	0	0	0	0	0	0	0	0	0	0	0	1	3	4	0	8	0	1	0	0	1	9	9
7:45	0	0	3	0	3	1	0	0	0	1	4	2	1	16	0	19	0	3	0	0	3	22	26
TOTAL	0	0	3	0	3	1	0	0	0	1	4	6	8	26	0	40	0	6	0	0	6	46	50
8.00	0	1	9	0	10	1	0	0	0	1	11	3	2	22		27	0	0	0	0	0	27	38
8:15	0	1	3	0	4	1	0	0	0	1	5	1/	1	22	0	13	0	1	0	0	1	44	49
8:30	0	0	1	0	1	2	0	0	0	2	3	2	0	6	0	8	0	5	0	0	5	13	16
8:45	Ő	2	2	0	4	1	0	0	Ő	1	5	1	5	9	õ	15	0	1	0	Ő	1	16	21
TOTAL	0	4	15	0	19	5	0	0	0	5	24	20	8	65	0	93	0	7	0	0	7	100	124
		—					1																
10:30	1	0	3	0	4	0	0	0	0	0	4	3	4	5	0	12	0	7	0	0	7	19	23
10:45	0	1	4	0	5	6	0	0	0	6	11	5	2	1	0	8	0	1	0	0	1	9	20
TOTAL			1	0	9	0	0	0	0	0	15	0	0	0	0	20	0	0	0	0	0	20	43
11:00	0	0	4	0	4	4	0	0	0	4	8	1	7	4	0	12	0	3	0	0	3	15	23
11:15	0	0	0	0	0	4	0	0	0	4	4	4	1	6	0	11	0	1	0	0	1	12	16
11:30	0	0	2	0	2	5	0	0	0	5	7	2	7	3	0	12	0	5	0	0	5	17	24
11:45	0	1	3	0	4	5	0	1	0	6	10	5	5	4	0	14	0	3	0	0	3	17	27
TOTAL	0	1	9	0	10	18	0	1	0	19	29	12	20	17	0	49	0	12	0	0	12	61	90
12:00		0	1		1	6	0	1	0	7	0	10	0	F		17	0	0	0	0	0	17	25
12:00	0	0	7	0	7	3	0	0	0	3	0	6	0	3	0	10	0	0	0	0	0	10	20
TOTAL	0	0	8	0	8	9	0	1	0	10	18	18	0	9	0	27	0	0	0	0	0	27	45
	Ţ		÷	÷					Ţ				Ţ	Ţ			Ţ	Ţ	Ţ	Ţ		1	
16:00	0	0	4	0	4	14	0	1	0	15	19	4	3	3	0	10	0	6	0	0	6	16	35
16:15	0	0	5	0	5	10	0	1	0	11	16	0	7	3	0	10	0	2	0	0	2	12	28
16:30	0	1	4	0	5	11	0	0	0	11	16	1	3	3	0	7	0	3	0	0	3	10	26
16:45 TOTAL	0	1	10	0	20	/	0	3	0	8	14	5	1/	10	0	34	0	3	0	0	3	10	24
TOTAL	0	<u> </u>	19	0	20	42	0	5	0	43	05	10	14	10	0	54	0	14	0	0	14	40	115
17:00	0	2	5	0	7	18	0	0	0	18	25	3	1	1	0	5	0	6	0	0	6	11	36
17:15	0	0	1	0	1	10	0	0	0	10	11	2	4	4	0	10	0	6	0	0	6	16	27
17:30	0	0	3	0	3	7	0	1	0	8	11	1	5	1	0	7	0	7	1	0	8	15	26
17:45	0	0	4	0	4	8	0	0	0	8	12	2	3	1	0	6	0	1	0	0	1	7	19
TOTAL	0	2	13	0	15	43	0	1	0	44	59	8	13	7	0	28	0	20	1	0	21	49	108
L																							
Am Peak					10	-				-													
7:45 - 8:45	0	2	16	0	18	5	0	0	0	5	23	21	4	72	0	97	U	9	0	0	9 Peak Ho	106 ur Factor	129
Off Peak																					. sun nu		0.00
11:30 - 12:30	0	1	13	0	14	19	0	2	0	21	35	25	12	16	0	53	0	8	0	0	8 Book He	61	96
Pm Peak																					Peak HC	ur Factor:	0.09
4:15 - 4:45	0	3	20	0	23	46	0	2	0	48	71	9	12	8	0	29	0	14	0	0	14 Peak Ho	43 ur Factor	114 0.79

Appendix C

HCS Worksheets – Existing Conditions

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
V - L	L	1	R			L				R
Volume	31	44	0.05			0.05	20			3
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Houriy Flow Rate, HFR	32	40	0			20	21			3
Median Tune				Deiee	dour	20				
Nedian Type		-1		Raise	a curi)	<u> </u>			0
		1	0			0	1			0
Configuration		- '	0			0	· · ·			
	L/	0					0			IK
Opstream Signal							0			
Minor Street	7	Eastbound				10	Westbour	nd		10
wovernent		<u>о</u> Т	9 R			10	<u>і іі</u> Т			R
Volume	4	· · · · ·	16			<u> </u>	· ·			IX.
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	4	0	16			0	0			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0	2		
Flared Approach		N	ļ				N			
Storage		0					0			
RT Channelized			0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	32							20		
C (m) (vph)	1584		ļ					971	1	
v/c	0.02							0.0	2	
95% queue length	0.06							0.0	6	
Control Delay	7.3							8.8	}	
LOS	А							A		
Approach Delay								8.8		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:48 AM

							SHOF		OR	T								
General Inform	nation							Site	e Inf	ormatio	on							
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A /2005 Peak	5				Inte Area Juris Ana	rsec a Ty sdic Ilysi:	ction /pe ction s Year			SR 4 All Pc 200	01 @ G other a ort Auth 05 - Exi	rouper reas ority sting			
Volume and T	iming Input																	
			- 1	EB		_		WE	3				NB			_	SB	
Num of Lanes			1	2		.1	1	2	1				0			+	0 0	
Lane Group				<u>_</u> Т	+	_	Ļ	 Τ	_	-				R		+	0	
Volume (vph)		İ		1456	5		3	55			50		1	0	1	╈		
% Heavy veh		2		2	2		2	2		2	2		2	2	2	Ť	2	2
PHF		0.9	5	0.95	; 0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0.95		0.95	0.95
Actuated (P/A)		Í		Α			Α	A		Í	A			A	1			
Startup lost tim	e			2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Ext. eff. green				2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Arrival type				3			3	3			3		3	3			3	
Unit Extension				3.0			3.0	3.0			3.0)	3.0	3.0			3.0	
Ped/Bike/RTO	R Volume	0		0	0		0	0		0	0		0	0	0		0	0
Lane Width				12.0	<u>, </u>		12.0	12.0	0		12.	0	12.0	12.0	<u> </u>		12.0	
Parking/Grade/	Parking	N		0	N	'	N	0		N	N		0	N	N	_	0	N
Parking/hr		┝								ļ						_		<u> </u>
Bus stops/hr		┢		0	_	_	0	0			0	<u> </u>	0	0		_	0	
Unit Extension	EW/ Porm			3.0			3.0	3.0				, 	3.0	3.0	07		3.0	08
Timing	G = 50.0) =	/2		03 G =		G =	:		G = 15	5.0	Ģ	00 ∋ =	G	=		G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		`	Y =		Y =	:		Y = 5		Y	' =	Y Th C =	= 75.0		Y =	
	Capacity. Cont	rol D	elav	/. an	d LOS	Det	ermir	nation						gui 0 =	70.0			
				,	EB					WB				NB				SB
Adj. flow rate					1533	Τ		3		58			53	0	0			0
Lane group cap).				2365	┢		145	2	365			354		317			
v/c ratio					0.65	Τ		0.02	C).02			0.15		0.00			
Green ratio					0.67	T		0.67	C).67			0.20	0.00	0.20	Ĩ		0.00
Unif. delay d ₁					7.3	Γ		4.2		4.2			24.7		24.0			
Delay factor k				ĺ	0.23			0.11	C).11			0.11		0.11			
Increm. delay c	l ₂				0.6			0.1		0.0			0.2		0.0			
PF factor					1.000			1.000	1	1.000			1.000		1.000)		
Control delay					8.0			4.3		4.2			24.9		24.0			
Lane group LO				Α			А		A			С		С				
Apprch. delay					8.0					4.2				24.9				
Approach LOS					A					Α				С				
Intersec. delay					8.4						Inters	sect	tion LOS			T		A

HCS+™ Version 5.1

Generated: 12/8/2005 9:32 AM

							SHOF	RT REP	ORT	Г							
Analyst Agency or Co. Date Performed Time Period	i	S.(G8 11/28/ AM F	C. A 2003 Peak	5				Inter Area Juris Ana	Info rsect a Typ sdicti lysis	tion be ion Year	<u>on</u>		SR 401 8 All Pc 20	& Charles other ar ort Autho 005 Exist	s Rowland eas rity ing	1	
Volume and Ti	ming Input	ĩ					<u>.</u>				_				1		
			- 1	EB TH		27		WE TH	3	RT	-	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	1	2		0	2		0	1	0	0	0
Lane Group			╡	Т	-	7	L	Т			L			R	1	1	
Volume (vph)			╡	1530	, ,	5	3	77			1			1		<u> </u>	
% Heavy veh		2	╡	2		2	2	2		2	2		2	2	2	2	2
PHF		0.95	5	0.95	0.	95	0.95	0.95		0.95	0.9	95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		٩	Α	Α			A			A			
Startup lost time	9			2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Ext. eff. green				2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Arrival type				3		3	3	3			3	2	3	3		3	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Ped/Bike/RTOR	R Volume	0		0)	0	0		0	C)	0	0	0	0	0
Lane Width				12.0) 12	2.0	12.0	12.0	2		12	.0	12.0	12.0		12.0	
Parking/Grade/I	Parking	N		0	/	V	N	0		Ν	Λ	1	0	N	N	0	N
Parking/hr																	
Bus stops/hr				0		0	0	0			()	0	0		0	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	EW Perm	0	2		0:	3		04		NB C	Only		06	6	07	G -	08
Timing	$Y = 5 \qquad Y$	/ =			Y =		Y =	-		Y = 5	.0		/ =	Y =	-	Y =	
Duration of Ana	llysis (hrs) = 0.25												Cycle Len	gth C =	80.0		
Lane Group	Capacity, Cont	rol D	elay	y, an	d LOS	Det	termir	nation								<u> </u>	
					EB				<u> </u>	WB				NB		<u> </u>	SB
Adj. flow rate				_	1611	┶	5	3	8	31			1	0	1		0
Lane group cap).				2439	10	088	137	24	139			644		297		
v/c ratio					0.66	0.	.00	0.02	0.	03			0.00		0.00		
Green ratio					0.69	0.	.69	0.69	0.	69			0.19	0.00	0.19		0.00
Unif. delay d ₁					7.2	3	3.9	4.0	4	.0			26.4		26.4		
Delay factor k					0.24	0.	.11	0.11	0.	11			0.11		0.11		
Increm. delay d	2	ĺ		ĺ	0.7		0.0	0.1	0	0.0			0.0		0.0		
PF factor					1.000	1.	.000	1.000	1.	000			1.000		1.000	Í	
Control delay					7.8		3.9	4.0	4	4.0			26.4		26.4		
Lane group LOS				A		A	А	/	A			С		С			
Apprch. delay	Apprch. delay								4	4.0				26.4		1	
Approach LOS	Ť			Α					A				С		1		
Intersec. delay					7.6						Inter	sec	tion LOS				А

HCS+™ Version 5.1

Generated: 12/8/2005 9:25 AM

							SHO	₹Т	REPC	DRT								
General Inforr	mation								Site I	nfor	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200 Peak	5					Inters Area Juriso Analy	sectio Type dictio vsis Y	on e on rear			George All Po 200	King @ . other are ort Author 05 - Exist	Atlantic eas ity ing		
Volume and T	iming Input								<u> </u>									
			-	EE	3	БТ			WB		DT			NB	DT		SB	
Num of Lanes			.1	1	1					+	1		┽	1		1 LI	1	
		<u> </u>	_		,	0	<i>'</i>		, τ	+	, P		┽	, 1 T	, P	,		
			3	130		82	14	┥	37	-	3	157	┽	21	96	2	6	18
% Heavy veh		2	,	2	, 	2	2	┥	2	-	2	2	┥	2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95		0.95	0).95	0.95	╉	- 0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		A		A	_	Α	A		Α	1	A	A	╈	A	Α	Α	A	Α
Startup lost tim	ie	2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Arrival type		3	;	3			3	T	3	Ť	3		Ť	3	3	3	3	
Unit Extension	rtup lost time . eff. green val type t Extension d/Bike/RTOR Volume ne Width king/Grade/Parking king/hr s stops/hr)		3.0	ĺ	3.0	1	3.0		Ĩ	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	t Extension d/Bike/RTOR Volume ne Width					0	0		0	T	0	0	Ĩ	0	0	0	0	0
Lane Width		12	2.0	12.	0		12.0)	12.0	1	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	/Parking	Ν	I	0		N	Ν		0		Ν	N		0	Ν	N	0	Ν
Parking/hr																		
Bus stops/hr		C)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	;	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	0)4	6	NS Pe	erm	G	06	G	07	())8
Timing	Y = 5	Y = 5	; ;		Y =		Y =	-		Y	= 5	<u> </u>	Y =	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	.OS De	etermi	nati	ion				-				1	
			<u> </u>		E	EB		Ļ		W	/B				NB		<u> </u>	SB
Adj. flow rate			35		23	2		1	15	39	<u>'</u>	3			187	101	2	25
Lane group ca	р.		803	3	107	75		5	08	828	8	704			379	440	298	458
v/c ratio			0.04	4	0.2	22		0.	.03	0.0	5	0.00			0.49	0.23	0.01	0.05
Green ratio			0.6	1	0.6	61		0.	.44	0.44	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		7.	8		14	4.1	14.2	2	13.9			27.2	25.1	23.5	23.8
Delay factor k			0.1	1	0.1	11		0.	.11	0.1	1	0.11			0.11	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.1		(0.0	0.0	0	0.0			1.0	0.3	0.0	0.0
PF factor		1.0	00	1.0	000		1.	.000	1.00	00	1.000			1.000	1.000	1.000	1.000	
Control delay		7.	1	7.	.9		1	4.1	14.	.2	13.9			28.2	25.3	23.5	23.9	
Lane group LO		A		A				В	В		В			С	С	С	С	
Apprch. delay				7.	.8				14.	.2				27.2			23.9	
Approach LOS				/	4				В	3				С		<u> </u>	С	
Intersec. delay			1		17	7.8						Interse	ctio	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:33 AM

		TWO-WAY STO	P CONTRO		IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T (00	R			L	T			R
Volume	56	183				0.05	51			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	58	192	0			0	53			0
Percent Heavy Vehicles	0					25				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume	0.05	0.05	0.05			0	0.05			16
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			0	0			16
Percent Reavy vehicles	0	0	2			0	10			12
Flared Approach		0 N	1				N			
Storage		0					0			
RT Channelized			0				0			0
	0	0	0			1	0			1
			0			1	0			P
	<u> </u>		ļ			L				Λ
Delay, Queue Length, and	Level of Service	M/a ath a un al	r	N la utla la l						
Approach	Easibound	vvesibound	7		buna	0	10		una	10
	1	4	/	0		9	10			12
	L		 			ļ	L			R
v (vph)	58		ļ				0			16
C (m) (vph)	1566		ļ				638			987
v/c	0.04		ļ				0.00			0.02
95% queue length	0.12		ļ				0.00			0.05
Control Delay	7.4		ļ				10.6			8.7
LOS	А						В			А
Approach Delay							ļ	8.7		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 9:35 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	1		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound]			Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	168	314	ļ				186			26
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	176	330	0			0	195			27
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl	6				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11	\rightarrow		12
Valuma			R			L	<u> </u>			R
Volume Peak-Hour Factor, PHF	0.95	0.95	0.95			9	0.95			70 195
Hourly Flow Rate, HFR	0.55	0.00	0.00			0.00	0.00			82
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0					0			
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		1	0							0
Lanes	0	0	0	- í		1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L						L			R
v (vph)	176						9			82
C (m) (vph)	1344						389			807
v/c	0.13						0.02			0.10
95% queue length	0.45						0.07			0.34
Control Delay	8.1						14.5			10.0
LOS	А						В			А
Approach Delay								10.4	4	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 9:36 AM

							SH	OR'	T REPO	DR'	т								
General Inform	al Information t SC / or Co. G&A										ormatio	n							
Analyst Agency or Co. Date Performed Time Period	d	G 11/29 AM	SC &A 9/2005 Peak	5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George I All Po 205	King othe ort Au 55 - E	@ F r are ithori Existi	lounder as ity ng		
Volume and T	iming Input																		
			- 1	E	3		\square		WB				_	NB				SB	
Num of Longo			-1	1			+			_			1	IH 1		< I		IH 1	
				т Т	_		╋	1		_						,	0		0
				249	,	22	+	L 0	227	_	10	7		2	2	,	7		12
		20		040	, 	0	╋	0	237	_	19	/		2	2)	/	0	12
		0.0	, 25	0	5	0 95		0	0.95	_	0 95	0	5	0.95	0	, 25	0.95	0 95	0 95
Δ ctuated (P/ Δ)		0.3	, ,	Δ	_	0.95 A	+	Δ	0.90	_	Δ	0.9		Δ	0.8	, ,	Δ	Δ	Δ
Startun lost tim	P	2	0	20	,	2.0		20	20	_	20			20				20	
		2.	0	2.0	,	2.0		2.0	2.0	_	2.0	┼─		2.0				2.0	
Arrival type			2	.3		.3	+	.3	3	_	.3	┢		3	┢			.3	
Unit Extension		3.	0	3.0	,	3.0		3.0	3.0	-	3.0	-		3.0				3.0	
Ped/Bike/RTO	R Volume	0)	0		0	+	0	0	-	0	0		0	0)	0	0	0
Lane Width		12	2.0	12.	0	12.0	1	12.0	12.0	_	12.0			12.0				12.0	
Parking/Grade/	/Bike/RTOR Volume e Width king/Grade/Parking			0		Ν	╈	Ν	0		N	N		0	Λ	/	N	0	N
Parking/hr	ral type Extension /Bike/RTOR Volume e Width cing/Grade/Parking cing/hr stops/hr Extension				Ī		╈					\square							
Bus stops/hr		()	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0	,	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm	(02		_	03		_	04	Ţ	NS Pe	erm		06		~	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		,	G = Y =		÷	G = 25. Y = 5	0	G Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	?5											C	ycle Leng	th C	= 9	90.0	ļ.	
Lane Group	Capacity, Co	ntrol [Delay	, an	d L	OS D	eterr	nina	ation										
					E	В					WB				N	В			SB
Adj. flow rate			21		366	6	35		8	2	49	20			11				21
Lane group cap	э.		694		116	1	987		585	11	161	987			467	7			459
v/c ratio			0.03	}	0.3	2	0.04		0.01	0.	.21	0.02			0.02	2			0.05
Green ratio			0.61		0.6	1	0.61		0.61	0.	.61	0.61			0.28	3			0.28
Unif. delay d ₁			6.9		8.4	4	7.0		6.9	7	7.8	6.9			23.6	6			23.8
Delay factor k			0.11	'	0.1	1	0.11		0.11	0.	.11	0.11			0.11	1			0.11
Increm. delay c	J ₂		0.0)	0.	2	0.0	Ĩ	0.0	(0.1	0.0	T		0.0)			0.0
PF factor	crem. delay d ₂ F factor			00	1.0	00	1.000)	1.000	1.	.000	1.000			1.00	00			1.000
Control delay	ontrol delay)	8.	6	7.0		6.9		7.9	6.9			23.	6			23.8
Lane group LO	ine group LOS				Α		A		Α		A	A			С				С
Apprch. delay				8.	4				1	7.8				23.	6			23.8	
Approach LOS				A						A				С				С	
Intersec. delay					8.	8		Ť				Inters	ecti	on LOS				Í	А

HCS+™ Version 5.1

Generated: 12/8/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
Volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	16	2	0		0	0.05		0.05
	0.95	0.95	0.95		0.95	0.95		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2	ļ –			0	ļ	_
Flared Approach		N	1			N	1	
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR	1	LTR	1	L		R
v (vph)	75	0	1	18	1	0		6
C (m) (vph)	1611	1588	1	712	1	721		1073
v/c	0.05	0.00	İ	0.03		0.00		0.01
95% queue length	0.15	0.00	1	0.08	1	0.00		0.02
Control Delay	7.3	7.3	Ì	10.2	1	10.0		8.4
LOS	А	А	1	В	1	A		A
Approach Delay			1	10.2	5	<u> </u>	8.4	
Approach LOS				В			Α	

HCS+™ Version 5.1

Generated: 12/8/2005 9:44 AM

		TWO-WAY STO	P CONTRO	L SUMI	MAF	RY					
General Information			Site Inf	ormatio	on						
Analyst M Tobin			Intersed	Intersection			GKB @ Marlin				
Agency/Co.	GA	Jurisdic	Jurisdiction				Port Canaveral				
Date Performed	11/21/2005	Analysi	Analysis Year				2005				
Analysis Time Period	AM		<u></u>								
Project Description			<u> </u>								
East/West Street: George King Blvd			North/So	North/South Street: Marlin Street							
Intersection Orientation. E	asi-wesi		Sludy P	enoa (nr	s): (0.25					
Vehicle Volumes and A	djustments	E a ath a sea d						1			
Major Street	1	Eastbound			Δ			na I	6		
wovernent		2	<u>з</u>			4	о Т		0 D		
Volume	91	258	8			11	201		11		
Peak-Hour Factor. PHF	0.95	0.95	0.95	î		0.95	0.95		0.95		
Hourly Flow Rate, HFR	95	271	8	— î		11	211		11		
Percent Heavy Vehicles	2					2	+ +				
Median Type	Raised curb										
RT Channelized			0						0		
Lanes	1	1	1	ļ		1	1		1		
Configuration	L	Т	R			L	Т		R		
Upstream Signal		0	Í				0				
Minor Street		Northbound				Southbound		nd			
Movement	7	8	9			10			12		
Volumo		1	10 R			L	2				
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95		
Hourly Flow Rate, HFR	1	4	10			0	3		25		
Percent Heavy Vehicles	25	1	14		5		2		35		
Percent Grade (%)	1 I	0	·				0				
Flared Approach	1	N					N				
Storage	1	0	1				0				
RT Channelized			0				ĺ		0		
Lanes	0	1	0	0		0	1		0		
Configuration		LTR		Í			LTR				
Delay, Queue Length, and	Level of Service		,								
Approach	Eastbound	Westbound		Northbo	ound		5	Southbound	bound		
Movement	1	4	7	8		9	10	11	12		
Lane Configuration	L	L		LTR	LTR			LTR			
v (vph)	95	11		15				28			
C (m) (vph)	1347	1284		577				692			
v/c	0.07	0.01	ļ	0.03				0.04			
95% queue length	0.23	0.03		0.08				0.13	ļ		
Control Delay	7.9	7.8		11.4				10.4	ļ		
LOS	А	A		В				В			
Approach Delay			11.4				10.4				
Approach LOS			В			В					

HCS+™ Version 5.1

Generated: 12/8/2005 9:46 AM

		TWO-WAY STO	P CONTRO	L SUM	MAF	RY						
General Information			Site Inf	ormati	ion							
Analyst	M Tobin		Intersed	Intersection			Mullett Rd @ Dave Nisbet Drive					
Agency/Co.	GA	Jurisdic	Jurisdiction				Port Canaveral					
Date Performed	11/21/2005	11/21/2005			Analysis Year				2005			
Analysis Time Period	AM	AM										
Project Description			í.									
East/West Street: Mullet Road			North/So	North/South Street: Dave Nisbet Drive								
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25						
Vehicle Volumes and A	djustments											
Major Street		Northbound					Southbound					
Movement	1	2	3			4	5			6		
V - L	L		R			L				R		
Volume	87	74	0.05			0.05	40		<u> </u>			
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95 0.95		0.90		0.95		
Houriy Flow Rate, HFR	91		0			20	42			3		
	2					20	<u> </u>					
Median Type		Two Way Left Turn Lane										
RT Channelized				0					0			
Lanes	1	1	0			0	1		0			
Configuration	L	Т							TR			
Upstream Signal		0					0					
Minor Street		Eastbound				Westbound						
Movement	7	8	9			10			12			
Volumo	L		F2			L				ĸ		
Peak-Hour Factor PHF	0.95	0.95	0.95		0.95		0.95		0.95			
Hourly Flow Rate, HFR	4	0	55			0	0		0			
Percent Heavy Vehicles	3	0	0 2		0		0		0			
Percent Grade (%)	1	0					0					
Flared Approach		N					N					
Storage		0		Ĩ			0					
RT Channelized			0						0			
Lanes	0	0	0		0		0	0		0		
Configuration		LR										
Delay, Queue Length, and	Level of Service											
Approach	Northbound	Southbound		Westb			Eastb		ound			
Movement	1	4	7	8		9	10	11	1	12		
Lane Configuration	L		Í					LF	2			
v (vph)	91		Í					59				
C (m) (vph)	1563			i				988				
v/c	0.06		ĺ					0.06				
95% queue length	0.19							0.1	9			
Control Delay	7.4		ĺ					8.9	9			
LOS	А							A				
Approach Delay							8.9					
Approach LOS								Α				

HCS+™ Version 5.1

Generated: 12/8/2005 9:47 AM
		TWO-WAY STO	P CONTRO		ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		Mullett Rd	@ Scallop D)r
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street	Scallop Driv	/e		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	n.			Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cl	ırb			
RT Channelized		_	0			ļ		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0	,			0	,	
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
V a luna a	L		R					R
Volume Peak-Hour Factor, PHF	0.95	2 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 95	0.95		0 0 05
Hourly Flow Rate, HFR	16	2	0.00		0	0.00		5
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2				0	ļ.	
Flared Approach		N				N		
Storage		0		Í		0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	75	0		18		0		5
C (m) (vph)	1611	1588		712		721		1073
v/c	0.05	0.00	1	0.03		0.00		0.00
95% queue length	0.15	0.00		0.08		0.00		0.01
Control Delay	7.3	7.3	1	10.2		10.0		8.4
LOS	А	А		В		А		A
Approach Delay			1	10.2		1	8.4	
Approach LOS				В			А	

HCS+™ Version 5.1

Generated: 12/8/2005 9:37 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
V - L	L	1	R			L				R
Volume	31	44	0.05			0.05	20			3
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Houriy Flow Rate, HFR	32	40	0			20	21			3
Median Tune				Deiee	dour	20				
Nedian Type		1		Raise	a curi)	<u> </u>			0
		1	0			0	1			0
Configuration		- '	0			0	· · ·			
	L/	0					0			IK
Opstream Signal							0			
Minor Street	7	Eastbound				10	Westbour	nd		10
wovernent		<u>о</u> Т	9 R			10	<u>і іі</u> Т			R
Volume	4	· · · · ·	16			<u> </u>	· ·			IX.
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	4	0	16			0	0			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0	2		
Flared Approach		N	ļ				N			
Storage		0					0			
RT Channelized			0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	32							20		
C (m) (vph)	1584		ļ					971	1	
v/c	0.02							0.0	2	
95% queue length	0.06							0.0	6	
Control Delay	7.3							8.8	}	
LOS	А							A		
Approach Delay								8.8		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:48 AM

							SHOF		OR	T								
General Inform	nation							Site	e Inf	ormatio	on							
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A /2005 Peak	5				Inte Area Juris Ana	rsec a Ty sdic Ilysi:	ction /pe ction s Year			SR 4 All Pc 200	01 @ G other a ort Auth 05 - Exi	rouper reas ority sting			
Volume and T	iming Input																	
			- 1	EB		_		WE	3				NB			_	SB	
Num of Lanes			1	2		.1	1	2	1				0			+	0 0	
Lane Group				<u>_</u> Т	+	_	Ļ	 Τ	_	-				R		+	0	
Volume (vph)		İ		1456	5		3	55	_		50		1	0	1	╈		
% Heavy veh		2		2	2		2	2		2	2		2	2	2	Ť	2	2
PHF		0.9	5	0.95	; 0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0.95		0.95	0.95
Actuated (P/A)		Í		Α			Α	A		Í	A			A	1			
Startup lost tim	e			2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Ext. eff. green				2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Arrival type				3			3	3			3		3	3			3	
Unit Extension				3.0			3.0	3.0			3.0)	3.0	3.0			3.0	
Ped/Bike/RTO	R Volume	0		0	0		0	0		0	0		0	0	0		0	0
Lane Width	ane Width arking/Grade/Parking			12.0	,		12.0	12.0	0		12.	0	12.0	12.0	<u> </u>		12.0	
Parking/Grade/	king/Grade/Parking			0	N	'	N	0		N	N		0	N	N	_	0	N
Parking/hr		┝								ļ						_		<u> </u>
Bus stops/hr		┢		0		_	0	0			0	<u> </u>	0	0		_	0	
Unit Extension	EW/ Porm			3.0			3.0	3.0				, 	3.0	3.0	07		3.0	08
Timing	G = 50.0) =	/2		03 G =		G =	:		G = 15	5.0	Ģ	00 ∋ =	G	=		G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		`	Y =		Y =	:		Y = 5		Y	' =	Y Th C =	= 75.0		Y =	
	Capacity. Cont	rol D	elav	/. an	d LOS	Det	ermir	nation						gui 0 =	70.0			
				,	EB					WB				NB				SB
Adj. flow rate					1533	Τ		3		58			53	0	0			0
Lane group cap).				2365	┢		145	2	365			354		317			
v/c ratio					0.65	Τ		0.02	C).02			0.15		0.00			
Green ratio					0.67	T		0.67	C).67			0.20	0.00	0.20	Ĩ		0.00
Unif. delay d ₁					7.3	Γ		4.2		4.2			24.7		24.0			
Delay factor k				ĺ	0.23			0.11	C).11			0.11		0.11			
Increm. delay c	l ₂				0.6			0.1		0.0			0.2		0.0			
PF factor	² F factor				1.000			1.000	1	1.000			1.000		1.000)		
Control delay	Control delay				8.0			4.3		4.2			24.9		24.0			
Lane group LO	Lane group LOS				Α			Α		A			С		С			
Apprch. delay	.pprch. delay 8			8.0					4.2				24.9					
Approach LOS					A					Α				С				
Intersec. delay					8.4						Inters	sect	tion LOS			T		A

HCS+™ Version 5.1

Generated: 12/8/2005 9:32 AM

							SHOF	RT REP	ORT	Г							
Analyst Agency or Co. Date Performed Time Period	i	S.(G8 11/28/ AM F	C. A 2003 Peak	5				Inter Area Juris Ana	Info rsect a Typ sdicti lysis	tion be ion Year	<u>on</u>		SR 401 8 All Pc 20	& Charles other ar ort Autho 005 Exist	s Rowland eas rity ing	1	
Volume and Ti	ming Input	ĩ					<u>.</u>				_				1		
			- 1	EB TH		27		WE TH	3	RT	-	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	1	2		0	2		0	1	0	0	0
Lane Group			╡	Т	-	7	L	Т			L			R	1	1	
Volume (vph)			╡	1530	, ,	5	3	77			1			1		<u> </u>	
% Heavy veh		2	╡	2		2	2	2		2	2		2	2	2	2	2
PHF		0.95	5	0.95	0.	95	0.95	0.95		0.95	0.9	95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		٩	Α	Α			A			A			
Startup lost time	9			2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Ext. eff. green				2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Arrival type				3		3	3	3			3	2	3	3		3	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Ped/Bike/RTOR	R Volume	0		0)	0	0		0	C)	0	0	0	0	0
Lane Width	ane Width			12.0) 12	2.0	12.0	12.0	2		12	.0	12.0	12.0		12.0	
Parking/Grade/I	arking/Grade/Parking			0	/	V	N	0		Ν	Λ	1	0	N	N	0	N
Parking/hr	rking/Grade/Parking																
Bus stops/hr				0		0	0	0			()	0	0		0	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	EW Perm	0	2		0:	3		04		NB C	Only		06	6	07	G -	08
Timing	$Y = 5 \qquad Y$	/ =			Y =		Y =	-		Y = 5	.0		/ =	Y =	-	Y =	
Duration of Ana	llysis (hrs) = 0.25												Cycle Len	gth C =	80.0		
Lane Group	Capacity, Cont	rol D	elay	y, an	d LOS	Det	termir	nation								<u> </u>	
					EB				<u> </u>	WB				NB		<u> </u>	SB
Adj. flow rate				_	1611	┶	5	3	8	31			1	0	1		0
Lane group cap).				2439	10	088	137	24	139			644		297		
v/c ratio					0.66	0.	.00	0.02	0.	03			0.00		0.00		
Green ratio					0.69	0.	.69	0.69	0.	69			0.19	0.00	0.19		0.00
Unif. delay d ₁					7.2	3	3.9	4.0	4	.0			26.4		26.4		
Delay factor k					0.24	0.	.11	0.11	0.	11			0.11		0.11		
Increm. delay d	2	ĺ		ĺ	0.7		0.0	0.1	0	0.0			0.0		0.0		
PF factor	PF factor				1.000	1.	.000	1.000	1.	000			1.000		1.000	Í	
Control delay	Control delay				7.8		3.9	4.0	4	4.0			26.4		26.4		
Lane group LOS	Lane group LOS				A		A	А	/	A			С		С		
Apprch. delay	Apprch. delay				7.8				4	4.0				26.4		1	
Approach LOS		Ī			Α					A				С		1	
Intersec. delay					7.6						Inter	sec	tion LOS				А

HCS+™ Version 5.1

Generated: 12/8/2005 9:25 AM

	Si								REPC	DRT								
General Inforr	mation								Site I	nfor	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200 Peak	5					Inters Area Juriso Analy	sectio Type dictio vsis Y	on e on rear			George All Po 200	King @ . other are ort Author 05 - Exist	Atlantic eas ity ing		
Volume and T	iming Input								<u> </u>									
			-	EE	3	БТ			WB		DT			NB	DT		SB	
Num of Lanes			.1	1	1					+	1		┽	1		1 LI	1	
		<u> </u>	_		,		<i>'</i>		, τ	+	, P		┽	, 1 T	, P	,		
			3	130		82	14	┥	37	-	3	157	┽	21	96	2	6	18
% Heavy veh		2	,	2	, 	2	2	┥	2	_	2	2	┥	2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95		0.95	0).95	0.95	╉	- 0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		A		A	_	Α	A		Α	1	A	A	╈	A	Α	Α	A	Α
Startup lost tim	ie	2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Arrival type		3	;	3			3	T	3	Ť	3		Ť	3	3	3	3	
Unit Extension		3.	0	3.0)		3.0	ĺ	3.0	1	3.0		Ĩ	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	R Volume	0)	0		0	0		0	T	0	0	Ĩ	0	0	0	0	0
Lane Width	ane Width		2.0	12.	0		12.0)	12.0	1	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	rking/Grade/Parking		I	0		N	Ν		0		Ν	N		0	Ν	N	0	Ν
Parking/hr																		
Bus stops/hr		C)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	;	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	0)4	6	NS Pe	erm	G	06	G	07	())8
Timing	Y = 5	Y = 5	; ;		Y =		Y =	-		Y	= 5	<u> </u>	Y =	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	.OS De	etermi	nati	ion				-				1	
			<u> </u>		6	EB		Ļ		W	/B				NB		<u> </u>	SB
Adj. flow rate			35		23	2		1	15	39	<u>'</u>	3			187	101	2	25
Lane group ca	р.		803	3	107	75		5	08	828	8	704			379	440	298	458
v/c ratio			0.04	4	0.2	22		0.	.03	0.0	5	0.00			0.49	0.23	0.01	0.05
Green ratio			0.6	1	0.6	61		0.	.44	0.44	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		7.	8		14	4.1	14.2	2	13.9			27.2	25.1	23.5	23.8
Delay factor k			0.1	1	0.1	11		0.	.11	0.1	1	0.11			0.11	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.1		(0.0	0.0	0	0.0			1.0	0.3	0.0	0.0
PF factor			1.0	00	1.0	000		1.	.000	1.00	00	1.000			1.000	1.000	1.000	1.000
Control delay			7.	1	7.	.9		1	4.1	14.	.2	13.9			28.2	25.3	23.5	23.9
Lane group LO	S		Α		A				В	В		В			С	С	С	С
Apprch. delay					7.	.8				14.	.2				27.2			23.9
Approach LOS					/	4				В	3				С		<u> </u>	С
Intersec. delay			1		17	7.8						Interse	ctio	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:33 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T (00	R			L	T			R
Volume	56	183				0.05	51			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	58	192	0			0	53			0
Percent Heavy Vehicles	0					25				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume	0.05	0.05	0.05			0	0.05			16
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			0	0			16
Percent Reavy vehicles	0	0	2			0	10			12
Flared Approach		0 N	1				N			
Storage		0					0			
RT Channelized			0				0			0
	0	0	0			1	0			1
			0			1	0			P
	<u> </u>		ļ			L				Λ
Delay, Queue Length, and	Level of Service	M/a ath a un al	r	N la utla la l						
Approach	Easibound	vvesibound	7		buna	0	10		una	10
	1	4	/	0		9	10			12
	L		 			ļ	L			R
v (vph)	58		ļ				0			16
C (m) (vph)	1566		ļ				638			987
v/c	0.04		ļ				0.00			0.02
95% queue length	0.12		ļ				0.00			0.05
Control Delay	7.4		ļ				10.6			8.7
LOS	А						В			А
Approach Delay							ļ	8.7		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 9:35 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	1		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound]			Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	168	314	ļ				186			26
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	176	330	0			0	195			27
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl	6				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11	\rightarrow		12
Valuma			R			L	<u> </u>			R
Volume Peak-Hour Factor, PHF	0.95	0.95	0.95			9	0.95			70 195
Hourly Flow Rate, HFR	0.55	0.00	0.00			0.00	0.00			82
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0					0			
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		1	0							0
Lanes	0	0	0	- í		1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L						L			R
v (vph)	176						9			82
C (m) (vph)	1344						389			807
v/c	0.13						0.02			0.10
95% queue length	0.45						0.07			0.34
Control Delay	8.1						14.5			10.0
LOS	А						В			А
Approach Delay								10.4	4	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 9:36 AM

	SHO								T REPO	DR'	т								
General Inform	nation								Site	nfo	ormatio	n							
Analyst Agency or Co. Date Performed Time Period	d	G 11/29 AM	SC &A 9/2005 Peak	5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George I All Po 205	King othe ort Au 55 - E	@ F r are ithori Existi	lounder as ity ng		
Volume and T	iming Input																		
			- 1	E	3		\square		WB				_	NB				SB	
Num of Longo			-1	1			+			_			1	IH 1		< I		IH 1	
			_	т Т	_		╋	1		_						,	0		0
				249	,	22	+	L 0	227	_	10	7		2	2	,	7		12
		20		040	, 	0	╋	0	237	_	19	/		2	2)	/	0	12
		0.0	, 25	0	5	0 95		0	0.95	_	0 95	0	5	0.95	0	, 25	0.95	0 95	0 95
Δ ctuated (P/ Δ)		0.3	, ,	Δ	_	0.95 A	+	Δ	0.90	_	Δ	0.9		Δ	0.8	, ,	Δ	Δ	Δ
Startun lost tim	P	2	0	20	,	2.0		20	20	_	20			20				20	
		2.	0	2.0	,	2.0		2.0	2.0	_	2.0	┼─		2.0				2.0	
Arrival type			2	.3		.3	+	.3	3	_	.3	┢		3	┢			.3	
Unit Extension		3.	0	3.0	,	3.0		3.0	3.0	-	3.0	-		3.0				3.0	
Ped/Bike/RTO	d/Bike/RTOR Volume)	0		0	+	0	0	-	0	0		0	0)	0	0	0
Lane Width	ine Width		2.0	12.	0	12.0	1	12.0	12.0	_	12.0			12.0				12.0	
Parking/Grade/	ane Width arking/Grade/Parking		/	0		Ν	╈	Ν	0		N	N		0	Λ	/	N	0	N
Parking/hr					Ī		╈					\square							
Bus stops/hr		()	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0	,	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm	(02		_	03		_	04	Ţ	NS Pe	erm		06		~	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		,	G = Y =		÷	G = 25. Y = 5	0	G Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	?5											C	ycle Leng	th C	= 9	90.0	ļ.	
Lane Group	Capacity, Co	ntrol [Delay	, an	d L	OS D	eterr	nina	ation										
					E	В					WB				N	В			SB
Adj. flow rate			21		366	6	35		8	2	49	20			11				21
Lane group cap	э.		694		116	1	987		585	11	161	987			467	7			459
v/c ratio			0.03	}	0.3	2	0.04		0.01	0.	.21	0.02			0.02	2			0.05
Green ratio			0.61		0.6	1	0.61		0.61	0.	.61	0.61			0.28	3			0.28
Unif. delay d ₁			6.9		8.4	4	7.0		6.9	7	7.8	6.9			23.6	6			23.8
Delay factor k			0.11	'	0.1	1	0.11		0.11	0.	.11	0.11			0.11	1			0.11
Increm. delay c	J ₂		0.0)	0.	2	0.0	Ĩ	0.0	(0.1	0.0	T		0.0)			0.0
PF factor			1.00	00	1.0	00	1.000)	1.000	1.	.000	1.000			1.00	00			1.000
Control delay	Control delay		7.0)	8.	6	7.0		6.9		7.9	6.9			23.	6			23.8
Lane group LO	S		A		Α		A		Α		A	A			С				С
Apprch. delay					8.	4				1	7.8				23.	6			23.8
Approach LOS					A						A				С				С
Intersec. delay					8.	8		Ť				Inters	ecti	on LOS				Í	A

HCS+™ Version 5.1

Generated: 12/8/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
Volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	16	2	0		0	0.05		0.05
	0.95	0.95	0.95		0.95	0.95		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2	ļ –			0	ļ	_
Flared Approach		N	1			N	1	
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR	1	LTR	1	L		R
v (vph)	75	0	1	18	1	0		6
C (m) (vph)	1611	1588	1	712	1	721		1073
v/c	0.05	0.00	İ	0.03		0.00		0.01
95% queue length	0.15	0.00	1	0.08	1	0.00		0.02
Control Delay	7.3	7.3	Ì	10.2	1	10.0		8.4
LOS	А	А	1	В	1	A		A
Approach Delay			1	10.2		<u> </u>	8.4	
Approach LOS				В			Α	

HCS+™ Version 5.1

Generated: 12/8/2005 9:44 AM

		TWO-WAY STO	P CONTRO	L SUMI	MAF	RY			
General Information			Site Inf	ormatio	on				
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	11/21/2005	5	Analysi	s Year			2005		
Analysis Time Period	AM								
Project Description			<u> </u>						
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Marlin Stree	t		
Intersection Orientation. E	asi-wesi		Sludy P	enoa (nis	s): (0.25			
Vehicle Volumes and A	djustments	E a ath a sea d						1	
Major Street	1	Eastbound				4		na I	6
wovernent		2				4	о Т		0 P
Volume	91	258	8			11	201		11
Peak-Hour Factor. PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	95	271	8	î		11	211		11
Percent Heavy Vehicles	2					2			
Median Type		•		Raised	curk)			
RT Channelized			0						0
Lanes	1	1	1			1	1		1
Configuration	L	Т	R			L	Т		R
Upstream Signal		0		Ĩ			0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
Volumo		1	10 R			L	2		R 24
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	1	4	10			0	3		25
Percent Heavy Vehicles	25	1	14			5	2		35
Percent Grade (%)		0					0		
Flared Approach		N		Í			N	1	
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, and	Level of Service						9		
Approach	Eastbound	Westbound	ļ	Northbo	und		5	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L		LTR				LTR	
v (vph)	95	11		15				28	
C (m) (vph)	1347	1284	ļ	577				692	
v/c	0.07	0.01	ļ	0.03				0.04	
95% queue length	0.23	0.03		0.08				0.13	ļ
Control Delay	7.9	7.8		11.4				10.4	ļ
LOS	А	A		В				В	
Approach Delay				11.4				10.4	
Approach LOS				В				В	

HCS+™ Version 5.1

Generated: 12/8/2005 9:46 AM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description			<u> </u>							
East/West Street: Mullet Ro	oad		North/So	outh Stre	eet:	Dave Nisber	t Drive			
Intersection Orientation: /v	orth-South		Study P	erioa (ni	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	1				Southbou	nd		-
Movement	1	2	3			4	5 T			6
Volumo	L	74	ĸ			L	10			R 2
Peak-Hour Factor PHF	0.95	0.05	0.05			0.05	40		(3) 05
Hourly Flow Rate, HFR	0.95	77	0.33			0.90	12			3
Percent Heavy Vehicles	2					20				
Median Type			Two	Wav Lei	ft Tur	n Lane	J			
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т	1				1			TR
Upstream Signal	1	0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	т	R			L	<u> </u>			R
Volume	4	0.05	53			0.05	0.05			05
Heak-Hour Factor, PHF	0.95	0.95	0.93			0.95	0.95		l	0.95
Percent Heavy Vehicles		0	2			0	0			0
Percent Grade (%)						-	0			-
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized	-	0	0				0			0
	0	0	0			0	0			0
Configuration		I P	·			0	<u> </u>			0
Delay, Queue Length, and	Level of Service	Couthbound		W/ooth o	u na d		<u> </u>	Faatha	und	
Approach	Northbound	Southbound	7	vesibo	buna	0	10		una 1	10
	1	4	/	0		9	10		 >	12
	L 01							50 50	`)	
C(m)(vph)	1563							09	י פ	
	0.06							900	6	
95% queue length	0.19							0.0	9	
Control Delay	7.4							8.9	~	
LOS	<u>А</u>		ļ					A		
Approach Delav								8.9		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:47 AM

		TWO-WAY STO	P CONTRO		ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		Mullett Rd	@ Scallop D)r
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street	Scallop Driv	/e		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	n.			Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cl	ırb			
RT Channelized	_	_	0			ļ		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0	,			0	,	
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
V a luna a	L		R					R
Volume Peak-Hour Factor, PHF	0.95	2 0.95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 95	0.95		0 0 05
Hourly Flow Rate, HFR	16	2	0.00		0	0.00		5
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)	1	2				0	ļ.	
Flared Approach		N				N		
Storage		0		Í		0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	75	0		18		0		5
C (m) (vph)	1611	1588		712		721		1073
v/c	0.05	0.00	1	0.03		0.00		0.00
95% queue length	0.15	0.00		0.08		0.00		0.01
Control Delay	7.3	7.3	1	10.2		10.0		8.4
LOS	А	А		В		A		A
Approach Delay			1	10.2		1	8.4	
Approach LOS				В			А	

HCS+™ Version 5.1

Generated: 12/8/2005 9:37 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
V - L	L	1	R			L				R
Volume	31	44	0.05			0.05	20			3
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Houriy Flow Rate, HFR	32	40	0			20	21			3
Median Tune				Deiee	dour	20				
Nedian Type		1		Raise	a curi)	<u> </u>			0
		1	0			0	1			0
Configuration		- '	0			0	· · ·			
	L/	0					0			IK
Opstream Signal		0 Eastbound					0			
Minor Street	7	Eastbound				10	Westbour	nd		10
wovernent		<u>о</u> Т	9 R			10	<u>і іі</u> Т			R
Volume	4	· · · · ·	16			<u> </u>	· ·			IX.
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	4	0	16			0	0			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0	2		
Flared Approach		N	ļ				N			
Storage		0					0			
RT Channelized			0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	32							20		
C (m) (vph)	1584		ļ					971	1	
v/c	0.02							0.0	2	
95% queue length	0.06							0.0	6	
Control Delay	7.3							8.8	}	
LOS	А							A		
Approach Delay								8.8		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:48 AM

							SHOF		OR	T								
General Inform	nation							Site	e Inf	ormatio	on							
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A /2005 Peak	5				Inte Area Juris Ana	rsec a Ty sdic Ilysi:	ction /pe ction s Year			SR 4 All Pc 200	01 @ G other a ort Auth 05 - Exi	rouper reas ority sting			
Volume and T	iming Input																	
			- 1	EB		_		WE	3				NB			_	SB	
Num of Lanes			1	2		.1	1	2	1				0			+	0 0	
Lane Group				<u>_</u> Т	+	_	Ļ	 Τ	_	-				R		+	0	
Volume (vph)		İ		1456	3		3	55			50		1	0	1	╈		
% Heavy veh		2	Ť	2	2		2	2		2	2		2	2	2	Ť	2	2
PHF		0.9	5	0.95	; 0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0.95		0.95	0.95
Actuated (P/A)		Í		Α			Α	A		Í	A			A	1			
Startup lost tim	e			2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Ext. eff. green				2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Arrival type				3			3	3			3		3	3			3	
Unit Extension				3.0			3.0	3.0			3.0)	3.0	3.0			3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume ane Width			0	0		0	0		0	0		0	0	0		0	0
Lane Width	ane Width arking/Grade/Parking			12.0	,		12.0	12.0	0		12.	0	12.0	12.0	<u> </u>		12.0	
Parking/Grade/	ne vvian irking/Grade/Parking			0	N	'	N	0		N	N		0	N	N	_	0	N
Parking/hr		┝								ļ						_		<u> </u>
Bus stops/hr		┢		0	_	_	0	0			0	<u> </u>	0	0		_	0	
Unit Extension	EW/ Porm			3.0			3.0	3.0				, 	3.0	3.0	07		3.0	08
Timing	G = 50.0) =	/2		03 G =		G =	:		G = 15	5.0	Ģ	00 ∋ =	G	=		G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		`	Y =		Y =	:		Y = 5		Y	' =	Y Th C =	= 75.0		Y =	
	Capacity. Cont	rol D	elav	/. an	d LOS	Det	ermir	nation						gui 0 =	70.0			
				,	EB					WB				NB				SB
Adj. flow rate					1533	Τ		3		58			53	0	0			0
Lane group cap).				2365	┢		145	2	365			354		317			
v/c ratio					0.65	T		0.02	C).02			0.15		0.00			
Green ratio					0.67	T		0.67	C).67			0.20	0.00	0.20	Ĩ		0.00
Unif. delay d ₁					7.3	Γ		4.2		4.2			24.7		24.0			
Delay factor k				ĺ	0.23			0.11	C).11			0.11		0.11			
Increm. delay c	l ₂				0.6			0.1		0.0			0.2		0.0			
PF factor					1.000			1.000	1	1.000			1.000		1.000)		
Control delay					8.0			4.3		4.2			24.9		24.0			
Lane group LO	S				Α			Α		A			С		С			
Apprch. delay					8.0					4.2				24.9				
Approach LOS					A					Α				С				
Intersec. delay					8.4						Inters	sect	tion LOS			T		A

HCS+™ Version 5.1

Generated: 12/8/2005 9:32 AM

							SHOF	RT REP	ORT	Г							
Analyst Agency or Co. Date Performed Time Period	i	S.(G8 11/28/ AM F	C. A 2003 Peak	5				Inter Area Juris Ana	Info rsect a Typ sdicti lysis	tion be ion Year	<u>on</u>		SR 401 8 All Pc 20	& Charles other ar ort Autho 005 Exist	s Rowland eas rity ing	1	
Volume and Ti	ming Input	ĩ					<u>.</u>				_				1		
			- 1	EB TH		27		WE TH	3	RT	-	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	1	2		0	2		0	1	0	0	0
Lane Group			╡	Т	-	7	L	Т			L			R	1	1	
Volume (vph)			╡	1530	, ,	5	3	77			1			1		<u> </u>	
% Heavy veh		2	╡	2		2	2	2		2	2		2	2	2	2	2
PHF		0.95	5	0.95	0.	95	0.95	0.95		0.95	0.9	95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		٩	Α	Α			A			A			
Startup lost time	9			2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Ext. eff. green				2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Arrival type				3		3	3	3			3	2	3	3		3	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Ped/Bike/RTOR	R Volume	0		0)	0	0		0	C)	0	0	0	0	0
Lane Width	ane Width			12.0) 12	2.0	12.0	12.0	2		12	.0	12.0	12.0		12.0	
Parking/Grade/I	ane Width arking/Grade/Parking			0	/	V	N	0		Ν	Λ	1	0	N	N	0	N
Parking/hr	rking/Grade/Parking																
Bus stops/hr				0		0	0	0			()	0	0		0	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	EW Perm	0	2		0:	3		04		NB C	Only		06	6	07	G -	08
Timing	$Y = 5 \qquad Y$	/ =			Y =		Y =	-		Y = 5	.0		/ =	Y =	-	Y =	
Duration of Ana	llysis (hrs) = 0.25												Cycle Len	gth C =	80.0		
Lane Group	Capacity, Cont	rol D	elay	y, an	d LOS	Det	termir	nation								<u> </u>	
					EB				<u> </u>	WB				NB		<u> </u>	SB
Adj. flow rate				_	1611	┶	5	3	8	31			1	0	1		0
Lane group cap).				2439	10	088	137	24	139			644		297		
v/c ratio					0.66	0.	.00	0.02	0.	03			0.00		0.00		
Green ratio					0.69	0.	.69	0.69	0.	69			0.19	0.00	0.19		0.00
Unif. delay d ₁					7.2	3	3.9	4.0	4	.0			26.4		26.4		
Delay factor k					0.24	0.	.11	0.11	0.	11			0.11		0.11		
Increm. delay d	2	ĺ		ĺ	0.7		0.0	0.1	0	0.0			0.0		0.0		
PF factor					1.000	1.	.000	1.000	1.	000			1.000		1.000	Í	
Control delay					7.8		3.9	4.0	4	4.0			26.4		26.4		
Lane group LOS	S				A		A	А	/	A			С		С		
Apprch. delay					7.8				4	4.0				26.4		1	
Approach LOS		Ť			Α					A				С		1	
Intersec. delay					7.6						Inter	sec	tion LOS				A

HCS+™ Version 5.1

Generated: 12/8/2005 9:25 AM

							SHO	₹Т	REPC	DRT								
General Inforr	mation								Site I	nfor	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200 Peak	5					Inters Area Juriso Analy	sectio Type dictio vsis Y	on e on rear			George All Po 200	King @ . other are ort Author 05 - Exist	Atlantic eas ity ing		
Volume and T	iming Input								<u> </u>									
			-	EE	3	БТ			WB		DT			NB	DT		SB	
Num of Lanes			.1	1	1					+	1		┽	1		 	1	
		<u> </u>	_		,		<i>'</i>		, τ	+	, P		┽	, 1 T	, P	,		
			3	130		82	14	┥	37	-	3	157	┽	21	96	2	6	18
% Heavy veh		2	,	2	, 	2	2	┥	2	-	2	2	┥	2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95		0.95	0).95	0.95	╉	- 0.95	0.95	- 0.95	0.95	0.95
Actuated (P/A)		A		A	_	Α	A		Α	1	A	A	Ť	A	Α	Α	Α	Α
Startup lost tim	ie	2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Arrival type		3	;	3			3	T	3	Ť	3		Ť	3	3	3	3	
Unit Extension		3.	0	3.0)		3.0	ĺ	3.0	1	3.0		Ĩ	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	d/Bike/RTOR Volume)	0		0	0		0	T	0	0	Ĩ	0	0	0	0	0
Lane Width	ie Width king/Grade/Parking		2.0	12.	0		12.0)	12.0	1	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	ne Width king/Grade/Parking		I	0		N	Ν		0		Ν	N		0	Ν	N	0	Ν
Parking/hr	king/Grade/Parking																	
Bus stops/hr		C)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	;	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	0)4	6	NS Pe	erm	G	06	G	07	())8
Timing	Y = 5	Y = 5	; ;		Y =		Y =	-		Y	= 5	<u> </u>	Y =	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	.OS De	etermi	nati	ion				-				1	
			<u> </u>		E	EB		Ļ		W	/B				NB	1	<u> </u>	SB
Adj. flow rate			35		23	2		1	15	39	<u>'</u>	3			187	101	2	25
Lane group ca	р.		803	3	107	75		5	08	828	8	704			379	440	298	458
v/c ratio			0.04	4	0.2	22		0.	.03	0.0	5	0.00			0.49	0.23	0.01	0.05
Green ratio			0.6	1	0.6	61		0.	.44	0.44	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		7.	8		14	4.1	14.2	2	13.9			27.2	25.1	23.5	23.8
Delay factor k			0.1	1	0.1	11		0.	.11	0.1	1	0.11			0.11	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.1		(0.0	0.0	0	0.0			1.0	0.3	0.0	0.0
PF factor			1.0	00	1.0	000		1.	.000	1.00	00	1.000			1.000	1.000	1.000	1.000
Control delay			7.	1	7.	.9		1	4.1	14.	.2	13.9			28.2	25.3	23.5	23.9
Lane group LO	S		A		A				В	В		В			С	С	С	С
Apprch. delay					7.	.8				14.	.2				27.2			23.9
Approach LOS					/	4				В	3				С		<u> </u>	С
Intersec. delay			1		17	7.8						Interse	ctio	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:33 AM

		TWO-WAY STO	P CONTRO		IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T (00	R			L	T			R
Volume	56	183				0.05	51			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	58	192	0			0	53			0
Percent Heavy Vehicles	0					25				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume	0.05	0.05	0.05			0	0.05			16
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			0	0			16
Percent Reavy vehicles	0	0	2			0	10			12
Flared Approach		0 N	1				N			
Storage		0					0			
RT Channelized			0				0			0
	0	0	0			1	0			1
			0			1	0			P
	<u> </u>		ļ			L				Λ
Delay, Queue Length, and	Level of Service	M/a ath a un al	r	N la utla la l						
Approach	Easibound	vvesibound	7		buna	0	10		una	10
	, ,	4	/	0		9	10			12
	L		 			ļ	L			R
v (vph)	58		ļ				0			16
C (m) (vph)	1566		ļ				638			987
v/c	0.04		ļ				0.00			0.02
95% queue length	0.12		ļ				0.00			0.05
Control Delay	7.4		ļ				10.6			8.7
LOS	А						В			А
Approach Delay							ļ	8.7		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 9:35 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	1		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound]			Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	168	314	ļ				186			26
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	176	330	0			0	195			27
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl	6				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11	\rightarrow		12
Valuma			R			L	<u> </u>			R
Volume Peak-Hour Factor, PHF	0.95	0.95	0.95			9	0.95			70 195
Hourly Flow Rate, HFR	0.55	0.00	0.00			0.00	0.00			82
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0					0			
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		1	0							0
Lanes	0	0	0	- í		1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L						L			R
v (vph)	176						9			82
C (m) (vph)	1344						389			807
v/c	0.13						0.02			0.10
95% queue length	0.45						0.07			0.34
Control Delay	8.1						14.5			10.0
LOS	А						В			А
Approach Delay								10.4	4	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 9:36 AM

							SH	OR'	T REPO	DR'	т								
General Inform	nation								Site	nfo	ormatio	n							
Analyst Agency or Co. Date Performed Time Period	d	G 11/29 AM	SC &A 9/2005 Peak	5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George I All Po 205	King othe ort Au 55 - E	@ F r are ithori Existi	lounder as ity ng		
Volume and T	iming Input																		
	Information Information Information Informed erformed eriod and Timing Input f Lanes roup (vph) ry veh d (P/A) lost time green ype tension :e/RTOR Volume idth /Grade/Parking /hr ps/hr tension 2 EW Perm G = 55.0 Y = 5 n of Analysis (hrs) = 0. Group Capacity, Co v rate oup cap. idio lay d1		- 1	E	3		\square		WB				_	NB				SB	
Num of Longo	e and Timing Input of Lanes Group ⇒ (vph) vy veh ⇒ d (P/A) ⇒ lost time ⇒ lost		-1	1			+			_			1	IH 1		< I		IH 1	
			_	т Т	_		╋	1		_						,	0		0
	te and Timing Input of Lanes Group e (vph) vy veh ed (P/A) o lost time f. green type tension ke/RTOR Volume Vidth g/Grade/Parking g/hr ops/hr tension g EW Perm G = 55.0 Y = 5 on of Analysis (hrs) = 0 Group Capacity, Co w rate			249	,	22	+	L 0	227	_	10	7		2	2	,	7		12
	of Lanes Group e (vph) ivy veh ed (P/A) o lost time f. green type ktension ke/RTOR Volume Vidth g/Grade/Parking g/hr ops/hr ktension ig EW Perm G = 55.0 Y = 5 on of Analysis (hrs) = 0.2 Group Capacity, Co			040	, 	0	╋	0	237	_	19	/		2	2)	/	0	12
		0.0	, 25	0	5	0 95		0	0.95	_	0 95	0	5	0.95	0	, 25	0.95	0 95	0 95
Δ ctuated (P/ Δ)	ted (P/A) Ip lost time ff. green I type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr		, ,	Δ	_	0.95 A	+	Δ	0.90	_	Δ	0.9		Δ	0.8	, ,	Δ	Δ	Δ
Startun lost tim	of Lanes Group ne (vph) avy veh ted (P/A) up lost time ff. green ut type Extension Sike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr Extension ng G = 55.0 Y = 5 ion of Analysis (hrs) = 0.2 Group Capacity, Con		0	20	,	2.0		20	20	_	20			20				20	
		2.	0	2.0	,	2.0		2.0	2.0	_	2.0	┼─		2.0				2.0	
Arrival type			2	.3		.3	+	.3	3	_	.3	┢		3	┢			.3	
Unit Extension		3.	0	3.0	,	3.0		3.0	3.0	-	3.0	-		3.0	<u> </u>			3.0	
Ped/Bike/RTO	R Volume	0)	0		0	+	0	0	_	0	0		0	0)	0	0	0
Lane Width		12	2.0	12.	0	12.0	1	12.0	12.0	_	12.0			12.0				12.0	
Parking/Grade/	Bike/RTOR Volume Width ng/Grade/Parking ng/hr		/	0		Ν	╈	Ν	0		N	N		0	Λ	/	N	0	N
Parking/hr					Ī		╈					\square							
Bus stops/hr		()	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0	,	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm		02		_	03		_	04	Ţ	NS Pe	erm		06		~	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		,	G = Y =		÷	G = 25. Y = 5	0	Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	?5											C	ycle Leng	th C	= 9	90.0	ļ.	
Lane Group	Capacity, Co	ntrol [Delay	, an	d L	OS D	eterr	nina	ation										
					E	В					WB				N	В			SB
Adj. flow rate			21		366	6	35		8	2	49	20			11				21
Lane group cap	э.		694		116	1	987		585	11	161	987			467	7			459
v/c ratio			0.03	}	0.3	2	0.04		0.01	0.	.21	0.02			0.02	2			0.05
Green ratio			0.61		0.6	1	0.61		0.61	0.	.61	0.61			0.28	3			0.28
Unif. delay d ₁			6.9		8.4	4	7.0		6.9	7	7.8	6.9			23.6	6			23.8
Delay factor k			0.11	'	0.1	1	0.11		0.11	0.	.11	0.11			0.11	1			0.11
Increm. delay c	J ₂		0.0)	0.	2	0.0	Ĩ	0.0	(0.1	0.0	T		0.0)			0.0
PF factor			1.00	00	1.0	00	1.000)	1.000	1.	.000	1.000			1.00	00			1.000
Control delay			7.0)	8.	6	7.0		6.9		7.9	6.9			23.	6			23.8
Lane group LO	S		A		Α		A		Α		A	A			С				С
Apprch. delay	ne (vph) avy veh ted (P/A) up lost time ff. green il type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr Extension ng EW Perm g $G = 55.0$ Y = 5 ion of Analysis (hrs) = 0.2 e Group Capacity, Con ow rate group cap. tio n ratio delay d ₁ factor k n. delay d ₂ ctor ol delay group LOS h. delay iach LOS ec. delay				8.	4				1	7.8				23.	6			23.8
Approach LOS					A						A				С			1	С
Intersec. delay					8.	8		Ť				Inters	ecti	on LOS				Í	А

HCS+™ Version 5.1

Generated: 12/8/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
Volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	16	2	0		0	0.05		0.05
	0.95	0.95	0.95		0.95	0.95		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2	ļ –			0	ļ	_
Flared Approach		N	1			N	1	
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR	1	LTR	1	L		R
v (vph)	75	0	1	18	1	0		6
C (m) (vph)	1611	1588	1	712	1	721		1073
v/c	0.05	0.00	İ	0.03		0.00		0.01
95% queue length	0.15	0.00	1	0.08	1	0.00		0.02
Control Delay	7.3	7.3	Ì	10.2	1	10.0		8.4
LOS	А	А	1	В	1	A		A
Approach Delay			1	10.2	5	<u> </u>	8.4	
Approach LOS				В			Α	

HCS+™ Version 5.1

Generated: 12/8/2005 9:44 AM

		TWO-WAY STO	P CONTRO	L SUMI	MAF	RY			
General Information			Site Inf	ormatio	on				
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	11/21/2005	5	Analysi	s Year			2005		
Analysis Time Period	AM								
Project Description			<u> </u>						
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Marlin Stree	t		
Intersection Orientation. E	asi-wesi		Sludy P	enoa (nis	s): (0.25			
Vehicle Volumes and A	djustments	E a ath a sea d						1	
Major Street	1	Eastbound				4		na I	6
wovernent		2				4	о Т		0 P
Volume	91	258	8			11	201		11
Peak-Hour Factor. PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	95	271	8	î		11	211		11
Percent Heavy Vehicles	2					2			
Median Type		•		Raised	curk)			
RT Channelized			0						0
Lanes	1	1	1			1	1		1
Configuration	L	Т	R			L	Т		R
Upstream Signal		0		Ĩ			0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
Volumo		1	10 R			L	2		R 24
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	1	4	10			0	3		25
Percent Heavy Vehicles	25	1	14			5	2		35
Percent Grade (%)		0					0		
Flared Approach		N		Í			N	1	
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, and	Level of Service						9		
Approach	Eastbound	Westbound	ļ	Northbo	und		5	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L		LTR				LTR	
v (vph)	95	11		15				28	
C (m) (vph)	1347	1284	ļ	577				692	
v/c	0.07	0.01	ļ	0.03				0.04	
95% queue length	0.23	0.03		0.08				0.13	ļ
Control Delay	7.9	7.8		11.4				10.4	ļ
LOS	А	A		В				В	
Approach Delay				11.4				10.4	
Approach LOS				В				В	

HCS+™ Version 5.1

Generated: 12/8/2005 9:46 AM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description			<u> </u>							
East/West Street: Mullet Ro	oad		North/So	outh Stre	eet:	Dave Nisber	t Drive			
Intersection Orientation: /v	orth-South		Study P	erioa (ni	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	1 .				Southbou	nd		-
Movement	1	2	3			4	5 T			6
Volumo	L	74	ĸ			L	10			R 2
Peak-Hour Factor PHF	0.95	0.05	0.05			0.05	40		(3) 05
Hourly Flow Rate, HFR	0.95	77	0.33			0.90	12			3
Percent Heavy Vehicles	2					20				
Median Type			Two	Wav Lei	ft Tur	n Lane	J			
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т	1				1			TR
Upstream Signal	1	0					0			
Minor Street	Eastbound						Westbour	nd		
Movement	7	8	9			10	11			12
	L	т	R			L	<u> </u>			R
Volume	4	0.05	53			0.05	0.05			05
Heak-Hour Factor, PHF	0.95	0.95	0.93			0.95	0.95		l	0.95
Percent Heavy Vehicles		0	2			0	0			0
Percent Grade (%)						-	0			-
Flared Approach		N	1				N			
Storage		0		ł			0			
RT Channelized	-	0	0				0			0
	0	0	0			0	0			0
Configuration		I P	·			0	<u> </u>			0
Delay, Queue Length, and	Level of Service	Couthbound		W/ooth o	un d		<u> </u>	Faatha	und	
Approach	Northbound	Southbound	7	vesibo	buna	0	10		una 1	10
	1	4	/	0		9	10		 >	12
	L 01							50 50	`)	
C(m)(vph)	1563							09	י פ	
	0.06							900	6	
95% queue length	0.19							0.0	9	
Control Delay	7.4							8.9	~	
LOS	<u>А</u>		ļ					A		
Approach Delav								8.9		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:47 AM

		TWO-WAY STO	P CONTRO		ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		Mullett Rd	@ Scallop D)r
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street	Scallop Driv	/e		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	n.			Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cl	ırb			
RT Channelized	_	_	0			ļ		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0	,			0	,	
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
V a luna a	L		R					R
Volume Peak-Hour Factor, PHF	0.95	2 0.95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 95	0.95		0 0 05
Hourly Flow Rate, HFR	16	2	0.00		0	0.00		5
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2				0	ļ.	
Flared Approach		N				N		
Storage		0		Í		0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	75	0		18		0		5
C (m) (vph)	1611	1588		712		721		1073
v/c	0.05	0.00	1	0.03		0.00		0.00
95% queue length	0.15	0.00		0.08		0.00		0.01
Control Delay	7.3	7.3	1	10.2		10.0		8.4
LOS	А	А		В		А		A
Approach Delay			1	10.2		1	8.4	
Approach LOS				В			А	

HCS+™ Version 5.1

Generated: 12/8/2005 9:37 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
V - L	L	1	R			L				R
Volume	31	44	0.05			0.05	20			3
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Houriy Flow Rate, HFR	32	40	0			20	21			3
Median Tune				Deiee	dour	20				
Nedian Type		1		Raise	a curi)	<u> </u>			0
		1	0			0	1			0
Configuration		- '	0			0	· · ·			
	L/	0					0			IK
Opstream Signal		0 Eastbound					0			
Minor Street	7	Eastbound				10	Westbour	nd		10
wovernent		<u>о</u> Т	9 R			10	<u>і іі</u> Т			R
Volume	4	· · · · ·	16			<u> </u>	· ·			IX.
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	4	0	16			0	0			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0	2		
Flared Approach		N	ļ				N			
Storage		0					0			
RT Channelized			0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	32							20		
C (m) (vph)	1584		ļ					971	1	
v/c	0.02							0.0	2	
95% queue length	0.06							0.0	6	
Control Delay	7.3							8.8	}	
LOS	A							A		
Approach Delay								8.8		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:48 AM

							SHOF		OR	T								
General Inform	nation							Site	e Inf	ormatio	on							
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A /2005 Peak	5				Inte Area Juris Ana	rsec a Ty sdic Ilysi:	ction /pe ction s Year			SR 4 All Pc 200	01 @ G other a ort Auth 05 - Exi	rouper reas ority sting			
Volume and T	iming Input																	
			- 1	EB		_		WE	3				NB			_	SB	
Num of Lanes			1	2		.1	1	2	1				0			+	0 0	
Lane Group				<u>_</u> Т	+	_	Ļ	 Τ	_	-				R		+	0	
Volume (vph)		İ		1456	5		3	55			50		1	0	1	╈		
% Heavy veh		2		2	2		2	2		2	2		2	2	2	Ť	2	2
PHF		0.9	5	0.95	; 0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0.95		0.95	0.95
Actuated (P/A)		Í		Α			Α	A		Í	A			A	1			
Startup lost tim	e			2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Ext. eff. green				2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Arrival type				3			3	3			3		3	3			3	
Unit Extension				3.0			3.0	3.0			3.0)	3.0	3.0			3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume			0	0		0	0		0	0		0	0	0		0	0
Lane Width	ane Width			12.0	,		12.0	12.0	0		12.	0	12.0	12.0	<u> </u>		12.0	
Parking/Grade/	ane Width arking/Grade/Parking			0	N	'	N	0		N	N		0	N	N	_	0	N
Parking/hr		┝								ļ						_		<u> </u>
Bus stops/hr		┢		0		_	0	0			0	<u> </u>	0	0		_	0	
Unit Extension	EW/ Porm			3.0			3.0	3.0				, 	3.0	3.0	07		3.0	08
Timing	G = 50.0) =	/2		03 G =		G =	:		G = 15	5.0	Ģ	00 ∋ =	G	=		G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		`	Y =		Y =	:		Y = 5		Y	' =	Y Th C =	= 75.0		Y =	
	Capacity. Cont	rol D	elav	/. an	d LOS	Det	ermir	nation						gui 0 =	70.0			
				,	EB					WB				NB				SB
Adj. flow rate					1533	Τ		3		58			53	0	0			0
Lane group cap).				2365	┢		145	2	365			354		317			
v/c ratio					0.65	T		0.02	C).02			0.15		0.00			
Green ratio					0.67	T		0.67	C).67			0.20	0.00	0.20	Ĩ		0.00
Unif. delay d ₁					7.3	Γ		4.2		4.2			24.7		24.0			
Delay factor k				ĺ	0.23			0.11	C).11			0.11		0.11			
Increm. delay c	l ₂				0.6			0.1		0.0			0.2		0.0			
PF factor					1.000			1.000	1	1.000			1.000		1.000)		
Control delay					8.0			4.3		4.2			24.9		24.0			
Lane group LO	S				Α			А		A			С		С			
Apprch. delay					8.0					4.2				24.9				
Approach LOS					A					Α				С				
Intersec. delay					8.4						Inters	sect	tion LOS			T		A

HCS+™ Version 5.1

Generated: 12/8/2005 9:32 AM

							SHOF	RT REP	ORT	Г							
Analyst Agency or Co. Date Performed Time Period	i	S.(G8 11/28/ AM F	C. A 2003 Peak	5				Inter Area Juris Ana	Info rsect a Typ sdicti lysis	tion be ion Year	<u>on</u>		SR 401 8 All Pc 20	& Charles other ar ort Autho 005 Exist	s Rowland eas rity ing	1	
Volume and Ti	ming Input	ĩ					<u>.</u>				_				1		
			- 1	EB TH		27		WE TH	3	RT	-	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	1	2		0	2		0	1	0	0	0
Lane Group			╡	Т	-	7	L	Т			L			R	1	1	
Volume (vph)			╡	1530	, ,	5	3	77			1			1		<u> </u>	
% Heavy veh		2	╡	2		2	2	2		2	2		2	2	2	2	2
PHF		0.95	5	0.95	0.	95	0.95	0.95		0.95	0.9	95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		٩	Α	Α			A			A			
Startup lost time	9			2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Ext. eff. green				2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Arrival type				3		3	3	3			3	2	3	3		3	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Ped/Bike/RTOR	ed/Bike/RTOR Volume)	0	0		0	C)	0	0	0	0	0
Lane Width	ane Width			12.0) 12	2.0	12.0	12.0	2		12	.0	12.0	12.0		12.0	
Parking/Grade/I	ane Width arking/Grade/Parking			0	/	V	N	0		Ν	Λ	1	0	N	N	0	N
Parking/hr																	
Bus stops/hr				0		0	0	0			()	0	0		0	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	EW Perm	0	2		0:	3		04		NB C	Only		06	6	07	G -	08
Timing	$Y = 5 \qquad Y$	/ =			Y =		Y =	-		Y = 5	.0		/ =	Y =	-	Y =	
Duration of Ana	llysis (hrs) = 0.25												Cycle Len	gth C =	80.0		
Lane Group	Capacity, Cont	rol D	elay	y, an	d LOS	Det	termir	nation								<u> </u>	
					EB				<u> </u>	WB				NB		<u> </u>	SB
Adj. flow rate				_	1611	┶	5	3	8	31			1	0	1		0
Lane group cap).				2439	10	088	137	24	139			644		297		
v/c ratio					0.66	0.	.00	0.02	0.	03			0.00		0.00		
Green ratio					0.69	0.	.69	0.69	0.	69			0.19	0.00	0.19		0.00
Unif. delay d ₁					7.2	3	3.9	4.0	4	.0			26.4		26.4		
Delay factor k					0.24	0.	.11	0.11	0.	11			0.11		0.11		
Increm. delay d	2	ĺ		ĺ	0.7		0.0	0.1	0	0.0			0.0		0.0		
PF factor					1.000	1.	.000	1.000	1.	000			1.000		1.000	Í	
Control delay					7.8		3.9	4.0	4	4.0			26.4		26.4		
Lane group LOS	S				A		A	А	/	A			С		С		
Apprch. delay					7.8				4	4.0				26.4		1	
Approach LOS		Ť			Α					A				С		1	
Intersec. delay					7.6						Inter	sec	tion LOS				A

HCS+™ Version 5.1

Generated: 12/8/2005 9:25 AM

							SHO	₹Т	REPC	DRT								
General Inforr	mation								Site I	nfor	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200 Peak	5					Inters Area Juriso Analy	sectio Type dictio vsis Y	on e on rear			George All Po 200	King @ . other are ort Author 05 - Exist	Atlantic eas ity ing		
Volume and T	Information lyst incy or Co. a Performed e Period ume and Timing Input in. of Lanes e Group ume (vph) leavy veh - uated (P/A) tup lost time eff. green /al type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only G = 10.0 Y = 5 ation of Analysis (hrs) = 0.2 the Group Capacity, Condition flow rate e group cap. atio . delay d1 ay factor k em. delay d2 actor trol delay e group LOS								<u> </u>									
	aral Information rst cy or Co. Performed Period me and Timing Input of Lanes Group ne (vph) avy veh ited (P/A) up lost time iff. green al type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr Extension ng EB Only g G = 10.0 Y = 5 ion of Analysis (hrs) = 0.2 Group Capacity, Condot ow rate group cap. tio n ratio delay d1 factor k n. delay d2			EE	3	БТ			WB		DT			NB	DT		SB	
Num of Lanes	eral Information yst ney or Co. Performed Period ime and Timing Input in of Lanes a Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume a Width ing/Grade/Parking ing/hr stops/hr Extension sing EB Only G = 10.0 Y = 5 tition of Analysis (hrs) = 0.2 e Group Capacity, Co flow rate a group cap. atio in ratio delay d1 y factor k im. delay d2 actor rol delay group LOS ch. delay			1	1					+	1		┽	1		1 LI	1	
	eral Information yst ney or Co. Performed Period me and Timing Input of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension Sing EB Only G = 10.0 Y = 5 tion of Analysis (hrs) = 0.2 e Group Capacity, Co flow rate group cap. atio				,		<i>'</i>		, τ	+	, P		┽	, 1 T	, P	,		
	lyst ncy or Co. Performed Period Period Ime and Timing Input Ime and Timing Input			130		82	14	┥	37	-	3	157	┽	21	96	2	6	18
% Heavy veh	ncy or Co. a Performed b Period a Period a me and Timing Input a of Lanes a Group a Group a Group a tup lost time a tup lost time a type Extension /Bike/RTOR Volume a Width a Width a Width a ting/Grade/Parking a fing/hr stops/hr Extension Sing EB Only ng $G = 10.0$ Y = 5 ation of Analysis (hrs) = 0.24 a Group Capacity, Con flow rate a group cap. atio an ratio a delay d ₁			2	, 	2	2	┥	2	-	2	2	┥	2	2	2	2	2
PHF	eral Information yst here or Co. Performed Period ime and Timing Input and f Lanes a for green a for grade/Parking ing/hr stops/hr Extension sing EB Only flow rate a for up cap. atio e for up cap. atio en ratio delay d_1 y factor k en. delay d_2 actor <td< td=""><td>0.9</td><td>5</td><td>0.95</td><td>0.95</td><td></td><td>0.95</td><td>0</td><td>).95</td><td>0.95</td><td>╉</td><td>- 0.95</td><td>0.95</td><td>0.95</td><td>0.95</td><td>0.95</td></td<>			0.9	5	0.95	0.95		0.95	0).95	0.95	╉	- 0.95	0.95	0.95	0.95	0.95
Actuated (P/A)	heral Information alyst ency or Co. e Performed e Period ume and Timing Input n. of Lanes e Group ume (vph) deavy veh = uated (P/A) rtup lost time eff. green val type t Extension l/Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr t Extension Ising EB Only ing G = 10.0 ing G = 10.0 ing G = 10.0 ing F = 5 ation of Analysis (hrs) = 0.25 te Group Capacity, Con flow rate e group cap. ratio en ratio en ratio ' delay d1 ay factor k em. delay d2 iactor			A	_	Α	A		Α	1	A	A	Ť	A	Α	Α	A	Α
Startup lost tim	ency or Co. te Performed he Period tume and Timing Input m. of Lanes he Group ume (vph) -leavy veh F uated (P/A) rtup lost time . eff. green ival type t Extension d/Bike/RTOR Volume he Width king/Grade/Parking king/hr is stops/hr t Extension asing EB Only ing $G = 10.0$ C Y = 5 Y ation of Analysis (hrs) = 0.25 ne Group Capacity, Cont . flow rate he group cap. ratio ten ratio f. delay d ₁ ay factor k		0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Ext. eff. green	ume and Timing Input m. of Lanes ne Group ume (vph) Heavy veh F uated (P/A) rtup lost time . eff. green ival type t Extension t/Bike/RTOR Volume te Width 'king/Grade/Parking 'king/hr s stops/hr t Extension asing EB Only ing G = 10.0 'ation of Analysis (hrs) = 0.25 ne Group Capacity, Cont . flow rate ie group cap. ratio en ratio f. delay d1			2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Arrival type	m. of Lanes he Group ume (vph) Heavy veh F uated (P/A) rtup lost time . eff. green ival type t Extension d/Bike/RTOR Volume he Width king/Grade/Parking king/hr s stops/hr t Extension asing EB Only ing $G = 10.0$ G Y = 5 Y ation of Analysis (hrs) = 0.25 ne Group Capacity, Cont . flow rate he group cap. ratio en ratio			3			3	T	3	Ť	3		Ť	3	3	3	3	
Unit Extension	irtup lost time . eff. green ival type t Extension d/Bike/RTOR Volume ie Width king/Grade/Parking king/hr s stops/hr t Extension asing EB Only		0	3.0)		3.0	ĺ	3.0	1	3.0		Ĩ	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	it Extension d/Bike/RTOR Volume ie Width king/Grade/Parking)	0		0	0		0	T	0	0	Ĩ	0	0	0	0	0
Lane Width	d/Bike/RTOR Volume ie Width king/Grade/Parking king/hr		2.0	12.	0		12.0)	12.0	1	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	ne Width rking/Grade/Parking		I	0		N	Ν		0		Ν	N		0	Ν	N	0	Ν
Parking/hr	val type : Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only ing G = 10.0 Y = 5 Y																	
Bus stops/hr	e Width king/Grade/Parking king/hr stops/hr)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	;	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	0)4	6	NS Pe	erm	G	06	G	07	())8
Timing	Y = 5	Y = 5	; ;		Y =		Y =	-		Y	= 5	<u> </u>	Y =	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	.OS De	etermi	nati	ion				-				1	
			<u> </u>		6	EB		Ļ		W	/B				NB	1	<u> </u>	SB
Adj. flow rate			35		23	2		1	15	39	<u>'</u>	3			187	101	2	25
Lane group ca	р.		803	3	107	75		5	08	828	8	704			379	440	298	458
v/c ratio			0.04	4	0.2	22		0.	.03	0.0	5	0.00			0.49	0.23	0.01	0.05
Green ratio			0.6	1	0.6	61		0.	.44	0.44	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		7.	8		14	4.1	14.2	2	13.9			27.2	25.1	23.5	23.8
Delay factor k			0.1	1	0.1	11		0.	.11	0.1	1	0.11			0.11	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.1		(0.0	0.0	0	0.0			1.0	0.3	0.0	0.0
PF factor			1.0	00	1.0	000		1.	.000	1.00	00	1.000			1.000	1.000	1.000	1.000
Control delay	e Group ime (vph) leavy veh iated (P/A) tup lost time eff. green /al type Extension /Bike/RTOR Volume \Rightarrow Width ding/Grade/Parking ding/hr stops/hr Extension sing EB Only G = 10.0 C Y = 5 Y ation of Analysis (hrs) = 0.25 re Group Capacity, Cont flow rate \Rightarrow group cap. atio \Rightarrow n ratio $delay d_1$ ty factor k \Rightarrow m. delay d_2 actor trol delay \Rightarrow group LOS rch. delay accon LOS sec. delay		7.	1	7.	.9		1	4.1	14.	.2	13.9			28.2	25.3	23.5	23.9
Lane group LO	Period me and Timing Input and Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension Sing EB Only G = 10.0 G Y = 5 T tion of Analysis (hrs) = 0.25 e Group Capacity, Con flow rate group cap. atio en ratio delay d ₁ y factor k em. delay d ₂ actor rol delay group LOS ch. delay oach LOS sec. delay		Α		A				В	В		В			С	С	С	С
Apprch. delay	a. of Lanes a. of Lanes a Group me (vph) eavy veh ated (P/A) tup lost time eff. green al type Extension Bike/RTOR Volume a Width ing/Grade/Parking ing/hr stops/hr Extension Sing EB Only G = 10.0 TY = 5 tion of Analysis (hrs) = 0.25 e Group Capacity, Con flow rate a group cap. atio en ratio delay d ₁ y factor k em. delay d ₂ actor rol delay group LOS ch. delay oach LOS sec. delay				7.	.8				14.	.2				27.2			23.9
Approach LOS					/	4				В	3				С		<u> </u>	С
Intersec. delay			1		17	7.8						Interse	ctio	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:33 AM

		TWO-WAY STO	P CONTRO		IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T (00	R			L	T			R
Volume	56	183				0.05	51			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	58	192	0			0	53			0
Percent Heavy Vehicles	0					25				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume	0.05	0.05	0.05			0	0.05			16
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			0	0			16
Percent Reavy vehicles	0	0	2			0	10			12
Flared Approach		0 N	1				N			
Storage		0					0			
RT Channelized			0				0			0
	0	0	0			1	0			1
			0			1	0			P
	<u> </u>		ļ			L				Λ
Delay, Queue Length, and	Level of Service	M/a ath a un al	r	N la utla la l						
Approach	Easibound	vvesibound	7		buna	0	10		una	10
		4	/	0		9	10			12
	L		 			ļ	L			R
v (vph)	58		ļ				0			16
C (m) (vph)	1566		ļ				638			987
v/c	0.04		ļ				0.00			0.02
95% queue length	0.12		ļ				0.00			0.05
Control Delay	7.4		ļ				10.6			8.7
LOS	А						В			А
Approach Delay							ļ	8.7		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 9:35 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	1		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound]			Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	168	314	ļ				186			26
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	176	330	0			0	195			27
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl	6				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11	\rightarrow		12
Valuma			R			L	<u> </u>			R
Volume Peak-Hour Factor, PHF	0.95	0.95	0.95			9	0.95			70 195
Hourly Flow Rate, HFR	0.55	0.00	0.00			0.00	0.00			82
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0					0			
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		1	0							0
Lanes	0	0	0	- í		1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L						L			R
v (vph)	176						9			82
C (m) (vph)	1344						389			807
v/c	0.13						0.02			0.10
95% queue length	0.45						0.07			0.34
Control Delay	8.1						14.5			10.0
LOS	А						В			А
Approach Delay								10.4	4	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 9:36 AM

							SH	OR'	T REPO	DR'	т								
General Inform	nation								Site	nfo	ormatio	n							
Analyst Agency or Co. Date Performed Time Period	d	G 11/29 AM	SC &A 9/2005 Peak	5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George I All Po 205	King othe ort Au 55 - E	@ F r are ithori Existi	lounder as ity ng		
Volume and T	iming Input																		
			- 1	E	3		\square		WB				_	NB				SB	
Num of Longo			-1	1			+			_			1	IH 1		< I		IH 1	
				т Т	_		╋	1		_						,	0		0
				249	,	22	+	L 0	227	_	10	7		2	2	,	7		12
		20		040	, 	0	╋	0	237	_	19	/		2	2)	/	0	12
		0.0	, 25	0	5	0 95		0	0.95	_	0 95	0	5	0.95	0	, 25	0.95	0 95	0 95
Δ ctuated (P/ Δ)		0.3	, ,	Δ	_	0.95 A	+	Δ	0.90	_	Δ	0.9		Δ	0.8	, ,	Δ	Δ	Δ
Startun lost tim	P	2	0	20	,	2.0		20	20	_	20			20				20	
		2.	0	2.0	,	2.0		2.0	2.0	_	2.0	┼─		2.0				2.0	
Arrival type			2	.3		.3	+	.3	3	_	.3	┢		3	┢			.3	
Unit Extension		3.	0	3.0	,	3.0		3.0	3.0	-	3.0	-		3.0	<u> </u>			3.0	
Ped/Bike/RTO	R Volume	0)	0		0	+	0	0	-	0	0		0	0)	0	0	0
Lane Width		12	2.0	12.	0	12.0	1	12.0	12.0	_	12.0			12.0				12.0	
Parking/Grade/	Information alyst ency or Co. e Performed e Period ume and Timing Input n. of Lanes e Group Jme (vph) deavy veh = Jated (P/A) rtup lost time eff. green val type t Extension //Bike/RTOR Volume e Width king/hr stops/hr : Extension sing EW Perm ing G = 55.0 Y = 5 ation of Analysis (hrs) = 0.2 ne Group Capacity, Co flow rate e group cap. ratio en ratio - delay d1 ay factor k em. delay d2 'actor trol delay e group LOS roach LOS rsec, delay		/	0		Ν	╈	Ν	0		N	N		0	Λ	/	N	0	N
Parking/hr					Ī		╈					\square							
Bus stops/hr		()	0		0		0	0		0			0				0	
Unit Extension	yst icy or Co. Performed Period me and Timing Input . of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension ing EW Perm G = 55.0 Y = 5 tion of Analysis (hrs) = 0. e Group Capacity, Co iow rate group cap. atio n ratio delay d ₁ y factor k m. delay d ₂ ictor rol delay group LOS ch. delay pach LOS sec. delay		0	3.0	,	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr stops/hr Extension ing EW Perm ig G = 55.0 Y = 5 ion of Analysis (hrs) = 0.25		02		_	03		_	04	Ţ	NS Pe	erm		06		<u> </u>	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		,	G = Y =		÷	G = 25. Y = 5	0	G Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	?5											C	ycle Leng	th C	= 9	90.0	ļ.	
Lane Group	of Lanes Group ne (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr stops/hr Extension ing EW Perm G = 55.0 Y = 5 ion of Analysis (hrs) = 0.2 Group Capacity, Co low rate group cap. tio n ratio delay d ₁ r factor k m. delay d ₂ ctor ol delay		Delay	, an	d L	OS D	eterr	nina	ation										
	Performed Period me and Timing Input of Lanes Group ne (vph) eavy veh ated (P/A) up lost time eff. green at type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr extension ing EW Perm G = 55.0 Y = 5 tion of Analysis (hrs) = 0. b Group Capacity, Co low rate group cap. ttio n ratio delay d ₁ / factor k m. delay d ₂ ctor 'ol delay group LOS ch. delay pach LOS iec. delay				E	В					WB				N	В			SB
Adj. flow rate	eavy veh ated (P/A) tup lost time eff. green 'al type Extension 'Bike/RTOR Volume $\stackrel{>}{\rightarrow}$ Width ing/Grade/Parking ing/hr stops/hr Extension sing EW Perm ng $G = 55.0$ Y = 5 ation of Analysis (hrs) = 0.2 e Group Capacity, Co flow rate $\stackrel{>}{\rightarrow}$ group cap. atio $\stackrel{>}{\rightarrow}$ n ratio delay d ₁ $\stackrel{>}{\rightarrow}$ y factor k $\stackrel{>}{\rightarrow}$ m. delay d ₂ actor		21		366	6	35		8	2	49	20			11				21
Lane group cap	э.		694		116	1	987		585	11	161	987			467	7			459
v/c ratio			0.03	}	0.3	2	0.04		0.01	0.	.21	0.02			0.02	2			0.05
Green ratio			0.61		0.6	1	0.61		0.61	0.	.61	0.61			0.28	3			0.28
Unif. delay d ₁			6.9		8.4	4	7.0		6.9	7	7.8	6.9			23.6	6			23.8
Delay factor k			0.11	'	0.1	1	0.11		0.11	0.	.11	0.11			0.11	1			0.11
Increm. delay c	Ime and Timing Input . of Lanes a Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume a Width ing/Grade/Parking ing/hr stops/hr Extension Sing EW Perm G = 55.0 ng $G = 55.0$ ng $Y = 5$ tion of Analysis (hrs) = 0.3 e Group Capacity, Co flow rate a group cap. atio en ratio delay d1 y factor k em. delay d2 actor rol delay a group LOS ch. delay oach LOS sec. delay		0.0)	0.	2	0.0	Ĩ	0.0	(0.1	0.0	T		0.0)			0.0
PF factor	and you consistent of the second		1.00	00	1.0	00	1.000)	1.000	1.	.000	1.000			1.00	00			1.000
Control delay			7.0)	8.	6	7.0		6.9		7.9	6.9			23.	6			23.8
Lane group LO	S		A		Α		A		Α		A	A			С				С
Apprch. delay					8.	4				1	7.8				23.	6			23.8
Approach LOS					A						A				С			1	С
Intersec. delay	e Group Jme (vph) leavy veh - Jated (P/A) tup lost time eff. green //al type Extension //Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EW Perm ing G = 55.0 Y = 5 ation of Analysis (hrs) = 0.2 Perm flow rate e group cap. atio en ratio . delay d1 ay factor k em. delay d2 actor trol delay s group LOS rch. delay roach LOS 'sec. delay				8.	8		Ť				Inters	ecti	on LOS				Í	А

HCS+™ Version 5.1

Generated: 12/8/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
Volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	16	2	0		0	0.05		0.05
	0.95	0.95	0.95		0.95	0.95		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2	ļ –			0	ļ	_
Flared Approach		N	1			N	1	
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR	1	LTR	1	L		R
v (vph)	75	0	1	18	1	0		6
C (m) (vph)	1611	1588	1	712	1	721		1073
v/c	0.05	0.00	İ	0.03		0.00		0.01
95% queue length	0.15	0.00	1	0.08	1	0.00		0.02
Control Delay	7.3	7.3	Ì	10.2	1	10.0		8.4
LOS	А	А	1	В	1	A		A
Approach Delay			1	10.2	5	<u> </u>	8.4	
Approach LOS				В			Α	

HCS+™ Version 5.1

Generated: 12/8/2005 9:44 AM

		TWO-WAY STO	P CONTRO	L SUMI	MAF	RY			
General Information			Site Inf	ormatio	on				
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	11/21/2005	5	Analysi	s Year			2005		
Analysis Time Period	AM								
Project Description			<u> </u>						
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Marlin Stree	t		
Intersection Orientation. E	asi-wesi		Sludy P	enoa (nis	s): (0.25			
Vehicle Volumes and A	djustments	E a ath a sea d						1	
Major Street	1	Eastbound				4		na I	6
wovernent		2				4	о Т		0 P
Volume	91	258	8			11	201		11
Peak-Hour Factor. PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	95	271	8	î		11	211		11
Percent Heavy Vehicles	2					2			
Median Type		•		Raised	curk)			
RT Channelized			0						0
Lanes	1	1	1			1	1		1
Configuration	L	Т	R			L	Т		R
Upstream Signal		0		Ĩ			0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
Volumo		1	10 R			L	2		R 24
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	1	4	10			0	3		25
Percent Heavy Vehicles	25	1	14			5	2		35
Percent Grade (%)		0					0		
Flared Approach		N		Í			N	1	
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, and	Level of Service						9		
Approach	Eastbound	Westbound	ļ	Northbo	und		5	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L		LTR				LTR	
v (vph)	95	11		15				28	
C (m) (vph)	1347	1284	ļ	577				692	
v/c	0.07	0.01	ļ	0.03				0.04	
95% queue length	0.23	0.03		0.08				0.13	ļ
Control Delay	7.9	7.8		11.4				10.4	ļ
LOS	А	A		В				В	
Approach Delay				11.4				10.4	
Approach LOS				В				В	

HCS+™ Version 5.1

Generated: 12/8/2005 9:46 AM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description			<u> </u>							
East/West Street: Mullet Ro	oad		North/So	outh Stre	eet:	Dave Nisber	t Drive			
Intersection Orientation: /v	orth-South		Study P	erioa (ni	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	1 .				Southbou	nd		-
Movement	1	2	3			4	5 T			6
Volumo	L	74	ĸ			L	10			R 2
Peak-Hour Factor PHF	0.95	0.05	0.05			0.05	40		(3) 05
Hourly Flow Rate, HFR	0.95	77	0.33			0.90	12			3
Percent Heavy Vehicles	2					20				
Median Type			Two	Wav Lei	ft Tur	n Lane	J			
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т	1				1			TR
Upstream Signal	1	0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	т	R			L	<u> </u>			R
Volume	4	0.05	53			0.05	0.05			05
Heak-Hour Factor, PHF	0.95	0.95	0.93			0.95	0.95		l	0.95
Percent Heavy Vehicles		0	2			0	0			0
Percent Grade (%)						-	0			-
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized	-	0	0				0			0
	0	0	0			0	0			0
Configuration		I P	·			0	<u> </u>			0
Delay, Queue Length, and	Level of Service	Couthbound		W/ooth o	u na d		<u> </u>	Faatha	und	
Approach	Northbound	Southbound	7	vesibo	buna	0	10		una 1	10
	1	4	/	0		9	10		 >	12
	L 01							50 50	`)	
C(m)(vph)	1563							09	י פ	
	0.06							900	6	
95% queue length	0.19							0.0	9	
Control Delay	7.4							8.9	~	
LOS	<u>А</u>		ļ					A		
Approach Delav								8.9		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:47 AM

		TWO-WAY STO	P CONTRO		ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		Mullett Rd	@ Scallop D)r
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street	Scallop Driv	/e		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	n.			Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type			-1	Raised cl	ırb			
RT Channelized		_	0			ļ		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0	,			0	,	
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
V a luna a	L		R					R
Volume Peak-Hour Factor, PHF	0.95	2 0.95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 95	0.95		0 0 05
Hourly Flow Rate, HFR	16	2	0.00		0	0.00		5
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2				0	ļ.	
Flared Approach		N				N		
Storage		0		Í		0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	75	0		18		0		5
C (m) (vph)	1611	1588		712		721		1073
v/c	0.05	0.00	1	0.03		0.00		0.00
95% queue length	0.15	0.00		0.08		0.00		0.01
Control Delay	7.3	7.3	1	10.2		10.0		8.4
LOS	А	А		В		А		A
Approach Delay			1	10.2		1	8.4	
Approach LOS				В			А	

HCS+™ Version 5.1

Generated: 12/8/2005 9:37 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
V - L	L	1	R			L				R
Volume	31	44	0.05			0.05	20			3
Heak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Houriy Flow Rate, HFR	32	40	0			20	21			3
Median Tune				Deiee	dour	20				
Nedian Type		1		Raise	a curi)	<u> </u>			0
		1	0			0	1			0
Configuration		- '	0			0	· · ·	<u> </u>		
	L/	0					0			IK
Opstream Signal							0			
Minor Street	7	Eastbound				10	Westbour	nd		10
wovernent		<u>о</u> Т	9 R			10	<u>і іі</u> Т			R
Volume	4	· · · · ·	16			<u> </u>	· ·			IX.
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	4	0	16			0	0			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0	2		
Flared Approach		N	ļ				N			
Storage		0					0			
RT Channelized			0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	32							20		
C (m) (vph)	1584		ļ					971	1	
v/c	0.02							0.0	2	
95% queue length	0.06							0.0	6	
Control Delay	7.3							8.8	}	
LOS	А							A		
Approach Delay								8.8		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:48 AM

							SHOF	RT REP	OR	T								
General Inform	nation							Site	e Inf	ormatio	on							
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A /2005 Peak	5				Inte Area Juris Ana	rsec a Ty sdic Ilysi:	ction /pe ction s Year			SR 4 All Pc 200	01 @ G other a ort Auth 05 - Exi	rouper reas ority sting			
Volume and T	iming Input																	
			- 1	EB		_		WE	3				NB			_	SB	
Num of Lanes			1	2		.1	1	2	1				0			+	0 0	
Lane Group				<u>_</u> Т	+	_	Ļ	 Τ	_	-				R		+	0	
Volume (vph)		İ		1456	5		3	55	_		50		1	0	1	╈		
% Heavy veh		2		2	2		2	2		2	2		2	2	2	Ť	2	2
PHF		0.9	5	0.95	; 0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0.95		0.95	0.95
Actuated (P/A)		Í		Α			Α	A		Í	A			A	1			
Startup lost tim	e			2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Ext. eff. green				2.0			2.0	2.0			2.0)	2.0	2.0			2.0	
Arrival type				3			3	3			3		3	3			3	
Unit Extension				3.0			3.0	3.0			3.0)	3.0	3.0			3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume			0	0		0	0		0	0		0	0	0		0	0
Lane Width	ane Width			12.0	<u>, </u>		12.0	12.0	0		12.	0	12.0	12.0	<u> </u>		12.0	
Parking/Grade/	ane Width arking/Grade/Parking			0	N	'	N	0		N	N		0	N	N	_	0	N
Parking/hr		┝								ļ						_		<u> </u>
Bus stops/hr		┢		0		_	0	0			0	<u> </u>	0	0		_	0	
Unit Extension	EW/ Porm			3.0			3.0	3.0				, 	3.0	3.0	07		3.0	08
Timing	G = 50.0) =	/2		03 G =		G =	:		G = 15	5.0	Ģ	00 ∋ =	G	=		G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		`	Y =		Y =	:		Y = 5		Y	' =	Y Th C =	= 75.0		Y =	
	Capacity. Cont	rol D	elav	/. an	d LOS	Det	ermir	nation						gui 0 =	70.0			
				,	EB					WB				NB				SB
Adj. flow rate					1533	Τ		3		58			53	0	0			0
Lane group cap).				2365	┢		145	2	365			354		317			
v/c ratio					0.65	Τ		0.02	C).02			0.15		0.00			
Green ratio					0.67	T		0.67	C).67			0.20	0.00	0.20	Ĩ		0.00
Unif. delay d ₁					7.3	Γ		4.2		4.2			24.7		24.0			
Delay factor k				ĺ	0.23			0.11	C).11			0.11		0.11			
Increm. delay c	l ₂				0.6			0.1		0.0			0.2		0.0			
PF factor					1.000			1.000	1	1.000			1.000		1.000)		
Control delay					8.0			4.3		4.2			24.9		24.0			
Lane group LO	S				Α			А		A			С		С			
Apprch. delay					8.0					4.2				24.9				
Approach LOS					A					Α				С				
Intersec. delay					8.4						Inters	sect	tion LOS			T		A

HCS+™ Version 5.1

Generated: 12/8/2005 9:32 AM
				SHOF	RT REP	ORT	Г										
Analyst Agency or Co. Date Performed Time Period	i	S.(G8 11/28/ AM F	C. A 2003 Peak	5				Inter Area Juris Ana	Info rsect a Typ sdicti lysis	tion be ion Year	<u>on</u>		SR 401 8 All Pc 20	& Charles other ar ort Autho 005 Exist	s Rowland eas rity ing	1	
Volume and Ti	ming Input	ĩ					<u>.</u>				_				1		
			- 1	EB TH		27		WE TH	3	RT	-	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	1	2		0	2		0	1	0	0	0
Lane Group			╡	Т	-	7	L	Т			L			R	1	1	
Volume (vph)			╡	1530	, ,	5	3	77			1			1		<u> </u>	
% Heavy veh		2	╡	2		2	2	2		2	2		2	2	2	2	2
PHF		0.95	5	0.95	0.	95	0.95	0.95		0.95	0.9	95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		٩	Α	Α			A			A			
Startup lost time	9			2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Ext. eff. green				2.0	2	0	2.0	2.0			2.	0	2.0	2.0	1	2.0	
Arrival type				3		3	3	3			3	2	3	3		3	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Ped/Bike/RTOR	ed/Bike/RTOR Volume)	0	0		0	C)	0	0	0	0	0
Lane Width	ane Width) 12	2.0	12.0	12.0	2		12	.0	12.0	12.0		12.0	
Parking/Grade/I	ane Width arking/Grade/Parking				/	V	N	0		Ν	Λ	1	0	N	N	0	N
Parking/hr	arking/Grade/Parking arking/hr																
Bus stops/hr				0		0	0	0			()	0	0		0	
Unit Extension				3.0	3	0	3.0	3.0			3.	0	3.0	3.0		3.0	
Phasing	EW Perm	0	2		0:	3		04		NB C	Only		06	6	07	G -	08
Timing	$Y = 5 \qquad Y$	/ =			Y =		Y =	-		Y = 5	.0		/ =	Y =	-	Y =	
Duration of Ana	llysis (hrs) = 0.25												Cycle Len	gth C =	80.0		
Lane Group	Capacity, Cont	rol D	elay	y, an	d LOS	Det	termir	nation								<u> </u>	
					EB				<u> </u>	WB				NB		<u> </u>	SB
Adj. flow rate				_	1611	┶	5	3	8	31			1	0	1		0
Lane group cap).				2439	10	088	137	24	139			644		297		
v/c ratio					0.66	0.	.00	0.02	0.	03			0.00		0.00		
Green ratio					0.69	0.	.69	0.69	0.	69			0.19	0.00	0.19		0.00
Unif. delay d ₁					7.2	3	3.9	4.0	4	.0			26.4		26.4		
Delay factor k					0.24	0.	.11	0.11	0.	11			0.11		0.11		
Increm. delay d	2	ĺ		ĺ	0.7		0.0	0.1	0	0.0			0.0		0.0		
PF factor					1.000	1.	.000	1.000	1.	000			1.000		1.000	Í	
Control delay					7.8		3.9	4.0	4	4.0			26.4		26.4		
Lane group LOS	S				A		A	А	/	A			С		С		
Apprch. delay					7.8				4	4.0				26.4		1	
Approach LOS		Ī			Α					A				С		1	
Intersec. delay					7.6						Inter	sec	tion LOS				А

HCS+™ Version 5.1

Generated: 12/8/2005 9:25 AM

							SHO	₹Т	REPC	DRT								
General Inforr	mation								Site I	nfor	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200 Peak	5					Inters Area Juriso Analy	sectio Type dictio vsis Y	on e on rear			George All Po 200	King @ . other are ort Author 05 - Exist	Atlantic eas ity ing		
Volume and T	iming Input								<u> </u>									
			-	EE	3	БТ			WB		DT			NB	DT		SB	
Num of Lanes			.1	1	1					+	1		┽	1		1 LI	1	
		<u> </u>	_		,		<i>'</i>		, τ	+	, P		┽	, 1 T	, P	,		
			3	130		82	14	┥	37	-	3	157	┽	21	96	2	6	18
% Heavy veh		2	,	2	, 	2	2	┥	2	-	2	2	┥	2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95		0.95	0).95	0.95	╉	- 0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		A		A	_	Α	A		Α	1	A	A	╈	A	Α	Α	A	Α
Startup lost tim	ie	2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0		2.0		Ť	2.0	2.0	2.0	2.0	
Arrival type	t. eff. green ival type it Extension d/Bike/RTOR Volume ne Width [•] king/Grade/Parking			3			3	T	3	Ť	3		Ť	3	3	3	3	
Unit Extension	it Extension d/Bike/RTOR Volume te Width			3.0)		3.0	ĺ	3.0	1	3.0		Ĩ	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	d/Bike/RTOR Volume ne Width			0		0	0		0	T	0	0	Ĩ	0	0	0	0	0
Lane Width	d/Bike/RTOR Volume ne Width rking/Grade/Parking		2.0	12.	0		12.0)	12.0	1	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	ne Width rking/Grade/Parking		I	0		N	Ν		0		Ν	N		0	Ν	N	0	Ν
Parking/hr	ne Width king/Grade/Parking king/hr																	
Bus stops/hr		C)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	;	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	0)4	6	NS Pe	erm	G	06	G	07	())8
Timing	Y = 5	Y = 5	; ;		Y =		Y =	-		Y	= 5	<u> </u>	Y =	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	.OS De	etermi	nati	ion				-				1	
			<u> </u>		6	EB		Ļ		W	/B				NB	1	<u> </u>	SB
Adj. flow rate			35		23	2		1	15	39	<u>'</u>	3			187	101	2	25
Lane group ca	р.		803	3	107	75		5	08	828	8	704			379	440	298	458
v/c ratio			0.04	4	0.2	22		0.	.03	0.0	5	0.00			0.49	0.23	0.01	0.05
Green ratio			0.6	1	0.6	61		0.	.44	0.44	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		7.	8		14	4.1	14.2	2	13.9			27.2	25.1	23.5	23.8
Delay factor k			0.1	1	0.1	11		0.	.11	0.1	1	0.11			0.11	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.1		(0.0	0.0	0	0.0			1.0	0.3	0.0	0.0
PF factor			1.0	00	1.0	000		1.	.000	1.00	00	1.000			1.000	1.000	1.000	1.000
Control delay			7.	1	7.	.9		1	4.1	14.	.2	13.9			28.2	25.3	23.5	23.9
Lane group LO	leavy veh ated (P/A) tup lost time eff. green val type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension sing EB Only ing $G = 10.0$ ($Y = 5$) ation of Analysis (hrs) = 0.25 Pe Group Capacity, Cont flow rate e group cap. Tatio en ratio . delay d ₁ ay factor k em. delay d ₂ factor trol delay e group LOS rch. delay roach LOS rsec. delay				A				В	В		В			С	С	С	С
Apprch. delay	he Width king/Grade/Parking king/hr s stops/hr t Extension asing EB Only ing $G = 10.0$ Y = 5 ation of Analysis (hrs) = 0.23 ne Group Capacity, Con filow rate le group cap. ratio f. delay d ₁ ay factor k rem. delay d ₂ factor trol delay e group LOS prch. delay				7.	.8				14.	.2				27.2			23.9
Approach LOS					/	4				В	3				С		<u> </u>	С
Intersec. delay			1		17	7.8						Interse	ctio	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:33 AM

		TWO-WAY STO	P CONTRO		IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T (00	R			L	T			R
Volume	56	183				0.05	51			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	58	192	0			0	53			0
Percent Heavy Vehicles	0					25				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume	0.05	0.05	0.05			0	0.05			16
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			0	0			16
Percent Reavy vehicles	0	0	2			0	10			12
Flared Approach		0 N	1				N N			
Storage		0					0			
RT Channelized			0				0			0
	0	0	0			1	0			1
			0			1	0			P
	<u> </u>		ļ			L				Λ
Delay, Queue Length, and	Level of Service	M/a ath a un al	r	N la utla la l						
Approach	Easibound	vvesibound	7		buna	0	10		una	10
	, ,	4	/	0		9	10			12
	L		 			ļ	L			R
v (vph)	58		ļ				0			16
C (m) (vph)	1566		ļ				638			987
v/c	0.04		ļ				0.00			0.02
95% queue length	0.12		ļ				0.00			0.05
Control Delay	7.4		ļ				10.6			8.7
LOS	А						В			А
Approach Delay							ļ	8.7		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 9:35 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	1		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound]			Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	168	314	ļ				186			26
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	176	330	0			0	195			27
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl	6				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11	\rightarrow		12
Valuma			R			L	<u> </u>			R
Volume Peak-Hour Factor, PHF	0.95	0.95	0.95			9	0.95			70 195
Hourly Flow Rate, HFR	0.55	0.00	0.00			0.00	0.00			82
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0					0			
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		1	0							0
Lanes	0	0	0	- í		1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L						L			R
v (vph)	176						9			82
C (m) (vph)	1344						389			807
v/c	0.13						0.02			0.10
95% queue length	0.45						0.07			0.34
Control Delay	8.1						14.5			10.0
LOS	А						В			А
Approach Delay								10.4	4	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 9:36 AM

							SH	OR'	T REPO	DR'	т								
General Inform	Sr SC SC or Co. G&A erformed 11/29/2005 priod AM Peak and Timing Input EB LT TH RT * Lanes 1 1 1 roup L T R (vph) 20 348 33 y veh 0 0 0					Site	nfo	ormatio	n										
Analyst Agency or Co. Date Performed Time Period	eral Information yst hey or Co. Performed Period me and Timing Input i. of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension Sing EW Perm G = 55.0 Ty = 5 tion of Analysis (hrs) = 0.2 e Group Capacity, Co flow rate			5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George I All Po 205	King othe ort Au 55 - E	@ F r are ithori Existi	lounder as ity ng		
Volume and T	ral Information st cy or Co. Performed Period me and Timing Input of Lanes Group ne (vph) avy veh avy veh tted (P/A) ap lost time aff. green al type Extension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr Extension ing EW Perm G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 g G = 55.0 group cap. Co ow rate group cap. group cap. Co tio n ratio delay d1																		
			- 1	E	3		\square		WB				_	NB				SB	
Num of Longo			-1	1			+			_			1	IH 1		< I		IH 1	
	ral Information rst cy or Co. Performed Period me and Timing Input of Lanes Group ne (vph) avy veh ated (P/A) up lost time off. green atted (P/A) up lost time off. green attension Bike/RTOR Volume Width ng/Grade/Parking ng/hr tops/hr Extension g EW Perm G = 55.0 g G = 55.0 g F = 5 ion of Analysis (hrs) = 0. e Group Capacity, Co low rate group cap. tio n ratio delay d1 r factor k m. delay d2 ctor ol delay group LOS ch, delay pach LOS			т Т	_		╋	1		_						,	0		0
	Paral Information yst icy or Co. Performed Period me and Timing Input . of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension ing G = 55.0 Y = 5 tion of Analysis (hrs) = 0. e Group Capacity, Co ilow rate group cap. atio n ratio delay d1 y factor k m. delay d2 actor rol delay group LOS ch. delay oach LOS			249	,	22	+	L 0	227	_	10	7		2	2	,	7		12
	eral Information yest ney or Co. Performed Period me and Timing Input . of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green al type Extension Bike/RTOR Volume PWidth ing/Grade/Parking ing/hr stops/hr Extension Sing EW Perm $G = 55.0$ $Y = 5$ tion of Analysis (hrs) = 0. Py for a fill on the second			040	, 	0	╋	0	237	_	19	/		2	2)	0	0	12
	eral Information yest cey or Co. Performed Period me and Timing Input of Lanes Group me (vph) eavy veh ated (P/A) up lost time eff. green at type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension Bike/RTOR Volume $G = 55.0$ $Y = 5$ tion of Analysis (hrs) = 0. $G = 55.0$ $Y = 5$ tion of Analysis (hrs) = 0. e Group Capacity, Co flow rate group cap. atio on ratio delay d1 y factor k m. delay d2 actor rol delay group LOS ch. delay oach LOS			0	5	0 95		0	0.95	_	0 95	0	5	0.95	0	, 25	0.95	0 95	0 95
Δ ctuated (P/ Δ)	Information lyst ncy or Co. a Performed a Group a Performed a			Δ	_	0.95 A	+	Δ	0.90	_	Δ	0.9		Δ	0.8	, ,	Δ	Δ	Δ
Startun lost tim	neral Information alyst ency or Co. e Performed e Period ume and Timing Input n. of Lanes e Group ume (vph) deavy veh F uated (P/A) rtup lost time . eff. green val type t Extension d/Bike/RTOR Volume ie Width king/Grade/Parking king/hr is stops/hr t Extension asing EW Perm G = 55.0 Y = 5 ation of Analysis (hrs) = 0.2 ne Group Capacity, Co flow rate e group cap. ratio f. delay d1 ay factor k rem. delay d2 factor mtrol delay e group LOS orch. delay orcach LOS			20	,	2.0		20	20	_	20			20				20	
	neral Information alyst ency or Co. e Performed he Period ume and Timing Input ume and Timing Input m. of Lanes he Group ume (vph) deavy veh F uated (P/A) rtup lost time . eff. green val type t Extension d/Bike/RTOR Volume width king/Grade/Parking king/hr asing EW Perm G = 55.0 Y = 5 ration of Analysis (hrs) = 0.2 ne Group Capacity, Co . flow rate he group cap. ratio . flow rate he group cap. ratio f. delay d1 ay factor k rem. delay d2 factor http://deav/day proach LOS oroach LOS		0	2.0	,	2.0		2.0	2.0	_	2.0	┼─		2.0				2.0	
Arrival type	Image: analysis incy or Co. e Performed e Period ume and Timing Input in. of Lanes e Group ume (vph) Heavy veh = uated (P/A) rtup lost time eff. green val type t Extension //Bike/RTOR Volume e Width king/Grade/Parking king/hr estops/hr t Extension ing EW Perm G = 55.0 ing G = 55.0 ing For a f		2	.3		.3	+	.3	3	_	.3	┢		3	┢			.3	
Unit Extension	neral Information alyst ency or Co. te Performed the Period ume and Timing Input m. of Lanes the Group ume (vph) Heavy veh F uated (P/A) rtup lost time . eff. green val type t Extension J/Bike/RTOR Volume ne Width king/Grade/Parking king/hr s stops/hr t Extension asing EW Perm G = 55.0 Y = 5 ration of Analysis (hrs) = 0.2 ne Group Capacity, Co . flow rate ne group cap. ratio . flow rate ne group cap. ratio factor ntrol delay d1 ay factor k rem. delay d2 factor ntrol delay oroach LOS		0	3.0	,	3.0		3.0	3.0	-	3.0	-		3.0	<u> </u>			3.0	
Ped/Bike/RTO	neral Information alyst ency or Co. te Performed he Period ume and Timing Input m. of Lanes he Group ume (vph) Heavy veh F uated (P/A) rtup lost time . eff. green ival type t Extension J/Bike/RTOR Volume he Width rking/Grade/Parking rking/hr s stops/hr t Extension asing EW Perm G = 55.0 Y = 5 ration of Analysis (hrs) = 0.2 ne Group Capacity, Co . flow rate he group cap. ratio . flow rate he group cap. ratio f. delay d1 ay factor k rem. delay d2 factor htrol delay he group LOS orch. delay oroach LOS)	0		0	+	0	0	_	0	0		0	0)	0	0	0
Lane Width	alyst alyst ency or Co. te Performed he Period tume and Timing Input m. of Lanes he Group ume (vph) Heavy veh F uated (P/A) rtup lost time . eff. green t Extension d/Bike/RTOR Volume he Width 'king/Grade/Parking 'king/hr 's stops/hr t Extension asing EW Perm G = 55.0 'ration of Analysis (hrs) = 0.2 ne Group Capacity, Co . flow rate he group cap. ratio f. delay d1 ay factor k rem. delay d2 factor het group LOS orch. delay orcach LOS orcach LOS			12.	0	12.0	1	12.0	12.0	_	12.0			12.0				12.0	
Parking/Grade/	t Extension d/Bike/RTOR Volume ne Width king/Grade/Parking king/hr s stops/hr		/	0		Ν	╈	Ν	0		N	N		0	Λ	/	N	0	N
Parking/hr	alyst ency or Co. e Performed le Period ume and Timing Input n. of Lanes le Group ume (vph) deavy veh F uated (P/A) rtup lost time . eff. green val type t Extension d/Bike/RTOR Volume le Width king/Grade/Parking king/hr s stops/hr t Extension asing EW Perm G = 55.0 Y = 5 ation of Analysis (hrs) = 0.2 ne Group Capacity, Con f delay d1 ay factor k rem. delay d2 factor htrol delay ue group LOS prch. delay proach LOS				Ī		╈					\square							
Bus stops/hr	e Performed e Period ume and Timing Input n. of Lanes e Group ume (vph) deavy veh = uated (P/A) rtup lost time eff. green val type : Extension //Bike/RTOR Volume e Width king/Grade/Parking king/hr = stops/hr : Extension ising EW Perm ising EW Perm ising G = 55.0 ry = 5 ation of Analysis (hrs) = 0.2 he Group Capacity, Cor flow rate e group cap. ratio en ratio i. delay d ₁ ay factor k em. delay d ₂ factor trol delay e group LOS rrch. delay)	0		0		0	0		0			0				0	
Unit Extension	e Width king/Grade/Parking king/hr stops/hr Extension		0	3.0	,	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm		02		_	03		_	04	Ţ	NS Pe	erm		06		~	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		,	G = Y =		÷	G = 25. Y = 5	0	G Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	?5											C	ycle Leng	th C	= 9	90.0	ļ.	
Lane Group	Capacity, Co	ntrol [Delay	, an	d L	OS D	eterr	nina	ation										
					E	В					WB				N	В			SB
Adj. flow rate			21		366	6	35		8	2	49	20			11				21
Lane group cap	э.		694		116	1	987		585	11	161	987			467	7			459
v/c ratio			0.03	}	0.3	2	0.04		0.01	0.	.21	0.02			0.02	2			0.05
Green ratio			0.61		0.6	1	0.61		0.61	0.	.61	0.61			0.28	3			0.28
Unif. delay d ₁			6.9		8.4	4	7.0		6.9	7	7.8	6.9			23.6	6			23.8
Delay factor k			0.11	'	0.1	1	0.11		0.11	0.	.11	0.11			0.11	1			0.11
Increm. delay c	J ₂		0.0)	0.	2	0.0	Ĩ	0.0	(0.1	0.0	T		0.0)			0.0
PF factor	iated (P/A) tup lost time eff. green /al type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/hr stops/hr Extension ing EW Perm ing G = 55.0 ing G = 55.0 ing Y = 5 ation of Analysis (hrs) = 0.25 te Group Capacity, Con flow rate e group cap. ratio . delay d1 ay factor k em. delay d2 actor trol delay e group LOS rch. delay roach LOS			00	1.0	00	1.000)	1.000	1.	.000	1.000			1.00	00			1.000
Control delay	e Group ime (vph) eavy veh eavy veh inated (P/A) tup lost time eff. green /al type Extension /Bike/RTOR Volume e Width king/Grade/Parking king/Grade/Parking king/fr stops/hr Extension sing EW Perm ing G = 55.0 ing Y = 5 ation of Analysis (hrs) = 0.24 Pe Group Capacity, Con flow rate e group cap. ratio . delay d1 ay factor k em. delay d2 actor trol delay e group LOS rch. delay roach LOS)	8.	6	7.0		6.9		7.9	6.9			23.	6			23.8
Lane group LO	yst hey or Co. Performed Period me and Timing Input an of Lanes Group me (vph) eavy veh ated (P/A) tup lost time eff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension Sing EW Perm G = 55.0 T = 5 tion of Analysis (hrs) = 0 a Group Capacity, Co flow rate a group cap. atio en ratio delay d ₁ y factor k em. delay d ₂ actor irol delay a group LOS rch. delay roach LOS sec. delay		A		Α		A		Α		A	A			С				С
Apprch. delay	Incy or Co. Performed Period me and Timing Input in of Lanes Group me (vph) eated (P/A) up lost time eaff. green al type Extension Bike/RTOR Volume Width ing/Grade/Parking ing/hr stops/hr Extension ing Extension ing G = 55.0 ing G = 55.0 ing G = 55.0 ing G = 55.0 ing G = 55.0 ing G = 55.0 ing G = 55.0 ing G = 55.0 ing and the second				8.	4				1	7.8				23.	6			23.8
Approach LOS	Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime and Timing Input Ime (vph) earced (P/A) tate (P/A) tate (P/A) tate (P/A) tate (P/A) tate (P/A) tate (P/A) tate (P/A) tate (P/A)				A						A				С			1	С
Intersec. delay					8.	8		Ť				Inters	ecti	on LOS				Í	А

HCS+™ Version 5.1

Generated: 12/8/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
Volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	16	2	0		0	0.05		0.05
	0.95	0.95	0.95		0.95	0.95		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2	ļ –			0	ļ	_
Flared Approach		N	1			N	1	
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR	1	LTR	1	L		R
v (vph)	75	0	1	18	1	0		6
C (m) (vph)	1611	1588	1	712	1	721		1073
v/c	0.05	0.00	İ	0.03		0.00		0.01
95% queue length	0.15	0.00	1	0.08	1	0.00		0.02
Control Delay	7.3	7.3	Ì	10.2	1	10.0		8.4
LOS	А	А	1	В	1	A		A
Approach Delay			1	10.2	5	<u> </u>	8.4	
Approach LOS				В			Α	

HCS+™ Version 5.1

Generated: 12/8/2005 9:44 AM

		TWO-WAY STO	P CONTRO	L SUMI	MAF	RY			
General Information			Site Inf	ormatio	on				
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	11/21/2005	5	Analysi	s Year			2005		
Analysis Time Period	AM								
Project Description			<u> </u>						
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Marlin Stree	t		
Intersection Orientation. E	asi-wesi		Sludy P	enoa (nis	s): (0.25			
Vehicle Volumes and A	djustments	E a ath a sea d						1	
Major Street	1	Eastbound				4		na I	6
wovernent		2				4	о Т		0 P
Volume	91	258	8			11	201		11
Peak-Hour Factor. PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	95	271	8	î		11	211		11
Percent Heavy Vehicles	2					2			
Median Type		•		Raised	curk)			
RT Channelized			0						0
Lanes	1	1	1			1	1		1
Configuration	L	Т	R			L	Т		R
Upstream Signal		0		Ĩ			0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
Volumo		1	10 R			L	2		R 24
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	1	4	10			0	3		25
Percent Heavy Vehicles	25	1	14			5	2		35
Percent Grade (%)		0					0		
Flared Approach		N		Í			N	1	
Storage		0					0		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration		LTR					LTR		
Delay, Queue Length, and	Level of Service						9		
Approach	Eastbound	Westbound	ļ	Northbo	und		5	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L	L		LTR				LTR	
v (vph)	95	11		15				28	
C (m) (vph)	1347	1284	ļ	577				692	
v/c	0.07	0.01	ļ	0.03				0.04	
95% queue length	0.23	0.03		0.08				0.13	ļ
Control Delay	7.9	7.8		11.4				10.4	ļ
LOS	А	A		В				В	
Approach Delay				11.4				10.4	
Approach LOS				В				В	

HCS+™ Version 5.1

Generated: 12/8/2005 9:46 AM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2005			
Analysis Time Period	AM									
Project Description			<u> </u>							
East/West Street: Mullet Ro	oad		North/So	outh Stre	eet:	Dave Nisber	t Drive			
Intersection Orientation: /v	orth-South		Study P	erioa (ni	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	1 .				Southbou	nd		-
Movement	1	2	3			4	5 T			6
Volumo	L	74	ĸ			L	10			R 2
Peak-Hour Factor PHF	0.95	0.05	0.05			0.05	40		(3) 05
Hourly Flow Rate, HFR	0.95	77	0.33			0.90	12			3
Percent Heavy Vehicles	2					20				
Median Type			Two	Wav Lei	ft Tur	n Lane	J			
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т	1				1			TR
Upstream Signal	1	0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	т	R			L	<u> </u>			R
Volume	4	0.05	53			0.05	0.05			05
Heak-Hour Factor, PHF	0.95	0.95	0.93			0.95	0.95		l	0.95
Percent Heavy Vehicles		0	2			0	0			0
Percent Grade (%)						-	0			-
Flared Approach		N	1				N			
Storage		0					0			
RT Channelized		0	0				0			0
	0	0	0			0	0			0
Configuration		I P	·			0	<u> </u>			0
Delay, Queue Length, and	Level of Service	Couthbound		W/ooth o	u na d		<u> </u>	Faatha	und	
Approach	Northbound	Southbound	7	vesibo	buna	0	10		una 1	10
	1	4	/	0		9	10		 >	12
	L 01							50 50	`)	
C(m)(vph)	1563							08	י פ	
	0.06							900	6	
95% queue length	0.19							0.0	9	
Control Delay	7.4							8.9	~	
LOS	<u>А</u>		ļ					A		
Approach Delav								8.9		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 9:47 AM

		TWO-WAY STO	P CONTRO		ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		Mullett Rd	@ Scallop D)r
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2005		
Analysis Time Period	AM							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street	Scallop Driv	/e		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	n.			Westbour	nd	
Movement	1	2	3		4	5		6
		T	R			T		R
volume	/2	4	21		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	75	4	22		0	9		0
Percent Heavy Vehicles	2				2			
Median Type			-1	Raised cl	ırb			
RT Channelized		_	0			ļ		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0	,			0	,	
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
V a luna a	L		R					R
Volume Peak-Hour Factor, PHF	0.95	2 0.95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 95	0.95		0 0 05
Hourly Flow Rate, HFR	16	2	0.00		0	0.00		5
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)	1	2				0	ļ.	
Flared Approach		N				N		
Storage		0		Í		0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	75	0		18		0		5
C (m) (vph)	1611	1588		712		721		1073
v/c	0.05	0.00	1	0.03		0.00		0.00
95% queue length	0.15	0.00		0.08		0.00		0.01
Control Delay	7.3	7.3	1	10.2		10.0		8.4
LOS	А	А		В		A		A
Approach Delay			Ī	10.2		1	8.4	
Approach LOS				В			А	

HCS+™ Version 5.1

Generated: 12/8/2005 9:37 AM

Appendix D

HCS Worksheets – Future Conditions, Opening Year (2010)

		TWO-WAY STOP	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop F	Road		North/So	outh Str	eet:	Dave Nisber	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	4				Southbou	nd		
Movement	1	2	3			4	5			6
	L	т	R			L	Т			R
Volume	101	146					84			3
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	106	153	0			0	88			3
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk)				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT									TR
Upstream Signal	ĺ	0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
		T	R			L	T			R
Volume Peak-Hour Factor, PHF	5	0.05	61			0.05	0.05) 05
Hourly Flow Rate HFR	5	0.95	64			0.90	0.95			0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0				-	0			-
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	106							69		
C (m) (vph)	1498							903	3	
v/c	0.07							0.08	8	
95% queue length	0.23							0.23	5	
Control Delay	7.6							9.3		
LOS	А							Α		
Approach Delay								9.3		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 1:35 PM

				SHOP	RT F	REPC	ORT										
General Inform	nation							_	Site	nformat	ior	1					
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A k/200 Peak	5					Inters Area Juriso Analy	ection Type diction vsis Year			SR 4 All Po	01 @ Gr other are ort Autho 2010	ouper eas rity		
Volume and T	iming Input																
			- 1	EE	3			_	WB				NB			SB	
Num of Lanes				2	1		1 LI	╈	2 1H		╡	1	0 0				
Lane Group			\dashv	T			Ĺ	╈	<u>_</u> Т		1	, 		R		Ŭ	
Volume (vph)		┢	\neg	1688	8		3	╈	64	+		70	1	0			
% Heavy veh		2	-	2		2	2	╈	2	2	Ť	2	2	2	2	2	2
PHF		0.9	5	0.95	5	0.95	0.95	Ť	0.95	0.95	Ť	0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		Í		Α			A		А		Ĩ	А		A	1		
Startup lost tim	е	Î	Ī	2.0			2.0		2.0		Í	2.0	2.0	2.0	ĺ	2.0	
Ext. eff. green				2.0			2.0		2.0			2.0	2.0	2.0		2.0	
Arrival type				3			3		3			3	3	3		3	
Unit Extension				3.0			3.0		3.0			3.0	3.0	3.0		3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume					0	0		0	0		0	0	0	0	0	0
Lane Width	ane Width				0		12.0		12.0			12.0	12.0	12.0		12.0	
Parking/Grade/	ane width arking/Grade/Parking				_	Ν	N	4	0	N		N	0	N	N	0	N
Parking/hr		┝	_		\rightarrow			+							<u> </u>		
Bus stops/hr		┢	\rightarrow	0			0	+	0		_	0	0	0		0	
Unit Extension	EW/ Porm		12	3.0		02	3.0		3.0			3.0	3.0	3.0	07	3.0	
Timing	G = 50.0) =)2		G =	05	G =	=	4	G = 1	5.0) (G =	G =	:	G =	00
Duration of Ana	Y = 5 $Y = 0.25$	′ =		[_]	Y =		Y =			Y = 5		`	Y = Cycle Leni	Y =	75.0	Y =	
Lane Group	Capacity. Cont	rol D)elav	/. an	d L	OS De	termir	nati	on					gui 0 =	10.0		
				,,	E	B			•	WB				NB			SB
Adj. flow rate				ĺ	177	7		3	3	67	Т		74	0	0		0
Lane group cap).				236	5		9	9	2365	Ť		354		317		1
v/c ratio					0.75	5		0.0	03	0.03	ſ		0.21		0.00	ĺ	
Green ratio					0.67	7		0.6	67	0.67	ĺ		0.20	0.00	0.20		0.00
Unif. delay d ₁					8.3	3		4.	.3	4.2	Γ		25.0		24.0		
Delay factor k					0.31	1		0.1	11	0.11	Γ		0.11		0.11		
Increm. delay c	l ₂				1.4	4		0). 1	0.0			0.3		0.0		
PF factor					1.00	00		1.0	000	1.000			1.000		1.000		
Control delay					9.7	7		4	1.4	4.3			25.3		24.0		
Lane group LO	S				Α			A	4	А			С		С		
Apprch. delay					9.1	7				4.3				25.3			
Approach LOS					A					Α				С			
Intersec. delay					10.	.1					I	ntersec	tion LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 9:53 AM

	neral Information									OR	Т							
General Inform Analyst Agency or Co. Date Performed Time Period	nation	S. Ga 11/28 AM	.C. &A 8/200 Peak	95 K					Site Inter Area Juris Anal	Info sect Typ dict	tion pe ion Year	<u>on</u>		SR 401 8 All Pc	Charles other are ort Author 2010	Rowland eas rity	1	
Volume and T	iming Input	1										_				1		
			т	EE	3	RT	_	ΙТ	WE TH		RT	<u> </u>	т	NB TH	RT		SB TH	RT
Num. of Lanes		0		2		1	╈	1	2		0	2	<u> </u>	0	1	0	0	0
Lane Group		İ –		Т		R	╈	L	Т			L		<u> </u>	R		<u> </u>	
Volume (vph)		Í		178	2	6	Ť	3	101	Ĩ		30)	1	1	1	1	
% Heavy veh		2		2		2	Т	2	2	T	2	2		2	2	2	2	2
PHF		0.9	95	0.95	5	0.95	Т	0.95	0.95	T	0.95	0.9	5	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		ĺ		Α		A	T	Α	Α	T		A		Î	A		ĺ	
Startup lost tim	e	ĺ		2.0	,	2.0	T	2.0	2.0	T		2.)	2.0	2.0		2.0	
Ext. eff. green		ĺ		2.0	,	2.0	T	2.0	2.0	T		2.)	2.0	2.0		2.0	
Arrival type				3		3	T	3	3			3		3	3		3	
Unit Extension				3.0	,	3.0	Т	3.0	3.0	Τ		3.)	3.0	3.0		3.0	
Ped/Bike/RTOF	ed/Bike/RTOR Volume					0	T	0	0	T	0	0		0	0	0	0	0
Lane Width	ane Width				0	12.0	, T	12.0	12.0)		12	.0	12.0	12.0		12.0	
Parking/Grade/	ane Width arking/Grade/Parking					N		Ν	0		Ν	Ν		0	N	N	0	Ν
Parking/hr	arking/Grade/Parking arking/hr																	
Bus stops/hr		ļ		0		0		0	0			0)	0	0	<u> </u>	0	
Unit Extension				3.0		3.0		3.0	3.0			3.)	3.0	3.0		3.0	
Phasing	EW Perm	()2		6 -	03		6 -	04		NB C	Only		06	C _	07	<u> </u>	08
Timing	Y = 5 Y	(=		\dashv	<u>Ч</u> =			Y =			Y = 5	.0		/ =	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.25			Ĵ									0	Cycle Leng	gth C =	80.0		
Lane Group	Capacity, Cont	rol	Dela	y, ar	nd L	.OS D)ete	rmin	ation									
					6	EB					WB				NB	î		SB
Adj. flow rate					187	76	6		3	1	06			32	0	1		0
Lane group cap).				243	39	108	8	93	24	439			644		297		
v/c ratio					0.7	77	0.0	1	0.03	0.	.04			0.05		0.00		
Green ratio					0.6	59	0.6	9	0.69	0.	.69			0.19	0.00	0.19		0.00
Unif. delay d ₁					8.	3	3.9	9	4.0	4	4.0			26.7		26.4		
Delay factor k					0.3	32	0.1	1	0.11	0.	.11			0.11		0.11		
Increm. delay c	l ₂				1.	.6	0.0	0	0.1	(0.0			0.0		0.0		
PF factor					1.0	000	1.0	00	1.000	1.	.000			1.000		1.000		
Control delay					9	.8	3.9	9	4.1	4	4.0			26.7		26.4		
Lane group LO	S				A		Α		А	,	A			С		С		
Apprch. delay					9	.8				4	4.0				26.7		1	
Approach LOS					ļ	4					Α				С			
Intersec. delay					9	.8						Inter	sect	ion LOS				A

HCS+™ Version 5.1

Generated: 12/8/2005 9:49 AM

							SHOP	RT	REPC	DRT	Г							
General Inforr	mation								Site	Info	ormatio	n						
Analyst Agency or Co. Date Performe Time Period	d	G G 11/29 AM	SC &A 9/200: Peak	5					Inters Area Juriso Analy	sect Typ dicti ysis	tion be ion Year			George All Pc	e King @ other are ort Autho 2010	Atlantic eas rity		
Volume and T	iming Input																	
			T	EE	3	рт			WB	_	PT			NB	БТ		SB	рт
Num of Lanes		1	.1	1	1		1	_	1	╈	1			1	1	1	1	
Lane Group				TR	,		,	_	T	╈	R			, 1 T	R		TR	<u> </u>
Volume (vph)		38	3	161	1	110	16		43	╈	3	216		24	111	2	7	21
% Heavy veh		2		2		2	2		2	╈	2	2		2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95	;	0.95	╈	0.95	0.95	;	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		A		A		A	A		Α	Ť	A	A		A	A	A	A	А
Startup lost tim	ie	2.	0	2.0)		2.0		2.0	Ť	2.0			2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0	Ť	2.0			2.0	2.0	2.0	2.0	
Arrival type		3		3			3		3	Ť	3			3	3	3	3	
Unit Extension		3.	0	3.0)		3.0		3.0	Ť	3.0			3.0	3.0	3.0	3.0	
Ped/Bike/RTO	d/Bike/RTOR Volume			0		0	0		0	Ť	0	0		0	0	0	0	0
Lane Width	ne Width rking/Grade/Parking		.0	12.	0		12.0)	12.0	Ť	12.0			12.0	12.0	12.0	12.0	
Parking/Grade	rking/Grade/Parking		′	0		N	Ν		0		Ν	N		0	N	Ν	0	Ν
Parking/hr	rking/Grade/Parking																	
Bus stops/hr		0)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0		3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm		<u>G</u> –	03	G -	- (04		NS Pe	erm	G	06	G -	07	(G -)8
Timing	Y = 5	Y = 5	0.0		Y =		Y =	-			Y = 5	0	Y	=	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	5											С	ycle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	/, an	ld L	.OS De	etermi	nat	ion				Ĩ					
					6	EB				\ 	WB				NB	1	ļ	SB
Adj. flow rate			40		28	5			17	4	15	3			252	117	2	29
Lane group ca	р.		800)	106	69		4	84	82	28	704			376	440	242	459
v/c ratio			0.05	5	0.2	?7		0	.04	0.	05	0.00			0.67	0.27	0.01	0.06
Green ratio			0.61	1	0.6	61		0	.44	0	44	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.1		8.	1		1.	4.1	14	4.2	13.9			28.8	25.3	23.5	23.9
Delay factor k			0.11	1	0.1	1		0	.11	0.	11	0.11			0.24	0.11	0.11	0.11
Increm. delay o	d ₂		0.0)	0.	.1			0.0	C	0.0	0.0			4.6	0.3	0.0	0.1
PF factor			1.00	00	1.0	000		1.	.000	1.	000	1.000			1.000	1.000	1.000	1.000
Control delay			7.1	1	8	.3		1	14.1	1.	4.3	13.9			33.4	25.7	23.5	23.9
Lane group LO	S		A		A				В	E	В	В			С	С	С	С
Apprch. delay					8	.1				1.	4.2				31.0			23.9
Approach LOS					/	4					В				С			С
Intersec. delay					19	9.9		Γ				Interse	ecti	on LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 1:23 PM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analvst	M Tobin		Intersed	ction			GKB @ C	Columb	us Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Stre	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (hi	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L	T			R
Volume	65	212					59			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	68	223	0			0	62			0
Percent Heavy Vehicles	2					25				
Median Type				Raised	d curk	0		u.		
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0	1				0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
		T	R			L	T			R
Volume	0.05	0.05	0.05			0	0.05			19
	0.95	0.95	0.95			0.95	0.95			20
Percent Heavy Vehicles	6	0	2			2	16			12
Percent Grade (%)		0	ļ			_	0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized	1	1	0	Í						0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northbo	ound		5	Southbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L		1	/			L			R
v (vph)	68		1				0			20
C (m) (vph)	1541		1	/			594			975
v/c	0.04						0.00			0.02
95% queue length	0.14						0.00			0.06
Control Delay	7.4						11.1			8.8
LOS	А						В			А
Approach Delay								8.8		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 1:26 PM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormati	ion					
Analyst	M Tobin		Intersed	ction			GKB @ Da	ave Nis	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Stre	eet:	Dave Nisbet	t Drive			
	asi-wesi		Sludy P	enou (ni	5).	0.25				
Vehicle Volumes and A	djustments							1		
Major Street	1	Eastbound				4	Westbour	nd		6
wovernent		2				4	о Т			0 P
Volume	251	448				<u> </u>	241			44
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	264	471	0			0	253			46
Percent Heavy Vehicles	2			Î		0		T I		
Median Type		<u>.</u>		Raised	d curk	b				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
Volumo			R			21	'			R 122
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(1.95
Hourly Flow Rate, HFR	0	0	0			22	0			138
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0	-	Î			0			
Flared Approach		N					N			
Storage		0		Ĩ			0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northbo	bund		Ś	Southb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L						L			R
v (vph)	264						22			138
C (m) (vph)	1259						262			740
v/c	0.21						0.08			0.19
95% queue length	0.79						0.27			0.68
Control Delay	8.6						20.0			11.0
LOS	А						С			В
Approach Delay								12.2	2	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 1:27 PM

							SI	HOR	TRFP	OR	т								
General Inform	mation								Site	Inf	ormatio	n							
Analyst Agency or Co. Date Performe Time Period	d	G 11/29 AM	SC &A 9/200 Peak	5					Inte Area Juri Ana	rsec a Ty sdic Iysi:	ction /pe :tion s Year			George All Po	King othe rt Au 20	@ F r are ithori 10	lounder as ity		
Volume and T	iming Input																		
			_	E	B . 1				W	B				NB				SB	
Num of Longo			_1		-	RI	+			-	RI		. I			<u>xı</u>			
				7 													0		0
			2	12	1	К 112	+	20	20/	1	22	11	<u>,</u>	2	6		0		11
		2	3)	424	+	0	+	20	0		22			2))	0	0	0
			, 25	00	5	0 95		0 95	0.0	5	0.95	0.0	05	0.95	0	, 25	0.95	0.95	0 95
Actuated (P/A)			, <u>,</u>	Δ		0.30 A	+	<u>۵.50</u>	Δ		Δ	0.0 4		Δ	0.0	<u>, 100</u>	Δ	Δ	Δ
Startup lost tim)e	2	0	20)	20	╋	2.0	20)	20			20	L /			20	
Ext eff green		2.	0	2.0	,)	2.0	╋	2.0	2.0	,)	2.0	┼─		2.0	┢			2.0	
Arrival type			3			0		3	3		3	1		3	┢			3	
Unit Extension		3.	0	3.0)	3.0	╈	3.0	3.0)	3.0	┼─		3.0				3.0	
Ped/Bike/RTO	d/Bike/RTOR Volume)	0	_	0	╧	0	0		0	0		0	C)	0	0	0
Lane Width	ine Width		2.0	12.	0	12.0	,	12.0	12.	0	12.0	┼		12.0				12.0	
Parking/Grade	ne Width rking/Grade/Parking		/	0		N	╈	Ν	0		N	^	1	0	٨	J	N	0	N
Parking/hr	rking/Grade/Parking rking/hr																		
Bus stops/hr		()	0		0	Ĩ	0	0		0	Ĺ		0				0	
Unit Extension		3.	0	3.0)	3.0		3.0	3.0)	3.0			3.0				3.0	
Phasing	EW Perm	(02		~	03			04		NS P	erm		06		<u> </u>	07		08
Timing	G = 55.0 Y = 5	G = Y =		\dashv	G = Y =		_	G = Y =			G = 25 Y = 5	.0	Y	=		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	5		Í				p					С	ycle Leng	th C	= 9	90.0	μ	
Lane Group	Capacity, Co	ntrol [Delay	y, an	nd L	OS D	eter	rmin	ation									î	
					E	ΞB					WB				Ν	В			SB
Adj. flow rate			24		44	6	118	}	29	3	320	23			26				24
Lane group ca	р.		627	7	116	61	987	, 	516	1	161	987			441	1			456
v/c ratio			0.0	4	0.3	88	0.12	2	0.06	C).28	0.02			0.06	6			0.05
Green ratio			0.6	1	0.6	61	0.61	1	0.61	C	0.61	0.61			0.28	8			0.28
Unif. delay d ₁			7.0)	8.9	9	7.3		7.0	ł	8.2	6.9			23.9	9			23.8
Delay factor k			0.1	1	0.1	1	0.11	1	0.11	C).11	0.11			0.1	1			0.11
Increm. delay o	d ₂		0.	0	0.	.2	0.1	1	0.0		0.1	0.0			0.1	1			0.0
PF factor			1.0	00	1.0	000	1.00	00	1.000	1	.000	1.000)		1.00	00			1.000
Control delay			7.	0	9.	.1	7.4	4	7.1		8.3	6.9			23.	9			23.9
Lane group LC	S		A		A		A		A		A	Α			С				С
Apprch. delay					8.	.7					8.1				23.	9			23.9
Approach LOS					/	4					A				С				С
Intersec. delay					9.	.2						Inters	secti	on LOS					A

HCS+™ Version 5.1

Generated: 12/8/2005 1:25 PM

		TWO-WAY STO	P CONTRO	LSUMM	ARY			
General Information			Site Inf	ormation	า			
Analyst	M Tobin		Intersed	ction		George Kir	ng @ Jetty P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	11/21/2005	5	Analysi	s Year		2010		
Analysis Time Period	AM							
Project Description								
East/West Street: George I	King Blvd		North/So	outh Street	:			
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbou	nd	
Movement	1	2	3		4	5		6
	L		R			T (0		R
Volume	83	5	24		0	10		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	87	5	25		0	10		0
Percent Heavy venicles	2			Deieede	Z			
Median Type				Raised C	urb	1		
RT Channelized			0			<u> </u>		0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	10
Movement	7	8 T	9		10			12
Volume	10 	2	R O			<u> </u>		R 6
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	20	2	0		0	0		6
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		2				0		
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service		4			4		
Approach	Eastbound	Westbound		Northbour	nd		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	87	0		22		0		6
C (m) (vph)	1610	1583		685		693		1071
v/c	0.05	0.00		0.03		0.00		0.01
95% queue length	0.17	0.00	ĺ	0.10		0.00		0.02
Control Delay	7.4	7.3	1	10.4		10.2		8.4
LOS	А	A		В		В		А
Approach Delay				10.4			8.4	
Approach LOS				В			A	

HCS+™ Version 5.1

Generated: 12/8/2005 1:30 PM

		TWO-WAY STO	P CONTRO	L SUMMA	ARY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersec	ction		GKB @ Ma	arlin	1
Agency/Co.	GA		Jurisdic	tion		Port Canav	veral	
Date Performed	11/21/2005	5	Analysi	s Year		2010		
Analysis Time Period	AM							
Project Description	<i></i>		b b b b b b b b b b					
East/West Street: George I	King Blvd		North/So	outh Street:	Marlin Stree	et		
Intersection Orientation: E	asi-wesi		Sludy P	enoa (nrs):	0.25			
Vehicle Volumes and A	djustments			1			1	
Major Street	1	Eastbound			4		na	6
wovernent		<u>Z</u>	3 P		4	о 5 Т		0 P
Volume	105	310	19		14	247		1.3
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	110	326	20		14	260		13
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb	•		
RT Channelized			0					0
Lanes	1	1	1		1	1		1
Configuration	L	Т	R		L	Т		R
Upstream Signal		0				0		
Minor Street		Northbound	2	ļ		Southbou	nd	
Movement	7	8	9		10	11		12
Valuma	L	5	R 16		L			R
Peak-Hour Factor PHF	0.95	0.95	0.95		0.95	0.95		20
Hourly Flow Rate, HFR	16	5	16		0	3		29
Percent Heavy Vehicles	25	1	14		5	2		35
Percent Grade (%)		0				0		
Flared Approach		N				N		
Storage	1	0				0		
RT Channelized	ĺ		0					0
Lanes	0	1	0		0	1		0
Configuration		LTR				LTR		
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d	Ś	Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR		<u> </u>	LTR	
v (vph)	110	14		37		<u> </u>	32	
C (m) (vph)	1290	1213		421		<u> </u>	647	
v/c	0.09	0.01		0.09			0.05	
95% queue length	0.28	0.04	ļ	0.29			0.16	
Control Delay	8.1	8.0	ļ	14.4			10.9	<u> </u>
LOS	А	A	ļ	В			В	
Approach Delay			<u> </u>	14.4		ļ	10.9	
Approach LOS				В			В	

HCS+™ Version 5.1

Generated: 12/8/2005 1:32 PM

		TWO-WAY STOP	P CONTRO	LSUN	IMAF	RY				
General Information			Site In	ormat	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dav	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	AM									
Project Description			2							
East/West Street: Mullet Re	bad		North/S	outh Str	eet:	Dave Nisber	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	4				Southbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	36	51					23	$ \rightarrow$		3
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95	\rightarrow	().95
Hourly Flow Rate, HFR	37	53	0			0	24			3
Percent Heavy Vehicles	2					20				
Median Type			Two	Way Le	ft Tur	n Lane				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Eastbound	4				Westbour	nd		
Movement	7	8	9			10	11			12
		T	R			L	T	\rightarrow		R
Volume Rock Hour Eactor, PHE	5	0.05	19			0.05	0.05			05
Hourly Flow Rate HFR	5	0.95	20			0.90	0.35			0.90
Percent Heavy Vehicles	3	0	20			0	0			0
Percent Grade (%)		0	<u> </u>			-	0			-
Flared Approach		N					N			
Storage		0					0			
RT Channelized	1	-i	0				ĺ			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L		Í					LF	?	
v (vph)	37		Í					25	5	
C (m) (vph)	1587							984	4	
v/c	0.02							0.0	3	
95% queue length	0.07		Í					0.0	8	
Control Delay	7.3							8.8	3	
LOS	А							A		
Approach Delay								8.8		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 1:34 PM

		TWO-WAY STO	P CONTRO	LSUM	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallop	Dr
Agency/Co.	GA		Jurisdic	tion			Port Canav	eral .	
Date Performed	11/21/2005	5	Analysi	s Year			2010		
Analysis Time Period	AM								
Project Description									
East/West Street: Mullet Re	bad		North/So	outh Str	eet:	Scallop Driv	e		
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound					Westbour	nd	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume	0	1/				0.05	34		14
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	0	17	0			0	35		14
Percent Heavy Vehicles	2					0			
Median Type				Raise	d curl	5			
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration	LT								TR
Upstream Signal		0					0		
Minor Street		Northbound	ŭ				Southbou	nd	
Movement	7	8	9			10	11		12
		T	R			L	T		R
Volume	0.05	0.05	0.05			12	0.05		8
	0.95	0.95	0.95			12	0.95		0.90
Percent Heavy Vehicles	0	0	0			20	0		2
Percent Grade (%)		0	1 -				0	ļ	
Flared Approach		N					N		
Storage		0					0		
RT Channelized	1	1	0				ĺ	Í	0
Lanes	0	0	0			0	0		0
Configuration	1						LR		
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northbo	ound		5	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (vph)	0							20	
C (m) (vph)	1558							909	
v/c	0.00							0.02	
95% queue length	0.00							0.07	
Control Delay	7.3							9.0	
LOS	A							A	
Approach Delay								9.0	
Approach LOS								A	

HCS+™ Version 5.1

Generated: 12/8/2005 1:32 PM

							euor	T	DEDO	DT						
General Infor	mation						SHUP	<u> </u>	Site I	nformatio	on					
Analyst Agency or Co. Date Performe Time Period	d	N G 11/28 Midda	//T &A 3/2005 by Pea	5 ak					Inters Area Jurisc Analy	ection Type liction sis Year		SR 4 Ali Pe	101 @ G I other al ort Autho 2010	rouper reas prity		
Volume and T	iming Input						2		Л		a.					
			<u> </u>	E	B	рт		_	WB	рт			рт		SB	рт
Num of Lanes				2	1		1	_	2	0	1	0	1	0		
Lane Group		-	\dashv	<u>г</u> т			,	_	τ		<i>'</i>		R			<u>ا</u>
Volume (vph)		+	\rightarrow	259	9		16	_	460		153		13			
% Heavy veh		2		2		2	2	_	2	2	2	2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95	_	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)			-	A			A	_	Α		A		A	1		
Startup lost tim	ne			2.0)		2.0		2.0		2.0	2.0	2.0		2.0	
Ext. eff. green				2.0)		2.0		2.0		2.0	2.0	2.0		2.0	<u> </u>
Arrival type				3			3		3	1	3	3	3	1	3	
Unit Extension		\top		3.0)		3.0		3.0		3.0	3.0	3.0		3.0	
Ped/Bike/RTO	R Volume	0	, 1	0		0	0		0	0	0	0	0	0	0	0
Lane Width				12.	0		12.0	,	12.0		12.0	12.0	12.0		12.0	
Parking/Grade	/Parking	Λ	/	0		N	N		0	N	N	0	N	N	0	N
Parking/hr																
Bus stops/hr			_	0			0		0		0	0	0	_	0	
Unit Extension				3.0)		3.0		3.0		3.0	3.0	3.0		3.0	
Phasing	EW Perm G = 50.0	(G =)2	_	<u>G</u> =	03	G -	-	04	G = 20	Only	06	G	07	G =	08
Timing	Y = 5	Y =			Y =		Y =			Y = 5	5.0	<u>Y</u> =	Y :	=	Y =	
Duration of An	alysis (hrs) = 0.2	25		ĺ							ĺ	Cycle Len	gth C =	80.0		
Lane Group	Capacity, Co	ntrol [Delay	/, ar	nd L	.OS De	termir	nat	ion							
						EB				WB			NB	- î		SB
Adj. flow rate					27	73			17	484		161	0	14		0
Lane group ca	р.				22	17		6	680	2217		443		396		
v/c ratio					0.1	12		0	.03	0.22		0.36		0.04		
Green ratio					0.6	63		0	.63	0.63		0.25	0.00	0.25		0.00
Unif. delay d ₁					6.	1		Ę	5.7	6.5		24.7		22.7		
Delay factor k					0.1	11		0	.11	0.11		0.11		0.11		
Increm. delay	d ₂				0	.0			0.0	0.0		0.5		0.0		

PF factor

Control delay

Apprch. delay

Approach LOS

Intersec. delay

Lane group LOS

HCS+™ Version 5.1

1.000

25.3

С

Intersection LOS

25.1

С

Generated: 12/8/2005 3:22 PM

1.000

22.7 С

Short Report

1.000

6.1

Α

6.1

Α

9.8

1.000

5.7

Α

1.000

6.6

Α

6.5

Α

Α

SB 0

							SHOP	۲۲	REPO	RT						
General Info	ormation								Site I	nformati	on					
Analyst			MT						Inters	ection			SR 401 8	Charles	Rowlan	d
Agency or Co	D.		G&A						Area	Туре			All	other ar	eas	
Date Perform	ned	11/ Mid	/28/20()5 00%					Jurisc	diction			Po	ort Autho	rity	
		iviia-	uay Pe	đak					Analy	SIS TEAL				2010		
Volume and	Timing Input				D		1						ND		1	
		┢	LT			RT			ТН	RT		-	TH	RT		5B TH
Num. of Lane	es	╈	0	2		1	1		2	0	2		0	1	0	0
Lane Group		╈		Т	╈	R	L		Т		L			R		1
Volume (vph))	╈		350	2	0	1		437		31			0		
% Heavy veh)	╈	2	2		2	2		2	2	2		2	2	2	2
PHF		6	0.95	0.9	5	0.95	0.95		0.95	0.95	0.95	5	0.95	0.95	0.95	0.95
Actuated (P/	۹)	Τ		A	T	Α	A		Α	ĺ	A		ĺ	A	ĺ	ĺ
Startup lost ti	ime			2.0)	2.0	2.0		2.0		2.0		2.0	2.0		2.0
Ext. eff. gree	n			2.0	,	2.0	2.0		2.0		2.0		2.0	2.0		2.0
Arrival type				3		3	3		3		3		3	3		3
Unit Extensio	n			3.0	,	3.0	3.0		3.0		3.0		3.0	3.0		3.0
Ped/Bike/RT	OR Volume		0	0		0	0		0	0	0		0	0	0	0
Lane Width				12.	0	12.0	12.0	2	12.0		12.0	0	12.0	12.0		12.0
Parking/Grac	le/Parking		Ν	0		Ν	N		0	N	Ν		0	N	N	0
Parking/hr																
Bus stops/hr				0		0	0		0		0		0	0		0
Unit Extensio	on			3.0)	3.0	3.0		3.0		3.0		3.0	3.0		3.0
Phasing	EW Perm		02		0	03		C)4	NB	Only		06		07	
Timing	G = 55.0 Y = 5	G = Y =			G = Y =		G =	-		G = 1	5.0	G	i = 	G = Y -	-	G =
Duration of A	nalysis (hrs) = 0.2	25								11-0		Ċ	ycle Leng	gth C =	80.0	
Lane Grou	p Capacity, Co	ntro	l Dela	y, ar	nd L(OS De	etermir	nat	ion							
			Î		E	В				WB				NB		
Adj. flow rate	!				368	3	0		1	460		Ī	33	0	0	
Lane group c	ap.				243	9 1	088	6	83	2439		ĺ	644		297	
v/c ratio					0.15	5 (0.00	0.	.00	0.19		ĺ	0.05		0.00	
Green ratio					0.69	9 (0.69	0.	69	0.69	Í –		0.19	0.00	0.19	

Unif. delay d₁

Delay factor k

PF factor

Control delay

Apprch. delay

Approach LOS

Intersec. delay

Copyright © 2005 University of Florida, All Rights Reserved

Lane group LOS

Increm. delay d₂

4.4

0.11

0.0

1.000

4.4

Α

4.4

Α

5.3

3.9

0.11

0.0

1.000

3.9

Α

3.9

0.11

0.0

1.000

3.9

Α

4.5

0.11

0.0

1.000

4.5

Α

4.5

Α

RT 0

2 0.95

0

Ν

08

SB 0

0.00

Α

HCS+™ Version 5.1

26.7

0.11

0.0

1.000

26.7

С

Intersection LOS

Generated: 12/8/2005 3:21 PM

26.4

0.11

0.0

1.000

26.4

С

26.7

С

							SH	IOR	TREP	OF	RT								
General Inform	nation								Site	Inf	ormatic	n							
Analyst Agency or Co. Date Performer Time Period	d	N G 12/ Mid-da	ЛТ &A /5/05 ау Ре	ak					Inter Area Juris Anal	sec Ty dic ysi	ction /pe ction s Year			George All Po	King (other a ort Auth 2010	@ Atla areas oority	antic		
Volume and T	iming Input																		
			τ	EE	3	рт		1 T	WE	3	БТ	<u> </u>	г	NB TU	БТ		1 7	SB	рт
Num of Lanes			. 1	1	-		┼	1	1	1	1			1	1 R I	+	LI 1	1	
Lane Group			_		,		┼	,			R	+		I I T	R	+	, ,	' TR	
Volume (vph)		3	4	86		160		- 43	66		1	188	3	8	63	-	3	13	35
% Heavy veh		2		2		2	┼╴	2	2		2	2		2	2	╈	2	2	2
PHF		0.9	95	0.9	5	0.95	0.	.95	0.95		0.95	0.9	5	0.95	0.95	0	0.95	0.95	0.95
Actuated (P/A)			1	A		Α		A	A		A	A		A	Α		А	A	A
Startup lost tim	e	2.	0	2.0)		2	2.0	2.0		2.0	\vdash		2.0	2.0		2.0	2.0	
Ext. eff. green		2.	0	2.0)		2	2.0	2.0		2.0	\vdash		2.0	2.0		2.0	2.0	
Arrival type		3	}	3			1	3	3		3	ĺ		3	3		3	3	
Unit Extension		3.	0	3.0)	ĺ	3	3.0	3.0		3.0			3.0	3.0		3.0	3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume			0		0	T	0	0		0	0		0	0	T	0	0	0
Lane Width	ine Width			12.	0	ĺ	1	2.0	12.0)	12.0			12.0	12.0		12.0	12.0	
Parking/Grade/	ne Width irking/Grade/Parking		1	0		N		Ν	0		N	N		0	N		Ν	0	Ν
Parking/hr	rking/Grade/Parking rking/hr																		
Bus stops/hr)	0				0	0		0			0	0		0	0	
Unit Extension		3.	0	3.0)		3	3.0	3.0		3.0			3.0	3.0		3.0	3.0	
Phasing	EB Only	EW	Perm	1	6 -	03		6 -	04		NS P	erm		06		C)7	()8
Timing	Y = 5	Y = 5	i i	\dashv	0 = Y =			<u>Y</u> =			Y = 5		Y	=	Y) = (=		Y =	
Duration of Ana	alysis (hrs) = 0.2	25		ĺ			n.						С	ycle Leng	gth C =	90.	.0		
Lane Group	Capacity, Co	ntrol [Delay	y, ar	nd L	OS D	eteri	min	ation										
					1	EB				ĩ	WB				NB				SB
Adj. flow rate			36		25	i9			45		69	1			206		66	3	51
Lane group cap	Э.		787	7	102	28			496	1	828	704			361	4	440	281	461
v/c ratio			0.0	5	0.2	25			0.09	(0.08	0.00			0.57	0	0.15	0.01	0.11
Green ratio			0.6	1	0.6	61			0.44	(0.44	0.44			0.28	0).28	0.28	0.28
Unif. delay d ₁			7.1		8.	0			14.5		14.4	13.9			27.9	2	24.5	23.5	24.2
Delay factor k			0.1	1	0.1	11			0.11	(D.11	0.11			0.17	0	0.11	0.11	0.11
Increm. delay o	l ₂		0.	0	0	.1			0.1		0.0	0.0			2.2		0.2	0.0	0.1
PF factor			1.0	00	1.0	000			1.000		1.000	1.000)		1.000) 1	1.000	1.000	1.000
Control delay			7.	1	8	.2			14.6		14.5	13.9			30.1	2	24.7	23.6	24.3
Lane group LO	S		Α		A				В		В	В			С		С	С	С
Apprch. delay					8	.0					14.5				28.7				24.3
Approach LOS					/	4					В				С				С
Intersec. delay					17	7.9						Inters	ect	ion LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 3:23 PM

		TWO-WAY STO	P CONTRO	LSUM	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	ous Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	12/5/05		Analysi	s Year			2010			
Analysis Time Period	Mid day									
Project Description			Ŷ.							
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
Valuesa	L	120	R			L	102			R
Volume	27	130	0.00			0.00	103			1
	0.90	0.90	0.90			0.90	0.90		(1.90
Houriy Flow Rate, HFR	30	144	0			25	114	\rightarrow		1
Modian Type	13			Paiso	dour	20				
			0	Naise	u cun	,				0
	1	1	0			0	1			0
Configuration	1	 Т				0	,			TR
Upstream Signal		0					0			
Minor Street	1	Northbound	ļ				Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume		-i				1				0
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		(0.90
Hourly Flow Rate, HFR	0	0	0			1	0			0
Percent Heavy Vehicles	6	0	2			0	16			5
Percent Grade (%)		0					0	1		
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound	ļ	Northbo	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	1.	1	12
Lane Configuration	L		ļ				L			R
v (vph)	30						1			0
C (m) (vph)	1408						693			931
v/c	0.02						0.00			0.00
95% queue length	0.07						0.00			0.00
Control Delay	7.6						10.2			8.9
LOS	А						В			А
Approach Delay								10.2	2	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 3:25 PM

		TWO-WAY STO	P CONTRO	L SUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ Da	ve Nis	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	Mid Day									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound	ú				Westbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L	T			R
Volume	296	504	0.05			0.05	303			45
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(J.95
Hourly Flow Rate, HFR	5	530	0			0	318			47
Median Type				Raise	dour	0				
RT Channelized	-		0	Naise		,				0
Lanes	1	2	0			0	1			1
Configuration	L	Т				-	Т			R
Upstream Signal		0	1				0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
Volume						42				0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Hourly Flow Rate, HFR	0	0	0			44	0			0
Percent Heavy Vehicles	0	0	0			11	0			10
Percent Grade (%)		0	-1				0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound	ļ	Northb	ound		Ş	Southb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L		ļ				L			R
v (vph)	311		ļ				44			0
C (m) (vph)	1169		ļ				207			655
v/c	0.27		ļ				0.21			0.00
95% queue length	1.08						0.78			0.00
Control Delay	9.2						27.0			10.5
LOS	A						D			В
Approach Delay								27.0	0	
Approach LOS								D		

HCS+™ Version 5.1

Generated: 12/8/2005 3:26 PM

							SHOP	۲۲	REPO	RT								
General Inform	nation								Site Ir	nformati	on							
Analyst Agency or Co. Date Performed Time Period	d	N G 12/ PM	MT &A /5/05 Peak	-					Interse Area T Jurisd Analys	ection Type iction sis Year			George Ki All Pc	ing © othe ort Αι 20	Da r are uthor 10	ve Nisbe eas ity	t	
Volume and T	iming Input	2					4											
			т	EE	3	рт		_	WB	БТ		т	NB		Ŧ		SB TH	рт
Num of Lanes			_1	2	-			_	1	1		- I)	0		. I	1 LI	0	1
Lane Group				T				_	τ T	R	+	, 		ŀ		,		, R
Volume (vph)		29	- 96	504	4			_	303	45	┼╴			┢		42		166
% Heavy veh)	0		0	0	_	0	0)	0	0		0	0	0
PHF		0.9	95	0.9	5	0.95	0.95	_	0.95	0.95	0.	95	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)			4	A	-			_	A	A					-	A		A
Startup lost tim	e	2.	0	2.0)			_	2.0	2.0	┼╴		2.0	┢		2.0	2.0	2.0
Ext. eff. green		2.	0	2.0)			_	2.0	2.0	┼╴		2.0	┢		2.0	2.0	2.0
Arrival type		3	3	3	_		İ –	_	3	3			3	┢	_	3	3	3
Unit Extension		3.	0	3.0)		İ –		3.0	3.0	┢		3.0			3.0	3.0	3.0
Ped/Bike/RTO	R Volume	6)	0		5	0		0	5	()	0	5		0	0	5
Lane Width		12	2.0	12.	0		1		12.0	12.0			12.0			12.0	12.0	12.0
Parking/Grade/	/Parking	^	J	0		N	N		0	N	1	V	0	Λ	1	N	0	N
Parking/hr																		
Bus stops/hr		()	0					0	0			0			0	0	0
Unit Extension		3.	0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Phasing	EW Perm		02		<u> </u>	03		(04	SB (Only		06			07		08
Timing	G = 00.0 Y = 5	Ч=			0 = Y =		Y =	-		Y = 5	0.0		S = Y =		Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	25		Í						-u		(Cycle Len	gth C) =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	/, an	d L	.OS De	termir	nat	tion									
					E	EB				WB				N	IB			SB
Adj. flow rate			312	?	53	1				319	42			0			44	0
Lane group cap	Э.		701	'	241	12				1267	107	7					401	
v/c ratio			0.4	5	0.2	22				0.25	0.04	1					0.11	
Green ratio			0.67	7	0.6	67				0.67	0.67	7		0.0	0		0.22	0.00
Unif. delay d ₁			7.1		5.9	9				6.0	5.1						27.9	
Delay factor k			0.1	1	0.1	11				0.11	0.11	1					0.11	
Increm. delay o	1 ₂		0.	5	0.	.0				0.1	0.0)					0.1	
PF factor			1.00	00	1.0	000				1.000	1.00	00					1.000	
Control delay			7.0	6	5.	.9				6.1	5.1	1					28.0	
Lane group LO	S		Α		A			Γ		A	Α						С	
Apprch. delay					6	.5				6.0								30.7
Approach LOS			ĺ		A	4				А								С
Intersec. delay					10	0.0		Γ			Inte	rsec	tion LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 3:27 PM

							SH	OR'	T REPC)R1	Г								
General Inform	nation								Site	nfo	ormatio	n							
Analyst Agency or Co. Date Performed Time Period	d	G 11/29 Mid-da	SC &A 9/200 ay Pe	5 eak					Inters Area Juriso Analy	sect Typ dicti vsis	tion be ion Year			George I All Po 200	King othe rt Aı)5 - I	@ F er are uthori Existi	lounder as ity ing		
Volume and T	iming Input																		
			Ŧ	El	3	рт		<u>іт</u>	WB		PT		т	NB		эт		SB TU	БТ
Num of Lanes			- I	1	1	1 KI	╋	1		┥	1		1		r (גו ז	0	1	
Lane Group		<i>'</i>		΄ Τ	_	R	╋	, ,	$\frac{1}{\tau}$	╡	R			I TR				' I TR	
Volume (vph)			3	353	3	100		20	327	╡	44	52	,	2	6	3	43	6	50
% Heavy veh		0)	0		0		0	0	╡	0	0		0	6	2)	0	0	0
PHF		0.9	95	0.9	5	0.95	0.	.95	0.95		0.95	0.9	5	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		A	1	A		A		A	A	1	Α	A		A	4	4	Α	A	A
Startup lost tim	e	2.	0	2.0	,	2.0	2	2.0	2.0	1	2.0	\vdash		2.0				2.0	
Ext. eff. green		2.	0	2.0)	2.0	2	2.0	2.0	Ť	2.0	1		2.0	Ē			2.0	
Arrival type		3	}	3		3		3	3	T	3	1		3	<u> </u>			3	
Unit Extension		3.	0	3.0)	3.0	3	3.0	3.0	Ť	3.0	\square		3.0	Γ			3.0	
Ped/Bike/RTO	R Volume	C)	0		0		0	0	T	0	0		0	6)	0	0	0
Lane Width		12	2.0	12.	0	12.0	1.	2.0	12.0		12.0	Ī		12.0			ĺ	12.0	
Parking/Grade/	/Parking	^	I	0		Ν		Ν	0		Ν	N		0	Λ	V	N	0	N
Parking/hr																			
Bus stops/hr		0)	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0)	3.0	3	3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm	0	02		~	03		_	04		NS Pe	erm		06			07		08
Timing	G = 55.0 Y = 5	G = Y =		\dashv	G = Y =			9 = Y =			<u>5 = 25.</u> Y = 5	0	Y	=	_	G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	5		Í						ų			C	ycle Leng	th C) = 9	90.0		
Lane Group	Capacity, Cor	ntrol [Delay	y, an	d L	OS D	etern	nina	ation										
					E	B				'	WB				N	IB			SB
Adj. flow rate			98		372	2	105		21	34	44	46			65				104
Lane group cap	р.		605	5	116	61	987		581	11	61	987			381	1			424
v/c ratio			0.1	6	0.3	2	0.11		0.04	0.	30	0.05			0.1	7			0.25
Green ratio			0.6	1	0.6	1	0.61		0.61	0.	61	0.61			0.28	8			0.28
Unif. delay d ₁			7.6	6	8.5	5	7.3		7.0	8	.3	7.0			24.0	6			25.2
Delay factor k			0.1	1	0.1	1	0.11		0.11	0.	11	0.11			0.1	1			0.11
Increm. delay c	d ₂		0.	1	0.	2	0.0		0.0	0	0.1	0.0			0.2	2			0.3
PF factor			1.0	00	1.0	00	1.000)	1.000	1.	000	1.000			1.0	00			1.000
Control delay			7.	7	8.	6	7.3		7.0	8	3.5	7.0			24.	.9			25.5
Lane group LO	S		A		A		Α		Α	/	4	Α			С				С
Apprch. delay					8.	2				8	3.2				24.	.9			25.5
Approach LOS					A	١					A				С	;			С
Intersec. delay					10	.7						Inters	ecti	on LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 3:24 PM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		GKB @ Je	ttv Park Driv	e
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	12/5/05		Analysi	s Year		2010		
Analysis Time Period	Mid Day							
Project Description								
East/West Street: Jetty Par	k Dr		North/So	outh Street:	GKB/Shorev	wood Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume	19	14	29		0	9		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	20	14	30		0	9		0
Percent Heavy Vehicles	6				0			
Median Type				Undivideo	1			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	T		R
Volume	15	1	0		2	0.05		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Houriy Flow Rate, HFR	15	1	0		2	0		0
Percent Reavy Vehicles	0	0	0		0	0		5
Flared Approach		- U						
			_					
		0	0			0		0
	-	1	0		1	0		1
	0		0		1			I P
Configuration		LIK			L			ĸ
Delay, Queue Length, and	Level of Service		r					
Approach	Eastbound	Westbound	ļ	Northbound	1		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR	ļ	L	ļ	R
v (vph)	20	0	ļ	16	ļ	2		0
C (m) (vph)	1585	1577		900		904		1064
v/c	0.01	0.00		0.02		0.00		0.00
95% queue length	0.04	0.00		0.05		0.01		0.00
Control Delay	7.3	7.3		9.1	1	9.0		8.4
LOS	А	A A		A	1	A		A
Approach Delay			ĺ	9.1		1	9.0	
Approach LOS				A			A	

HCS+™ Version 5.1

Generated: 12/8/2005 3:28 PM

		TWO-WAY STO	P CONTRO	LSUMN	IAR	Y				
General Information			Site Inf	ormatio	n					
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin		1
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2010			
Analysis Time Period	Mid day									
Project Description						M // O/				
East/West Street: George I	King Blvd		North/So Study D	outh Stree	et: /	Marlin Stree	t			
	asi-wesi		Sludy P	enou (nrs). U	.20				
Vehicle Volumes and A	djustments							1		
Major Street	1	Eastbound				4	Westbour	nd		6
wovernent		<u>Z</u>				4	о Т			0 P
Volume	22	254	15			2	299			15
Peak-Hour Factor, PHF	0.95	0.95	0.95				0.95		().95
Hourly Flow Rate, HFR	23	267	15			2	314			15
Percent Heavy Vehicles	2					2				
Median Type	1	•		Raised	curb					
RT Channelized			0							0
Lanes	1	1	1			1	1			1
Configuration	L	Т	R			L	Т			R
Upstream Signal		0	1				0			
Minor Street		Northbound	a.				Southbou	nd		
Movement	7	8	9			10	11			12
Volumo	L 21	1	R			L				R
Peak-Hour Factor PHF	0.95	0.95	0.95			0.95	0.95		(0
Hourly Flow Rate, HFR	22	1	4			13	0			0
Percent Heavy Vehicles	20	2	2			9	2			50
Percent Grade (%)		0					0			
Flared Approach		N					N	1		
Storage		0					0			
RT Channelized			0	ĺ						0
Lanes	0	1	0			0	1			0
Configuration		LTR					LTR			
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound	ļ	Northbou	ind		Ś	Southbo	ound	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L	L	ļ	LTR				LTF	7	
v (vph)	23	2	ļ	27				13	2	
C (m) (vph)	1231	1280	<u> </u>	485				473	3	
v/c	0.02	0.00	<u> </u>	0.06				0.0	3	
95% queue length	0.06	0.00	ļ	0.18				0.0	8	
Control Delay	8.0	7.8	ļ	12.9				12.	8	
LOS	А	A		В				В		
Approach Delay			<u> </u>	12.9				12.8	}	
Approach LOS				В				В		

HCS+™ Version 5.1

Generated: 12/8/2005 3:28 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	tion			Mullett Rd	@ Dave Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	12/5/2005		Analysi	s Year			2010		
Analysis Time Period	Mid Day								
Project Description			ý.						
East/West Street: Mullet Ro	bad		North/So	outh Str	eet:	Dave Nisbet	Drive		
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Northbound	ú				Southbou	nd	
Movement	1	2	3			4	5		6
		T (77	R			L	T		R
Volume	11	1//	0.05			0.05	154		0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	11	186	0			0	162		0
Percent Heavy Venicles	2					20			
Median Type			Two	Way Le	eft Tur	n Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	Т							TR
Upstream Signal		0					0		
Minor Street		Eastbound					Westbour	nd	
Movement	7	8	9			10	<u>11</u>		12
Volumo	L	I	126			L			ĸ
Peak-Hour Factor PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	13	0	132			0	0		0
Percent Heavy Vehicles	2	0	5			0	0		0
Percent Grade (%)	1	0					0	ļ.	
Flared Approach		N					N		
Storage	1	0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration		LR							
Delay, Queue Length, and	Level of Service								
Approach	Northbound	Southbound		Westbo	ound			Eastbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L							LR	
v (vph)	11							145	
C (m) (vph)	1417							851	
v/c	0.01							0.17	
95% queue length	0.02							0.61	
Control Delay	7.6							10.1	
LOS	А							В	
Approach Delay								10.1	
Approach LOS								В	

HCS+™ Version 5.1

Generated: 12/8/2005 3:30 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallop	Dr
Agency/Co.	GA		Jurisdic	tion			Port Canav	eral '	
Date Performed	12/5/05		Analysi	s Year			2010		
Analysis Time Period	Mid Day								
Project Description									
East/West Street: Mullet Re	pad		North/So	outh Str	eet:	Scallop Driv	'e		
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound					Westbour	nd	
Movement	1	2	3			4	5		6
		T	R			L	T		R
Volume	2	43				0.05	19		24
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	2	45	0			0	20		25
Percent Heavy Vehicles	2					0			
Median Type				Raise	d curk)			
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration	LT								TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbour	nd	
Movement	7	8	9			10	11		12
V a luva a		_ <u> </u>	R			L	ļ <u>'</u>		R
Volume	0.05	0.05	0.05			21	0.05		0
Hourly Flow Rate HFR	0.90	0.90	0.00			22	0.00		0.00
Percent Heavy Vehicles	0	0	0			11	0		9
Percent Grade (%)		0					0	Į	-
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northb	ound		5	Southboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (vph)	2							22	
C (m) (vph)	1563							847	
v/c	0.00							0.03	
95% queue length	0.00							0.08	
Control Delay	7.3							9.4	
LOS	А							A	
Approach Delay				,				9.4	
Approach LOS								A	

HCS+™ Version 5.1

Generated: 12/8/2005 3:29 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dave	Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	reral		
Date Performed	12/5/05		Analysi	s Year			2010			
Analysis Time Period	Mid Day									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L				R
Volume	34	90	_				85			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.	95
Hourly Flow Rate, HFR	35	94	0			0	89			0
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk	b				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT								7	^r R
Upstream Signal		0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	T			R
Volume	22	0.05	39			0.05	0.05		0	05
	0.95	0.95	0.93			0.95	0.95		0.	95
Porcont Hoovy Vohiclos	23	0	41			0	0			0
Percent Grade (%)		0	0			0	0			0
Flared Approach		N	1				N			
Storage		0	_				0			
RT Channelized	+		0				<u> </u>			0
Lanes	0	0	0			0	0			0
Configuration		LR				-				-
Delay Queue Length and	I evel of Service	μ	ļ				ļ			
Approach	Northbound	Southbound		Westbo	ound			Eastbou	nd	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT		¦					LR	╈	
v (vph)	35		¦					64	╈	
C (m) (vph)	1500							860		
v/c	0.02		1					0.07	\dashv	
95% queue length	0.07		1					0.24	\dashv	
Control Delay	7.5		1					9.5	\dashv	
LOS	A		<u> </u>					А		
Approach Delay			1	ļ				9.5		
Approach LOS			İ				i	Α		

HCS+™ Version 5.1

Generated: 12/8/2005 3:31 PM

							SHO	RT RE	EPO	RT							[
General Inform	nation							S	ite lı	nformatio	on						
Analyst Agency or Co. Date Performe Time Period	d	S. G 12/5, PM	.C. &A /200: Peał	5				In Ai Ju Ai	nters rea urisd naly:	ection Type liction sis Year			SR 4 All Pc	01 @ Gro other are ort Author 2010	ouper eas ity		
Volume and T	iming Input	1					a.	P							1		
		L_	<u>т</u> 1	EI	3 	рт		\ ·	NB TU	рт	<u> </u>	T	NB TU	рт		SB	БТ
Num. of Lanes		0		2	-	0	1		2	0	1	1	0	1	0	0	0
Lane Group		Í		Т			L		Т		L			R	i		
Volume (vph)		Í		74			17	14	168	1	15	6		5			
% Heavy veh		2		2		2	2		2	2	2		2	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95	0.	95	0.95	0.9	5	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)				Α			Α	/	A		A			A			
Startup lost tim	ie			2.0)		2.0	2	2.0		2.)	2.0	2.0		2.0	
Ext. eff. green				2.0)		2.0	2	2.0		2.)	2.0	2.0		2.0	
Arrival type				3			3		3		3		3	3		3	
Unit Extension				3.0)		3.0	3	3.0		3.)	3.0	3.0		3.0	
Ped/Bike/RTO	R Volume	0		0		3	0	(0	0	0		0	5	0	0	0
Lane Width	ane Width				0		12.0) 1.	2.0	<u> </u>	12	0	12.0	12.0		12.0	
Parking/Grade	/Parking	N	'	0		N	N		0	N	N		0	N	N	0	N
Parking/hr					_			_									<u> </u>
Bus stops/hr		_		0			0		0		0		0	0		0	
Unit Extension	EW/ Perm		12	3.0	/	03	3.0	04	3.0				3.0	3.0	07	3.0	08
Timing	G = 55.0) =	52		G =	00	G	=		G = 1	5.0	0	60 6 =	G =	07	G =	00
Duration of An	Y = 5 $Y = 0.25$	′ =		_	Y =		Y =	-		Y = 5			' =	Y =	80.0	Y =	
Lane Group	Capacity. Cont	rol	Dela	v. ar	nd L	OS D	etermi	natior	n					gui 0 =	00.0		
	, .	-			E	EB				WB				NB		1	SB
Adj. flow rate					78	8		18		1545			164	0	0		0
Lane group ca	p.				243	39		901		2439		_	332		297		
v/c ratio					0.0)3		0.02		0.63			0.49		0.00		
Green ratio					0.6	<i>69</i>		0.69		0.69			0.19	0.00	0.19		0.00
Unif. delay d ₁					4.0	0		4.0		6.9			29.1		26.4		
Delay factor k					0.1	11		0.11		0.21			0.11		0.11		
Increm. delay o	d ₂				0.	.0		0.0		0.5			1.2		0.0		
PF factor					1.0	000		1.00	0	1.000			1.000		1.000		
Control delay				4.	.0		4.0		7.5			30.3		26.4			
Lane group LC				A			A		A			С		С			
Apprch. delay	Apprch. delay					.0				7.4				30.3			
Approach LOS	pproach LOS					4				A				С			
Intersec. delay					9.	.4					Inter	sect	tion LOS				Α

HCS+™ Version 5.1

Generated: 12/8/2005 4:29 PM

General Inform	nation						SH	OR	T REPC)RT	matio	n							
Analyst Agency or Co. Date Performer Time Period	d	N G 12/ PM	//T &A /5/05 Peal	k					Inters Area Jurisc Analy	Section Type diction vsis N	on e on Year	<u>n</u>		SR 401 & All Po	Charle other a rt Autho 2010	es Ro reas ority	owland S		
Volume and T	iming Input																		
			1	EE	3				WB					NB	1			SB	
			.T	TF		RT		LT	TH	╋	RT			TH	RT	_	LT	TH	RT
Num. of Lanes				2 T	_			1	2 	╋	0	2		0		_	0	0	0
				107		R 1			1566	╋		22				_			
				107	_	2		2	1500	╋	2	33		2	2	_	2	2	2
			25	2 0.05		2		2 05	0.05	╉	2	2	5	2	2 0.05		2 0.05	2	2 0.05
Δ ctuated (P/ Δ)		0.3	,5	0.90		Δ		<u>ع</u>	0.95	╧	0.95	0.9. A		0.90	0.90 A		0.30	0.90	0.30
Startun lost tim				20	\neg	20	2	0	20	╋		20	,	20	20	╈		2.0	
Ext. eff. green				2.0		2.0	2	.0	2.0	┿		2.0	,	2.0	2.0	┢		2.0	
Arrival type				3	\neg	3		3	3	╧				3	3	╈		3	
Unit Extension				3.0		3.0	3	.0	3.0	╋		3.0	,	3.0	3.0	╈		3.0	
Ped/Bike/RTO	R Volume	0	,	0		0		0	0	╋	0	0		0	0	╈	0	0	0
Lane Width	ane Width			12.0	2	12.0	12	2.0	12.0	╈	-	12.	0	12.0	12.0	1		12.0	
Parking/Grade/	ane Width arking/Grade/Parking		/	0		N	1	V	0	╈	Ν	N		0	N		N	0	N
Parking/hr	_									Ť				i —		Ť			
Bus stops/hr				0		0		0	0	Ť		0		0	0	Ť		0	
Unit Extension		Î		3.0		3.0	3	.0	3.0	Т		3.0)	3.0	3.0			3.0	
Phasing	EW Perm		02		_	03		_	04	Ţ	NB O	nly		06		(07		08
Timing	G = 55.0 Y = 5	G = Y =		-	G = Y =			j = (=			i = 15. i = 5	.0	Y	i = ' =	G Y	=		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	25											C	ycle Leng	th C =	80	0.0		
Lane Group	Capacity, Co	ntrol [Dela	y, an	d L	.OS D	etern	nina	ation									,	
					ł	EB				V	VB				NB				SB
Adj. flow rate					11	3	1		0	164	48			35	0		1		0
Lane group cap	ρ.				24:	39	1088		872	243	39			644		2	297		
v/c ratio			Í		0.0)5	0.00	ſ	0.00	0.6	68			0.05		(0.00		Í
Green ratio					0.6	<i>69</i>	0.69		0.69	0.6	<i>69</i>			0.19	0.00	(0.19		0.00
Unif. delay d ₁					4.	0	3.9	Ĩ	3.9	7.:	3			26.7		2	26.4		
Delay factor k					0.1	11	0.11	Ĩ	0.11	0.2	25			0.11		(0.11		1
Increm. delay o	d ₂				0	.0	0.0		0.0	0.	.8			0.0		Т	0.0		
PF factor					1.0	000	1.000		1.000	1.0	000			1.000		î	1.000		
Control delay					4	.0	3.9		3.9	8.	.1			26.7			26.4		
Lane group LO	S				A		Α		A	A				С			С		
Apprch. delay	.pprch. delay				4	.0				8.	.1				26.7				
Approach LOS					,	4				F	4				С				
Intersec. delay					8	.2		Ť				Inters	ect	ion LOS					А

HCS+™ Version 5.1

Generated: 12/8/2005 4:28 PM

							SHO	RT	REPC	ORT								
General Inforr	nation								Site I	nfori	matio	n						
Analyst Agency or Co. Date Performe Time Period	d	۸ /G 12/ PM	/T &A ⁄5/05 Peak						Inters Area Jurisc Analy	ectio Type dictio vsis Y	on e n ⁄ear			George All Po	King @ other are rt Authol 2010	Atlantic eas rity		
Volume and T	iming Input																	
			- I	EE	3	Брт			WB	_	DT			NB	DT		SB	DT
Num of Lanes			. 1	1	-					╋	1		╉	1	1	1	1	
		- ·	-		,	0	<i>'</i>		τ' 1	+	R		╉	' I T	, R	,	' TR	0
Volume (vph)			,	64		252	50		97	╋	1	211	╈	7	24	2	26	43
% Heavy veh		2	,	2		202	2		2	╋	2	2	╈	2	2	2	20	2
PHF		0.9	95	0.9	5	0.95	0.95	;	0.95	0	_).95	0.95	╈	- 0.95	0.95	0.95	_ 0.95	0.95
Actuated (P/A)				A	_	Α	A		A	╈	A	A	╈	А	A	A	A	A
Startup lost tim	ie	2.	0	2.0)		2.0		2.0		2.0		╈	2.0	2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0		2.0		╈	2.0	2.0	2.0	2.0	
Arrival type		3	3	3			3		3	╈	3		↑	3	3	3	3	
Unit Extension		3.	0	3.0)		3.0		3.0		3.0		Ť	3.0	3.0	3.0	3.0	
Ped/Bike/RTOI	R Volume	0	,	0		15	0		0	╈	0	0	Ť	0	5	0	0	0
Lane Width	ane Width		.0	12.	0		12.0)	12.0		12.0		Ť	12.0	12.0	12.0	12.0	
Parking/Grade/	ine Width irking/Grade/Parking		/	0		N	N		0		Ν	N	Ĩ	0	N	N	0	N
Parking/hr																		
Bus stops/hr		0)	0			0		0		0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0		3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only $G = 10.0$	EW	Perm	1	<u> </u>	03	6	-	04	G	NS Pe	erm	G	06	G -	07	())8
Timing	Y = 5	Y = 5	5		Ο = Y =		Y =	-		Y	= 5		Y =	=	Y =	-	Y =	
Duration of Ana	alysis (hrs) = 0.2	25											Су	cle Leng	gth C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	/, an	nd L	.OS De	termi	nat	tion				ĩ					
			<u> </u>		E	EB		_		N	VB			1	NB	1	ļ	SB
Adj. flow rate			9		31	6			53	102	2	1			229	20	2	72
Lane group cap	р.		769)	100	04		4	471	828	8	704			352	440	262	469
v/c ratio			0.01	1	0.3	31		0).11	0.1	2	0.00			0.65	0.05	0.01	0.15
Green ratio			0.61	1	0.6	61		0).44	0.4	4	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.0)	8.	4		1	4.6	14.	7	13.9			28.6	23.8	23.5	24.5
Delay factor k			0.1	1	0.1	11		0).11	0.1	1	0.11			0.23	0.11	0.11	0.11
Increm. delay o	d ₂		0.0)	0.	.2			0.1	0.	1	0.0			4.2	0.0	0.0	0.2
PF factor			1.00	00	1.0	000		1	.000	1.0	00	1.000			1.000	1.000	1.000	1.000
Control delay			7.0)	8	.6			14.7	14.	.8	13.9	ļ		32.9	23.8	23.5	24.7
Lane group LO	S		Α		A				В	В		В	ļ		С	С	С	С
Apprch. delay	pprch. delay				8	.6				14.	.7				32.1			24.6
Approach LOS					/	4				В	3				С			С
Intersec. delay					18	3.5						Interse	ctio	n LOS				В

HCS+™ Version 5.1

Generated: 12/8/2005 4:30 PM
		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columl	bus Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	12/5/05		Analysi	s Year			2010			
Analysis Time Period	PM Peak									
Project Description			<u> </u>			<u></u>				
East/West Street: George I	King Blvd		North/So	outh Str	reet:	C Columbus	s Drive			
	asi-wesi		Sludy P	enoù (n	15).	0.25				
Vehicle Volumes and A	djustments	Faathaund					\//aathau	a d		
Major Street	1	Eastbound	2			1	vvestbour			6
woverneni			R R			4	<u>5</u> Т	-		R
Volume	28	65					114			3
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	29	68	0			0	120			3
Percent Heavy Vehicles	0					25		T I		
Median Type				Raise	d curl	b				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
		T	R				T			R
Volume	0.05	0.95	0.05			0.05	0.05			0
Hourly Flow Rate HER	0.95	0.95	0.30			0.90	0.90			0
Percent Heavy Vehicles	6	0	2			0	16			12
Percent Grade (%)		0	_!				0	ļ		
Flared Approach		N					N			
Storage		0					0			
RT Channelized		1	0				i			0
Lanes	0	0	0			1	0	1		1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound			Southb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L						L			R
v (vph)	29						0			0
C (m) (vph)	1477		ļ				742			903
v/c	0.02		ļ				0.00			0.00
95% queue length	0.06						0.00			0.00
Control Delay	7.5					9.9			9.0	
LOS	A					Α			А	
Approach Delay										
Approach LOS										

HCS+™ Version 5.1

Generated: 12/8/2005 4:32 PM

		TWO-WAY STO	P CONTRO	LSUMN	/IAR	Y			
General Information			Site Inf	ormatio	on				
Analyst	MT		Intersed	ction			GKB @ Da	ve Nisbet L	Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	12/5/05		Analysi	s Year			2010		
Analysis Time Period									
Project Description									
East/West Street: George I	King Blvd		North/So	outh Stree	et: L	Dave Nisbet	Drive		
Mehiele Volumes and A	diustmente		Sludy P	enou (nis	s). U.	.20			
Maior Street		Fastbound					Westbour	nd	
Movement	1	2	3			4	5		6
	L	<u></u> т	R			L	T		R
Volume	518	477					375		104
Peak-Hour Factor, PHF	0.95	0.95	0.95	Î	(0.95	0.95	ĺ	0.95
Hourly Flow Rate, HFR	545	502	0			0	394		109
Percent Heavy Vehicles	6					0			
Median Type				Raised	curb				
RT Channelized	1		0						0
Lanes	1	2	0			0	1		1
Configuration	L	Т					Т		R
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
	L L	T	R			L	T		R
Volume	0.05	0.05	0.05			53	0.05		0
Hourly Flow Rate, HFR	0.95	0.95	0.95			55	0.95		0.95
Percent Heavy Vehicles	0	0	0			8	0		7
Percent Grade (%)		0	Į				0	Į	
Flared Approach		N					N		
Storage	1	0					0		
RT Channelized			0						0
Lanes	0	0	0			1	0		1
Configuration						L			R
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northbou	und		S	Southbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L		<u> </u>				L		R
v (vph)	545						55		0
C (m) (vph)	1030						80		591
v/c	0.53						0.69		0.00
95% queue length	3.20						3.24		0.00
Control Delay	12.4						117.0		11.1
LOS	В						F		В
Approach Delay								117.0	
Approach LOS								F	

HCS+™ Version 5.1

Generated: 12/8/2005 4:33 PM

							SHO	۲	REPO	RT								
General Inform	nation								Site Ir	nformati	ion							
Analyst Agency or Co. Date Performed Time Period	d	і G 12, РМ	MT &A /5/05 Peak	-					Interse Area T Jurisd Analys	ection Type iction sis Year			George K All Pc	ing © othe ort Αι 20	Da r are uthor 10	ve Nisbe eas ity	t	
Volume and T	iming Input						4				4							
			т	EE	3	DT		_	WB	рт	╇	1.7			<u>т</u>	1.7	SB TU	рт
Num, of Lanes			1	2	1	0	0	_	1	1	╈	0	0		. 1	1	0	1
Lane Group									T	R	╈					L		R
Volume (vph)		51	18	477	7		┼──	_	375	104	╈					53		215
% Heavy veh)	0		0	0		0	0	╈	0	0	0	,	0	0	0
PHF		0.	95	0.9	5	0.95	0.95		0.95	0.95		0.95	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		4	Ą	A					A	A	╈		-			Α		A
Startup lost tim	e	2.	0	2.0)				2.0	2.0	Ť		2.0		_	2.0	2.0	2.0
Ext. eff. green		2.	0	2.0)				2.0	2.0	T		2.0			2.0	2.0	2.0
Arrival type			3	3			İ.		3	3	T		3			3	3	3
Unit Extension		3.	0	3.0)		İ.		3.0	3.0	T		3.0			3.0	3.0	3.0
Ped/Bike/RTO	d/Bike/RTOR Volume)	0		5	0		0	5	Ť	0	0	5		0	0	5
Lane Width	ne Width		2.0	12.	0				12.0	12.0	Ť		12.0			12.0	12.0	12.0
Parking/Grade/	rking/Grade/Parking		V	0		N	N		0	N	Ĩ	Ν	0	Ν	1	N	0	N
Parking/hr																		
Bus stops/hr		(0	0					0	0			0			0	0	0
Unit Extension		3.	0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Phasing	EW Perm	<u> </u>	02		<u> </u>	03		(04	SB	Onl	ly	06			07	<u> </u>	08
Timing	Y = 5	Ч=			0 = Y =		Y =	-		Y = 5	0.0		G = Y =		Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	25		ĺ								ĺ	Cycle Leng	gth C) =	90.0		
Lane Group	Capacity, Co	ntrol	Delay	/, an	d L	OS De	etermi	nat	tion				1					
					E	EB		Ļ		WB	-			N	IB			SB
Adj. flow rate			545	5	50.	2		Ļ		395	1	04		0			56	0
Lane group cap	0.		631	'	241	12				1267	1(077					401	
v/c ratio			0.86	6	0.2	21				0.31	0	.10					0.14	
Green ratio			0.67	7	0.6	67				0.67	0	.67		0.0	0		0.22	0.00
Unif. delay d ₁			11.8	3	5.8	8				6.3	5	5.3					28.1	
Delay factor k			0.39	9	0.1	1				0.11	0	.11					0.11	
Increm. delay c	d ₂		11.	9	0.	.0				0.1		0.0					0.2	
PF factor			1.0	00	1.0	000				1.000	1	.000					1.000	
Control delay			23.	7	5.	.8				6.5		5.4					28.3	
Lane group LO	ane group LOS		С		A					A		A					С	
Apprch. delay					15	5.1		Γ		6.2								33.4
Approach LOS					E	3				A								С
Intersec. delay			Î		15	5.5		Γ			lr	ntersed	tion LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 4:34 PM

					рт															
General Inforr	mation						3			ite In	format	ion								
Analyst Agency or Co. Date Performe Time Period	d	۸ /G 12/ PM	//T &A /5/05 Peak	ſ					In Ar Ju Ar	terse rea T urisdi nalys	ection ype ction is Year			(George F All d Poi	King othe rt Au 20	@ Fi r area ithori 10	lounder as ty		
Volume and T	iming Input																			
			-	E	3					WB				_	NB				SB	
Num of Longo			. I	1	1	RI 1			+	1H 1	R			┥	1H		או ה			
					_	I P	+	1	+	т Т			0	┥			,	0		
		6	R	20	7	27	_	6		1	58		02	┥	0	1	0	50	0	60
))	231			_	0		0	0		- <u>32</u>	╡	0		3)	0	0	00
PHF		0.9	, 25	0.9	5	0.95		0.95		95	0.9	5	0.95	╡	0.95	0.9	, 95	0.95	0.95	0.95
Actuated (P/A)			, \	0.00		0.00 A		0.00 A		.00 A	0.00		0.00 A		A	- U.	4	0.00 A	0.00 A	A
Startup lost tim	ne	2.	0	2.0)	2.0	╈	2.0		2.0	2.0			╡	2.0	<u> </u>			2.0	
Ext. eff. green		2.	0	2.0)	2.0		2.0		2.0	2.0				2.0				2.0	
Arrival type		3	3	3		3		3	╈	3	3			T	3				3	
Unit Extension		3.	0	3.0)	3.0		3.0		3.0	3.0				3.0	Ē			3.0	
Ped/Bike/RTOI	R Volume	6)	0		5		0	╈	0	5	_	0	1	0	5	5	0	0	5
Lane Width	ne Width		2.0	12.	0	12.0	,	12.0) 1	12.0	12.	2		1	12.0				12.0	
Parking/Grade/	arking/Grade/Parking			0		Ν		Ν	╈	0	N		N	Ť	0	٨	V	N	0	N
Parking/hr	rking/Grade/Parking rking/hr								T		1			Î					1	
Bus stops/hr		()	0		0		0		0	0			Ĩ	0				0	
Unit Extension		3.	0	3.0)	3.0		3.0	3	3.0	3.0				3.0				3.0	
Phasing	EW Perm	(02		<u> </u>	03			04		NS	Per	rm	<u> </u>	06		<u> </u>	07		08
Timing	G = 55.0 Y = 5	G = Y =		\dashv	G = Y =			G = Y =			Y = t	2 <u>5.0</u> 5	<u> </u>	Y =	=	_	G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	5						ņ.						Су	cle Leng	th C	5 = 5	90.0	P	
Lane Group	Capacity, Co	ntrol [Delay	y, an	d L	OS D	ete	rmin	atior	ו				-						
					E	B					WB					N	B			SB
Adj. flow rate			72		31	3	23	·	6		436		56			112	2			111
Lane group cap	р.		525	5	116	61	987	7	634		1161	5	987			368	3			405
v/c ratio			0.1	4	0.2	7	0.02	2	0.01		0.38	C	0.06			0.3	0			0.27
Green ratio			0.6	1	0.6	1	0.61	1	0.61		0.61	C).61			0.28	8			0.28
Unif. delay d ₁			7.4	ı	8.1	1	6.9)	6.8		8.8		7.1			25.0	6			25.4
Delay factor k			0.1	1	0.1	1	0.1	1	0.11		0.11	C).11			0.1	1			0.11
Increm. delay o	d ₂		0.	1	0.	1	0.0	0	0.0		0.2		0.0			0.	5			0.4
PF factor			1.0	00	1.0	000	1.00	00	1.00	0	1.000	1	.000			1.0	00			1.000
Control delay			7.	5	8.	3	6.9	9	6.9		9.0		7.1			26.	1			25.8
Lane group LO	ane group LOS				A		A		Α		Α		A			С				С
Apprch. delay	.pprch. delay				8.	1					8.8			Γ		26.	.1			25.8
Approach LOS					A	ł					Α			Γ		С	;			С
Intersec. delay	,				11	.9						lı	nterse	ctio	n LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 4:31 PM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		GKB and J	lettv Park Dr	ive
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	_
Date Performed	12/5/05		Analysi	s Year		2010		
Analysis Time Period								
Project Description			,					
East/West Street: George I	King Blvd		North/So	outh Street:	Jetty Park D	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	T		R
Volume	9	14	10		0	16		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	9	14	10		0	16		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound	u	ļ		Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	<u>Γ</u>		R
Volume	23	3	0.05		2	0.05		0
Hourly Flow Rate HER	0.95	0.95	0.95		0.90	0.95		0.95
Percent Heavy Vehicles	24	2	2		2	16		2
Percent Grade (%)		0			-	0	ļ	-
Flared Approach		N				N	1	
Storage		0				0		
RT Channelized			0			i		0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR		L		R
v (vph)	9	0		27		2		0
C (m) (vph)	1602	1591		865		875		1063
v/c	0.01	0.00		0.03		0.00		0.00
95% queue length	0.02	0.00		0.10		0.01		0.00
Control Delay	7.3	7.3		9.3		9.1		8.4
LOS	А	A		А		А		А
Approach Delay				9.3			9.1	
Approach LOS				А			A	

HCS+™ Version 5.1

Generated: 12/8/2005 4:36 PM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersed	ction		GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	12/5/2005		Analysi	s Year		2010		
Analysis Time Period	PM							
Project Description								
East/West Street: George	King Blvd		North/So	outh Street:	Marlin Stree	et		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	û			Westbour	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume	6	285	18		4	396		3
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	6	300	18		4	416		3
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	rb	0		
RT Channelized			0			ļ		0
Lanes	1	1	1		1	1		1
Configuration	L	Т	R		L	Т		R
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	T		R
Volume Peak-Hour Factor, PHF	20	0.05	0 05	<u>_</u>	3	0.05		0.05
Hourly Flow Rate, HFR	21	1	6		3	0.30		0.00
Percent Heavy Vehicles	25	1	14		5	2		35
Percent Grade (%)		0	ļ		-	0	ļ	
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration	1	LTR				LTR		
Delay, Queue Length, and	Level of Service	R				r.		
Approach	Eastbound	Westbound		Northbound	ł		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L	i	LTR			LTR	
v (vph)	6	4	1	28			4	
C (m) (vph)	1140	1242	1	452			433	
v/c	0.01	0.00		0.06			0.01	
95% queue lenath	0.02	0.01	¦	0.20			0.03	
Control Delay	8.2	7.9	<u> </u>	13.5	1		13.4	
LOS	A	A	1	В	1		В	
Approach Delav			<u> </u>	13.5			13.4	
Approach LOS			1	В			В	
		L	1					

HCS+™ Version 5.1

Generated: 12/8/2005 4:37 PM

		TWO-WAY STOP	P CONTRO	LSUM	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave Ni	sbet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	12/5/2005		Analysi	s Year			2010		
Analysis Time Period	PM								
Project Description									
East/West Street: Mullet Re	bad		North/So	outh Str	eet:	Dave Nisbet	t Drive		
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Northbound					Southbou	nd	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume	87	174					349		0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	91	183	0			0	367		0
Percent Heavy Vehicles	2					20			
Median Type			Two	Way Le	ft Tur	n Lane			
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	Т							TR
Upstream Signal	ĺ	0					0		
Minor Street		Eastbound					Westbour	nd	
Movement	7	8	9			10	11		12
	L	T	R			L	T		R
Volume	10	0.05	118			0.05	0.05		0.05
	10	0.95	124			0.95	0.95		0.95
Percent Heavy Vehicles	2	0	2			0	0		0
Percent Grade (%)		0				-	0	ļ	-
Flared Approach		N					N	1	
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration		LR							
Delay, Queue Length, and	Level of Service								
Approach	Northbound	Southbound		Westbo	ound			Eastbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L							LR	
v (vph)	91							134	
C (m) (vph)	1192							656	
v/c	0.08							0.20	
95% queue length	0.25							0.76	
Control Delay	8.3							11.9	
LOS	А							В	
Approach Delay								11.9	· · · · · · · · · · · · · · · · · · ·
Approach LOS								В	

HCS+™ Version 5.1

Generated: 12/8/2005 4:39 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallo	o Dr
Agency/Co.	GA		Jurisdic	tion			Port Canav	, veral	
Date Performed	12/5/05		Analysi	s Year			2010		
Analysis Time Period	PM								
Project Description			.						
East/West Street: Mullet Re	oad		North/So	outh Str	eet:	Scallop Driv	e		
Intersection Orientation: E	ast-west		Study P	erioa (n	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound				4	Westbour	nd	
wovement	1	2	3 D			4	<u>5</u> Т		0 P
Volume		36	K K			L	37		20
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	5	37	0			0	38		21
Percent Heavy Vehicles	2					0			
Median Type	1	-		Raise	d curk	5			
RT Channelized	1		0						0
Lanes	0	1	0			0	1		0
Configuration	LT								TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
Volumo			R			L 10			R
Peak-Hour Factor PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	0	0	0.00			20	0.00		0
Percent Heavy Vehicles	0	0	0			20	0		2
Percent Grade (%)		0	ļ				0	Į	
Flared Approach		N					N		
Storage	1	0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northb	ound		S	Southbou	nd
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (vph)	5							20	
C (m) (vph)	1545							816	
v/c	0.00							0.02	
95% queue length	0.01							0.08	
Control Delay	7.3						9.5		
LOS	А							Α	
Approach Delay								9.5	
Approach LOS								Α	

HCS+™ Version 5.1

Generated: 12/8/2005 4:38 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	12/5/2005		Analysi	s Year			2010			
Analysis Time Period	PM									
Project Description			,							
East/West Street: Scallop F	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	4				Southbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	32	85					249			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	33	89	0			0	262			0
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk	0	2			
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT									TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
N / 1		T	R			L	<u> </u>			R
Volume	14	0.05	53			0.05	0.05			0.05
Hourly Flow Rate HFR	14	0.55	55			0.00	0.00			0
Percent Heavy Vehicles	25	0	6			0	0			0
Percent Grade (%)		0				-	0			-
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			0	0	[0
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR	2	
v (vph)	33							69		
C (m) (vph)	1296							724	4	
v/c	0.03							0.10	0	
95% queue length	0.08							0.3	1	
Control Delay	7.9							10.	5	
LOS	А							В		
Approach Delay								10.5	5	
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/8/2005 4:40 PM

Appendix E

HCS Worksheets – Future Conditions, Design Year (2025)

		TWO-WAY STO	P CONTRO	LSUM	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dave	e Nisk	oet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2025			
Analysis Time Period	AM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L	T			R
Volume	56	79					36			5
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0	.95
Hourly Flow Rate, HFR	58	83	0			0	37			5
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk	5				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT									TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
		Т	R			L	<u> </u>			R
Volume	/	0.05	29			0.05	0.05			05
Hourly Flow Rate HER	0.95	0.95	30			0.95	0.95		0	0
Percent Heavy Vehicles	25	2	6			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized	1		0							0
Lanes	0	0	0			0	0			0
Configuration	1	LR	1							
Delay, Queue Length, and	Level of Service						1.0			
Approach	Northbound	Southbound		Westbo	ound			Eastbou	nd	
Movement	1	4	7	8		9	10	11	Î	12
Lane Configuration	LT							LR	Í	
v (vph)	58							37	Í	
C (m) (vph)	1561							928	Í	
v/c	0.04							0.04		
95% queue length	0.12							0.12	ĺ	
Control Delay	7.4							9.0	Í	
LOS	А							A	ĺ	
Approach Delay								9.0		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 2:22 PM

							SHOP	RT RI	EPO	RT							
General Inform	nation							<u>s</u>	Site I	nformati	on						
Analyst Agency or Co. Date Performed Time Period	d	S. G8 11/28 AM I	C. &A k/200 Peak	5				lr A J A	nters Area Jurisc Analy	ection Type diction vsis Year			SR 4 All Po	01 @ Gi other ar ort Autho 2025	rouper eas rity		
Volume and T	iming Input																
			- 1	EE	3				WB				NB	1		SB	
Num of Lanes			<u>'</u>	2	1	0	1 LI	╧	2 1H		┼	LI 1	0 0				
Lane Group			\dashv	<u>г</u>		0	,	+	<u>г</u>		╎	,		R			
Volume (vph)			-	2656	6		5	1	117	+	1	184		0			
% Heavy veh		2	\dashv	2		2	2	+	2	2		2	2	2	2	2	2
PHF		0.9	5	0.95	5	0.95	0.95	0.	.95	0.95	0).95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)		Î		Α			Α		A		T	A		A			
Startup lost tim	e	İ		2.0	Í		2.0		2.0		2	2.0	2.0	2.0		2.0	
Ext. eff. green		1		2.0			2.0		2.0		2	2.0	2.0	2.0		2.0	
Arrival type				3			3	╈	3	1	T	3	3	3		3	
Unit Extension		1	T	3.0	Í		3.0	1	3.0		3	3.0	3.0	3.0	ĺ	3.0	
Ped/Bike/RTO	R Volume	0	T	0	Í	0	0	T	0	0		0	0	0	0	0	0
Lane Width				12.0	2		12.0	1	12.0		1	12.0	12.0	12.0	ĺ	12.0	
Parking/Grade/	Parking	N		0		Ν	N		0	N		Ν	0	N	Ν	0	Ν
Parking/hr			\square		_		<u> </u>	⊥								ļ	
Bus stops/hr			_	0	_		0	⊥	0			0	0	0		0	
Unit Extension				3.0			3.0		3.0		3	3.0	3.0	3.0		3.0	
Phasing	EW Perm G = 80.0) = C)2		G =	03	G =	04		G = 1	Only 5.0		06 G =	G	07	G =	08
Timing	Y = 5 Y	′ =			Y =		Y =			Y = 5			(=	Y =	-	Y =	
Duration of Ana	alysis (hrs) = 0.25											(Cycle Len	gth C =	105.0		
Lane Group	Capacity, Cont	rol L	Pelay	/, an			termir	hatio	n				1	ND		1	<u></u>
Adi flow rate					270	6		5		122			104		0		0
					279	2		71		2702	-		253	0	226		0
v/c ratio).				1.0	2		0.07	7	0.05	┝		0.77		0.00		
Green ratio					0.76	6		0.76	ŝ	0.76	┝		0.14	0.00	0.14		0.00
Unif. delay d ₁					12.5	5		3.1	-	3.1	┢		43.3		38.6		
Delay factor k					0.50	0		0.11	1	0.11	┢		0.32		0.11		
Increm. delay o	l ₂				27.	.1		0.4	4	0.0			13.2		0.0		
PF factor				1.00	00		1.00	00	1.000			1.000		1.000			
Control delay				39.	.6		3.6	6	3.1	Γ		56.5		38.6			
Lane group LO				D			Α		А			Е		D			
Apprch. delay	vpprch. delay					.6				3.1				56.5			
Approach LOS					D)				А				Е			
Intersec. delay					39.	.2					Inte	ersec	tion LOS				D

HCS+™ Version 5.1

Generated: 12/8/2005 1:40 PM

							SHO	RT	REPC	DRT							
General Inform	nation								Site	Informat	ion	1					
Analyst Agency or Co. Date Performed Time Period	d	S. G& 11/28, AM I	C. &A /200 Peak	5					Inters Area Juriso Analy	section Type diction /sis Year			SR 401 & All Po	& Charles other are ort Author 2025	Rowland eas rity	I	
Volume and T	iming Input								ļ								
			- 1	EB	3	DT		. 1	WB			1 7	NB			SB	
Num. of Lanes			<u> </u>	2		1 1	1		2			2	0	1	0	0	
Lane Group				Т		R	L		Т			L		R			
Volume (vph)				2852	2	9	5	1	251	1	T	31		2			
% Heavy veh		2		2	T	2	2	T	2	2	T	2	2	2	2	2	2
PHF		0.9	5	0.95	;	0.95	0.95	5	0.95	0.95	Î	0.95	0.95	0.95	0.95	0.95	0.95
Actuated (P/A)				Α		А	A		Α		Î	Α		Α			
Startup lost tim	e			2.0		2.0	2.0		2.0			2.0	2.0	2.0		2.0	
Ext. eff. green				2.0		2.0	2.0		2.0			2.0	2.0	2.0		2.0	
Arrival type				3		3	3		3			3	3	3		3	
Unit Extension				3.0		3.0	3.0		3.0			3.0	3.0	3.0		3.0	
Ped/Bike/RTOF	R Volume	0		0		0	0		0	0		0	0	0	0	0	0
Lane Width				12.0	2	12.0	12.0)	12.0			12.0	12.0	12.0		12.0	
Parking/Grade/	Parking	N		0		Ν	N		0	N		Ν	0	N	N	0	N
Parking/hr														Ļ			
Bus stops/hr				0		0	0	_	0			0	0	0		0	
Unit Extension				3.0		3.0	3.0		3.0			3.0	3.0	3.0		3.0	
Phasing	EW Perm G = 80.0	0 } =)2		G =	03	G	-04	4	G = 1	Or	ly)	06	G =	07	G =	08
Timing	Y = 5	/ =			Y =		Y =	-		Y = 5	0.0	<u> </u>	Y =	Y =		Y =	
Duration of Ana	alysis (hrs) = 0.25											(Cycle Leng	gth C =	100.0		
Lane Group	Capacity, Cont	rol D)elay	y, an	d L(OS D	etermi	nati	on				1				
					E	B				WB	-		ļ	NB		<u> </u>	SB
Adj. flow rate					300)2	9	5	5	264			33	0	2		0
Lane group cap).				283	8	1266	7	'4	2838			344		158		
v/c ratio					1.0	6	0.01	0.0	07	0.09	Ļ		0.10	ļ	0.01		\downarrow
Green ratio					0.8	0	0.80	0.8	80	0.80	Ļ		0.10	0.00	0.10		0.00
Unif. delay d ₁					10.0	0	2.0	2.	.1	2.2			40.9		40.6		\downarrow
Delay factor k					0.5	0	0.11	0.1	11	0.11	Ļ		0.11		0.11		
Increm. delay c	Increm. delay d ₂				34.	.7	0.0	0).4	0.0			0.1		0.0		
PF factor				1.0	00	1.000	1.(000	1.000	Ļ		1.000		1.000		\downarrow	
Control delay				44.	.7	2.0	2	2.5	2.2			41.0	<u> </u>	40.6	<u> </u>		
Lane group LO			D		Α	4	4	А			D		D				
Apprch. delay	Apprch. delay									2.2				41.0		<u> </u>	
Approach LOS					D)				Α				D			
Intersec. delay					41.	.1					I	ntersec	tion LOS				D

HCS+™ Version 5.1

Generated: 12/8/2005 1:39 PM

							SHOP	٦T	REPC	DR	Г								
General Inforr	mation								Site	Info	ormatio	n							
Analyst Agency or Co. Date Performe Time Period	d	9 G 11/29 AM	SC &A 9/2003 Peak	5					Inters Area Juriso Analy	sect Typ dict /sis	tion pe ion s Year			George All Pc	King (other a ort Auth 2025	D Atlant reas ority	ic		
Volume and T	iming Input								л										
			T	EE	3	рт		_	WB	_	рт	$\left \right _{1+\frac{1}{2}}$		NB	рт	<u> , ,</u>	- 1	SB	рт
Num of Lanes			. '	1	1	0	1	_	1	╈	1		_	1	1	1	_	1	0
Lane Group				TR	,		,	_	T	╈	R	Ť	_		R		_	TR	
Volume (vph)		60	2	251	1	163	25		67	╈	5	318		38	173	4		11	33
% Heavy veh		2		2		2	2		2	╈	2	2		2	2	2		2	2
PHF		0.9	95	0.9	5	0.95	0.95		0.95	Ť	0.95	0.95		0.95	0.95	0.95	5	0.95	0.95
Actuated (P/A)		A		A		A	A		Α	╈	A	A		A	A	A		A	A
Startup lost tim	ie	2.	0	2.0)		2.0		2.0	Ť	2.0			2.0	2.0	2.0		2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0	Ť	2.0			2.0	2.0	2.0		2.0	
Arrival type		3	:	3			3		3	Ť	3			3	3	3		3	
Unit Extension		3.	0	3.0)		3.0		3.0	Ť	3.0	1		3.0	3.0	3.0		3.0	
Ped/Bike/RTO	R Volume	0	,	0		0	0		0	T	0	0		0	0	0		0	0
Lane Width	ane Width			12.	0		12.0)	12.0	Ť	12.0	1		12.0	12.0	12.0	0	12.0	
Parking/Grade	ane Width arking/Grade/Parking			0		N	Ν		0		Ν	N		0	N	N		0	Ν
Parking/hr																			
Bus stops/hr		0)	0			0		0		0			0	0	0		0	
Unit Extension		3.	0	3.0)		3.0		3.0		3.0			3.0	3.0	3.0		3.0	
Phasing	EB Only	EW	Perm		<u> </u>	03		(04		NS P	erm		06		07		()8
Timing	G = 70.0 Y = 5	G = 4 Y = 5	2.0		G = Y =		Y =	=		╈	S = 33. Y = 5	.0	Y	=	Y	=		Y =	
Duration of Ana	alysis (hrs) = 0.2	25		Í			Į.						С	ycle Leng	gth C =	100.0			
Lane Group	Capacity, Co	ntrol [Delay	/, an	nd L	.OS De	etermi	nat	ion				-					1	
					6	EB					WB				NB				SB
Adj. flow rate			63		43	6		2	26	7	71	5			375	182		4	47
Lane group ca	р.		733	}	99	9		3	899	7	82	665			440	522		204	546
v/c ratio			0.09	9	0.4	14		0	.07	0.	09	0.01			0.85	0.35	5	0.02	0.09
Green ratio			0.57	7	0.5	57		0	.42	0.	42	0.42			0.33	0.33	}	0.33	0.33
Unif. delay d ₁			9.7	,	12.	.3		1	7.3	17	7.5	16.9			31.2	25.4	ı	22.6	23.1
Delay factor k			0.1	1	0.1	11		0	.11	0.	11	0.11			0.38	0.11	r	0.11	0.11
Increm. delay o	d ₂		0.1	1	0.	.3			0.1	(0.1	0.0			14.8	0.4	ı	0.0	0.1
PF factor			1.00	00	1.0	000		1	.000	1.	000	1.000			1.000	1.00	00	1.000	1.000
Control delay			9.8	3	12	2.6		1	17.4	1	7.5	16.9			46.1	25.8	8	22.6	23.2
Lane group LO	S		Α		В	;			В		В	В			D	С		С	С
Apprch. delay					12	2.3				1	7.5				39.4				23.1
Approach LOS					E	3					В				D				С
Intersec. delay					25	5.7		Γ				Interse	ecti	on LOS					С

HCS+™ Version 5.1

Generated: 12/8/2005 1:41 PM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columbi	ıs Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2025			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	101	331					92			0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	106	348	0			0	96			0
Percent Heavy Vehicles	2					25				
Median Type				Raise	d curk	b				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
N / 1	L	T	R			L	T			R
Volume	0.05	0.05	0.05			0.05	0.05			29
Hourly Flow Rate HFR	0.55	0.55	0.00			0.00	0.30			30
Percent Heavy Vehicles	6	0	2			2	16			12
Percent Grade (%)		0	<u> </u>				0	ļ		
Flared Approach		N					N	1		
Storage		0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		5	Southbou	und	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L						L			R
v (vph)	106						0			30
C (m) (vph)	1498						462			934
v/c	0.07						0.00			0.03
95% queue length	0.23						0.00			0.10
Control Delay	7.6						12.8			9.0
LOS	А						В			A
Approach Delay								9.0		
Approach LOS								A		

HCS+™ Version 5.1

Generated: 12/8/2005 1:53 PM

		TWO-WAY STO	P CONTRO		IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ Da	ve Nisl	bet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	11/21/2005	5	Analysi	s Year			2025			
Analysis Time Period	AM									
Project Description			.							
East/West Street: George I	King Blvd		North/So	outh Str	eet:	Dave Nisbet	Drive			
			Sludy P	enoù (n	15).	0.23				
Vehicle Volumes and A	djustments	E a stha sound						1		
Major Street	1	Eastbound	1 2			4		na		6
wovernent		Z				4	о Т	\rightarrow		P
Volume	.359	651					.361			61
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(0.95
Hourly Flow Rate, HFR	377	685	0			0	380			64
Percent Heavy Vehicles	2					0				
Median Type				Raise	d curl)				
RT Channelized			0							0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
Volumo			R			27	I			K
Peak-Hour Factor PHF	0.95	0.95	0.95			0.95	0.95		(103 195
Hourly Flow Rate, HFR	0	0	0			28	0			192
Percent Heavy Vehicles	0	0	0			11	0			4
Percent Grade (%)		0	ļ				0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0					Î		0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		Ś	Southbo	ound	
Movement	1	4	7	8		9	10	1'	1	12
Lane Configuration	L						L			R
v (vph)	377						28			192
C (m) (vph)	1112						144			612
v/c	0.34						0.19			0.31
95% queue length	1.51						0.69			1.34
Control Delay	9.9						35.9			13.5
LOS	А						Е			В
Approach Delay								16.4	4	
Approach LOS								С		

HCS+™ Version 5.1

Generated: 12/8/2005 2:01 PM

							SHOP	۲T	REPO	RT								
General Inform	mation						Site Ir	nformatio	on									
Analyst Agency or Co. Date Performe Time Period	d	۸ /G 12/ AM	MT &A /5/05 Peak	-					Interse Area Jurisd Analys	ection Гуре iction sis Year			George Kı All Po	ing (othe ort Αι 20	Da r are uthor 25	ve Nisbe eas ity	t	
Volume and T	iming Input	ĩ		_			1				1					r		
			т	EE	3 H	RT			WB TH	RT	<u> </u>	г	NB TH	R	Τ.	IT	SB TH	RT
Num. of Lanes		2	2	2		0	0		1	1	0	1	0	0		1	0	1
Lane Group				Т			┼─	┥	Т	R				┢		L		R
Volume (vph)		35	59	65	1		+	┥	361	61				┢		27		183
% Heavy veh		C)	0		0	0	┥	0	0	0		0	0	,	0	0	0
PHF		0.9	95	0.9	5	0.95	0.95	╡	0.95	0.95	0.9	5	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		F	>	A			1		Α	A	\square			┢		Α	<u> </u>	A
Startup lost tim	ie	2.	0	2.0)		1		2.0	2.0			2.0			2.0	2.0	2.0
Ext. eff. green		2.	0	2.0)				2.0	2.0	\uparrow		2.0			2.0	2.0	2.0
Arrival type		3	3	3				٦	3	3	T		3			3	3	3
Unit Extension		3.	0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Ped/Bike/RTO	ed/Bike/RTOR Volume)	0		5	0	T	0	12	0		0	4		0	0	15
Lane Width	ane Width		2.0	12.	0				12.0	12.0			12.0			12.0	12.0	12.0
Parking/Grade	ane Width arking/Grade/Parking		J	0		N	N		0	N	N		0	Λ	1	N	0	N
Parking/hr																		
Bus stops/hr		0)	0					0	0			0			0	0	0
Unit Extension		3.	0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Phasing	EW Perm	EB	Only		<u> </u>	03	6-	-)4	SB (Only		06		6 -	07	<u> </u>	08
Timing	Y = 5	Y =	50.0	\neg	Y =		Y =			Y = 5	5.0	1	/ =		Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	25								×		(Cycle Len	gth C) =	135.0		
Lane Group	Capacity, Co	ntrol [Delay	/, ar	nd L	.OS De	etermir	nat	ion				1					
			ļ		E	EB		Ļ		WB				Ν	IB			SB
Adj. flow rate			378	3	68	85		Ļ		380	52			0			28	0
Lane group ca	p.		119	0	160	08				844	718					<u> </u>	468	
v/c ratio			0.32	2	0.4	43				0.45	0.07						0.06	
Green ratio			0.70)	0.4	14				0.44	0.44			0.0	0		0.26	0.00
Unif. delay d ₁			22.2	2	25.	.7				26.0	21.5						37.6	
Delay factor k			0.50)	0.1	11				0.11	0.11						0.11	
Increm. delay o	d ₂		0.7	7	0.	.2				0.4	0.0						0.1	
PF factor			1.00	00	1.0	000				1.000	1.000)					1.000	
Control delay			22.	9	25	5.9				26.4	21.6						37.7	
Lane group LC	S		С		С	;				С	С						D	
Apprch. delay					24	4.8		Γ		25.8								9.6
Approach LOS					(C				С							1 T	А
Intersec. delav			1		23	3.2		Γ			Inters	sec	tion LOS				1	С

HCS+™ Version 5.1

Generated: 12/8/2005 2:23 PM

							SH	IOR		OR	т								
General Infor	mation						011		Site	Inf	ormatio	n							
Analyst Agency or Co. Date Performe Time Period	d	5 G 11/29 AM	SC &A 9/200 Peak	5					Inter Area Juris Anal	sec Ty dict	etion pe tion s Year			George I All Po	King other ort Au 202	@ F r are thori 25	lounder as ity		
Volume and T	iming Input	3															J		
			T	EI	B	БТ	-	1.7		3	БТ		т	NB		Ŧ		SB	БТ
Num of Lanes			. 1	1		1	╋	1	1		1		<u> </u>	1			0	1	
Lane Group			_	, τ	_	r R	╋	'	τ	_	r R			I TR				I TR	
Volume (vph)			n n	650	2	134	╋	.33	457	_	34	23	}	4	7	,	13	2	22
% Heavy veh		0)	0		0		0	0	_	0	0		0	0		0	0	0
PHF		0.9	95	0.9	5	0.95).95	0.95	;	0.95	0.9	5	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		A		A		A	╈	A	A	_	Α	A		A	A		Α	A	A
Startup lost tim	1e	2.	0	2.0)	2.0		2.0	2.0	_	2.0	\square		2.0				2.0	
Ext. eff. green		2.	0	2.0)	2.0		2.0	2.0		2.0	\square		2.0				2.0	
Arrival type		3	;	3		3		3	3		3	Í		3				3	
Unit Extension		3.	0	3.0)	3.0		3.0	3.0		3.0	Í		3.0				3.0	
Ped/Bike/RTO	R Volume	C	,	0		0		0	0		0	0		0	0		0	0	0
Lane Width	ane Width arking/Grade/Parking		.0	12.	0	12.0) (12.0	12.0)	12.0			12.0				12.0	
Parking/Grade	ane width arking/Grade/Parking		1	0		Ν		Ν	0		N	N		0	N	1	N	0	N
Parking/hr																			
Bus stops/hr)	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0)	3.0		3.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm	(G -)2	_	<u> </u>	03	_	<u>G</u> –	04	╉	NSPe	erm	G	- 06	_	<u>G</u> –	07	G -	08
Timing	Y = 5	Y =			Y =			Y =		╈	Y = 5	0	Y	=		Y =		Y =	
Duration of An	alysis (hrs) = 0.2	25											C	ycle Leng	th C	= 8	90.0		
Lane Group	Capacity, Co	ntrol [Delay	y, an	nd L	OS D	eter	min	ation									· · · ·	
			<u> </u>		E	EB				—	WB				N	B		ļ	SB
Adj. flow rate			38		68	4	141		35	4	181	36			35				39
Lane group ca	р.		487	7	116	61	987		329	1	161	987			435				450
v/c ratio			0.08	8	0.5	i9	0.14		0.11	0	.41	0.04			0.08	}			0.09
Green ratio			0.6	1	0.6	51	0.61		0.61	0	.61	0.61			0.28	}			0.28
Unif. delay d ₁			7.1		10.	6	7.5		7.3	9	9.1	7.0			24.0)			24.1
Delay factor k			0.1	1	0.1	8	0.11		0.11	0	.11	0.11			0.11	1			0.11
Increm. delay	d ₂		0.	1	0.	.8	0.1		0.1		0.2	0.0			0.1	1			0.1
PF factor			1.0	00	1.0	000	1.00	0	1.000	1	.000	1.000			1.00	00			1.000
Control delay			7.	2	11	.4	7.5		7.4		9.4	7.0			24.	1			24.1
Lane group LC	S		A		В		Α		A		A	Α			С				С
Apprch. delay					10	0.6					9.1				24.	1			24.1
Approach LOS					E	3					A				С				С
Intersec. delay					10).7						Inters	ecti	on LOS					В

HCS+™ Version 5.1

Generated: 12/8/2005 1:52 PM

		TWO-WAY STO	P CONTRO	LSUMM	ARY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	tion		Georae Kir	na @ Jettv P	ark
Agency/Co.	GA		Jurisdic	tion		Port Cana	veral	
Date Performed	11/21/2005	5	Analysi	s Year		ĺ –		
Analysis Time Period	AM							
Project Description								
East/West Street: George I	King Blvd		North/So	outh Street				
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume	130	/	38		0	16		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	136	7	40		0	16		0
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	ırb			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal	ĺ	0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	<u> </u>		R
Volume	29	4	0		0	0.05		9
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Dourly Flow Rate, HFR	30	4	0		2	16		9
Percent Grade (%)		2	2		2	10		2
Flared Approach		2				N N		
Storage		0				0		
RT Channelized	+	0	0					0
	0	1	0		1	0		1
		ITR			1	- ·		' R
		Ent			L			IX.
Delay, Queue Length, and	Eastbound	Westbound	1	Northboun	d		Southbound	
Approach	Lasibouriu	vestbound	7			10	11	12
	,	4	/	0	9	10	11	12
	L	LIR	 	LIR	_			R
v (vph)	136	0	ļ	34		0		9
C (m) (vph)	1602	1560	ļ	578		582		1063
v/c	0.08	0.00	ļ	0.06		0.00		0.01
95% queue length	0.28	0.00	ļ	0.19		0.00		0.03
Control Delay	7.5	7.3		11.6		11.2		8.4
LOS	A	A		В		В		A
Approach Delay				11.6			8.4	
Approach LOS				В			A	

HCS+™ Version 5.1

Generated: 12/8/2005 2:12 PM

		TWO-WAY STO	P CONTRO		/ AR	Y				
General Information			Site Inf	ormatio	on					
Analyst	M Tobin		Intersed	ction			GKB @ Ma	arlin		
Agency/Co.	GA		Jurisdic	tion			Port Canav	/eral		
Date Performed	11/21/2005	5	Analysi	s Year			2025			
Analysis Time Period	AM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Stree	et:	Marlin Stree	t			
Intersection Orientation: E	asi-wesi		Sludy P	enoa (nrs	5). ().25				
Vehicle Volumes and A	djustments			1			14/ /1			
Major Street		Eastbound				4	Westbour	nd		
iviovement	1	2 T	3 D			4	5 T			6 D
Volume	164	477	24			21	377			20
Peak-Hour Factor, PHF	0.95	0.95	0.95	- 		0.95	0.95		().95
Hourly Flow Rate, HFR	172	502	25			22	396			21
Percent Heavy Vehicles	2					2				
Median Type		•		Raised	curb	,				
RT Channelized			0							0
Lanes	1	1	1			1	1			1
Configuration	L	Т	R			L	Т			R
Upstream Signal	ĺ	0	1	ĺ			0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
Volumo	L	7	R 22			L	5			R 12
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		(
Hourly Flow Rate, HFR	17	7	23			0	5			45
Percent Heavy Vehicles	25	1	14			5	2			35
Percent Grade (%)		0	2 2				0			
Flared Approach		N					N	1		
Storage		0					0			
RT Channelized			0	ĺ			ĺ	Í		0
Lanes	0	1	0			0	1			0
Configuration		LTR		ĺ			LTR			
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northbou	und			Southb	ound	
Movement	1	4	7	8		9	10	1	1	12
Lane Configuration	L	L	<u> </u>	LTR				LT	R	
v (vph)	172	22		47				50)	
C (m) (vph)	1142	1040	<u> </u>	275				50	7	
v/c	0.15	0.02		0.17				0.1	0	
95% queue length	0.53	0.06		0.61				0.3	3	
Control Delay	8.7	8.5		20.8				12.	9	
LOS	А	A		С				В		
Approach Delay			ļ	20.8			ļ	12.9	9	
Approach LOS				С				В		

HCS+™ Version 5.1

Generated: 12/8/2005 2:18 PM

		TWO-WAY STOP	P CONTRO	L SUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dav	e Nisb	et Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	11/21/2005	5	Analysi	s Year			2025			
Analysis Time Period	AM									
Project Description										
East/West Street: Mullet Re	bad		North/So	outh Str	eet:	Dave Nisber	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound	4				Southbou	nd		
Movement	1	2	3			4	5			6
	L	Т	R			L	Т			R
Volume	157	194					110			5
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	165	204	0			0	115			5
Percent Heavy Vehicles	2					20				
Median Type			Тwo	Way Le	ft Tur	n Lane				
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0	Î		
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	<u> </u>			R
Volume	7	0.05	96			0.05	0.05			05
	0.95	0.95	0.95			0.95	0.95		l	0.95
Percent Heavy Vehicles	7	0	2			0	0	\rightarrow		0
Percent Grade (%)		0	2			0	0			0
Flared Approach		N					N N	Г		
Storage		0					0			
RT Channelized	1		0							0
Lanes	0	0	0			0	0			0
Configuration		LR					í –			
Delay, Queue Length, and	Level of Service	8					•			
Approach	Northbound	Southbound		Westbo	ound			Eastbo	und	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L							LF	2	
v (vph)	165							108	8	
C (m) (vph)	1468							87	3	
v/c	0.11							0.1	2	
95% queue length	0.38			<u> </u>				0.4	2	
Control Delay	7.8					<u> </u>		9.7	7	
LOS	А							A		
Approach Delay							1	9.7	ļ	
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/8/2005 2:21 PM

		TWO-WAY STO	P CONTRO	LSUM	IMAF	RY			
General Information			Site In	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallop	Dr
Agency/Co.	GA		Jurisdic	tion			Port Canav	reral	
Date Performed	11/21/2005	5	Analysi	s Year			ļ		
Analysis Time Period	AM								
Project Description									
East/West Street: Mullet Ro	oad		North/So	outh Str	eet:	Scallop Driv	e		
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound					Westbour	nd	
Movement	1	2	3			4	5		6
	L	T	R			L	T		R
Volume	0	27	0.05			0.05	52		22
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	0	28	0			0	54		23
Percent Heavy vehicles	2				. ,	0			
Median Type			1	Raise	d curk)			
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration	LT		ļ						TR
Upstream Signal		0					0		
Minor Street		Northbound				10	Southbour	nd	10
iviovement	/	8 T	9			10	<u>11</u> т		12 P
Volume		- <u> </u>	N N			18	ļ <u>'</u>		1.3
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	0	0	0			18	0		13
Percent Heavy Vehicles	0	0	0			20	0		2
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length, and	Level of Service	2	2						
Approach	Eastbound	Westbound		Northbo	ound		5	Southboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (vph)	0							31	
C (m) (vph)	1522							884	
v/c	0.00							0.04	
95% queue length	0.00							0.11	
Control Delay	7.4		ĺ					9.2	
LOS	А							A	
Approach Delay				~				9.2	
Approach LOS								А	

HCS+™ Version 5.1

Generated: 12/8/2005 2:06 PM

		TWO-WAY STO	P CONTRO	LSUM	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dave	Nisbet	t Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	reral		
Date Performed	12/5/2005		Analysi	s Year			2025			
Analysis Time Period	Mid Day									
Project Description										
East/West Street: Scallop F	Road		North/So	outh Str	eet:	Dave Nisber	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5		6	
	L	Т	R			L	Т		R	
Volume	52	141					132		31	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.9	5
Hourly Flow Rate, HFR	54	148	0			0	138		32	
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk)				
RT Channelized			0						0	
Lanes	0	1	0			0	1		0	
Configuration	LT								TR	2
Upstream Signal		0					0			
Minor Street		Eastbound	2				Westbour	nd		
Movement	7	8	9			10	11		12	2
	L	T	R			L	<u> </u>		R	
Volume	34	0.05	61			0.05	0.05		0.0	5
Hourly Flow Rate HER	25	0.95	64			0.95	0.95		0.9	5
Percent Heavy Vehicles	2	0	6			0	0		0	
Percent Grade (%)		0				-	0		-	
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0				i		0	
Lanes	0	0	0			0	0		0	
Configuration		LR								
Delay, Queue Length, and	Level of Service									
Approach	Northbound	Southbound		Westbo	ound			Eastbou	nd	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT							LR		
v (vph)	54							99		
C (m) (vph)	1401							771		
v/c	0.04							0.13		
95% queue length	0.12							0.44		
Control Delay	7.7							10.4		
LOS	А							В		
Approach Delay								10.4		
Approach LOS								В		

HCS+™ Version 5.1

Generated: 12/9/2005 9:42 AM

							SHO	RT	REPO	DRT								
General Inform	nation								Site I	nform	atio	n						
Analyst Agency or Co. Date Performe Time Period	d	N G 12/ Midda	/T &A /5/05 ny Pe	ak					Inters Area Jurisc Analy	ection Type diction sis Ye	ar		SF ,	2 401 All otl Port 2 2	@ Gro her are Author 2025	ouper as ity		
Volume and T	iming Input								_!									
			_ 1	EE	3				WB		_		NB				SB	
Nume of Longo					1	RI				R				_	RI			
				2 	_	0	<u> </u>					,	0	_	/	0	0	
		_		1					705				_	_	<u>к</u>			
				429	, 		25		735			314		+	20			
% Heavy ven		2		2	-	2	2	-	2	2		2	2		2	2	2	2
		0.9	<i>15</i>	0.95	<u> </u>	0.95	0.9	5	0.95	0.9		0.95	0.95		0.95	0.95	0.95	0.95
Actuated (P/A)				A	_	<u> </u>	A		A			A		_	A	<u> </u>		
Startup lost tim	le	_		2.0			2.0)	2.0	_		2.0	2.0	_	2.0		2.0	
Ext. eff. green		_		2.0			2.0)	2.0	_		2.0	2.0	_	2.0		2.0	
Arrival type		_		3			3		3	_		3	3	_	3	<u> </u>	3	<u> </u>
Unit Extension				3.0			3.0)	3.0			3.0	3.0		3.0	<u> </u>	3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume ane Width			0		0	0		0	0		0	0		0	0	0	0
Lane Width	ane Width arking/Grade/Parking			12.0	0		12.	0	12.0			12.0	12.0	<u> </u>	12.0		12.0	
Parking/Grade	ane with arking/Grade/Parking			0		N	N		0			N	0	_	N	N	0	N
Parking/hr		_		0						+				_		<u> </u>		
Bus stops/nr		_		20	_		20	<u> </u>	0			20	20	_	0		0	
Phasing	FW Perm		12	3.0		03	3.0	, 	04		IB O		3.0		3.0	07	3.0	08
Timina	G = 50.0	G =	52		G =	00	G	=	04	G =	20.	0	G =		G =	01	G =	50
Duration of An	Y = 5	Y =		_	Y =		Y	=		Y =	5		Y =	anath	Y =	80.0	Y =	
Lane Group	Capacity. Co	otrol D	Delay	v. an	d L	OS De	term	ina	tion				OYOIC L	Jingui	0 - 1	50.0		
			<u> </u>	, ,		EB		Т		WB					NB		1	SB
Adi. flow rate					45	2		┢	26	774			331		0	21		0
Lane group car	0.				22	17			572	2217	-		443	╧		396		
v/c ratio			┢──		0.2	20		6	0.05	0.35	╈		0.75	╧		0.05		
Green ratio					0.6	53		(0.63	0.63	╈		0.25	0	.00	0.25		0.00
Unif. delay d ₁			┢─		6.	4			5.8	7.2	╈		27.7	╈		22.8		1
Delay factor k					0.1	11		(0.11	0.11	┪		0.30	╈		0.11		
Increm. delay of	d ₂				0	.0		T	0.0	0.1			6.9			0.1		
PF factor			Í		1.0	000		1	1.000	1.000	7		1.000			1.000		
Control delay					6	.5		Ĩ	5.8	7.3			34.5	Τ		22.9		
Lane group LC	S				A				Α	A			С			С		
Apprch. delay					6	.5		Ĩ		7.2				3	33.8			
Approach LOS					/	4				Α					С			
Intersec. delay			1		12	2.9		T				Interse	ction LO	S				В

HCS+™ Version 5.1

Generated: 12/9/2005 9:31 AM

						SHOP	RT	REPC	ORT								
General Inforr	mation							Site I	nformati	on							
Analyst Agency or Co. Date Performe Time Period	d M	MT G&A 12/5/05 lid-day P	; eak					Inters Area Jurisc Analy	ection Type liction sis Year			SR 401 & All Po	Cha othei ort Au 202	rles r are thori 25	Rowland as ty		
Volume and T	iming Input																
			EE	3	рт			WB	БТ	4	1.7	NB		т		SB	БТ
Num of Lanes				1		1	-	2		┽	2 LI	0					
				_	, P		-	 Τ		+				,		0	
Volume (vph)			622		0	2		775			.33						
% Heavy veh		2	2	_	2	2		2	2		2	2	2		2	2	2
PHF		0.95	0.95	5	0.95	0.95		0.95	0.95	╡	0.95	0.95	0.9	95	0.95	- 0.95	0.95
Actuated (P/A)			A		Α	A		Α		Ť	Α		A				
Startup lost tim	1e	<u> </u>	2.0	_	2.0	2.0		2.0		T	2.0	2.0	2.0	0		2.0	
Ext. eff. green			2.0		2.0	2.0		2.0		1	2.0	2.0	2.0	0		2.0	
Arrival type			3		3	3		3	1	T	3	3	3			3	
Unit Extension			3.0		3.0	3.0		3.0		T	3.0	3.0	3.0	0		3.0	
Ped/Bike/RTO	ed/Bike/RTOR Volume				0	0		0	0	T	0	0	0		0	0	0
Lane Width	ane Width			2	12.0	12.0)	12.0		T	12.0	12.0	12	.0		12.0	
Parking/Grade	ane Width arking/Grade/Parking		0		N	N	Î	0	N	Ĩ	Ν	0	Ν	I	N	0	N
Parking/hr	arking/Grade/Parking arking/hr																
Bus stops/hr			0		0	0		0			0	0	6)		0	
Unit Extension			3.0		3.0	3.0		3.0			3.0	3.0	3.0	0		3.0	
Phasing	EW Perm	02		_	03		0)4	NB	On	ily	06		0	07		08
Timing	G = 55.0 G) = 	_	G = Y =		G = Y =	=		G = 1 Y = 5	5.0		5 = (=	_	G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.25										(Cycle Leng	gth C	= 8	30.0		
Lane Group	Capacity, Cont	rol Dela	y, an	d L	OS D	etermir	nati	ion									
				E	EB				WB				N	В			SB
Adj. flow rate				65	5	0	2	2	816			35	0		0		0
Lane group cap	р.			243	39	1088	50	08	2439			644			297		
v/c ratio				0.2	27	0.00	0.	00	0.33			0.05			0.00		
Green ratio				0.6	69	0.69	0.	69	0.69			0.19	0.00)	0.19		0.00
Unif. delay d ₁				4.	8	3.9	3	.9	5.1			26.7			26.4		
Delay factor k				0.1	11	0.11	0.	11	0.11			0.11			0.11		
Increm. delay of	d ₂			0.	.1	0.0	(0.0	0.1			0.0			0.0		
PF factor		ĺ		1.0	000	1.000	1.	000	1.000			1.000			1.000		
Control delay				4	.9	3.9	3	3.9	5.2			26.7			26.4		
Lane group LC	S			A		A	/	A	А			С			С		
Apprch. delay				4	.9				5.2				26.	7			
Approach LOS				/	4				A				С				
Intersec. delay				5	.5					Ir	ntersec	tion LOS					A

HCS+™ Version 5.1

Generated: 12/9/2005 9:28 AM

							SHO	RT	REPC	RT	-							
General Inforr	mation								Site In	nfor	rmatio	n						
Analyst Agency or Co. Date Performe Time Period	d	N G 12/ Mid-da	ЛТ &А ′5/05 ау Ре	eak					Inters Area Jurisc Analy	ectio Type dictic sis `	on e on Year			George All Po	King @ . other are rt Author 2025	Atlantic eas ity		
Volume and T	iming Input																	
		<u> </u>	-	EE	3				WB	_	DT		1	NB			SB	DT
Num of Longo			.1	1	1					╋			_	1H			1H	RI
		<u> </u>	_		,					╋			_	1				0
				12/	1	241	67		102	╋	2	274	_	12			20	54
		2		134	+	241	0/		103	╋	2	274	_	2	90	2	20	2
		2	5	2	5	2	2		2	+	2 0.05	2 0.05	_	2	2	2 0.95	2 0.05	2
$A_{\text{ctuated}}(P/A)$				Δ		Δ	Δ	,	Δ	╧	Δ	0.50	-	Δ	Δ	Δ	Δ	Δ
Startun lost tim			0	20)		20		20	╈	20		-	20	20	20	20	~
Ext eff green		2.	0	2.0	,)		2.0		2.0	╈	2.0		_	2.0	2.0	2.0	2.0	
Arrival type		3		0			3		3	╈	3	<u> </u>		3	3	3	3	
Unit Extension		3.	0	3.0)		3.0		3.0	╈	3.0	<u> </u>	_	3.0	3.0	3.0	3.0	
Ped/Bike/RTO	R Volume	0	,	0		15	0		0	╈	0	0		0	10	0	0	5
Lane Width		12	.0	12.	0		12.0)	12.0		12.0			12.0	12.0	12.0	12.0	
Parking/Grade/	/Parking		1	0		N	N		0	Ť	N	N		0	N	N	0	N
Parking/hr									1	Ť								
Bus stops/hr		0)	0			0		0	T	0			0	0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	T	3.0			3.0	3.0	3.0	3.0	
Phasing	EB Only	EW	Perm	n	~	03			04		NS Pe	erm		06		07	()8
Timing	G = 10.0 Y = 5	G = 4 Y = 5	0.0	\dashv	G = Y =		Y =	-		Y	5 = 25. ' = 5	0	Y	=	G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	5		Í						Į.			C	ycle Leng	gth C =	90.0		
Lane Group	Capacity, Cor	ntrol [Delay	y, an	nd L	OS D	etermi	na	tion				1					
					E	EB		Ļ		V	NB				NB			SB
Adj. flow rate			55		37	9			71	10)8	2			302	93	5	73
Lane group cap	р.		766	6	103	31		4	444	82	28	704			353	440	201	462
v/c ratio			0.0	7	0.3	37		C).16	0.1	13	0.00			0.86	0.21	0.02	0.16
Green ratio			0.6	1	0.6	61		C).44	0.4	44	0.44			0.28	0.28	0.28	0.28
Unif. delay d ₁			7.2	2	8.	8		1	15.0	14.	.7	13.9			30.8	24.9	23.6	24.5
Delay factor k			0.1	1	0.1	1		C).11	0.1	11	0.11			0.39	0.11	0.11	0.11
Increm. delay o	d ₂		0.	0	0.	.2			0.2	0.	.1	0.0			18.3	0.2	0.1	0.2
PF factor			1.0	00	1.0	000		1	1.000	1.0	000	1.000			1.000	1.000	1.000	1.000
Control delay			7.	2	9	.0			15.1	14	4.8	13.9			49.0	25.2	23.7	24.7
Lane group LO	S		A		A				В	В	3	В			D	С	С	С
Apprch. delay					8	.8				14	4.9				43.4			24.6
Approach LOS					/	4				E	В				D			С
Intersec. delay	ersec. delay				23	3.5						Interse	cti	on LOS				С

HCS+™ Version 5.1

Generated: 12/9/2005 9:31 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			GKB @ C	Columb	ous Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	12/5/05		Analysi	s Year			2025			
Analysis Time Period	Mid day									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Str	eet:	C Columbus	Drive			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound	1				Westbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L	T			R
	42	202				0.00	161			2
Peak-Hour Factor, PHF	0.90	0.90	0.90			0.90	0.90		().90
Hourly Flow Rate, HFR	46	224	0			0	178			2
Percent Heavy Vehicles	13					25				
Median Type			1	Raise	d curk)	1			
RT Channelized			0							0
Lanes	1	1	0			0	1			0
Configuration	L	Т								TR
Upstream Signal		0					0			
Minor Street		Northbound	2				Southbou	nd		
Movement	7	8	9			10	11			12
Volumo			R			L 2				R 26
Peak-Hour Factor PHF	0.90	0.90	0.90			2	0.90		(30 1.90
Hourly Flow Rate, HFR	0	0	0			2	0			40
Percent Heavy Vehicles	6	0	2			0	16			5
Percent Grade (%)		0	<u>.</u>				0	ļ		
Flared Approach	1	N					N	1		
Storage	1	0					0			
RT Channelized			0							0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound		Northb	ound		S	Southbo	ound	
Movement	1	4	7	8		9	10	11	1	12
Lane Configuration	L		ĺ				L			R
v (vph)	46		[2			40
C (m) (vph)	1332		[588			856
v/c	0.03		í				0.00			0.05
95% queue length	0.11		, 				0.01			0.15
Control Delay	7.8		i – – – – – – – – – – – – – – – – – – –	<u> </u>			11.1			9.4
LOS	А		İ				В			А
Approach Delay			ĺ					9.5		
Approach LOS								Α		

HCS+™ Version 5.1

Generated: 12/9/2005 9:35 AM

		TWO-WAY STO	P CONTRO	L SUM	MAF	RY			
General Information			Site Inf	ormati	on				
Analyst	M Tobin		Intersed	ction			GKB @ Da	ve Nisbet	Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	12/5/2005		Analysi	s Year			2025		
Analysis Time Period	Mid Day								
Project Description									
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Dave Nisbet	Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hr	s):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound					Westbour	nd	
Movement	1	2	3			4	5		6
V - L	L (00	700	R			L	450		R
Volume	430	738	0.05			0.05	458		0.05
	0.95	0.95	0.95			0.95	0.95		0.95
Houriy Flow Rate, HFR	452	776	0			0	482		00
						0			
Median Type				Raised	Curk)			
			0	\rightarrow		0			0
Lanes	1	2	0			0	1 		1
	L	1					1		R
Upstream Signal		0					0		
Minor Street		Northbound				10	Southbou	nd	- 10
Movement	/	8 	9			10	11 T		12
Volume		- <u> </u>	ĸ			E 60	· ·		0 0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	0	0	0	Í		63	0		0
Percent Heavy Vehicles	0	0	0			11	0		10
Percent Grade (%)		0					0		
Flared Approach		N					N		
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			1	0		1
Configuration						L			R
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northbo	und		5	Southboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L						L		R
v (vph)	452						63		0
C (m) (vph)	997						94		509
v/c	0.45						0.67		0.00
95% queue length	2.40						3.29		0.00
Control Delay	11.6						99.7		12.1
LOS	В						F		В
Approach Delay							99.7		
Approach LOS								F	

HCS+™ Version 5.1

Generated: 12/9/2005 9:36 AM

							SHOP	RT	REPO	RT								
General Inform	nation								Site Ir	nformatio	on							
Analyst Agency or Co. Date Performe Time Period	d	(12 Mid E	MT G&A 2/5/05 Day Pe	eak					Interse Area Jurisd Analys	ection Гуре iction sis Year		Ge	eorge Ki All Po	ing (othe ort Au 20	Da Da Da Da Da Da Da Da Da Da Da Da Da D	ve Nisbe eas ity	t	
Volume and T	iming Input	8					2		n									
		_	I T	E	B	рт			WB	БТ		Ĩ	NB			1.7	SB	БТ
Num of Lanes		╋	2	2			0	╉	1	1	0	+	0			1	0	1
Lane Group		+	1	- T			Ť	╉	Τ	R	Ť	+						R
Volume (vph)			30	73	8			╉	458	63		+		<u> </u>	_	60		235
% Heavy veh		+	0	0		0	0	╡	0	0	0	╈	0	0	,	0	0	0
PHF		0	.95	0.9	5	0.95	0.95	╡	0.95	0.95	0.95	╈	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		+	P	A	-			╡	A	A		╈			-	A		A
Startup lost tim	le	2	2.0	2.0)		+	╡	2.0	2.0		1	2.0			2.0	2.0	2.0
Ext. eff. green		2	2.0	2.0)		1	╡	2.0	2.0	1	╈	2.0			2.0	2.0	2.0
Arrival type		╧	3	3			1	┪	3	3		╈	3			3	3	3
Unit Extension		3	8.0	3.0)			╡	3.0	3.0			3.0			3.0	3.0	3.0
Ped/Bike/RTO	R Volume	╈	0	0		5	0	╡	0	12	0		0	4		0	0	15
Lane Width		1	2.0	12.	.0			╡	12.0	12.0		Ť	12.0			12.0	12.0	12.0
Parking/Grade	/Parking		N	0		N	N	Ť	0	N	N	T	0	Ν	'	N	0	N
Parking/hr							1	Ī			Í	Ī						
Bus stops/hr			0	0			İ	Ī	0	0	Í		0			0	0	0
Unit Extension		3	3.0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Phasing	EW Perm	EE	3 Only	′]	_	03		0)4	SB (Dnly		06			07		08
Timing	G = 60.0 Y = 5	G = Y -	30.0		G = Y =		G =	-		G = 30	5.0	G : Y -	-		G = Y =		G =	
Duration of Ana	alysis (hrs) = 0.2	?5					1			10		Су	- cle Leng	gth C) =	135.0	1	
Lane Group	Capacity, Co	ntrol	Dela	y, ar	nd L	.OS De	termir	nati	ion									
					E	ΞB				WB		Î		N	IB			SB
Adj. flow rate			45	3	77	7				482	54	Ĩ		0			63	0
Lane group ca	р.		118	1	160	08				844	718						468	
v/c ratio			0.3	8	0.4	18				0.57	0.08						0.13	
Green ratio			0.7	0	0.4	14				0.44	0.44	Ĩ		0.0	0		0.26	0.00
Unif. delay d ₁			27.	5	26.	.5				27.9	21.6						38.4	
Delay factor k			0.5	0	0.1	11				0.17	0.11						0.11	
Increm. delay o	d ₂		0.	9	0.	.2				0.9	0.0						0.1	
PF factor			1.0	00	1.0	000				1.000	1.000	T					1.000	
Control delay			28	.4	26	5.8		$\left[\right]$		28.9	21.6						38.5	
Lane group LO	S		С		С	;				С	С						D	
Apprch. delay					27	7.4				28.1								12.5
Approach LOS					(0				С							1	В
Intersec. delay	pproach LUS tersec delav				25	5.4					Interse	ectio	on LOS				ĺ	С

HCS+™ Version 5.1

Generated: 12/9/2005 9:37 AM

							S	HOR		POF	T								
General Inforr	nation								Sit	e Inf	ormatic	n							
Analyst Agency or Co. Date Performe Time Period	d	۸ /G 12 Mid-da	/IT &A /5/05 ay Pe	ak					Inte Are Jur Ana	erseo ea Ty isdic alysi	ction /pe tion s Year			George I All Po	King (other rt Autl 2023	@ Fi area horii 5	lounder as ty		
Volume and T	iming Input																		
			<u> </u>	EE	3	рт		1.7	V	VB	БТ	+	1 T	NB		F		SB	БТ
Num of Lanes			.1	1		1 R I		1	1		1	╋	0	1		1	0	1	
Lane Group		<u> </u>		τ Τ		, R	\neg	,		т	R	┼	0			_		' I TR	
Volume (vph)		14	4	538	3	114		21	49)3	69	+	75	4	10		67	9	78
% Heavy veh		C	,	0	_	0		0	0)	0		0	0	0	_	0	0	0
PHF		0.9	95	0.9	5	0.95	;	0.95	0.9	95	0.95	0	.95	0.95	0.95	5	0.95	0.95	0.95
Actuated (P/A)		A		A		A		A	A	ł	Α	╈	A	Α	A	_	A	A	A
Startup lost tim	e	2.	0	2.0	,	2.0		2.0	2.	.0	2.0	╈		2.0				2.0	
Ext. eff. green		2.	0	2.0	,	2.0		2.0	2.	.0	2.0	Ť		2.0	<u> </u>			2.0	
Arrival type		3		3		3		3	3	3	3	Ť		3	1			3	
Unit Extension		3.	0	3.0	,	3.0		3.0	3.	.0	3.0	T		3.0				3.0	
Ped/Bike/RTO	R Volume	C	,	0	Í	10		0	0)	10	Ť	0	0	5		0	0	10
Lane Width		12	.0	12.	0	12.0)	12.0) 12	2.0	12.0	Ť		12.0				12.0	
Parking/Grade/	/Parking	Λ	1	0		Ν		Ν	0)	Ν		Ν	0	N		N	0	N
Parking/hr																			
Bus stops/hr		()	0		0		0	(0	0			0				0	
Unit Extension		3.	0	3.0)	3.0		3.0	3.	.0	3.0			3.0				3.0	
Phasing	EW Perm	0)2		_	03			04		NS P	erm		06		_	07		08
Timing	G = 55.0 Y = 5	G = Y =			G = Y =			G = Y =			G = 25 Y = 5	5.0	Y	=		5 = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	5											С	ycle Leng	jth C ⊧	= 9	90.0	ļ	
Lane Group	Capacity, Cor	trol [Delay	/, an	d L	OS D)ete	rmin	ation										
					E	В					WB				NB	3			SB
Adj. flow rate			152	2	56	6	109	9	22		519	62			88				152
Lane group cap	э.		456	6	116	61	987	7	419	1	161	987	7		359				408
v/c ratio			0.33	3	0.4	9	0.1	1	0.05	().45	0.06	6		0.25				0.37
Green ratio			0.61	1	0.6	1	0.6	1	0.61	(0.61	0.61	1		0.28				0.28
Unif. delay d ₁			8.5		9.7	7	7.3	3	7.0		9.4	7.1			25.2				26.2
Delay factor k			0.11	1	0.1	1	0.1	1	0.11	(D.11	0.1	1		0.11				0.11
Increm. delay o	1 ₂		0.4	4	0.	3	0.	0	0.1		0.3	0.0)		0.4				0.6
PF factor			1.00	00	1.0	00	1.0	00	1.000) [;	1.000	1.00	00		1.000	0			1.000
Control delay			9.0)	10	.0	7.	3	7.1		9.6	7.1	1		25.5	5			26.8
Lane group LO	S		Α		В		A		А		A	A			С				С
Apprch. delay					9.	5					9.3				25.5	5			26.8
Approach LOS					A	١					A				С				С
Intersec. delay	ersec. delay				11	.8						Inte	rsecti	on LOS					В

HCS+™ Version 5.1

Generated: 12/9/2005 9:34 AM

		TWO-WAY STO	P CONTRO	L SUMM/	ARY			
General Information			Site Inf	ormatior)			
Analvst	M Tobin		Intersed	ction		GKB @ Je	ttv Park Driv	e
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral	
Date Performed	12/5/2005		Analysi	s Year		2025		
Analysis Time Period	Mid Day							
Project Description			,					
East/West Street: Jetty Par	rk Dr		North/So	outh Street	: GKB/Shore	wood Drive		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound				Westbour	nd	
Movement	1	2	3		4	5		6
	L	Т	R		L	Т		R
Volume	29	22	45		0	14		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	30	23	47		0	14		0
Percent Heavy Vehicles	6				0			
Median Type				Undivide	ed			
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	Т		R
Volume	23	2	0		4	0.05		34
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Houriy Flow Rate, HFR	24	2	0		4	0		30 5
Percent Grade (%)	0	0	0		0	0	ļ	5
Flared Approach		N				N	1	
Storage		0				0		
RT Channelized	1		0			<u> </u>		0
Lanes	0	1	0		1	0		1
		ITR			1	, v		R
Dolay Quoue Longth and				I	-			
Approach	Fastbound	Westbound		Northboun	d		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	1	I TR		I TR		/		R
v (vph)	30	0	<u> </u>	26		4		35
C(m)(vph)	1578	1544	<u> </u>	795		844		1057
v/c	0.02	0.00		0.03		0.00		0.03
95% queue length	0.06	0.00	<u> </u>	0.00		0.01		0.10
Control Delay	7.3	7.3	<u> </u>	97		9.3		8.5
	<u>А</u>	Δ	<u> </u>	Δ		Δ		Δ
Approach Delay				97		/1	86	
Approach LOS		<u> </u>	<u>э.г</u>			A		
				/1		I	<i>/</i> ·	

HCS+™ Version 5.1

Generated: 12/9/2005 9:38 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersed	ction		GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion		Port Canav	/eral	
Date Performed	12/5/2005		Analysi	s Year		2025		
Analysis Time Period	Mid day							
Project Description								
East/West Street: George I	King Blvd		North/So	outh Street:	Marlin Stree	et		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	1			Westbour	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T (50		R
Volume	34	390	1/		3	458		23
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	35	410	17		3	482		24
Percent Heavy Venicles	2				2			
Median Type				Raised cu	rb			
RT Channelized	_		0					0
Lanes	1	1	1		1	1		1
Configuration	L	Т	R		L	Т		R
Upstream Signal		0	ļ			0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	<u>11</u>		12
Volumo	L	2	R A		20			R 22
Peak-Hour Factor PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	25	2	4		21	0.00		34
Percent Heavy Vehicles	20	2	2		9	2		50
Percent Grade (%)		0	<u>.</u>			0	ļ.	
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0					0
Lanes	0	1	0		0	1		0
Configuration		LTR				LTR		
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northbound	ł		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L		LTR			LTR	
v (vph)	35	3		31			55	
C (m) (vph)	1059	1132		326			424	
v/c	0.03	0.00		0.10			0.13	
95% queue length	0.10	0.01		0.31			0.44	
Control Delay	8.5	8.2		17.2			14.8	
LOS	А	А		С			В	
Approach Delay				17.2			14.8	
Approach LOS				С			В	

HCS+™ Version 5.1

Generated: 12/9/2005 9:39 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave Nis	bet Drive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral	
Date Performed	12/5/2005		Analysi	s Year			2025		
Analysis Time Period	Mid Day								
Project Description			ý.						
East/West Street: Mullet Ro	bad		North/So	outh Str	eet:	Dave Nisbet	Drive		
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Northbound	ú				Southbou	nd	
Movement	1	2	3			4	5		6
		Ť	R			L	T		R
Volume	1/3	242	0.05			0.05	219		22
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	182	254	0			0	230		23
Percent Heavy Venicles	2					20			
Median Type			Two	Way Le	eft Tur	n Lane	ì		
RT Channelized			0						0
Lanes	1	1	0			0	1		0
Configuration	L	Т							TR
Upstream Signal		0					0		
Minor Street		Eastbound					Westbour	nd	
Movement	7	8	9			10	11		12
Valuesa	L		R 407			L	I		R
Volume Peak-Hour Factor, PHF	20	0.95	197			0.95	0.95		0.95
Hourly Flow Rate, HFR	21	0.95	207			0.00	0.00		0.00
Percent Heavy Vehicles	2	0	5			0	0		0
Percent Grade (%)		0	-				0		
Flared Approach	1	N					N	Î	
Storage		0					0		
RT Channelized			0						0
Lanes	0	0	0			0	0		0
Configuration		LR							
Delay, Queue Length, and	Level of Service								
Approach	Northbound	Southbound		Westbo	ound			Eastbound	
Movement	1	4	7	8		9	10	11	12
Lane Configuration	L							LR	
v (vph)	182							228	
C (m) (vph)	1312							718	
v/c	0.14							0.32	
95% queue length	0.48	.48						1.37	
Control Delay	8.2							12.3	
LOS	А							В	
Approach Delay								12.3	
Approach LOS								В	

HCS+™ Version 5.1

Generated: 12/9/2005 9:41 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY			
General Information			Site Inf	ormat	ion				
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallop	Dr
Agency/Co.	GA		Jurisdic	tion			Port Canav	eral ,	
Date Performed	12/5/2005		Analysi	s Year			2025		
Analysis Time Period	Mid Day								
Project Description									
East/West Street: Mullet Re	bad		North/So	outh Str	eet:	Scallop Driv	e		
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25			
Vehicle Volumes and A	djustments								
Major Street		Eastbound	4				Westbour	nd	
Movement	1	2	3			4	5		6
	L	Т	R			L	Т		R
Volume	4	67					29		38
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95
Hourly Flow Rate, HFR	4	70	0			0	30		40
Percent Heavy Vehicles	2					0			
Median Type				Raise	d curk	0	2		
RT Channelized			0						0
Lanes	0	1	0			0	1		0
Configuration	LT								TR
Upstream Signal		0					0		
Minor Street		Northbound					Southbou	nd	
Movement	7	8	9			10	11		12
V - L		T	R			L	T		R
Volume	0.05	0.05	0.05			33	0.05		20
Hourly Flow Rate HFR	0.95	0.95	0.33			.34	0.95		21
Percent Heavy Vehicles	0	0	0			11	0		9
Percent Grade (%)		0					0		
Flared Approach	1	N	1				N		
Storage		0					0		
RT Channelized			0				ĺ	ĺ	0
Lanes	0	0	0			0	0		0
Configuration							LR		
Delay, Queue Length, and	Level of Service								
Approach	Eastbound	Westbound		Northb	ound		5	Southboun	d
Movement	1	4	7	8		9	10	11	12
Lane Configuration	LT							LR	
v (vph)	4							55	
C (m) (vph)	1531							873	
v/c	0.00							0.06	
95% queue length	0.01							0.20	
Control Delay	7.4							9.4	
LOS	А							А	
Approach Delay								9.4	
Approach LOS								A	

HCS+™ Version 5.1

Generated: 12/9/2005 9:40 AM

		TWO-WAY STO	P CONTRO	LSUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Scallop Rd	@ Dav	e Nisl	bet Drive
Agency/Co.	G&A		Jurisdic	tion			Port Canav	veral		
Date Performed	12/5/05		Analysi	s Year			2025			
Analysis Time Period	PM									
Project Description										
East/West Street: Scallop I	Road		North/So	outh Str	eet:	Dave Nisbe	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbour	nd		
Movement	1	2	3			4	5			6
	L	T	R			L	T T			R
Volume	51	132	_				388			9
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		C).95
Hourly Flow Rate, HFR	53	138	0			0	408			9
Percent Heavy Vehicles	3					20				
Median Type				Raise	d curk)				
RT Channelized			0							0
Lanes	0	1	0			0	1			0
Configuration	LT									TR
Upstream Signal		0					0			
Minor Street		Eastbound					Westbour	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	<u> </u>			R
Volume	22	0.05	83			0.05	0.05			05
	0.95	0.95	0.95			0.95	0.95		ί	0.95
Porcont Hoovy Vohiclos	23	0	6/			0	0			0
Percent Grade (%)		0	0			0	0			0
Flared Approach		N	1				N			
Storage		0	_				0			
RT Channelized	+		0					—		0
Lanes	0	0	0			0	0			0
Configuration		LR					<u> </u>			
Delay Queue Length and	Level of Service	μ	ł				I			
Approach	Northbound	Southbound		Westbo	ound			Eastbou	ind	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	LT		¦					LR		
v (vph)	53		¦					110		
C (m) (vph)	1137							590		
v/c	0.05		<u> </u>					0.19	,	
95% queue length	0.15		<u> </u>					0.68	}	
Control Delay	8.3		<u> </u>			<u> </u>			5	
LOS	А		1					В		
Approach Delay			1	U			1	12.5		
Approach LOS			<u> </u>					В		

HCS+™ Version 5.1

Generated: 12/9/2005 9:53 AM

General Inform	nation						SHOP	۲	REPC		matio	n							
Analyst Agency or Co. Date Performe Time Period	d	۸ /G 12 PM	ЛТ &А ⁄5/05 Реан	(Inters Area Juriso Analy	sectic Type dictio vsis Y	on e n rear			SR 40 All Po	01 @ othei rt Au 202	e Gro r area uthori 25	uper as ty		
Volume and T	iming Input																		
			1	EB					WB	1				NB	1			SB	
			.T	TH	4	RT			TH	_	RT			TH	R	RT.	LT	ТН	RT
Num. of Lanes		- 0		2	4	0	1		2	_	0	1		0			0	0	0
Lane Group				1	4				/	_						(-			
Volume (vph)		+		135	4		27		2308	_	-	298			/				
% Heavy veh		2	2	2		2	2		2		2	2		2	2	,	2	2	2
PHF		0.9	95	0.95		0.95	0.95		0.95	0).95	0.95		0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)				A	4		A		A			A		<u> </u>	A				
Startup lost tim	ie			2.0	_		2.0		2.0			2.0		2.0	2.	0		2.0	<u> </u>
Ext. eff. green				2.0	_		2.0		2.0			2.0		2.0	2.	0		2.0	<u> </u>
Arrival type				3	_		3		3			3		3	3	}		3	<u> </u>
Unit Extension				3.0			3.0		3.0			3.0		3.0	3.	0		3.0	
Ped/Bike/RTO	R Volume	0)	0		5	0		0		0	0		0	4	!	0	0	0
Lane Width				12.0			12.0		12.0			12.0)	12.0	12	.0		12.0	
Parking/Grade	/Parking	^	/	0	_	Ν	N		0		Ν	N		0	Λ	/	N	0	N
Parking/hr					4		<u> </u>		<u> </u>			<u> </u>		<u> </u>					<u> </u>
Bus stops/hr				0	4		0		0			0		0	()		0	
Unit Extension				3.0		02	3.0	_	3.0			3.0		3.0	3.	0	07	3.0	
Timing	G = 75.0	G =	02	(G =	03	G =	:	04	G	= 25.	0 0	G	00 i =		G =	07	G =	00
	Y = 5	Y =		Ì	Y =		Y =			Y	= 5		Y		uth C	Y =	110.0	Y =	
	Capacity Co	ntrol [روام	v an	d L		tormir	12	tion					ycie Leng	jui C		10.0		
	Capacity, CO			y, an	F	-B				V	VB		Ĩ		N	B			SB
Adi flow rate				1	14:	2			28	242	9			314	0	_	.3		0
	0		┢──		241	8		2	RA1	241	18		-	402	0		360		Ť
v/c ratio	р. 		┢──		0.0	6			0.02	1.0	0		_	0.79			0.01		
Green ratio			_		0.6	8		0).68	0.6	8		_	0.23	0.00	0	0.23		0.00
Unif. delay d ₁			-		5.8	3			5.7	17.	5		_	39.9		-	32.9		
Delay factor k					0.1	1		0	0.11	0.5	0			0.33			0.11		_
Increm. delay o	d ₂				0.	0			0.0	19	.4		ĺ	9.6			0.0		
PF factor				Ĩ	1.0	00		1	.000	1.0	00		Ĩ	1.000			1.000		1
Control delay					5.	8			5.7	36	.9			49.5			32.9		
Lane group LO	S				Α				A	D				D			С		
Apprch. delay					5.	8				36	.5				49.	4			
Approach LOS					A	1				D)				D				
Intersec. delay	ersec. delay				36	.4		Γ				Interse	ecti	ion LOS					D

HCS+™ Version 5.1

Generated: 12/9/2005 9:44 AM
							SF	IOR	TRE	PO	RT								
General Infor								Sit	e Ir	nformatio	on								
Analyst Agency or Co. Date Performe Time Period	d	M G& 12/5 PM P	T A 5/05 Peak						Inte Are Jui An	erse ea T risdi alys	ection Type iction sis Year			SR 401 8 Ali Pe	& Cha I othe ort Au 20.	arles r are ithori 25	Rowland as ity		
Volume and T	iming Input																		
			- 1	EB	;	DT			V	VB	Бт	╀		NB		<u></u>		SB	
Num of Lanes			\neg	2		1	╋	1	2	н ,		┼	2	0 1H				0	
			\neg	<u></u>	┥	, R	╋	'		г Г		┼	2					0	
Volume (vph)		┼──	_	235		2	╋	0	25	16		┼	.37			, ,			
% Heavy veh		2		200		2	╋	2	2	,	2	╈	2	2			2	2	2
PHF		0.95	5	0.95		0.95	6).95	0.9	95	0.95		0.95	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)			╡	Α		A	╈	A	A	1	1	╈	A	1		1			
Startup lost tim	ne	┼──		2.0		2.0		2.0	2.	.0			2.0	2.0	2.	0		2.0	
Ext. eff. green		+		2.0		2.0		2.0	2.	.0			2.0	2.0	2.	0		2.0	
Arrival type				3		3	╈	3	3	3	1	╈	3	3	3	}		3	
Unit Extension			Ť	3.0		3.0		3.0	3.	0		T	3.0	3.0	3.	0		3.0	
Ped/Bike/RTO	R Volume	0		0	T	0	╈	0	0)	0	Ť	0	0	6)	0	0	0
Lane Width				12.0	,	12.0		12.0	12	2.0		T	12.0	12.0	12	2.0		12.0	
Parking/Grade	/Parking	N		0		Ν	Т	Ν	()	N	Τ	Ν	0	^	J	N	0	N
Parking/hr																			
Bus stops/hr				0		0		0	(0			0	0	()		0	
Unit Extension				3.0		3.0		3.0	3.	0			3.0	3.0	3.	0		3.0	
Phasing	EW Perm	02	2		_	03			04		NB (Only	/	06			07		08
Timing	G = 80.0 (Y = 5	5 = Y =			9 = Y =			G = Y =			G = 20 Y = 5).0		5 = Y =		G = Y =		G = Y =	
Duration of An	alysis (hrs) = <i>0.25</i>	5												Cycle Len	gth C	=	110.0	,	
Lane Group	Capacity, Cont	trol D	elay	, an	d L	OS D	eter	min	ation										
					E	В					WB	,			N	B			SB
Adj. flow rate					24	7	2		0		2648			39	0		2		0
Lane group ca	р.				258	30	1151	1	811		2580			625			288		
v/c ratio					0.1	0	0.00)	0.00		1.03			0.06			0.01		
Green ratio					0.7	'3	0.73	}	0.73		0.73			0.18	0.0	0	0.18		0.00
Unif. delay d ₁					4.4	4	4.1		4.1		15.0			37.2			36.9		
Delay factor k					0.1	1	0.11		0.11		0.50			0.11			0.11		
Increm. delay	d ₂				0.	.0	0.0)	0.0		24.8			0.0			0.0		
PF factor					1.0	000	1.00	00	1.000)	1.000			1.000			1.000		
Control delay					4.	4	4.1		4.1		39.8			37.3			36.9		
Lane group LC	S				A		Α		Α		D			D			D		
Apprch. delay					4.	4					39.8				37	3			
Approach LOS					A	1					D				D)			
ntersec. delay			36.8			Intersection LOS								D					

HCS+™ Version 5.1

Generated: 12/9/2005 9:43 AM

							SHO	RT	REPC	DRT								
General Inforr	nation								Site I	nforma	atio	n						
Analyst Agency or Co. Date Performe Time Period	d	۸ G 12/ PM	/T &A /5/05 Peak						Inters Area Jurisc Analy	ection Type diction sis Yea	ar		Georg A F	je Kii II oth Port A 2	ng @ / ler are Author 025	Atlantic eas ity		
Volume and T	iming Input																	
			- T	EE	3	БТ			WB		-		NB	-r	DT		SB	
Num of Lonos			.1	1	1					R	1			╋	1 RI		1 H	
		+	-		,	0	<i>'</i>							╋	ı D	,		
Volume (vph)		14	1	99	, ,	352	78		152	2		289	11	╀	38	4	40	67
% Heavy veh		2		2		2	2		2	2		200	2	+	2	2	2	2
PHF		0.9	95	0.9	5	0.95	0.95	5	0.95	0.9	5	0.95	0.95	0	.95	0.95	0.95	0.95
Actuated (P/A)		A		A	-	A	A		A	A	-	A	A	+	A	A	A	A
Startup lost tim	IE	2.0	0	2.0)		2.0		2.0	2.0)		2.0		2.0	2.0	2.0	
Ext. eff. green		2.	0	2.0)		2.0		2.0	2.0)		2.0		2.0	2.0	2.0	
Arrival type		3		3			3		3	3			3	╈	3	3	3	
Unit Extension		3.	0	3.0)		3.0		3.0	3.0)		3.0		3.0	3.0	3.0	
Ped/Bike/RTO	R Volume	0		0		20	0		0	2		0	0	T	7	0	0	8
Lane Width		12	.0	12.	0		12.0)	12.0	12.	.0		12.0	1	2.0	12.0	12.0	
Parking/Grade	/Parking		′	0		N	N		0	N		N	0	T	Ν	N	0	N
Parking/hr																		
Bus stops/hr		0)	0					0	0			0		0	0	0	
Unit Extension		3.	0	3.0)		3.0		3.0	3.0)		3.0	;	3.0	3.0	3.0	
Phasing	EB Only	EW	Perm		03		G -		04	N	S Pe	erm	06			07	()8
Timing	G = 10.0 Y = 5	G = 4 Y = 5	0.0	-	G = Y =		G = Y =			<u>G</u> = Y =	25. 5	0	G = Y =		G = Y =		G = Y =	
Duration of Ana	alysis (hrs) = 0.2	25									-		Cycle Le	ngth	C =	90.0		
Lane Group	Capacity, Co	ntrol [Delay	, an	nd L	.OS De	etermi	nat	tion									
					E	EB				WB					NB			SB
Adj. flow rate			15		45	3			82	160		0		3	16	33	4	104
Lane group ca	р.		740		100	06		4	415	828		704		3.	41	440	190	471
v/c ratio			0.02	2	0.4	45		0	.20	0.19		0.00		0.	93	0.08	0.02	0.22
Green ratio			0.61		0.6	61		0).44	0.44		0.44		0.	28	0.28	0.28	0.28
Unif. delay d ₁			7.0		9.	4		1	5.2	15.2		13.9		3	1.6	24.0	23.6	25.0
Delay factor k			0.11		0.1	11		0).11	0.11		0.11		0.	44	0.11	0.11	0.11
Increm. delay o	d ₂		0.0)	0.	.3			0.2	0.1		0.0		3	0.6	0.1	0.0	0.2
PF factor			1.00	00	1.0	000		1	.000	1.000		1.000		1.	000	1.000	1.000	1.000
Control delay			7.0)	9	.7			15.5	15.3		13.9		6	2.2	24.0	23.7	25.2
Lane group LC	S		Α		A				В	В		В			Ξ	С	С	С
Apprch. delay					9	.6				15.4				5	8.6			25.2
Approach LOS					/	4				В					E			С
Intersec. delay	tersec. delay				26	5.9	26.9			Interse				3				С

HCS+™ Version 5.1

Generated: 12/9/2005 9:45 AM

		TWO-WAY STO	P CONTRO	L SUMM	ARY					
General Information			Site Inf	ormatio	n					
Analyst	M Tobin		Intersed	ction		GKB @ C	Columbus	Drive		
Agency/Co.	GA		Jurisdic	tion		Port Cana	/eral			
Date Performed	12/5/2005		Analysi	s Year		2025				
Analysis Time Period	PM Peak									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Stree	t: C Columbu	s Drive				
Intersection Orientation: E	ast-West		Study P	eriod (hrs)	: 0.25					
Vehicle Volumes and A	djustments									
Major Street		Eastbound				Westbour	nd			
Movement	1	2	3		4	5		6		
Volumo	L	101	ĸ		L	177		R		
Volume	43	0.05	0.05		0.05	0.05		0.05		
Hourly Flow Rate HFR	0.95	106	0.30		0.90	186		5		
Percent Heavy Vehicles	0				25					
Median Type				Raised o	curb	<u>I I</u>				
RT Channelized	-		0					0		
Lanes	1	1	0		0	1		0		
Configuration	L	Т						TR		
Upstream Signal		0				0				
Minor Street			ĺ		Southbou	nd				
Movement	7	8	9		10	11		12		
	L	Т	R		L	Т		R		
Volume					0			27		
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95		
Hourly Flow Rate, HFR	0	0	0		0	0		28		
Percent Heavy Venicles	6	0	2		0	16		12		
Flored Approach							1			
Flared Approach		N				N				
Storage		0				0				
			0		4			0		
Lanes	0	0	0		1	0		1		
Configuration					L			R		
Delay, Queue Length, and	Level of Service	í .	1			1				
Approach	Eastbound	Westbound		Northbou	nd	;	Southboun	d		
Movement	1	4	7	8	9	10	11	12		
Lane Configuration	L					L	<u> </u>	R		
v (vph)	45		ļ			0	ļ	28		
C (m) (vph)	1395		ļ			654	ļ	829		
v/c	0.03		ļ			0.00	ļ	0.03		
95% queue length	0.10					0.00	0.00			
Control Delay	7.7	ļ	ļ			10.5	ļ	9.5		
LOS	Α					В		А		
Approach Delay						9.5				
Approach LOS					A					

HCS+™ Version 5.1

Generated: 12/9/2005 9:49 AM

		TWO-WAY STO	P CONTRO		MAF	RY				
General Information			Site Inf	ormati	on					
Analyst	M Tobin		Intersed	ction			GKB @ Da	ve Nisk	oet Dr	ive
Agency/Co.	GA		Jurisdic	tion			Port Canav	veral		
Date Performed	12/5/2005		Analysi	s Year			2025			
Analysis Time Period	PM									
Project Description										
East/West Street: George I	King Blvd		North/So	outh Stre	et:	Dave Nisbet	t Drive			
Intersection Orientation: E	ast-west		Study P	erioa (nr	'S):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound	1 .				Westbour	nd		-
Movement	1	2	3			4	5			6
Volumo	L	715	ĸ			L	521			R 124
Volume	0.05	0.05	0.05			0.05	0.05	\rightarrow		0.05
Hourly Flow Rate HFR	691	752	0.33			0.90	558			130
Percent Heavy Vehicles	6			\rightarrow		0				
Median Type				Raised	l curk)	J			
RT Channelized			0	0						0
Lanes	1	2	0			0	1			1
Configuration	L	Т					Т			R
Upstream Signal	ĺ	0		ĺ			0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11			12
	L	Т	R			L	Т			R
						69				0
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		().95
Hourly Flow Rate, HFR	0	0	0			72	0			0
Percent Heavy Vehicles	0	0	0			8	0			7
Percent Grade (%)		0								
Flared Approach		N					N			
Storage		0					0	\rightarrow		
RT Channelized			0	—						0
Lanes	0	0	0			1	0			1
Configuration						L				R
Delay, Queue Length, and	Level of Service									
Approach	Eastbound	Westbound	ļ	Northbo	ound		5	Southbo	ound	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L		<u> </u>				L			R
v (vph)	691						72			0
C (m) (vph)	876						21			461
v/c	0.79						3.43			0.00
95% queue length	8.26						9.28			0.00
Control Delay	22.6						1473			12.8
LOS	С		ļ				F			В
Approach Delay								1473	3	
Approach LOS							F			

HCS+™ Version 5.1

Generated: 12/9/2005 9:48 AM

							SHOF	۲۲	REPO	RT								
General Inforr	st MT								Site Ir	offormation	on							
Analyst Agency or Co. Date Performe Time Period	d	ן כ 12, PM	MT &A /5/05 Peak	ſ					Interse Area Jurisd Analys	ection Type iction sis Year			George Ki All Po	ing (othe ort Au 202	Da r are uthor 25	ve Nisbe eas ity	t	
Volume and T	iming Input																	
			T	EI	B	рт			WB	БТ		1 T	NB		H	1.7	SB	
Num of Lanes			_ >	2				_	1	1	╈	0			. I	1 LI	0	1
Lane Group			-	T		Ū		_	τ T	R	┢	0				,		, R
Volume (vph)		65	57	71:	5			_	531	124	╈		<u> </u>	┢		69		282
% Heavy veh)	0		0	0	_	0	0	╈	0	0	0		0	0	0
PHF		0.	95	0.9	5	0.95	0.95	_	0.95	0.95	6).95	0.95	0.9	95	0.95	0.95	0.95
Actuated (P/A)		ŀ	>	A			<u> </u>		A	A	╈			┢		Α		A
Startup lost tim	ie	2.	.0	2.0)		<u> </u>		2.0	2.0	╈		2.0	┢		2.0	2.0	2.0
Ext. eff. green		2.	.0	2.0)				2.0	2.0	╈		2.0		_	2.0	2.0	2.0
Arrival type		:	3	3					3	3			3			3	3	3
Unit Extension		3.	.0	3.0)		İ –		3.0	3.0	T		3.0			3.0	3.0	3.0
Ped/Bike/RTOI	R Volume	()	0		5	0		0	12		0	0	4		0	0	15
Lane Width		12	2.0	12.	.0		İ		12.0	12.0			12.0			12.0	12.0	12.0
Parking/Grade/	/Parking	/	V	0		N	N		0	N		Ν	0	N	1	N	0	N
Parking/hr													<u> </u>					
Bus stops/hr			0	0					0	0			0			0	0	0
Unit Extension		3.	.0	3.0)				3.0	3.0			3.0			3.0	3.0	3.0
Phasing	EW Perm G = 60.0	EB G = 1	Only 30.0		G =	03	G =	(04	G = 3	Only	' (06 =		G =	07	G =	08
Timing	Y = 5	Υ =	50.0		Y =		Y =	-		Y = 5	0.0		/ =		Y =		Y =	
Duration of Ana	alysis (hrs) = 0.2	?5										(Cycle Leng	gth C	; =	135.0		
Lane Group	Capacity, Co	ntrol	Delay	y, ar	nd L	OS De	termir	nat	tion								1	
			<u> </u>		E	EB		_		WB	1			N	IB		<u> </u>	SB
Adj. flow rate			692	2	75	3		,		559	11	8		0		<u> </u>	73	0
Lane group cap	0.		122	1	160	08				844	71	8					468	
v/c ratio			0.5	7	0.4	17				0.66	0.1	16					0.16	
Green ratio			0.70	0	0.4	14				0.44	0.4	44		0.0	0		0.26	0.00
Unif. delay d ₁			32.3	5	26.	.3				29.5	22	.5					38.6	
Delay factor k			0.50	0	0.1	1				0.24	0.1	11					0.11	
Increm. delay o	d ₂		1.	9	0.	.2		_		2.0	0	.1					0.2	
PF factor			1.0	00	1.0	000				1.000	1.0	000					1.000	
Control delay			34.	.4	26	6.5				31.5	22	2.6				<u> </u>	38.8	<u> </u>
Lane group LO	S		С		С	:				С	C	>					D	
Apprch. delay					30	0.3				29.9								12.4
Approach LOS					(0				С								В
Intersec. delay	tersec. delay			27.6		Intersection LOS								С				

HCS+™ Version 5.1

Generated: 12/9/2005 9:48 AM

							SHO	ORT	REPC	R	г]
General Inform	nation								Site I	nfo	rmatio	n							
Analyst Agency or Co. Date Performe Time Period	d	۸ G 12/ PM	/T &A /5/05 Peak						Inters Area Jurisc Analy	ect Typ dicti sis	ion be ion Year			George I All Po	King othe rt Au 202	@ Fi r area ithori 25	lounder as ty		
Volume and T	iming Input																		
			- I	EE	3	DT		- T	WB	_	DT		-	NB				SB	
Num of Lanes			.1	1	1	RI 1		L I 1	1 IH	┥			1	1 IH				1 H	
		- <u>'</u>	_		_	P		, ,		┥	P					, 			
Volume (vph)		10	7	447	,	.34		- 8	600	_	90	10	6	0	2	1	78	0	94
% Heavy veh			,	0		0		0 0	0	_	0	10		0	-	,)	0	0	0
PHF		0.9	95	0.9	5	0.95	0.	95	0.95		0.95	0.9	95	0.95	0.9	, 95	0.95	0.95	0.95
Actuated (P/A)		A		A		A		4	A		A	A	-	A	4	1	A	A	A
Startup lost tim	ie	2.	0	2.0	,	2.0	2.	.0	2.0		2.0	T		2.0				2.0	
Ext. eff. green		2.	0	2.0)	2.0	2.	.0	2.0		2.0	┢		2.0	┢			2.0	
Arrival type		3		3		3		3	3		3	İ –		3				3	
Unit Extension		3.	0	3.0)	3.0	3.	.0	3.0	T	3.0			3.0	Γ			3.0	
Ped/Bike/RTO	R Volume	0	,	0		5	(0	0		7	0		0	4	1	0	0	7
Lane Width		12	.0	12.	0	12.0	12	2.0	12.0		12.0	T		12.0	Γ			12.0	
Parking/Grade	/Parking	۸ [/	0		Ν	/	V	0	Î	Ν	N		0	Λ	J	N	0	N
Parking/hr																			
Bus stops/hr		0)	0		0		0	0		0			0				0	
Unit Extension		3.	0	3.0)	3.0	3.	.0	3.0		3.0			3.0				3.0	
Phasing	EW Perm	()2		03			(NS Pe	erm		06		6 -	07	6 -	08
Timing	Y = 5	Ч=			0 = Y =		Y	<u> </u>		Ť	9 = 23. Y = 5	0	Y	=	_	Ч =		Y =	
Duration of An	alysis (hrs) = 0.2	25											C	ycle Leng	th C	= 9	90.0		
Lane Group	Capacity, Co	ntrol [Delay	, an	d L	OS D	eterm	nina	tion										
					E	B					WB				N	В			SB
Adj. flow rate			113	:	46	5	31		8	6	32	87			130)			174
Lane group ca	р.		368	:	116	61	987		500	11	61	987			326	6			400
v/c ratio			0.31	'	0.4	0	0.03	(0.02	0.	54	0.09			0.4	0			0.44
Green ratio			0.61	1	0.6	1	0.61	(0.61	0.	61	0.61			0.28	8			0.28
Unif. delay d ₁			8.4		9.0)	6.9		6.9	10	0.2	7.2			26.4	4			26.7
Delay factor k			0.11	'	0.1	1	0.11	(0.11	0.	14	0.11			0.1	1			0.11
Increm. delay o	d ₂		0.5	5	0.	2	0.0		0.0	(0.5	0.0			0.8	8			0.8
PF factor			1.00	00	1.0	000	1.000		1.000	1.	000	1.000)		1.0	00			1.000
Control delay			8.9	9	9.	2	7.0		6.9	1	0.7	7.2			27.	2			27.5
Lane group LC	S		Α		A		Α		Α	l	в	Α			С				С
Apprch. delay					9.	1				1	0.3				27.	2			27.5
Approach LOS					A	٩					В				С				С
Intersec. delay	tersec. delay		13.0			Intersection LOS							В						

HCS+™ Version 5.1

Generated: 12/9/2005 9:47 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analvst	M Tobin		Intersed	ction		Mullett Rd	@ Scallop D	r
Agency/Co.	G&A		Jurisdic	tion		Port Canav	/eral	
Date Performed	12/5/05		Analysi	s Year		2025		
Analysis Time Period	PM Peak							
Project Description								
East/West Street: Mullet Re	bad		North/So	outh Street:	Scallop Driv	е		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	1			Westbour	nd	
Movement	1	2	3		4	5		6
	L	T	R		L	T		R
Volume	14	22	16		0	25		0
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		0.95
Hourly Flow Rate, HFR	14	23	16		0	26		0
Percent Heavy Vehicles	2				2			
Median Type			Raised curb					
RT Channelized			0					0
Lanes	1	1	0		0	1		0
Configuration	L		TR		LTR			
Upstream Signal		0				0		
Minor Street		Northbound	2			Southbou	nd	
Movement	7	8	9		10	11		12
	L	T	R		L	T		R
Volume	36	5	0.05		4	0.05		83
Hourly Flow Rate HER	37	5	0.95		0.95	0.95		87
Percent Heavy Vehicles	2	2	2		2	16		2
Percent Grade (%)		0	-		-	0	ļ	-
Flared Approach		N				N		
Storage		0				0		
RT Channelized			0			i		0
Lanes	0	1	0		1	0		1
Configuration		LTR			L			R
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northbound	1		Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	LTR		LTR	1	L		R
v (vph)	14	0		42		4		87
C (m) (vph)	1588	1571		752		839		1050
v/c	0.01	0.00		0.06		0.00		0.08
95% queue length	0.03	0.00		0.18		0.01		0.27
Control Delay	7.3	7.3		10.1		9.3		8.7
LOS	А	A		В		А		А
Approach Delay				10.1			8.8	
Approach LOS				В			A	

HCS+™ Version 5.1

Generated: 12/9/2005 9:50 AM

		TWO-WAY STO	P CONTRO	L SUMMA	RY			
General Information			Site Inf	ormation				
Analyst	M Tobin		Intersed	ction		GKB @ Ma	arlin	
Agency/Co.	GA		Jurisdic	tion		Port Canav	veral	
Date Performed	12/5/2005		Analysi	s Year		2025		
Analysis Time Period	PM							
Project Description								
East/West Street: George I	King Blvd		North/So	outh Street:	Marlin Stree	et		
Intersection Orientation: E	ast-West		Study P	eriod (hrs):	0.25			
Vehicle Volumes and A	djustments							
Major Street		Eastbound	ú			Westbour	nd	
Movement	1	2	3		4	5		6
	L	T (20	R		L	T		R
Volume	9	420	21		6	5//		5
Peak-Hour Factor, PHF	0.95	0.95	0.95		0.95	0.95		J.95
Hourly Flow Rate, HFR	9	442	22		6	607		5
Percent Heavy Vehicles	2				2			
Median Type				Raised cu	rb			
RT Channelized			0			<u> </u>		0
Lanes	1	1	1		1	1		1
Configuration	L	Т	R	ļ	L	Т		R
Upstream Signal		0				0		
Minor Street		Northbound				Southbou	nd	
Movement	7	8	9		10	11		12
Valuesa	L		R					R
Volume Peak-Hour Factor, PHF	25	∠ 0.05	0.05		0.05	2		00 0.05
Hourly Flow Rate HFR	26	2	8		5	2		58
Percent Heavy Vehicles	25	1	14		5	2		35
Percent Grade (%)		0			•	0		
Flared Approach		N	1			N		
Storage		0				0		
RT Channelized			0			í		0
Lanes	0	1	0		0	1		0
Configuration		LTR	1			LTR		
Delay, Queue Length, and	Level of Service							
Approach	Eastbound	Westbound		Northbound	1	9	Southbound	
Movement	1	4	7	8	9	10	11	12
Lane Configuration	L	L	Í	LTR	1		LTR	
v (vph)	9	6	ĺ	36			65	
C (m) (vph)	967	1097	ĺ	297			423	
v/c	0.01	0.01		0.12	1		0.15	
95% queue length	0.03	0.02		0.41	1	1	0.54	
Control Delay	8.8	8.3		18.8	1	<u> </u>	15.0	
LOS	A	А		С	1	<u> </u>	С	
Approach Delay				18.8			15.0	
Approach LOS				С			С	

HCS+™ Version 5.1

Generated: 12/9/2005 9:51 AM

		TWO-WAY STO	P CONTRO	L SUN	IMAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Dave	Nisb	et Drive
Agency/Co.	G&A		Jurisdic	tion			Port Canav	veral		
Date Performed	12/5/05		Analysi	s Year			2025			
Analysis Time Period	PM									
Project Description			ý.							
East/West Street: Mullet Re	bad		North/So	outh Str	eet:	Dave Nisber	t Drive			
Intersection Orientation: N	orth-South		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Northbound					Southbou	nd		
Movement	1	2	3			4	5			6
Valuesa	L 405	0.11	R			L	L [R
Volume	135	241	0.05			0.05	517			20
	0.95	0.95	0.95			0.95	0.95	\rightarrow	L	0.95
Percent Heavy Vehicles	2	253	0			20	544			21
Modian Typo			Two	Waylo	ft T	20 m L ano				
			100	vvay Le	n rui	n Lane	<u> </u>			0
Lanes	1	1	0			0	1			0
Configuration	L	T				-				TR
Upstream Signal		0	1				0			
Minor Street						Westbour	nd			
Movement	7	8	9			10	11			12
	L	Т	R	R		L	Т			R
Volume	16		184							
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		C).95
Hourly Flow Rate, HFR	16	0	193			0	0			0
Percent Heavy Vehicles	2	0	2			0	0			0
Percent Grade (%)		0					0			
Flared Approach		N					N			
Storage		0					0			
RT Channelized			0				ļ			0
Lanes	0	0	0			0	0			0
Configuration		LR								
Delay, Queue Length, and	Level of Service		ũ.							
Approach	Northbound	Southbound		Westbo	ound			Eastbou	ind	
Movement	1	4	7	8		9	10	11		12
Lane Configuration	L							LR		
v (vph)	142							209		
C (m) (vph)	1007		ļ					509		
v/c	0.14		ļ					0.41		
95% queue length	0.49							1.98	}	
Control Delay	9.2							16.9)	
LOS	A							С		
Approach Delay								16.9		
Approach LOS							С			

HCS+™ Version 5.1

Generated: 12/9/2005 9:53 AM

		TWO-WAY STO	P CONTRO	LSUM	MAF	RY				
General Information			Site Inf	ormat	ion					
Analyst	M Tobin		Intersed	ction			Mullett Rd	@ Scallop	Dr	
Agency/Co.	G&A		Jurisdic	tion			Port Canav	reral		
Date Performed	12/5/05		Analysi	s Year			2025			
Analysis Time Period	PM									
Project Description			,							
East/West Street: Mullet Re	oad		North/So	outh Str	eet:	Scallop Driv	e			
Intersection Orientation: E	ast-West		Study P	eriod (h	rs):	0.25				
Vehicle Volumes and A	djustments									
Major Street		Eastbound					Westbour	nd		
Movement	1	2	3			4	5		6	
		T	R			L	<u> </u>		R	
Volume	7	56					58		31	
Peak-Hour Factor, PHF	0.95	0.95	0.95			0.95	0.95		0.95	
Hourly Flow Rate, HFR	7	58	0			0	61		32	
Percent Heavy Vehicles	2					0				
Median Type				Raised curb						
RT Channelized			0						0	
Lanes	0	1	0			0	1		0	
Configuration	LT								TR	
Upstream Signal		0					0			
Minor Street		Northbound					Southbou	nd		
Movement	7	8	9			10	11		12	
		Т	R			L	T		R	
Volume	0.05	0.05	0.05			29	0.05		16	
	0.95	0.95	0.95			20	0.95		16	
Percent Heavy Vehicles	0	0	0			20	0		2	
Percent Grade (%)		0				20	0	I	-	
Flared Approach		N					N	1		
Storage		0	1				0			
RT Channelized			0				i		0	
Lanes	0	0	0			0	0		0	
Configuration	1						LR			
Delay, Queue Length, and	Level of Service	τ	P				2	P		
Approach	Eastbound	Westbound		Northbo	ound		5	Southbound		
Movement	1	4	7	8		9	10	11	12	
Lane Configuration	LT		ĺ					LR	1	
v (vph)	7		ĺ					46	Î	
C (m) (vph)	1501							838		
v/c	0.00							0.05		
95% queue length	0.01							0.17		
Control Delay	7.4							9.5		
LOS	A							A		
Approach Delay								9.5		
Approach LOS							A			

HCS+™ Version 5.1

Generated: 12/9/2005 9:52 AM

Appendix F

Central Boulevard Analysis

Central Boulevard PM Peak Hour Trips

	Ron Jon World									
				PM Peak						
ITE Code	Land Use	Size	Daily Trips	Hour Trips						
814	Surf Shop	73,000 SF	3235	198						
310	Resort Hotel	3268	168							
	Conference Space	20,000 SF	1620	220						
480	Surf Park	10.2 Acres	773	40						
480	Board Sports area	50,000 SF	87	5						
932	1272	109								
		Sub-total	10,255	740						
	less Internal Ca	apture (10%)	1026	74						
Total External Trips 9,230 66										

9%

Trip Distribution on Central Blvd (from Model Plot)

PM Peak Trips on Central Blvd 666 x .09 = 60

A DESTINATION OF THE ADDRESS AND ADDRESS A

Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment K

Hazardous, Toxic, and Radioactive Waste (HTRW) Assessment Report and Source Removal Report, Beyel Bros. Lease

Section 203 Feasibility Study Hazardous, Toxic and Radioactive Waste (HTRW) Assessment

Preliminary Assessment Report

Port Canaveral Brevard County, Florida

Performed by CH2M HILL, Inc.

Performed for Canaveral Port Authority

TABLE OF CONTENTS

TABLE OF	CONTENTS	i
1 A CENED		1
1.0 GENER 1 1	Port Consumption and Description	I
1.1	Fort Canaveral Location and Description	1
1.2	Summary	11 د
1.5	1 2 1 Dumosa	·····∠
	1.3.1 Purpose 1.3.2 Special Terms and Conditions	2
	1.3.2 Special Terms and Conditions	2
	1.3.4Limitations and Exceptions of Assessment1.3.4Limiting Conditions and Methodology Used	
2.0 WEST 1	TURNING BASIN – SITE DESCRIPTION	5
2.1	Location and Legal Description	5
2.2	Descriptions of Structures, Roads, Other Improvements on the Site	
	(Including Heating/Cooling System, Sewage Disposal, Source of Potable Water)	
2.3	Information (if any) Reported by User Regarding Environmental Liens or	
210	Specialized Knowledge or Experience	5
24	Current Uses of the Property	5
2.1	Past Uses of the Property (to the extent identified)	6
2.5	Current and Past Uses of Adjoining Properties (to the extent identified)	6
2.0	Site Rendering Man or Site Plan	6
2.7	Records Review	6
2.0	2.8.1 Standard Environmental Records Sources Federal State	0
	and/or Local	6
	2.8.2 Physical Setting Source(s)	9
	2.8.3 Additional Record Sources	9
2.9	Information from Site Reconnaissance and Interviews.	
	2.9.1 Hazardous Substances in Connection with Identified Uses	
	(Including Storage, Handling, Disposal)	9
	2.9.2 Hazardous Substance Containers and Unidentified Substance	
	Containers (Including Storage, Handling, Disposal)	11
	2.9.3 Storage Tanks (Including Contents and Assessment of Leakage	
	or Potential for Leakage)	11
	2.9.4 Indications of PCBs (Including How Contained and Assessment	
	of Leakage or Potential for Leakage)	11
	2.9.5 Indications of Solid Waste Disposal	11
	2.9.6 Physical Setting Analysis, If Migrating Hazardous Substances	
	Are an Issue	
	2.9./Any Other Conditions of Concern	12

	REA	ACHES) - SITE DESCRIPTION	13		
	3.1	Location and Legal Description	13		
	3.2	Descriptions of Structures, Roads, Other Improvements on the Site			
		(Including Heating/Cooling System, Sewage Disposal, Source of Potab	le		
		Water)	13		
	3.3	Information (if any) Reported by Auditor Regarding Environmental Lie	ns		
		or Specialized Knowledge or Experience			
	3.4	Current Uses of the Property.			
	3.5	Past Uses of the Property (to the extent identified)	13		
	3.6	Current and Past Uses of Adjoining Properties (to the extent identified)	14		
3.7 Site Rendering Man or Site Plan					
	3.8	Records Review			
	5.0	3.8.1 Standard Environmental Records Sources Federal State			
		and/or L ocal	14		
		3.8.2 Physical Setting Source(s)			
		3.8.3 Additional Record Sources			
	3.9	Information from Site Reconnaissance and Interviews	16		
		3.9.1 Hazardous Substances in Connection with Identified Uses			
		(Including Storage, Handling, Disposal)			
		3.9.2 Hazardous Substance Containers and Unidentified Substance	1		
		Containers (Including Storage, Handling, Disposal)			
		3.9.3 Storage Tanks (Including Contents and Assessment of Leaka	ge		
		or Potential for Leakage)	17		
		3.9.4 Indications of PCBs (Including How Contained and Assessm	ent		
		of Leakage or Potential for Leakage)	17		
		3.9.5 Indications of Solid Waste Disposal	17		
		3.9.6 Physical Setting Analysis, If Migrating Hazardous Substance	S		
		Are an Issue	17		
		3.9.7 Any Other Conditions of Concern			

4.0 ENTRA	ANCE CHANNEL TURN – SITE DESCRIPTION	19
4.1	Location and Legal Description	19
4.2	Descriptions of Structures, Roads, Other Improvements on the Site	
	(Including Heating/Cooling System, Sewage Disposal, Source of Potable	
	Water)	19
4.3	Information (if any) Reported by Auditor Regarding Environmental Liens	
	or Specialized Knowledge or Experience	19
4.4	Current Uses of the Property	19
4.5	Past Uses of the Property (to the extent identified)	19
4.6	Current and Past Uses of Adjoining Properties (to the extent identified)	19
4.7	Site Rendering, Map, or Site Plan	19

4.8	Records Review		20
	4.8.1	Standard Environmental Records Sources, Federal, State,	
		and/or Local	20
	4.8.2	Physical Setting Source(s)	21
	4.8.3	Additional Record Sources	21
4.9	Inform	nation from Site Reconnaissance and Interviews	21
	4.9.1	Hazardous Substances in Connection with Identified Uses	
		(Including Storage, Handling, Disposal)	21
	4.9.2	Hazardous Substance Containers and Unidentified Substance	
		Containers (Including Storage, Handling, Disposal)	22
	4.9.3	Storage Tanks (Including Contents and Assessment of Leakage	
		or Potential for Leakage)	22
	4.9.4	Indications of PCBs (Including How Contained and Assessment	
		of Leakage or Potential for Leakage)	22
	4.9.5	Indications of Solid Waste Disposal	22
	4.9.6	Physical Setting Analysis, If Migrating Hazardous Substances	
		Are an Issue	22
	4.9.7	Any Other Conditions of Concern	22
		•	

5.0 FINDING	GS AND CONCLUSIONS	23
5.1	General Comments	23
5.2	Regional Overview	23
5.3	West Turning Basin	23
5.4	North Side of Channel (Inner and Middle Reaches)	24
5.5	Entrance Channel Turn	24

1.0 GENERAL

1.1 Port Canaveral Location and Description

Port Canaveral, located just south of the John F. Kennedy Space Center in Brevard County, Florida, has both commercial and military enterprise and use.

Port Canaveral and its waterfront facilities, both commercial and military, have been developed around three deepwater turning basins in addition to areas on either side of the main channel. The West Turning Basin primarily supports the commercial cruise business. Waterfront facilities and uplands on the north side of the West Access Channel support commercial cargo operations. The Middle Turning Basin has shared use with commercial and military cargo berths. All of the uplands surrounding Canaveral Harbor are owned by CPA except for the land to the north and east sides of the Middle Turning Basin, owned by the Cape Canaveral Air Force Station (CCAFS). In support of the U.S. Navy's Trident Submarine Program, the military dredged the Trident Turning Basin and developed support facilities on the adjacent uplands. The Trident Turning Basin is dedicated to military activity and not for commercial use. The major facilities and operations on the south side of Canaveral Harbor support commercial use and cargo activities.

CPA grants long-term leases to tenants whose businesses are related to or dependent on a marine location. The tenants are responsible to develop their own facilities and parking areas while the port provides conventional civil and marine infrastructure as well as fire and police protection. The port, specifically a location within the West Turning Basin, is also home to the U.S. Coast Guard Station Port Canaveral.

Several tenants lease land fronting shallow draft bulkheads for use in their business operations. The long-term shallow draft waterfront leases are held by the fishing industry and various small craft marinas located primarily along the south side of the Barge Canal. Other temporary leases along shallow bulkhead walls on the east side of the West Turning Basin may be terminated to execute future cruise terminal and cargo berth projects.

1.2 Summary

Three areas within Port Canaveral have been identified for navigation deepening and/or widening improvements that will impact both uplands and submerged lands. The three areas include the entrance to the West Turning Basin; the north side of the channel between the Middle Turning Basin and Trident Turning Basin; and the entrance channel turn area in the Atlantic Ocean at the intersection of the outer and middle channel reaches. In support of the Canaveral Port Authority's Section 203 Feasibility Study for navigation improvements at Port Canaveral, a preliminary Hazardous and Toxic Waste (HTRW) site assessment was conducted along the Canaveral Harbor from the West Turning Basin eastward to the Atlantic Ocean. The hazardous and toxic waste evaluation revealed that the majority of the area is predominantly construction

and activities associated with marine and port facilities, including cruise terminals, marine maintenance, park visitors, marine cargo transfers and a military installation. The potential of finding hazardous and toxic waste is moderate. The areas evaluated are presented separately in this report and discussed in general below.

West Turning Basin

Within the West Turning Basin Area (WTB), there are several locations and activities which may be HTRW contaminated. These are discussed in detail in Section 2.0.

North Side of the Channel (Inner and Middle Reaches)

This area includes the uplands and submerged lands on the north side of the Inner and Middle Reaches Within this project area (NC), there are several locations and activities which may be HTRW contaminated. These are discussed in Section 3.0.

Entrance Channel Turn

This area includes the submerged lands of the Middle Reach, the Outer Reach, and adjacent lands. Within this project area (ECT) the potential for the presence HTRW contamination is low. The area is located approximately one mile offshore in the Atlantic Ocean. No site visit was conducted due to its location in the Atlantic Ocean with water depths of 35 to 41 feet.

1.3 Introduction

1.3.1 Purpose

The goal of this site investigation is to identify Recognized Environmental Conditions (RECs) and indicate the presence or likely presence of hazardous substances or petroleum products in and around the target property areas. To the extent supported by the investigative approach typically used for this type of project, the assessment attempts to reveal conditions that indicate an existing release, a past release, or a material threat of a release of hazardous substances or petroleum products on the properties or into the ground, groundwater, or surface water of the properties. This report substantially satisfies the requirements of ER-1165-2-132 and ASTM Practice E 1527.

1.3.2 Special Terms and Conditions

The RECs that were considered throughout this investigation included hazardous substances or petroleum products even under conditions in compliance with laws. The term, RECs, is not intended to include *de minimis* conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies.

1.3.3 Limitations and Exceptions of Assessment

The conclusions and recommendations contained in this report represent the professional opinions of CH2M HILL. These opinions were arrived at in accordance with the applicable professional standards and practices. However, this report is not a warranty nor does it imply a guarantee of any sort. In addition, the following limitations apply:

- The CH2M HILL staff who performed the site assessment are not attorneys; therefore, this report is not a legal representation or interpretation of environmental laws, rules, regulations, or policies of local, state, or federal governmental agencies.
- This report is based, in part, on unverified preliminary information supplied to CH2M HILL from several sources during this project; therefore, CH2M HILL cannot guarantee the report's completeness or accuracy.
- If hazardous substances or hazardous conditions have not been identified during the performance of the scope of services, such a finding should not be construed as a guarantee or representation, either expressed or implied, that such substances or conditions are absent.
- All opinions or recommendations apply to site conditions existing when services were performed. CH2M HILL cannot report on, or accurately predict, events that may change the site conditions after the described services are performed, whether occurring naturally or caused by external forces.
- No ASTM non-scope considerations were conducted during the performance of the HTRW Assessment.
- This report has been prepared for the exclusive use of the Canaveral Port Authority and their client for specific application to the property described here. There are no beneficiaries of this report other than the Canaveral Port Authority and their client, and no other person or entity is entitled to rely upon this report without the written consent of CH2M HILL.
- CH2M HILL assumes no responsibility for conditions that we were not authorized to investigate, or that were not in our specific scope of work.

This Section 203 Feasibilit6y Study, Hazardous, Toxic, and Radioactive Waste (HTRW) Assessment - Preliminary Assessment Report is comprised of the following five components: 1) Records and Database Review, 2) Historical Aerial Photography and Topographic Map Study, 3) Site Reconnaissance, 4) Interviews, 5) Report. The records review, aerial photography and topographic map study, site reconnaissance, and interviews are intended to be used in concert with each other.

1.3.4 Limiting Conditions and Methodology Used

There were limitations imposed by physical obstructions. Approximately 90 percent (%) of the WTB project area is under water at all times (80.4 acres out of a total of 88.6 acres). Only the northern shoreline and banks of the Harbor adjacent to the north side of the channel (NC) could be accessed as the entire project area (23.2 acres) is under water at all times. In addition, there was an adjacent area between the Middle Turning Basin (MTB) and the Trident Turning Basin (TTB) that was inaccessible due to the presence of a 10-foot high, three-stranded barbed wire fence along the entire portion planned for inspection. Furthermore, the eastern one-quarter of this area is located in the Atlantic Ocean. The ECT project area (18.8 acres) is located completely underwater, approximately one-mile from the shoreline in the Atlantic Ocean.

Historic aerial photographs available for review were from the years 1972, 1983, 1993, and 2004. The historic USGS topographic maps available for review were from the years 1951 (revised 1970) and 1976.

One database search was performed by Environmental Data Resources (EDR) using a calculated centroid of all three sites. Upon receipt of the database hand-scribed distances of 0.25 miles, 0.5 miles, and 1.0 mile were placed onto the database Map Findings Summary. From these hand-scribed distances, each database search distance (e.g., RCRIS-SQG = 0.25 miles, ASTs = 0.5 miles, etc.) was reviewed and summarized for the appropriate site. As such three "sub-database" searches were conducted from the large database search performed for the entire area.

Although much of the areas identified for navigation improvements are submerged lands, the Canaveral Port Authority and the U.S. Army Corps of Engineers periodically conduct extensive sediment sampling, testing, and Section 103 evaluation in support of maintenance and new construction dredging of the federal and non-federal portions of Canaveral Harbor and offshore and/or upland disposal of dredged material. Review and discussion of this sampling and testing program is outside the scope of the effort documented herein; however, the environmental studies and Environmental Baseline Report associated with the Section 203 study contains data and information on the submerged lands sediment test analysis results.

2.0 WEST TURNING BASIN – SITE DESCRIPTION

2.1 Location and Legal Description

The WTB study area is located at the west end of Port Canaveral as shown in Figure 1A.

This portion of the study consists of the area within and north of the Barge Canal and West Access Channel (WAC) at the entrance to the WTB, at the western-most turning basin of the Harbor. The total acreage of this area is 88.6 acres. Of that acreage, 8.2 acres are uplands and the remaining 80.4 acres are underwater.

2.2 Descriptions of Structures, Roads, Other Improvements on the Site (Including Heating/Cooling System, Sewage Disposal, Source of Potable Water)

The Canaveral Port Authority (CPA) owns the land. There are numerous roads that traverse through the entire uplands area. In addition, most of the uplands area has been subdivided and leased or subleased to individuals or companies generally associated with the marine industry, including marinas, repair and maintenance facilities, cruise line departure areas, restaurants, public parks, and other commercial cargo facilities.

Utilities that are supplied to the upland area consist of potable water by the City of Cocoa, sewer lines by the City of Cocoa Beach, and electrical power by Florida Power and Light.

2.3 Information (if any) Reported by User Regarding Environmental Liens or Specialized Knowledge or Experience

No specialized knowledge is available for this site.

2.4 Current Uses of the Property

The upland areas located on the north and south sides of WTB area currently consist of land and buildings that have been developed and redeveloped since approximately 1972. The earthen dike for the WTB peninsula was created from sand as a result of dredging the TTB. The land between the WTB and MTB was created from the dredge spoils from the enlargement of the MTB and creation of the original 300-foot wide channel. The land was built up to create uplands for use by the CPA and to provide an area for the placement of dredge spoils material. Photographs 1-11 taken at several points within the WTB area clearly show the typical terrain.

2.5 Past Uses of the Property (to the extent identified)

Based on the review of historic aerial photography, topographic maps, and interviews with representatives from CPA and the Brevard County Natural Resource Management Office, the project area appears to have a history of significant development, including buildings, marinas, piers to handle imported/exported cargo, public parks, and filling-in of open water to create usable land, as well as dredging other areas to create or deepen the turning basins. A review of the regulatory databases indicates a number of facilities are listed in the vicinity of the project area.

2.6 Current and Past Uses of Adjoining Properties (to the extent identified)

By indications observed throughout the site investigation, the adjoining properties are a mixture of commercial marinas, restaurants, and cruise terminals with associated ancillary buildings, Coast Guard facility, and cargo piers with associated storage and support buildings.

The Port was first opened for commercial fishing operations in November 1953. The import and export of commercial cargo began operations in June 1955. Cruise ship lines began sailing from the port in September 1964. The West Turning Basin area was constructed in 1972. The area owned by the U.S. Air Force (north side of the Harbor from the Trident Basin eastward to the Atlantic Ocean) began construction of their Trident submarine operations in the early 1970s. Since that time, the port has increased the number of operations, especially the cruise line industry.

The location of the WTB and surrounding area is presented on Figure 1A. Photographs 1-11 generally show the conditions and features of the project area and surrounding areas.

2.7 Site Rendering, Map, or Site Plan

See Figure 1A.

2.8 Records Review

2.8.1 Standard Environmental Records Sources, Federal, State, and/or Local

Under subcontract to CH2M HILL, EDR conducted a database search to identify potential or existing environmental liabilities within the target area. Records searched included several databases, such as the Toxic Chemical Release Inventory System (TCRIS), Hazardous Material Information Reporting System (HMIRS), and Leaking Underground Storage Tanks (LUST). The table below lists all of the databases EDR searched, and includes the search distance from the

site. The entries that are bolded are those required by ASTM E 1527-00 and the HTRW guidance document (ER 11695-2-132, 26 June 1992).

Databases Searched

	Search Distance
Database	(miles)
Federal Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Information	0.5
Comprehensive Environmental Response, Compensation, and Liability Information System (CERC-NFRAP)	0.25
Emergency Response Notification System (ERNS)	Target Property
Proposed National Priority List (NPL)	1.0
National Priority List (NPL)	1.0
Delisted NPL	1.0
Resource Conservation and Recovery Information System (RCRIS-TSD)	0.5
RCRIS Small Quantity Generator (RCRIS-SQG)	0.25
RCRIS Large Quantity Generator (RCRIS-LQG)	0.25
Superfund (CERCLIS) Consent Decrees (CONSENT)	1.0
Corrective Action Report (CORRACTS)	1.0
Facility Index System (FINDS)	Target Property
Material Liconsing Tracking System (MLTS)	Target Property
Mines Master Index File (MINES)	0.25
Federal Superfund Liens (NPL Liens)	Target Property
PCB Activity Database System (PADS)	Target Property
RCRA Administrative Action Tracking System (RAATS)	Target Property
Record of Decision (ROD)	1.0
Toxic Chemical Release Inventory System (TCRIS)	Target Property
Toxic Substances Control Act (TSCA)	Target Property
FIFRA/TSCA Tracking System – FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) – (FTTS)	Target Property
State of Florida	
Leaking Underground Storage Tanks (LUST)	0.5
Underground Storage Tanks (UST)	0.25
Aboveground Storage Tanks (AST)	Target Property
State Hazardous Waste Sites (SHWS)	1.0
State Solid Waste Facilities/Landfill Sites (SWF/LF)	0.5
Florida Sites	0.5
Florida Gattle Dip Vats	0.5
Florida WasieWater	larget Property
Cool Goo	0.5
Uul Gas	1.0

Based on the review of the Federal and state regulatory databases search, the following table lists the sites within the search distance and the database in which they appear.

Database Review Results						
Name	Address	RCRA-SQG (1/4 mi)	FINDS (TP)	SWF/LF (1/2 mi)	LUST (1/2 mi)	UST (1/4 MI)
Astro Pak Corp.	730 Mullet Rd. Ste B	Yes	No	No	No	No
Bevel Bros. Inc.	9155 Grouper Rd	No	Yes	No	No	No
Canaveral Custom Boats	770 Mullet Rd	Yes	No	No	No	No
Canaveral Scallop Landfill	Grouper Rd/SR 401	No	No	Yes	No	No
Canaveral Seafoods Inc.	520 Glen Cheek Dr.	No	No	No	Yes	Yes
Canaveral Seafoods Inc.	714 Scallop Dr	No	No	No	Yes	Yes
Cape Marina	800 Scallop Dr	Yes	No	No	No	No
Commercial Carrier Corp	9012 Marlin St	No	No	No	Yes	Yes
Disney Cruise Line Terminal	9150 Christopher Columbus Dr	Yes	No	No	No	No
Dutra Construction	707 Mullet Dr	Yes	No	No	No	No
Excel Coatings, Inc.	745 B Scallop Dr	Yes	No	No	No	No
Florida Solar Energy Ctr	700 Snapper Rd	Yes	No	No	No	No
Harbor Fuel & Ice Co.	626 Glen Cheek Dr.	No	No	No	Yes	No
Manutech, Inc.	760 Mullet Dr	Yes	No	No	No	No
Martin Marietta Services	710 Mullet Rd	Yes	No	No	No	No
Port Canaveral Auto Repair	780 Mullet Rd	Yes	No	No	No	No
Port Canaveral Auto Repair	790 Mullet Rd	Yes	No	No	No	No
Port Canaveral Towing	747 Snapper Rd	No	No	No	Yes	No
Sands Salvage & Marine	515 Glen Cheek Dr.	No	No	No	Yes	Yes
Scallop Plant	710 Scallop Rd	No	No	No	Yes	Yes
Sunrise Marina	505 Glen Cheek Dr.	No	No	No	Yes	Yes
USCG Canaveral Light	9235 Grouper Rd	Yes	No	No	No	No
USCG Port Canaveral	Grouper and Snapper Rds.	Yes	No	No	No	No

None of the databases listed any facilities in the WTB project area except for Beyel Brothers, Inc. This company is listed in the FINDS database, which indicates the facility is under a "Permit Compliance System." No other information was presented in the database document. According to CPA personnel, this leased property was recently inspected (November and December 2005) as part of CPA's annual self-inspection under the requirements of the National Pollutant Discharge Elimination System (NPDES) permit CPA holds. The results of the inspection indicate that RECs are present. This is discussed further in Sections 2.9.1 and 2.9.7, along with the information provided by CPA for a 17 and 30 November 2005 site inspection performed as part of this effort.

2.8.2 Physical Setting Source(s)

The present configuration of the submerged lands of the WTB and adjacent uplands was created by dredging material from the Canaveral Harbor WTB area and depositing the spoil as fill material, resulting in the surrounding usable uplands. Uplands elevations presented on the historic topographic maps indicate relatively flat terrain, grading from the north to the south on north side of the West Access Channel, and grading south to north on the south side of the West Access Channel and Barge Canal. Photographs 1-11 taken at several locations show that the land is relatively level up to the banks of the Harbor and is or has been used for a variety of port marine activities.

2.8.3 Additional Record Sources

None

2.9 Information from Site Reconnaissance and Interviews

Ms. A. Tracy Langille, P.G., CH2M HILL, Inc., Jacksonville, Florida office, performed a site inspection on 20 December 2005. Access to the majority of the project area is limited due to fact that nearly all of the project area (90 percent) is under water. There was observed hazardous or toxic waste on the 8.2 acres upland portion of the project area (east upland areas of the WTB). This is described in the following sections. Telephone interviews were conducted with Mr. Dave Maher, P.G. of the Brevard County Natural Resource Management Office and Ms. Jeannie Adame, Director of Environmental Plans & Programs for the CPA regarding information that may be available for the project area and vicinity.

2.9.1 Hazardous Substances in Connection with Identified Uses (Including Storage, Handling, Disposal)

Hazardous substances in connection with identified uses were observed on the property leased by Beyel Brothers, Inc. Per details in the lease, the allowable use of the property is described as follows: "... for the purpose of mooring tugboats and associated crane equipment, the loading of concrete rubble for disposal on reef sites at sea, and the parking of passenger vehicles in connection with the moored vessels and business operations."

Two compliance inspections were performed on 17 November 2005 and 30 November 2005. The earlier inspection was performed as part of the CPA's National Pollutant Discharge and Elimination System (NPDES) annual reporting requirements. The HTRW inspection was

performed for the entire project area on 20 December 2005 by CH2M HILL personnel. The results of the three inspections included, but were not limited to, the following.

- Cylinders with welding gases were tied or chained to the exterior of a small metal building.
- Miscellaneous large vehicle tires, large vehicle and crane engines were stored inside and outside of the property boundary. It is unknown whether all of the engine fluids were drained prior to storage.
- Sand blasting using "Black Beauty" was observed being performed on the hull of a marine vessel. The waste material (Black Beauty and sand blasted material from hull) was allowed to collect on the adjacent bulkhead and surface of the ground. During the 20 December 2005 inspection, employees were observed moving and piling up this waste material using hand shovels and Bobcat.
- Compressor with fluids leaking onto the bare ground was observed.
- Numerous rail cars (with rusted walls and ceilings) were observed containing a number of unlabeled 1- to 55-gallon containers of unknown materials. Given the current operations observed during the 20 December 2005 inspection it is possible that hazardous materials are stored in these containers. The storage method suggests that all of the materials are compatible with each other or that materials are not being properly segregated based on compatibility.
- A few open 5-gallon buckets containing waste oil filters.
- Open and closed unmarked 55-gallon drums outside with no protection from the elements.
- Improper hand washing station is set-up and appears to be in use. Wastewater from station allowed to discharge onto the ground and/or at the bulkhead seawall.
- Numerous waste paint cans, oil cans, primer paint cans, etc. observed in open 5-gallon buckets throughout area.
- Evidence of engine oil spill onto bare ground was observed.

Similar conditions were observed during the 17 and 30 November 2005 inspection by CPA personnel.

Hazardous substances in connection with identified uses were only observed within the uplands portion of the WTB project area as the majority of the area of study is under water.

2.9.2 Hazardous Substance Containers and Unidentified Substance Containers (Including Storage, Handling, Disposal)

Hazardous substance containers and unidentified substance containers were observed and are discussed in the previous section.

2.9.3 Storage Tanks (Including Contents and Assessment of Leakage or Potential for Leakage)

The hazardous and toxic waste database search revealed the presence of several underground storage tanks within the search distance. Additionally, there are two ASTs on the property leased by Beyel Brothers Inc. These ASTs have secondary containment, do not have roofs to keep out stormwater from the containment area, and are not labeled as to contents. ASTs were observed on other nearby properties during the site inspection and discussed in the telephone interviews.

2.9.4 Indications of PCBs (Including How Contained and Assessment of Leakage or Potential for Leakage)

No indications exist that PCB's are present within the WTB area.

2.9.5 Indications of Solid Waste Disposal

No recorded or physical data yielded any indications that the disposal of sanitary solid waste had occurred at any time at the proposed project area. However, inadequate housekeeping was observed throughout the Beyel Brothers, Inc. leased area. This included, but is not limited to, paper, wood, large engine parts, tires, large parts from cranes, etc. Some of this solid waste was observed outside of the Beyel Brothers, Inc. leased boundary.

2.9.6 Physical Setting Analysis, If Migrating Hazardous Substances Are an Issue

Based on the site inspection, results of the database search, and interviews with CPA personnel and Brevard County Natural Resource Management Office many of the operations in the vicinity, both sides of the Barge Canal and West Access Channel, have known or suspected releases. Shallow groundwater flow direction is typically toward the nearest water body, in this area it is the Barge Canal, WTB, and West Access Channel. Therefore, the potential exists for releases to impact the sediment and soils at the WTB entrance which are to be dredged for the deepening/widening to provide navigation improvement. However, the bulkhead seawalls on the south side of the Harbor are anticipated to limit the migration of potential contaminants into the water and sediments in the Harbor. Additionally, surface water and sediment collection and analyses (as part of the compliance work for the facility's NPDES permit, has been conducted since issuance of the permit. None of the parameters analyzed indicate that reported parameter concentrations are above comparative clean-up criteria for surface water or sediment.

2.9.7 Any Other Conditions of Concern

The level of housekeeping is relatively poor at Beyel Brothers, Inc. Numerous small and very large pieces of scrap material (tires, cranes, paper, wood, engine parts, etc.) were observed throughout the interior and exterior of the Beyel Brothers leased property. Many of these disposal areas were also noted to be tripping hazards.

A telephone interview was conducted on January 12, 2006 with Mr. Dave Maher, P.G. with the Brevard County Natural Resource Management Office. Mr. Maher indicated that Coastal Fuels had a release of petroleum product via a location in their pipeline to the docks. Coastal is located on the south side of the Harbor and upgradient to the NC area. Soil was excavated, during which the laboratory analytical results indicated the presence of chlorinated solvents, which are not typically found in petroleum impacted soils.

Based on the information discussed above, a telephone interview was performed with Ms. Jeannie Adame, Director of Environmental Plans & Programs for the CPA regarding information that may be available for the petroleum releases and discovery of the chlorinated solvents. Ms. Adame provided copies of figures developed by TEA that project the aerial extent of the plume from 1996 to 2012. According to Ms. Adame, this was plume discovered in 1996. The source of the release appears to have been from the property and facilities currently leased by Mid-Florida Freezer. Prior to Mid-Florida Freezer being at this location, Dow Chemical had a facility that used chlorinated solvents in their operations. The extent of impact to groundwater in 1996 appears to be bound by the bulkhead to the north, approximately 225 feet east of Herring Street to the east, approximately 100 feet south of Challenger Road to the south, and approximately 150 west of Pompano Street to the west. The extent of impact in 2004 (last groundwater sampling event) suggests the size of the plume is slightly smaller, although temporal effects in the groundwater concentrations and inferred plume size can occur. Currently, the majority of the plume is being monitored. An air sparging system is being designed for installation along the bulkhead to insure that contaminants are not migrating into the water and sediments in the Harbor. Past sampling and analyses of surface water and sediments in the Harbor indicate that no chlorinated solvents, exceeding comparative clean-up criteria, are present. In addition, a risk assessment is being performed in order to establish alternate groundwater cleanup criteria in the original source area.
3.0 NORTH SIDE OF THE MAIN CHANNEL (INNER AND MIDDLE REACHES) - SITE DESCRIPTION

3.1 Location and Legal Description

The NC portion of the study consists of the submerged area and adjacent shoreline and uplands north of the channel from the east side of the MTB eastward to the intersection of the Middle and Outer Reaches and approximately one mile offshore in the Atlantic Ocean. The total acreage of this navigation improvement area is 23.2 acres and is completely underwater. It is anticipated that the adjacent northern shoreline and uplands of CCAFS may be impacted by the width of the northside channel widener, estimated to be as much as 100 ft. The area included in the NC portion of the study is shown in Figures 1A and 1B.

3.2 Descriptions of Structures, Roads, Other Improvements on the Site (Including Heating/Cooling System, Sewage Disposal, Source of Potable Water)

The only "structures" on the NBH consist of channel markers, concrete piers, chain-link fence to the waterline, and rip-rap to maintain the side slopes of the Harbor.

3.3 Information (if any) Reported by Auditor Regarding Environmental Liens or Specialized Knowledge or Experience

No specialized knowledge is available for this site.

3.4 Current Uses of the Property

The submerged lands of the NC project area presently support navigational uses of Port Canaveral. The CCAFS shoreline is protected with rip-rap and the adjacent uplands remain largely undeveloped except for serving as a berm for military construction and dredge spoils containment. Photographs 12-20 taken at several points within the project area clearly show the typical terrain.

3.5 Past Uses of the Property (to the extent identified)

Based on historic aerial photography and topographic maps, the project area has been part of the Harbor since at least 1951. A review of the regulatory databases indicates a few facilities that are listed within the search distance of the area.

3.6 Current and Past Uses of Adjoining Properties (to the extent identified)

By indications observed throughout the site investigation, the adjoining properties are a mixture of commercial marinas, restaurants, cruise terminals with associated ancillary buildings, Coast Guard facility, cargo piers with associated storage and support buildings, and the Cape Canaveral Air Force Station (CCAFS) with military tenant operations of the Naval Ordnance Test Unit (NOTU) at the Middle and Trident Turning Basins, the Navy Poseidon and Trident wharves and Trident missile storage facilities.

Excavation of the Canaveral Harbor Project began in 1950 with the dredging of the Barge Canal from the Inland Waterway at the middle of the Indian River to the east across Merritt Island and the Banana River. Much of the dredge spoil was used to construct a causeway across the Indian and Banana Rivers to the south of the Barge Canal which was eventually improved by the State of Florida to become S.R. 528. Finally, the Canaveral Harbor, consisting of one turning basin and a channel to the Atlantic Ocean was dredged. Port Canaveral's channel was opened to the ocean in January 1953.

The Port first opened for commercial fishing operations in November 1953. The import and export of commercial cargo began operations in June 1955. The US Air Force wharf and Navy's Poseidon Pier facilities were constructed in 1957. Cruise ships began sailing intermittently from the port in September 1964. The West Turning Basin area was constructed in 1972. The Trident Turning Basin and pier and uplands facilities were constructed in the early 1970's to support the U.S. Navy and UK Navy Trident Fleet Ballistic Missile (FBM) operations under the sponsorship of NOTU. Cruise ships have been sailing regular schedules from Port Canaveral since approximately 1981. Since that time, Port commerce, operations, and vessel traffic have increased significantly, especially the cruise business portion.

The location of the NC project area and surrounding area is presented on Figures 1A and 1B. Photographs 12-20 generally show the conditions and features of the project area and surrounding areas.

3.7 Site Rendering, Map, or Site Plan

See Figures 1A and 1B.

3.8 Records Review

3.8.1 Standard Environmental Records Sources, Federal, State, and/or Local

Under subcontract to CH2M HILL, EDR conducted a database search to identify potential or existing environmental liabilities within the target area. Records searched included several

databases, such as the Toxic Chemical Release Inventory System (TCRIS), Hazardous Material Information Reporting System (HMIRS), and Leaking Underground Storage Tanks (LUST). The table below lists all of the databases EDR searched, and includes the search distance from the site. The entries that are bolded are those required of ASTM E 1527-00 and the HTRW guidance document (ER 11695-2-132, 26 June 1992).

Databases Searched

	Search
	Distance
Database	(miles)
Federal Environmental Protection Agency (EPA)	
Comprehensive Environmental Response, Compensation, and Liability Information	0.5
System (CERCLIS)	
Comprehensive Environmental Response, Compensation, and Liability Information	0.25
System (CERC-NFRAP)	Towned December
Emergency Response Notification System (ERNS)	
National Priority List (NPL)	1.0
Delisted NPI	1.0
Resource Conservation and Recovery Information System (RCRIS-TSD)	0.5
RCRIS Small Quantity Generator (RCRIS-SQG)	0.25
RCRIS Large Quantity Generator (RCRIS-LQG)	0.25
Superfund (CERCLIS) Consent Decrees (CONSENT)	1.0
Corrective Action Report (CORRACTS)	1.0
Facility Index System (FINDS)	Target Property
Hazardous Materials Information Reporting System (HMIRS)	Target Property
Mines Master Index File (MINES)	0 25
Federal Superfund Liens (NPL Liens)	Target Property
PCB Activity Database System (PADS)	Target Property
RCRA Administrative Action Tracking System (RAATS)	Target Property
Record of Decision (ROD)	1.0
Toxic Chemical Release Inventory System (TCRIS)	Target Property
IOXIC SUBSTANCES CONTROLACT (ISCA)	Target Property
Act)/TSCA (Toxic Substances Control Act) – (FTTS)	raiget Flopelly
State of Florida	
Leaking Underground Storage Tanks (LUST)	0.5
Underground Storage Tanks (UST)	0.25
Aboveground Storage Tanks (AST)	0.500
State Hazardous Waste Sites (SHWS)	1.0
State Solid Waste Facilities/Landtill Sites (SWF/LF)	0.5
Florida Cattle Din Vats	0.5
Florida Wastewater	Target Property
Florida Dry Cleaners	0.5
Coal Gas	1.0

Database Review Results						
Name	Address	RCRA-SQG (1/4 mi)	FINDS (TP)	SWF/LF (1/2 mi)	LUST (1/2 mi)	UST (1/4 MI)
Sterling Shipping	180 Jetty Dr	Yes	No	No	No	No
Canaveral Truck						
& Bus	9049 Jetty Rd	Yes	Yes	No	No	Yes
Rinker Material -	209 George King					
Can. Plant	Blvd	No	No	No	No	Yes
Commercial						
Carrier Corp	9012 Marlin St	No	No	No	Yes	Yes

Based on the review of Federal and state regulatory database search, the following table lists the sites within the search distance and the database in which they appear.

None of the databases listed any facilities in the NC project area.

3.8.2 Physical Setting Source(s)

The present configuration of the submerged lands on the north side of the navigation channel of the Inner and Middle Reaches and adjacent uplands was created by dredging material from the Canaveral Harbor area and depositing the spoil as fill material, resulting in the surrounding usable uplands.. Uplands elevations presented on the historic topographic maps indicate relatively flat terrain with steep grading on the north bank, forming a berm for military dredge spoil containment. Photographs 12-20 are taken at several locations within the project area.

3.8.3 Additional Record Sources

None

3.9 Information from Site Reconnaissance and Interviews

Ms. A. Tracy Langille, P.G., CH2M HILL, Inc., Jacksonville, Florida office performed a site inspection on 20 December 2005. Access to the project area was limited to that area that could be observed while walking along the adjacent uplands on CCAFS, as 100 percent of the study area is submerged land. There was no observed hazardous or toxic waste on the upland adjacent to the project area.

Telephone interviews were conducted with Mr. Dave Maher, P.G. of the Brevard County Natural Resource Management Office and Ms. Jeannie Adame, Director of Environmental Plans & Programs for the CPA regarding information that may be available for the project area and vicinity.

3.9.1 Hazardous Substances in Connection with Identified Uses (Including Storage, Handling, Disposal)

Hazardous substances in connection with identified uses were unable to be seen, if present, due to inaccessibility.

3.9.2 Hazardous Substance Containers and Unidentified Substance Containers (Including Storage, Handling, Disposal)

No hazardous substance containers and unidentified substance containers were observed.

3.9.3 Storage Tanks (Including Contents and Assessment of Leakage or Potential for Leakage)

No storage tanks or containers were observed during the site inspection.

3.9.4 Indications of PCBs (Including How Contained and Assessment of Leakage or Potential for Leakage)

No indications exist that PCB's are present within the proposed project area.

3.9.5 Indications of Solid Waste Disposal

No recorded or physical data yielded any indications that the disposal of sanitary solid waste had occurred at any time at the proposed project area.

3.9.6 Physical Setting Analysis, If Migrating Hazardous Substances Are an Issue

Based on the site inspection, results of the database search, and interviews with CPA personnel and Brevard County Natural Resource Management Office some of the operations in the vicinity of the project area, south side of the channel have known or suspected releases. Shallow groundwater flow direction is typically toward the nearest water body, in this area it is the Inner Reach portion of the channel, Therefore, the potential exists for releases to impact the sediment and soils along the north side of the channel in the project area which are to be dredged for the deepening/widening navigation improvement. However, the bulkhead seawalls on the south side of the Harbor are anticipated to limit the migration of potential contaminants into the Harbor water and sediments.

Additionally, surface water and sediment collection and analyses (as part of the compliance work for the facility's NPDES permit, has been conducted since issuance of the permit. None of the

parameters analyzed indicate that reported parameter concentrations are above comparative clean-up criteria for surface water or sediment.

3.9.7 Any Other Conditions of Concern

Other conditions of concern that may be applicable to this project area have been previously discussed in Section 2.9.7.

4.0 ENTRANCE CHANNEL TURN – SITE DESCRIPTION

4.1 Location and Legal Description

The ECT is an area in the Atlantic Ocean that is to be deepened and widened to accommodate larger vessels maneuvering through the turn between the Middle and Outer Reaches. The total acreage of this area is 18.8 acres. All of that acreage is approximately one-mile off the shoreline in the Atlantic Ocean, completely under water (approximately 41 feet deep). The area included in the ECT portion of the study is shown in Figure 1B.

4.2 Descriptions of Structures, Roads, Other Improvements on the Site (Including Heating/Cooling System, Sewage Disposal, Source of Potable Water)

There are no reported structures, roads, or other improvements on the site.

4.3 Information (if any) Reported by Auditor Regarding Environmental Liens or Specialized Knowledge or Experience

No specialized knowledge is available for this site.

4.4 Current Uses of the Property

The project area is adjacent to and will expand the vessel navigation area at the intersection of the Middle and Outer Reaches.

4.5 Past Uses of the Property (to the extent identified)

Based on historic aerial photography and topographic maps, the project area appears to have always been underwater.

4.6 Current and Past Uses of Adjoining Properties (to the extent identified)

By all indications observed throughout the site investigation, the adjoining properties are underwater for approximately one-mile west to the shoreline.

4.7 Site Rendering, Map, or Site Plan

See Figure 1B.

4.8 Records Review

4.8.1 Standard Environmental Records Sources, Federal, State, and/or Local

Under subcontract to CH2M HILL, EDR conducted a database search to identify potential or existing environmental liabilities within the target area. Records searched included several databases, such as the Toxic Chemical Release Inventory System (TCRIS), Hazardous Material Information Reporting System (HMIRS), and Leaking Underground Storage Tanks (LUST). The table below lists all of the databases EDR searched, and includes the search distance from the site. The entries that are bolded are those required of ASTM E 1527-00 and the HTRW guidance document (ER 11695-2-132, 26 June 1992).

Databases Searched

Database	Search Distance (miles)
Federal Environmental Protection Agency (EPA)	
Comprehensive Environmental Response, Compensation, and Liability Information	0.5
System (CERCLIS)	
Comprehensive Environmental Response, Compensation, and Liability Information	0.25
System (CERC-NFRAP)	
Emergency Response Notification System (ERNS)	Target Property
Proposed National Priority List (NPL)	1.0
National Priority List (NPL)	1.0
Delisted NPL	1.0
Resource Conservation and Recovery Information System (RCRIS-TSD)	0.5
RCRIS Small Quantity Generator (RCRIS-SQG)	0.25
RCRIS Large Quantity Generator (RCRIS-LQG)	0.25
Superfund (CERCLIS) Consent Decrees (CONSENT)	1.0
Corrective Action Report (CORRACTS)	1.0
Facility Index System (FINDS)	Target Property
Hazardous Materials Information Reporting System (HMIRS)	Target Property
Material Licensing Tracking System (MLTS)	Target Property
Mines Master Index File (MINES)	0.25
Federal Superfund Liens (NPL Liens)	Target Property
POB Activity Database System (PADS)	Target Property
RORA Administrative Action Tracking System (RAATS)	
Record of Decision (ROD)	I.U Target Breparty
Toxic Cilemical nelease inventory System (TONIS)	Target Property
FIERA/TSCA Tracking System - FIERA (Foderal Insecticide, Europicide, & Rodenticide	Target Property
Act/TSCA (Toxic Substances Control Act) - (FTTS)	raigerroperty
Act/(100A (100C 0003tarles 001trol Act) = (1110)	
State of Elerida	
Jiale VI FIVIIVA	0.5
Leaking Underground Storage Tanks (LUST)	0.5
Underground Storage Tanks (UST)	0.25
Aboveground Storage Tanks (AST)	0.500
State nazaruous waste Sites (SnWS)	1.0

Database	Search Distance (miles)
Federal Environmental Protection Agency (EPA)	
State Solid Waste Facilities/Landfill Sites (SWF/LF)	0.5
Florida Sites	0.5
Florida Cattle Dip Vats	0.5
Florida Wastewater	Target Property
Florida Dry Cleaners	0.5
Coal Gas	1.0

Based on the review of the Federal and state regulatory database search, no facilities are located within the search distance.

4.8.2 Physical Setting Source(s)

The proposed project area is underwater and subject to variations in tidal action.

4.8.3 Additional Record Sources

None

4.9 Information from Site Reconnaissance and Interviews

Ms. A. Tracy Langille, P.G., CH2M HILL, Inc., Jacksonville, Florida office performed a site inspection on 20 December 2005. Access to all of the project area was limited due to fact that it is completely underwater and approximately one-mile offshore in 41 feet of ocean water. Please see Photograph 21.

Telephone interviews were conducted with Mr. Dave Maher, P.G. of the Brevard County Natural Resource Management Office and Ms. Jeannie Adame, Director of Environmental Plans & Programs for the CPA regarding information that may be available for the project area and vicinity.

4.9.1 Hazardous Substances in Connection with Identified Uses (Including Storage, Handling, Disposal)

Hazardous substances in connection with identified uses were unable to be seen, if present, due to inaccessibility.

4.9.2 Hazardous Substance Containers and Unidentified Substance Containers (Including Storage, Handling, Disposal)

No hazardous substance containers and unidentified substance containers were observed due to inaccessibility.

4.9.3 Storage Tanks (Including Contents and Assessment of Leakage or Potential for Leakage)

No storage tanks or containers were observed due to inaccessibility.

4.9.4 Indications of PCBs (Including How Contained and Assessment of Leakage or Potential for Leakage)

Because the entire area is underwater, no indications exist that PCB's are present within the proposed project area.

4.9.5 Indications of Solid Waste Disposal

No recorded data yielded any indications that the disposal of sanitary solid waste had occurred at any time at the proposed project area.

4.9.6 Physical Setting Analysis, If Migrating Hazardous Substances Are an Issue

Migration of hazardous substances off-site is not a concern because the adjacent property having contamination is located too far to be of concern.

4.9.7 Any Other Conditions of Concern

None

5.0 FINDINGS AND CONCLUSIONS

5.1 General Comments

A Section 230 Feasibility Study - HTRW Assessment was conducted in conformance with the scope and limitations of ASTM Practice E 1527 and ER-1165-2-132. The findings and conclusions provided below reflect existing HTRW conditions based on a HTRW database search, aerial photography, reviews of available records, site inspections and interviews. These findings and conclusions are of existing conditions as they were identified at this time.

5.2 Regional Overview

A site inspection was performed on or in the immediate vicinity of the three project areas identified for navigation improvements at Port Canaveral. Two of the three areas (WTB and NC) are located within Canaveral Harbor and the third area (ECT) is located approximately one-mile offshore. The hazardous and toxic waste evaluation revealed that the majority of the area is predominantly developed having construction and activities associated with marine and port facilities, including cruise terminals, marine maintenance, public parks, marine cargo transfers and a military installation. The HTRW database search included the entire area and indicated that overall, that a relatively small portion of the proposed project area may have been impacted, to some extent, with hazardous and toxic waste. Most of these reported properties are located on the uplands portion of the northeast side of the WTB and West Access Channel and on the south side of the Inner Reach portion of the channel, upgradient to two of the three areas (WTB and NC). No propertied were reported in the vicinity of the ECT. The most common type of HTRW, hydrocarbons, was reported in the EDR database and located along the southern portion of the Harbor.

The database also revealed several locations of Small Quantity Generators (SQG). Most of these SQG sites are reported to be in compliance with reported requirements. The site inspection revealed the presence of a location in the northeast section of the WTB that appears to be not in compliance with regulatory rules in regards to the operations conducted. There is another site reported by personnel from the Brevard County Natural Resource Management Office (BCNRM) suggests that a release of chlorinated solvents has occurred in the location that is leased to and operated by Mid-Florida Freezer on the south side of the Harbor. Contamination from the sites located on the perimeter of the proposed project may be migrating into the project area.

5.3 West Turning Basin

A site inspection was conducted on 20 December 2005. The HTRW database review of the existing conditions indicated the site to be free of hazardous and toxic materials and waste. However, during the site inspection indicated the presence of hazardous materials and waste in one area: the Beyel Brothers, Inc. property located at the southeastern edge of the WTB uplands.

Most of the items observed were those used in connection with marine vessel repair and painting, and marine scrap (e.g., cranes, shipping containers, etc.). According to the lease agreement with CPA, these activities were not allowed on the property.

Coastal Fuels, located on the south side of the Harbor, had a release of petroleum product via a location in their pipeline to the docks. Soil was excavated, during which the laboratory analytical results indicated the presence of chlorinated solvents, which are not typically found in petroleum impacted soils. The source of the chlorinated solvents is likely from past activities at another facility leased from CPA. The extent of impact in 2004 (last groundwater sampling event) suggests the size of the plume is slightly smaller, although temporal effects in the groundwater concentrations in and inferred plume size can occur. Currently, the majority of the plume is being monitored. An air sparging system is being designed for installation along the bulkhead to insure that contaminants are not migrating into the water and sediments in the Harbor. Past sampling and analyses of surface water and sediments in the Harbor indicate that no chlorinated solvents, exceeding comparative clean-up criteria, are present. In addition, a risk assessment is being performed in order to establish alternate groundwater cleanup criteria in the original source area. A large bulkhead is present at the water's edge that may impede the migration of the chlorinated solvents and petroleum constituents into the Harbor. The potential of HTRW risks at this site is considered moderate.

5.4 North Side of Channel (Inner and Middle Reaches)

A site inspection of the land adjacent to NC was performed on 20 December 2005, as the NC area is located completely underwater. The HTRW database review of the existing condition found the site to be free of hazardous and toxic materials and waste. The property surrounding the proposed project is a mix of commercial shipping, marine port activities, and a military installation. Please see the previous section for a discussion of releases on the south side of the Harbor, which is considered to be adjacent property. The potential of HTRW risks at this site is considered low.

5.5 Entrance Channel Turn

This area is located approximately one-mile offshore in the Atlantic Ocean. A site visit was not performed as it is in about 41 feet of water. None of the sites listed in the HTRW database review are located within the search distances. The potential of HTRW risk at this area is considered low.

PRELIMINARY ASSESSMENT SCREENING (PAS) STATEMENT OF FINDINGS

REAL PROPERTY TRANSACTION: This effort was not performed for a "Real Property Transaction", but rather for use in the development of the Feasibility Study. An intrusive soil and groundwater study is recommended for the Beyel Brothers property to evaluate whether the soil and groundwater have been impacted by operations performed there. Upon evaluation and possible remediation of the Beyel Brothers leased property, these sites may be used for the project purposes.

SUMMARY:

COMPREHENSIVE RECORD SEARCH: Several database searches were performed under subcontract to EDR. The following databases were included in the review: National and State Priority Listed Sites, landfills, Federal and State Conservation Environmental Restoration Comprehensive Liability Act (CERCLA) listed sites, listed violators, underground storage tanks (USTs) and leaking underground storage tanks (LUSTs), Treatment Storage and Disposal facilities (TSDs), listed spills, Small (SQG) and Large Quantity Generators (LQG), Transporters and aboveground storage tanks (ASTs). There are no reported hazardous or toxic waste present on the proposed right of way and source of material site.

SITE INVESTIGATION: CH2M HILL, Inc. Staff, Jacksonville Office visited the proposed areas on 20 December 2005.

In conclusion, the Proposed Canaveral Harbor widening may potentially have low to moderate concentration of hazardous and toxic waste. A further detail study is required for the property leased by Beyel Brothers, Inc. associated with the WTB area of the project. Additionally, a file review and summary of activities associated with Coastal Fuels and Mid-Florida Freezer should be performed.

Signed:

Prepared by: A. T. Langille, PG Senior Hydrogeologist CH2M HILL, Inc.

Date: May 12, 2006

WTB Area

South Side of Channel at WTB Area

Seawall Along South Side of Channel (Adjacent to WTB Area)

Shoreline Along Beyel Brothers, Inc. Lease (WTB Area Uplands)

Two-inch Pipe on Shoreline (East of WTB)

Rip-Rap East of WTB

Uplands East of WTB

36-inch Stormwater Outlet (East of WTB)

Seawall Along East Side of WTB (Beyel Brother, Inc. Lease)

Typical Equipment and Materials on Beyel Brother, Inc. Lease (WTB Area Uplands)

North Side Shoreline and West Access Channel (East of WTB)

Seawall Along South Side of Channel (Adjacent to WTB Area)

WTB Entrance Shoreline and Channel (West Access Channel)

Channel (Inner Reach) East of MTB

CCAFS Shoreline and Uplands East of MTB

CCAFS Shoreline and Uplands East of MTB

Shoreline Along South Side of West Access Channel

CCAFS Property (TTB on Right)

CCAFS Shoreline (West Side of TTB)

CCAFS Uplands at Port Entrance

Atlantic Ocean at Cocoa Beach (ECT Area Approx. One-mile Offshore) 696 Millwheel Drive Merritt Island, FL 32952 Phone (321) 454-6899 Fox (321) 454-4319

November 27, 2007

Brevard County Board of Commissioners Natural Resources Management Office 2725 Judge Fran Jamieson Drive, Bldg. A Viera, FL 32940

Daley

Environmental Services, Inc.

Attention: Doug Divers

Reference: Source Removal Report Beyel Bros. Lease Grouper Road Port Canaveral, Florida FDEP ID# 059809163

Dear Mr. Divers:

On behalf of the property owner, Canaveral Port Authority Daley Environmental Services, Inc. has completed source removal operations at the referenced property.

The report documents the source removal operations completed August 22-23, 2007. Laboratory analyses of soil samples collected after the source removal indicate all petroleumimpacted soil above Residential Soil Cleanup Target Levels has been removed. Laboratory analyses of groundwater samples collected after the source removal did not detect petroleum impacts to the groundwater above allowable Residential Groundwater Cleanup Target Levels.

We are recommending a "No Further Action" status without conditions for the site.

Attached for your use are two copies of the Source Removal Report. If you have any questions or require additional information, please call.

Sincerely, DALEY ENVIRONMENTAL SERVICES, INC.

Thomas L. Daley, P.G. President

Fresiden

Enc.

Dist. Addressee - 2 Canaveral Port Authority - 2

SOURCE REMOVAL REPORT BEYEL BROS. LEASE GROUPER ROAD PORT CANAVERAL, FLORIDA FDEP ID# 059809163

Prepared For:

Canaveral Port Authority PO Box 267 Cape Canaveral, FL 32920

Prepared by:

Daley Environmental Services, Inc. 696 Millwheel Drive Merritt Island, FL 32952 (321) 454-6899

DES Project No. 07-105-12 DES Report No. 7028 Date: November 27, 2007 Thomas L. Daley, P.G. President FL Registration 1219

DES Project No. 07-105-12 DES Report No. 7028 November 27, 2007

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Purpose	1
1.2 Background	1
2.0 FIELD OPERATIONS	2
2.1 Pre-disposal Sampling and Analysis	2
2.2 Soil Screening and Excavation	2
2.3 Soil Transportation and Disposal	2
2.4 Soil Sampling	3
2.5 Groundwater Sampling	3
3.0 SOIL AND GROUNDWATER QUALITY	4
3.1 Post Source Removal Soil Quality	4
3.2 Post Source Removal Groundwater Quality	4
4.0 CONCLUSIONS AND RECOMMENDATIONS	5

4.0 CONCLUSIONS AND RECOMMENDATIONS

TABLES

TABLE 1	SOIL ANALYTICAL SUMMARY
TABLE 2	GROUNDWATER ANALYTICAL SUMMARY

FIGURES

FIGURE 1	SITE LOCATION TOPOGRAPHIC MAP
FIGURE 2	SITE LAYOUT PLAN

APPENDICES

APPENDIX A	MANIFESTS / SCALE TICKETS
APPENDIX B	FIELD LOGS
APPENDIX C	LABORATORY REPORTS

1.0 INTRODUCTION

1.1 Purpose

Daley Environmental Services, Inc. (DES); on behalf the property owner, Canaveral Port Authority; DES has completed source removal operations at a former commercial crane operation on the west side of Grouper Road at Port Canaveral, Florida, Brevard County, Florida. The purpose of the project was to remove and dispose of soils impacted with petroleum products resulting from a discharge from a portable aboveground storage tank formerly located on the property. The location of the site is depicted on Figure 1, Site Location Topographic Map. The site FDEP ID number is 059809163.

The project was completed in accordance with provisions of Florida Administrative Code (FAC) 62-770.300, Source Removal. All field sampling activities were completed in accordance with FDEP Standard Operating Procedures for Field Activities (DEP-SOP-001/01).

1.2 Background

The site is the former location of Beyel Bros. a crane and rigging company who used the site as a base of operations. As part of their operations Beyel had a portable skid aboveground storage tank (AST) for fueling equipment with diesel fuel. Beyel Bros. relocated from the site in 2006. DES completed a Limited Scope Soil and Groundwater Assessment documented in a report dated October 17, 2006. The assessment identified the presence of petroleum impacted soil and groundwater. A Discharge Report Form was submitted to Brevard County Natural Resources Management Office on December 14, 2006. The property layout is shown on Figure 2, Site Layout Plan.

DES was later contracted to complete the source removal and assessment activity.

2.0 FIELD OPERATIONS

2.1 Pre-disposal Sampling and Analysis

DES personnel mobilized to the site on August 3, 2007. We completed a series of nine hand auger borings in the footprint of the known areas of petroleum impacts to the soil. The soil cuttings generated from the auger borings were composited. A representative sample of the composited soil was placed in a soil jar provided by the laboratory. The soil sample, designated, Comp-1, was shipped in an iced cooler with chain-of-custody to US Biosystems Laboratory in Boca Raton, Florida for analysis. Soil sample Comp-1 was analyzed for the pollutant metals, Arsenic Barium, Cadmium, Chromium, Lead, Selenium and Silver (total and TCLP) as required by Omni Waste for disposal of soils in their Omni Waste Landfill near St. Cloud, Florida.

The results of the laboratory analysis were submitted to Omni Waste and a waste profile was approved allowing for disposal of the soil in their facility. The laboratory report is included in Appendix C.

2.2 Soil Screening and Excavation

DES personnel mobilized to the site on August 22-23, 2007. During this time we completed the excavation of all soils with an Organic Vapor levels in excess of one part per million as measured with a Mini Rae 2000 an Organic Vapor Meter with a photo ionization detector (OVM-PID) as the soil as was excavated. Soils exhibiting Volatile Organic Vapors were loaded directly into dump trucks for transportation from the site for disposal.

Representative soil samples were collected as the excavation proceeded. Samples were collected from the excavator bucket, the sidewall and base of the excavations and screened with the OVM. Confirmatory screening of soil samples was completed from samples collected directly from the sidewalls of the west excavation at a depth of approximately two feet which was above the groundwater table at approximately 4 feet bls. Confirmatory screening of soil samples was completed from samples collected directly from the sidewalls of the excavation at a depth of approximately two feet which was above the groundwater table. The field notes for the soil screening including results and locations collected are included in Appendix B

The screenings indicated high levels of Volatile Organic Vapors from the surface to the groundwater table in all seven identified areas of petroleum-impacted soil. The excavation locations are shown on Figure 2.

2.3 Soil Transportation and Disposal

As the excavation proceeded the soil exhibiting Volatile Organic Vapor content greater than one ppm was placed in twenty-five rear dump trucks for transportation from the site. The excavated soil, totaling 778.86, tons was transported from the site for disposal at the Omni Waste Landfill near St. Cloud, Florida by Soil Tech Distributors.

The excavations were backfilled upon completion of the soil removal with clean sandy fill material. The manifest and scale tickets are included in Appendix A.

DES Project No. 07-105-12 DES Report No. 7028 November 27, 2007

2.4 Soil Sampling

In an effort to confirm removal of petroleum impacts to the soil, twenty-four soil samples were collected for laboratory analysis. Three or four confirmatory soil samples (depending on size and shape) were collected for laboratory analysis from each of the sidewalls of the excavations. Soil screening from these eight locations indicated Volatile Organic Vapors concentrations below the instrument minimum detection level of one ppm. The soil samples, designated CS-1 through CS-24, were collected at the locations depicted on Figure 2. The samples were placed in containers provided by the laboratory and shipped in an iced cooler with chain-of-custody to US Biosystems in Boca Raton, Florida for analysis.

2.5 Monitor Well Installation and Groundwater Sampling

DES personnel returned to the site on September 6, 2007 with a drill rig and crew. One monitor well was installed at the site at each of the excavation locations. The monitor wells were designated MW-1 through MW-7. The locations of the monitor wells are depicted on Figure 2. The monitor wells were installed by advancing a hollow stem auger to a depth of approximately 13 feet. Into the hollow stem auger was placed a ten-foot section of 2" diameter PVC well screen with 0.006" slot openings. This screen was attached to a section of 2"-diameter PVC riser pipe. A filter pack of 30/40 silica sand was placed around and to one-foot above the well screen. A one-foot seal of 30/65 silica sand was placed above the filter pack and extended to the surface. The wellheads were not completed pending results of the initial sampling. The wells were developed by pumping groundwater from the wells until the discharge was free of sediment. The development water was spread on nearby pavement and allowed to evaporate. The Well Completion and Development Logs are included in Appendix B.

DES personnel returned to the site on October 5, 2007. In an effort to assess potential petroleum impacts to the groundwater, samples were collected for laboratory analysis from monitor wells MW-1 through MW-7. Each monitor well was purged in accordance with FDEP protocol. The groundwater samples were collected using a peristaltic pump. The groundwater samples were placed in containers provided by the laboratory and shipped in an iced cooler with chain-of-custody to USB for analysis.

The results of the first sampling event indicated petroleum impacts to the groundwater exceeded the Groundwater Cleanup Target Level for Benzene at MW-2 only. In order to confirm the results DES personnel returned to the site on October 17, 2007 and re-sampled monitor well MW-2 for BTEX compounds. The field procedures for the re-sampling were identical to that employed during the October 5, 2007 sampling event.

The purge water was spread on a nearby paved surface and allowed to evaporate.

The Groundwater Sampling Logs and Field Instrument Calibration Logs are included in Appendix B.

3.0 SOIL AND GROUNDWATER QUALITY

3.1 Post Source Removal Soil Quality

Contaminant impacts to the soil were assessed by laboratory analyses of the twenty-four soil samples collected from the sidewalls and base of the excavations at the locations described above.

The soil samples were analyzed by EPA Methods 8021 and 8310 and Florida Special Method FL-PRO which detect the presence of petroleum fuel constituents.

The laboratory results indicated all contaminants of concern were well below the most restrictive SCTL. The results of the laboratory analysis indicated the presence of Total Recoverable Petroleum Hydrocarbons (TRPH) in all twenty-two of the twenty-four samples, but below the most-restrictive Residential Soil Cleanup Target Level (SCTL) of 340 ppm. Additional petroleum fuel constituents were detected, but at trace levels well below the most restrictive Residential SCTLs. A summary of the detected analytes is presented on Table 1. Soil Analytical Summary.

The laboratory report is included in Appendix C.

3.2 Post Source Removal Groundwater Quality

Contaminant impacts to the groundwater were assessed by laboratory analyses of groundwater samples collected from monitor wells MW-1 and MW-2 by EPA Methods 8021 and 8310 and Florida Special Method FL-PRO which detect the presence of petroleum compounds.

Laboratory analysis of the groundwater samples collected from MW-1 through MW-7 indicated only trace levels of the contaminants of concern well below the state Groundwater Cleanup Target Levels (GCTLs), except at monitor well MW-2 where Benzene was detected at a level of 1.47 ug/l which exceeded the GCTL of 1.0 ug/l.

As discussed above DES re-sampled monitor well MW-2 on October 17, 2007 for analysis by EPA Method 8021B (BTEX). The laboratory results from the October 17, 2007 sampling indicated Benzene was not present at or above the Method Detection Level.

A summary of the detected analytes is presented on Table 2: Groundwater Monitoring Well Analytical Summary.

The laboratory report is included in Appendix C.

DES Project No. 07-105-12 DES Report No.7028 November 27, 2007

4.0 CONCLUSIONS AND RECOMMENDATIONS

On August 22-23, 2007 a total of 778.86 tons of petroleum contaminated soil was excavated from the source area at the site and transported from the site for disposal at the Omni Waste Landfill in St. Cloud, Florida.

Laboratory analysis of twenty-four confirmatory soil samples indicated the presence of petroleum fuel constituents, but at levels well below the most restrictive Residential Soil Cleanup Target Levels.

Laboratory analysis of groundwater samples collected from six of seven monitor wells installed at the excavation sites did not indicate the presence of petroleum impacts to the groundwater in excess of the most restrictive Residential Groundwater Cleanup Target Levels on October 5, 2007. A subsequent re-sampling and laboratory analysis of the one well exceeding the GCTL indicated the seventh monitor well location did not have groundwater impacts in excess of the GCTLs.

The site meets the FDEP criteria for a "No Further Action with Conditions" status.

We recommend a No Further Action status be granted the site in accordance with FAC 62-770.

TABLE 1: SOIL ANALYTICAL SUMMARY

Facility Name: Beyel Bros.

Facility ID#: 059809163

1200	Sample	1		OVA	11.0								
Sample No.	Date Collected	Depth to Water (ft)	Sample Interval (fbls)	Net OVA Reading (ppm)	Benzene (ppm)	Toluene (ppm)	Ethyl- benzene (ppm)	Total Xylenes (ppm)	MTBE (ppm)	Naph- thalene (ppm)	2-Methyi naphth. (ppm)	1-Methyl naphth. (ppm)	TRPHs (ppm)
CS-1	8/22/2007	4' '	2*	0	U 0.00034	U 0.00044	U 0 00056	U 0.0030	U 0.00052	U 0.025	U 0.032	U 0.031	7.261
CS-2	8/22/2007	4'	2'	0	U 0,00034	U 0.00045	U 0.00056	U 0 0030	U 0.00052	U 0.023	U 0.030	U 0.029	9.241
CS-3	8/22/2007	4'	2'	0	U 0.00034	U 0.00045	U 0.00057	U 0.0031	U 0.00053	U 0.023	U 0.030	U 0.029	49.6
CS-4	8/22/2007	4	2'	0	U 0,00037	U 0.00048	U 0.00061	U 0.0033	U 0.00056	U 0.024	U 0.031	U 0.030	19.0
CS-5	8/22/2007	4'	2'	0	U 0 00042	U D.00055	U 0.00069	U 0.0037	U 0.00064	U 0.028	U 0.037	U 0.036	11.21
CS-6	8/22/2007	4	2'	0	U 0.00043	U 0.00056	U 0.00071	U 0.0038	U 0.00066	U 0.030	U 0.039	U 0.038	15.81
CS-7	8/22/2007	4'	2'	0	U 0 00036	U 0 00048	U 0.00060	U 0 0033	U 0.00056	U 0.027	U 0.035	U 0.034	4.981
CS-8	8/22/2007	4'	2'	0	U 0.00041	U 0.00054	U 0.00068	U 0 0037	U 0.00063	U 0.023	U 0.030	U 0.029	8.411
CS-9	8/22/2007	4'	2'	0	U 0.00043	U 0.00056	U 0.00071	U 0.0038	U 0.00065	U 0 025	U 0.032	U 0.031	13.51
CS-10	8/22/2007	4	2'	0	U 0.00033	U 0.00044	U 0.00055	U 0.0030	U 0.00051	U 0 025	U 0 032	U 0.031	13.21
CS-11	8/22/2007	4	2'	0	U 0.00037	U 0.00049	U 0.00062	U 0,0033	U 0.00057	U 0.025	U 0 032	U 0.031	5.971
CS-12	8/22/2007	4'	2'	0	U 0.00036	U 0 00047	U 0.00060	U 0.0032	U 0.00055	U 0.024	U 0.030	U 0.030	5.201
CS-13	8/22/2007	4'	2'	0	U 0.00032	U 0.00042	U 0.00052	U 0.0028	U 0.00049	U 0.023	U 0.030	U 0.030	14.41
CS-14	8/23/2007	4'	2"	0	U 0.00034	U 0.00044	U 0.00056	U 0.0030	U 0.00052	U 0.023	U 0.030	U 0.029	231
CS-15	B/23/2007	4'	2'	0	U 0.00044	U 0.00057	U 0.00072	U 0.0039	U 0.00067	U 0 028	U 0.036	U 0.035	9 28 1
CS-16	8/23/2007	4'	2'	0	U 0.00031	U 0.00041	U 0 00052	U 0.0028	U 0 00048	U 0.024	U 0.030	U 0.030	3.811
CS-17	8/23/2007	4'	2'	D	U 0.00034	U 0.00045	U 0.00056	U 0.0030	U 0.00052	U 0.026	LI 0.033	U 0.033	24.8
CS-18	8/23/2007	4'	2'	D	U 0.00037	U 0.00049	U.0.00061	U 0.0033	U 0.00057	U 0.024	U 0.031	U 0.031	U 3.3
CS-19	8/23/2007	4'	2	0	U 0.0003	U 0.00043	U 0.00054	U 0.029	U 0.00050	U 0.024	U 0.031	U 0.030	U 3.3
CS-20	8/23/2007	4'	2'	0	U 0.00035	U 0.00045	U 0.00057	U 0.0031	U 0 00053	U 0.025	U 0 032	LI 0.032	3.631
CS-21	8/23/2007	4'	2'	0	U 0.00032	U 0.00043	U 0,00054	U 0 029	U 0.00050	U 0.025	U 0.032	U 0.031	25.5
CS-22	8/23/2007	4'	2'	0	U 0.00035	U 0.00045	U 0 00057	U 0.0031	U 0.00053	U 0.024	U 0.031	U 0.031	4.471
CS-23	8/23/2007	4'	2'	0	U 0 00033	U 0.00043	U 0.00052	U 0 0030	U 0.00052	U 0.025	U 0.032	U 0.032	4.581
CS-24	8/23/2007	4'	2'	٥	U 0.00032	U 0.00042	U 0.00053	U 0 0028	U 0.00049	U 0.024	U 0.031	U 0.031	6.381
SCTL	1			1	0.007	0.5	0.6	0.2	0.09	1.2	8.5	3.1	340

NOTES: U = NOT DETECTED AT OR ABOVE METHOD DETECTION LEVEL

I = DETECTED BETWEEN METHOD DETECTION LEVEL AND PRACTICAL QUANTIFICATION LEVEL

If an analyte is not detected, state the detection limit (i.e. <1) SpilAnalSum T1

TABLE 2: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY

Facility Name: Beyel Bros.

Facility ID#: 059809163

Not Sampled = NS Analytical Results = ppb

					-	-		_		_	Ex	cept TRPH =	ppm
Sa Location	mple Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total VOA	MTBE	EDB	Total Lead	TRPHs	Naph- thalene	2-Methyl- naphth.	1-Methyl- naphth.
MW-1	10/5/2007	U 0.21	0,180	U 0.20	U 0,60	0.18	U 0 78	NS	NS	0.1701	U 0.070	U 0.098	U 0.032
MW-2	10/5/2007	1.47	0 220 1	U 0.20	U 0.60	1.69	5.65	NS	NS	0.787	U 0.070	U 0.098	U 0.032
MW-2	10/17/2007	U 0.21	0.3101	U 0.20	U 0.60	0.31	U 0.78	NS	NS	NS	NS	NS	NS
MVV-3	10/5/2007	U 0.21	0 210	U 0.20	U 0.60	D.21	U 0.78	NS	NS	1.30	U 0.072	U 0.10	0.0593
MVV-4	10/5/2007	U 0.21	0.190	U 0.20	U 0.60	D.19	U 0.78	NS	NS	0.6291	U 0.070	U 0.098	U 0.032
MW-5	10/5/2007	U 0.21	0,160	U 0.20	0.0700	0.23	U 0.78	NS	NS	0.3331	U 0,070	U 0.098	U 0.032
MW-6	10/5/2007	U 0.21	0.210	0.100	U 0 60	0.31	U 0.78	NS	NS	0.634 (U 0.071	U 0 10	U 0.032
MW-7	10/5/2007	U 0.21	0.170	U 0.20	U D.60	0.17	0.490	NS	NS	0.5091	U 0.075	U 0 11	U 0.034
GCTL	1	1.0	40	30	20		20	0.02	15	5000	14	28	28

NOTES: U = NOT DETECTED AT OR ABOVE METHOD DETECTION LEVEL

I = DETECTED BETWEEN METHOD DETECTION LEVEL AND PRACTICAL QUANTIFICATION LEVEL

Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment L

Cost Estimates

Rev Date: September 2012

(contains Cost DX Feb 2012 certification/TPCS/MCACES and revised Sept 2012 TPCS/MCACES per SAD comments)

WALLA WALLA COST ENGINEERING TECHNICAL CENTER OF EXPERTISE

COST AGENCY TECHNICAL REVIEW

CERTIFICATION STATEMENT

for

SAJ – Port Canaveral Section 203

The Port Canaveral Section 203 as presented by the SAJ Sponsor has undergone a successful Cost Agency Technical Review (Cost ATR), performed by the Walla Walla District Cost Engineering Technical Center of Expertise (Cost TCX) team. The Cost ATR included study of the project scope, report, cost estimates, schedules, escalation, and risk-based contingencies. This certification signifies the products meet the quality standards as prescribed in ER 1110-2-1150 Engineering and Design for Civil Works Projects and ER 1110-2-1302 Civil Works Cost Engineering.

As of February 8, 2012, the Cost TCX certifies the estimated total project cost of:

FY 2012 Price Level: Fully Funded Amount: \$43,340,000 (excluding Sponsor spent costs) \$58,741,000 (including Sponsor spent costs)

Note that the certified TPCS is dependent upon sufficient, confident design and resulting Technical ATR. Further, it remains the responsibility of the District to correctly reflect these cost values within the Final Report and to implement effective project management controls and implementation procedures including risk management throughout the life of the project.

US Army Corps of Engineers®

Kim C. Callan, PE, CCE, PM1

Kim C. Callan, PE, CCE, PM1 Chief, Cost Engineering Walla Walla District

Date_Feb 1 2012

**** TOTAL PROJECT COST SUMMARY ****

PROJECT: Canaveral Harbor, Section 203 Study LOCATION: Port Consveral, Brevard County, Florida DISTRICT. SAJ Jacksonville PREPARED: 2/8/2012 POC CHIEF, COST ENGINEERING, Tracy T. Leesor, P.E.

This Estimate reflects the scope and schedule in report; integra

Integrated Section 203 Navigation Study Report

						Pro	gram Year (E lective Price I	ludget EC) Level Date:	2012 1. DCT 11		τοτα	L PROJ	ECT COST (FU	LLY FUNDED	1				
WBS NUMBER A	Civil Works Feature & Sab-Feature Description	COST (SK) C	CNTG (SK) D	ESTIMA CNTG (%) E	TOTAL (SK) F	ESC (%) G	COST (SK) H	PROJECT F CNTG (\$K) /	TOTAL <u>(\$K)</u> J	5	sent Thru: 2-Dec-11 (\$K) K	L	COST (SK) M	CNTG (5K) N	FULL _(SK)O				
02 12	RELOCATIONS NAVIGATION PORTS & HARBORS	\$2,008 \$27.715	\$421 \$5,812	21% 21%	\$2,429 \$33,527		\$2,008 \$27,715	\$421 \$5,812	\$2,429 \$33,527	s	13.775		\$2,100 \$28,735	\$440 \$6,026	\$2,541 \$48,539				
	CONSTRUCTION ESTIMATE TOTALS:	\$29,723	\$6,233		\$35,956		\$29,723	\$6,233	\$35,956	\$	13,775		\$30,838	\$5,467	\$51,080				
01	LÁNDS AND DAMAGES	\$1,645	\$345	21%	\$1,990		\$1,645	\$345	\$1,990				\$1,665	\$349	\$2.015				
30	PLANNING, ENGINEERING & DESIGN	\$2,229	\$467	21%	\$2,697		\$2,229	5467	\$2,697				\$2,267	\$475	\$2,743				
31	CONSTRUCTION MANAGEMENT	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697				\$2,400	\$503	52,904				
	PROJECT COST TOTALS:	\$35,827	\$7,513	21%	\$43,340		\$35,827	\$7,513	\$43,340	5	13,775		\$37,171	\$7,795	\$58,741				
		CHIEF, COS	T ENGINEE	RING, Tracy svaldo Rodr	T. Leeser, P.	E,			ESTIMATED FEDERAL COST ESTIMATED NON-FEDERAL COST						\$38,181 \$20,559				
		CHIEF, REA	LESTATE, C	liyde H. Sell	ers				EST	IMAT	ED TOTAL	PROJ	ECT COST:		\$58,741				
		CHIEF, PLAN	NING, Stua	rt J. Appelba	ium, P.E.					Per	centage bas	is:							
		CHIEF, ENG	INEERING, I	uis A Ruiz,	P.E.					Nav	igation Dept igation Dept	hs 20'-46	5' @ 75/25 greater 50/50						
		CHIEF, OPE	RATIONS, JI	m W. Jeffon	ds, P E					Lan	ds & damag to Navigati	es 100% on 100%	non-federal federal						
		CHIEF, CON	STRUCTION	I. Jack Rinto	ULPE PMP														
		CHIEF, CON	TRACTING,	Cynthia S. T	olle				O&M OUTS	SIDE	OF TOTAL	PROJE	ECT COST:						
		CHIEF, PM-	PB, Karen.S.	Tippett															
		CHIEF, DPM	David S. Ho	bble, PMP											\$5% \$38,181 \$20,559 \$58,741				

**** TOTAL PROJECT COST SUMMARY ****

**** CONTRACT COST SUMMARY ****

PROJECT Canaveral Harbor, Section 203 Study LOCATION Port Canaveral, Brevard County, Florida This Estimate reflects the scope and schedule in report. Integrated Section 203 Navigation Study Report

DISTRICT SAL Jacksonville POC: CHIEF, COST ENGINEERING, Tracy T. Leeser, P.E.

PREPARED 2/8/2012

	Estimate Prepared: Effective Price Level.	12-Dec-11 12-Dec-11	R	ISK BASED		Prog	gram Year (B ective Price (udget EC): .nvel Oate:	2012 1 OCT 11	FL	ULLY FUNDE	ED PROJECT	TESTIMATE	
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B BEMAINING CONSTRUCTION BY PORT	COST (SK) C	CNTG (\$K) D	CNTG _(%) 20.97	TOTAL F	ESC (%) G	COST (SK) H	CNTG (\$K)	TOTAL (SK) J	Mid-Point Date P	ESC (%) L	COST (\$K) M	CNTG (SK) N	FULL (\$K)
02 12	RELOCATIONS NAVIGATION PORTS & HARBORS	\$2,008 \$27,715	\$421 \$5.812	21% 21%	\$2,429 \$33,527		\$2.008 \$27,715	\$421 \$5,812	\$2,429 \$33,527	2014Q4 2014Q2	4.6% 3.7%	\$2,100 \$28,738	\$440 \$6,026	\$2,541 \$34,754
	CONSTRUCTION ESTIMATE TOTALS:	\$29,723	\$6,233	21%	\$35,956		\$29,723	\$6,233	\$35,956	12.7	_	\$30,838	\$6,467	\$37,305
01	LANDS AND DAMAGES	\$1,645	\$345	21%	\$1,990		\$1,645	\$345	\$1,990	2012Q4	1.2%	\$1,865	\$349	\$2,015
30 7,5%	PLANNING, ENGINEERING & DESIGN Project Management Planning & Environmental Compliance Engineering & Design Engineering Tech Review ITR & VE Contracting & Reprographics Engineering During Construction Planning During Construction Project Operations	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697	2012Q4	1.7%	\$2,267	\$475	\$2,743
31 7.5%	CONSTRUCTION MANAGEMENT Construction Management Project Operation: Project Management	\$2,229	\$467	21%	\$2.697		\$2,229	\$467	\$2,697	201402	7,7%	\$2,400	\$503	\$2,904
	CONTRACT COST TOTALS:	\$35,827	\$7,513		\$43,340		\$35,827	\$7,513	\$43,340			\$37,171	\$7,795	\$44,965

Title Page

Port Canaveral Section port work omited REV 2-8-2012

Estimated by Jeff McWilliams Designed by Jim Moore Prepared by Kathleen Roy

Preparation Date2/8/2012Effective Date of Pricing2/8/2012Estimated Construction Time400 Days

This report is not copyrighted, but the information contained herein is For Official Use Only.

Labor ID: NLS2010 EQ ID: EP09R03

Designed by Jim Moore Estimated by Jeff McWilliams Prepared by Kathleen Roy

Direct Costs

LaborCost EQCost MatlCost SubBidCost

U.S. Army Corps of Engineers Project : Port Canaveral Section port work omited REV 2-8-2012 COE Standard Report Selections

Library Properties Page i

Design Document	
Document Date	2/8/2012
District	
Contact	Kathleen Roy
Budget Year	2012
UOM System	Original

Timeline/Currency

Preparation Date 2/8/2012 Escalation Date 2/8/2012 Eff. Pricing Date 2/8/2012 Estimated Duration 400 Day(s) Currency US dollars

Exchange Rate 1.000000

Costbook CB10EB: MII English Cost Book 2010

Labor NLS2010: National Labor Library - Seattle 2010

the website for current Davis Bacon & Service Labor Rates. Fringes paid to the laborers are taxable. In a non-union job the whole fringes are taxable. In a union job, the vacation Eabor Rates

LaborCost1 LaborCost2 LaborCost3

LaborCost4

Equipment EP09R03: MII Equipment Region 3 2009

03 SOUTHEAST

Sales Tax	8.50
Working Hours per Year	1,530
Labor Adjustment Factor	0.86
Cost of Money	2.50
Cost of Money Discount	25.00
Tire Recap Cost Factor	1.50
Tire Recap Wear Factor	1.80
Tire Repair Factor	0.15
Equipment Cost Factor	1.00
Standby Depreciation Factor	0.50

Fu	Fuel								
Electricity	0.089								
Gas	2.950								
Diesel Off-Road	3.040								
Diesel On-Road	3.490								

Shippin	g Rates
Over 0 CWT	14.96
Over 240 CWT	13.61
Over 300 CWT	11.62
Over 400 CWT	9.72
Over 500 CWT	5.42
Over 700 CWT	5.42
Over 800 CWT	8.01

Project Cost Summary Report Page 1

Description	Quantity	UOM	CostToPrime	PrimeCMU	ContractCost	Escalation	Contingency	SIOH	ProjectCost
Project Cost Summary Report			49,601,804	0	49,601,804	0	0	0	49,601,804
Completed Work	1.00	EA	13,775,063.00 13,775,063	0	13,775,063.00 13,775,063	0	0	0	13,775,063.00 13,775,063
Port Work	1.00	EA	13,775,063.00 13,775,063	0	13,775,063.00 13,775,063	0	0	0	13,775,063.00 13,775,063
Work Completed By the Port	1.00	EA	13,775,063.00 13,775,063	0	13,775,063.00 13,775,063	0	0	0	13,775,063.00 13,775,063
Remaining Work	1.00	EA	35,826,740.86 35,826,741	0	35,826,740.86 35,826,741	0	0	0	35,826,740.86 35,826,741
01 Lands and Damages	1.00	EA	1,645,245.00 1,645,245	0	1,645,245.00 1,645,245	0	0	0	1,645,245.00 1,645,245
Property Purchase	1.00	EA	1,645,245.00 1,645,245	0	1,645,245.00 1,645,245	0	0	0	1,645,245.00 1,645,245
02 Relocations	1.00	EA	2,008,262.00 2,008,262	0	2,008,262.00 2,008,262	0	0	0	2,008,262.00 2,008,262
0203 Utilities, & Structure	1.00	EA	2,008,262.00 2,008,262	0	2,008,262.00 2,008,262	0	0	0	2,008,262.00 2,008,262
020326 Gvmt Furnished Materials & Equip	1.00	EA	2,008,262.00 2,008,262	0	2,008,262.00 2,008,262	0	0	0	2,008,262.00 2,008,262
Navigation Aids	1.00	EA	2,008,262.00 2,008,262	0	2,008,262.00 2,008,262	0	0	0	2,008,262.00 2,008,262
Inbound/Outbound Navigation Aids	1.00	EA	1,975,000.00 1,975,000	0	1,975,000.00 1,975,000	0	0	0	1,975,000.00 1,975,000
West Surge Warning Sign Replacement	1.00	EA	33,262.00 33,262	0	33,262.00 33,262	0	0	0	33,262.00 33,262
12 Navigation Ports & Harbors	1.00	EA	27,714,777.88 27,714,778	0	27,714,777.88 27,714,778	0	0	0	27,714,777.88 27,714,778
1201 Ports	1.00	EA	27,714,777.88 27,714,778	0	27,714,777.88 27,714,778	0	0	0	27,714,777.88 27,714,778
120115 Mechanical Dredging	1.00	EA	18,637,508.94 18,637,509	0	18,637,508.94 18,637,509	0	0	0	18,637,508.94 18,637,509
12011502 Site Work	1.00	EA	18,637,508.94 18,637,509	0	18,637,508.94 18,637,509	0	0	0	18,637,508.94 18,637,509

Project Cost Summary Report Page 2

Description	Quantity	UOM	CostToPrime	PrimeCMU	ContractCost	Escalation	Contingency	SIOH	ProjectCost
120101 Mob, Demob & Preparatory Work	1.00	EA	1,781,000.00 1,781,000	0	1,781,000.00 1,781,000	0	0	0	1,781,000.00 1,781,000
12011502 01 Mechanical Dredging	1.00	EA	16,856,508.94 16,856,509	0	16,856,508.94 16,856,509	0	0	0	16,856,508.94 16,856,509
120199 Associated General Items	1.00	EA	9,077,268.94 9,077,269	0	9,077,268.94 9,077,269	0	0	0	9,077,268.94 9,077,269
090130 Site Work	1.00	EA	9,033,381.19 9,033,381	0	9,033,381.19 9,033,381	0	0	0	9,033,381.19 9,033,381
Boresight Tower Guy Foundation Demolition	1.00	EA	17,266.60 17,267	0	17,266.60 17,267	0	0	0	17,266.60 17,267
Sign Relocation	1.00	EA	57,038.94 57,039	0	57,038.94 57,039	0	0	0	57,038.94 57,039
09019902 02 Dolphins	1.00	EA	190,000.00 190,000	0	190,000.00 190,000	0	0	0	190,000.00 190,000
09013002 09 Steel Sheet Piling	1.00	EA	1,189,695.84 1,189,696	0	1,189,695.84 1,189,696	0	0	0	1,189,695.84 1,189,696
New SSP Wall At Boat Ramp	1.00	EA	1,189,695.84 1,189,696	0	1,189,695.84 1,189,696	0	0	0	1,189,695.84 1,189,696
09013002 06 Riprap	71,100.00	TON	40.65 2,890,370	0	40.65 2,890,370	0	0	0	40.65 2,890,370
Revetments	71,100.00	TON	40.65 2,890,370	0	40.65 2,890,370	0	0	0	40.65 2,890,370
Mob/Demob	1.00	EA	22,800.00 22,800	0	22,800.00 22,800	0	0	0	22,800.00 22,800
Environmental Protection	1.00	EA	46,862.01 46,862	0	46,862.01 46,862	0	0	0	46,862.01 46,862
Rock Recovery/Replacement	1.00	EA	1,263,433.66 1,263,434	0	1,263,433.66 1,263,434	0	0	0	1,263,433.66 1,263,434
New Filter Stone (Furnish & Install)	1.00	EA	1,557,274.63 1,557,275	0	1,557,274.63 1,557,275	0	0	0	1,557,274.63 1,557,275
09013002 03 Upland Excavation	1.00	EA	4,588,251.25 4,588,251	0	4,588,251.25 4,588,251	0	0	0	4,588,251.25 4,588,251
*			932,972.47		932,972.47				932,972.47

Print Date Wed 8 February 2012 Eff. Date 2/8/2012

U.S. Army Corps of Engineers Project : Port Canaveral Section port work omited REV 2-8-2012 COE Standard Report Selections

Time 14:35:07

Project Cost Summary Report Page 3

Description	Quantity	UOM	CostToPrime	PrimeCMU	ContractCost	Escalation	Contingency	SIOH	ProjectCost
Existing Rock Revetment Removal/Replacement	1.00	EA	932,972	0	932,972	0	0	0	932,972
Northside Channel Widener	1.00	EA	3,655,278.78 3,655,279	0	3,655,278.78 3,655,279	0	0	0	3,655,278.78 3,655,279
Chain Link Fence	1.00	EA	100,758.26 100,758	0	100,758.26 100,758	0	0	0	100,758.26 100,758
Monument Relocation	1.00	EA	43,887.75 43,888	0	43,887.75 43,888	0	0	0	43,887.75 43,888
Submarine Monumnet	1.00	EA	43,887.75 43,888	0	43,887.75 43,888	0	0	0	43,887.75 43,888
30 Planning, Engineering and Design	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
3023 Constructn Contracts(s) Documnts	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
302301 Plans and Specifications (P&S)	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
30230102 Plans and Specifications	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
31 Construction Management	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
3123 Construction Contracts	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
312311 Supervision and Administration	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228
31231103 District Office S&A Documents	1.00	EA	2,229,227.99 2,229,228	0	2,229,227.99 2,229,228	0	0	0	2,229,227.99 2,229,228

Print Date Wed 8 February 2012 U.S. Army Corps of Engineers Eff. Date 2/8/2012 Project : Port Consysteral Section port work omited PEV 2.8.2012										
En. Date 2/6/2012	COE Standard Rep	port Sele	ctions	12		Project Direct Costs Report Page 4				
Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost			
Project Direct Costs Report			3,287,830	3,306,901	3,660,560	39,346,513	49,601,804			
Completed Work	1.00	EA	0.00 0	0.00 0	0.00 0	13,775,063.00 13,775,063	13,775,063.00 13,775,063			
Port Work	1.00	EA	0.00 0	0.00 0	0.00 0	13,775,063.00 13,775,063	13,775,063.00 13,775,063			
Work Completed By the Port	1.00	EA	0.00 0	0.00 0	0.00 0	13,775,063.00 13,775,063	13,775,063.00 13,775,063			
(Note: The West Turning Basin (WTB) Cor Authority. This work precedes the Section 2 greater than vessels currently calling on, or Canaveral Port Authority competitively bid	ner Cut-Off (CCO) and Grouper Roa 03 project out of necessity to accomm home-porting at Port Canaveral. Sta and awarded contracts for constructi	d reloca odate c rting in on of th	ation have been o lasses of vessels September 2008 Me Grouper Roa	constructed in smaller in size 3, through cou d relocation a	advance by t than the Sec npletion in Se nd CCO.)	tion 203 design vo ptember 2011, th	rt essels, but e			
USR Interim Corner Cut Off	1.00	EA	0.00 0	0.00 0	0.00 0	7,028,340.00 7,028,340	7,028,340.00 7,028,340			
(Note: Results of Actual Contracts Awarded plus E	ngineering & Design Cost)									
RSM 023154420330 Corner Cut Off Phase 2	1.00	EA	0.00 0	0.00 0	0.00 0	6,292,539.00 6,292,539	6,292,539.00 6,292,539			

			0.00	0.00
Remaining Work	1.00	EA	3,287,829.53 3,287,830	3,306,900.99 3,306,901
(Note: Results of Actual Contracts Awarded plus Engineering & Design Cost)				
RSM 023252500510 Grouper Road Relocation	1.00	EA	0.00 0	0.00 0
(Note: Results of Actual Contracts Awarded plus Engineering & Design Cost)				

0203 Utilities, & Structure	1.00	EA	0.00 0	0.00 0	0.00 0	2,008,262.00 2,008,262	2,008,262.00 2,008,262
02 Relocations	1.00	EA	0.00 0	0.00 0	0.00 0	2,008,262.00 2,008,262	2,008,262.00 2,008,262
USR AF Property	1.00	EA	0.00 0	0.00 0	1,645,245.00 1,645,245	0.00 0	1,645,245.00 1,645,245
Property Purchase	1.00	EA	0.00 0	0.00 0	1,645,245.00 1,645,245	0.00 0	1,645,245.00 1,645,245
01 Lands and Damages	1.00	EA	0.00 0	0.00 0	1,645,245.00 1,645,245	0.00 0	1,645,245.00 1,645,245

(Note: USCG Aids to Navigation impacted by project construction.)

0.00

3,660,560.00

3,660,560

0

454,184.00

454,184

25,571,450.34

25,571,450

454,184.00

35,826,740.86

35,826,741

454,184

Print Date Wed 8 February 2012 Eff. Date 2/8/2012

U.S. Army Corps of Engineers Project : Port Canaveral Section port work omited REV 2-8-2012 COE Standard Report Selections

Project Direct Costs Report Page 5

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
020326 Gvmt Furnished Materials & Equip	1.00	EA	0.00 0	0.00 0	0.00 0	2,008,262.00 2,008,262	2,008,262.00 2,008,262
Navigation Aids	1.00	EA	0.00 0	0.00 0	0.00 0	2,008,262.00 2,008,262	2,008,262.00 2,008,262
Inbound/Outbound Navigation Aids	1.00	EA	0.00 0	0.00 0	0.00 0	1,975,000.00 1,975,000	1,975,000.00 1,975,000
RSM 023252500020 Dredging Aids to Navigation, Inbound, Relocate	2.00	EA	0.00 0	0.00 0	0.00 0	<i>137,500.00</i> 275,000	<i>137,500.00</i> 275,000
(Note: Price developed by CH2M HILL per Attachment N (USCG Coordina	ation On Naviga	ation Aid	s (Range Markers))))			
RSM 023252500020 Dredging Aids to Navigation, Outbound, New	2.00	EA	0.00 0	0.00 0	0.00 0	<i>850,000.00</i> 1,700,000	8 <i>50,000.00</i> 1,700,000
(Note: Price developed by CH2M HILL per Attachment N (USCG Coordina	ation On Naviga	ation Aid	s (Range Markers))))			
West Surge Warning Sign Replacement	1.00	EA	0.00 0	0.00 0	0.00 0	33,262.00 33,262	33,262.00 33,262
HNC 344313100740 West Surge Warning Sign Replacement	1.00	EA	0.00 0	0.00 0	0.00 0	<i>33,262.00</i> 33,262	<i>33,262.00</i> 33,262

(Note: In 2001, Olsen & Associates, Jacksonville, Florida, prepared a cost estimate for installing the two Surge Warning Signs. The engineer's estimate in 2001 for installing the two signs was \$44,000. Using one-half of this value for one sign, and escalating to 2007 using 3% per year up to 2006 and 4.6 percent for 2007 and 2008, the estimate for installing one new Surge Warning Sign is approximately \$30,000 in 2008 dollars. This value was then escalated by 3.5% to arrive at a cost of \$33,262 in 2012 dollars.)

12 Navigation Ports & Harbors	1.00	EA	3,287,829.53 3,287,830	3,306,900.99 3,306,901	2,015,315.00 2,015,315	19,104,732.36 19,104,732	27,714,777.88 27,714,778
1201 Ports	1.00	EA	3,287,829.53 3,287,830	3,306,900.99 3,306,901	2,015,315.00 2,015,315	19,104,732.36 19,104,732	27,714,777.88 27,714,778
120115 Mechanical Dredging	1.00	EA	0.00 0	0.00 0	0.00 0	18,637,508.94 18,637,509	18,637,508.94 18,637,509
12011502 Site Work	1.00	EA	0.00 0	0.00 0	0.00 0	18,637,508.94 18,637,509	18,637,508.94 18,637,509
120101 Mob, Demob & Preparatory Work	1.00	EA	0.00 0	0.00 0	0.00 0	1,781,000.00 1,781,000	1,781,000.00 1,781,000
RSM 023252500020 Dredging, mobilization and demobilization	1.00	LS	0	0	0	1,781,000	1,781,000

(Note: All dredging costs and the cost estimating procedure were performed in accordance with EP-1110-1-8; SADDM 1110-1-1; ER-1110-1-1300; ER 1110-2-1302, which provide the guidelines necessary to calculate the dredging costs. Assumptions regarding equipment values are given in the estimate. Ownership and operating costs for all dredging and marine equipment were calculated using the USACE "Checkrate" Excel program, with applicable cost adjustments for FY 2012 and USACE regional factors. Port Canaveral is located within Region III. The total overall cost was divided by the quantity to obtain a dredging cost of \$5.42 per CY in 2012 dollars. The detailed dredging cost estimating spreadsheet performed by Mr. McWilliams is included in this Attachment L.)

Print Date Wed 8 February 2012	U.S. Army Corps	s of Engi	neers	10			Time 14:35:07
Eff. Date 2/8/2012 Project : Port Ca	naveral Section po COE Standard Re	ort work port Sele	omited REV 2-8-20 ctions	012		Project Direct Costs	Report Page 6
Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
12011502 01 Mechanical Dredging	1.00	EA	0.00 0	0.00 0	0.00 0	16,856,508.94 16,856,509	16,856,508.94 16,856,509
RSM 023252500510 Dredging, dragline or clamshell, harbor channel, middle basin and ocean access channel	3,110,057.00	BCY	0.00 0	0.00 0	0.00 0	5.42 16,856,509	5.42 16,856,509
(Note: All dredging costs and the cost estimating procedure were perform guidelines necessary to calculate the dredging costs. Assumptions regard equipment were calculated using the USACE "Checkrate" Excel program Region III.The total overall cost was divided by the quantity to obtain a d Mr. McWilliams is included in this Attachment L.)	ed in accordance ing equipment val , with applicable redging cost of \$2	with EP- lues are g cost adju 5.42 per (-1110-1-8; SADDN given in the estimat stments for FY 201 CY in 2012 dollars.	1 1110-1-1; ER- e. Ownership at 1 and USACE r The detailed d	1110-1-1300; El nd operating cos egional factors. redging cost esti	R 1110-2-1302, whic ts for all dredging an Port Canaveral is lo mating spreadsheet p	h provide the d marine cated within performed by
120199 Associated General Items	1.00	EA	3,287,829.53 3,287,830	3,306,900.99 3,306,901	2,015,315.00 2,015,315	467,223.42 467,223	9,077,268.94 9,077,269
090130 Site Work	1.00	EA	3,267,074.50 3,267,074	3,297,751.69 3,297,752	2,004,755.00 2,004,755	463,800.00 463,800	9,033,381.19 9,033,381
Boresight Tower Guy Foundation Demolition	1.00	EA	11,230.07 11,230	6,036.53 6,037	0.00 0	0.00 0	17,266.60 17,267
HTW 024116138011 Structural demolition, concrete pulverizer, 14.5" thick	100.00	CF	<i>112.30</i> 11,230	60.37 6,037	0.00 0	0.00 0	<i>172.67</i> 17,267
Sign Relocation	1.00	EA	45,150.54 45,151	6,013.40 6,013	5,875.00 5,875	0.00 0	57,038.94 57,039
RSM 101453205240 Signs, traffic sign removal and relocation, 41 S.F. to 100 S.F., including supports	5.00	EA	9,030.11 45,151	1,202.68 6,013	<i>1,175.00</i> 5,875	0.00 0	11,407.79 57,039
(Note: Several property notification signs with electrical support are locat	ed along the shore	eline whi	ch will require relo	cation with the	shoreline adjustr	nent.)	
09019902 02 Dolphins	1.00	EA	0.00 0	0.00 0	0.00 0	190,000.00 190,000	190,000.00 190,000
USR Monopile Doplin With Cap and Bollard	1.00	EA	0.00 0	0.00 0	0.00 0	<i>150,000.00</i> 150,000	<i>150,000.00</i> 150,000
(Note: The mooring dolphin to be removed is located along the northside pile supported walkway to the uplands. It will be replaced in a new locati using knowledge of many similar small demolition project performed at th	widening just eas ion with a large d ne port. The dem	t of the T iameter s olition a	Frident Wharf. It conteel monopile with and replacement cost	onsists of prestre a concrete cap a estimate is \$19	essed concrete pi and mooring boll 0,000 Lump sum	lings with a concrete ard. This element is 1.)	e cap and a estimated
USR Demolish Existing Open Pile Dolphin	1.00	EA	0.00 0	0.00 0	0.00 0	40,000.00 40,000	40,000.00 40,000
09013002 09 Steel Sheet Piling	1.00	EA	480,059.91 480,060	91,935.93 91,936	366,700.00 366,700	251,000.00 251,000	1,189,695.84 1,189,696

Project Direct Costs Report Page 7

ription	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
New SSP Wall At Boat Ramp	1.00	EA	480,059.91 480,060	91,935.93 91,936	366,700.00 366,700	251,000.00 251,000	1,189,695.84 1,189,696
RSM 023252500020 Mobilization and Demobilization, add to below, minimum	1.00	LS	0	0	0	50,000	50,000
RSM 312316141450 Excavating, chain trencher, utility trench, common earth, 6" wide, 36" deep, backfill by hand, add	1,100.00	LF	2.20 2,421	<i>0.14</i> 159	0.00 0	0.00 0	2.35 2,581
RSM 323213103100 Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 10' high, includes excavation, backfill & reinforcing	1,100.00	LF	249.02 273,924	17.46 19,206	97.00 106,700	0.00 0	363.48 399,830
RSM 353116190210 Steel sheet piling seawalls, steel sheeting, 12' high, shore driven	1,100.00	LF	<i>140.99</i> 155,091	57.95 63,749	84.00 92,400	0.00 0	282.95 311,240
RSM 314116102500 Sheet piling, wales, connections and struts, 2/3 salvage	15,000.00	LB	0.00 0	0.00 0	2.00 30,000	0.00 0	2.00 30,000
RSM 033105704000 Structural concrete, placing, pile caps, direct chute, over 10 CY, includes strike off & consolidation, includes material	201.00	СҮ	0.00 0	0.00 0	0.00 0	<i>1,000.00</i> 201,000	<i>1,000.00</i> 201,000
RSM 032105102820 Screw anchor eye bolts, plain steel, for CIP concrete, 1" x 9" long, includes material only	16.00	EA	<i>3,000.00</i> 48,000	<i>550.00</i> 8,800	8,450.00 135,200	<i>0.00</i> 0	<i>12,000.00</i> 192,000
RSM 055213500150 Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/4" dia, shop fabricated	40.00	LF	<i>15.59</i> 624	0.54 22	<i>60.00</i> 2,400	0.00 0	76.14 3,045
09013002 06 Riprap	71,100.00	TON	9.54 678,220	9.11 647,505	21.69 1,541,845	0.32 22,800	40.65 2,890,370
Revetments	71,100.00	TON	9.54 678,220	9.11 647,505	21.69 1,541,845	0.32 22,800	40.65 2,890,370

(Note: The existing rock revetment is approximately 3,000 feet in length along the north side of the harbor channel between the Trident Basin and Middle Turning Basin. The estimated tonnage of rock work is 71,100 tons. The area of channel widening is referred to as Areas 9A and 9B in the survey drawings. The structure is an existing granite rock revetment extending up to the natural grade of +10 NGVD +/-.)

		0.00	0.00	0.00	22,800.00	22,800.00
Mob/Demob	1.00 EA	0	0	0	22,800	22,800

Project Direct Costs Report Page 8

escription	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
RSM 015436500900 Mobilization/Demobilization	1.00	EA	0.00 0	0.00 0	0.00 0	22,800.00 22,800	22,800.00 22,800
(Note: Per Revetment Engineer's Estimate)							
Environmental Protection	1.00	EA	28,062.29 28,062	759.72 760	18,040.00 18,040	0.00 0	46,862.01 46,862
RSM 334626100170 Geotextile Subsurface Drainage Filtration, fabric ply bonded to 3-dimensional nylon mat, ideal conditions, 0.4" thk	40,000.00	SF	<i>0.33</i> 13,373	0.00 0	<i>0.26</i> 10,400	0.00 0	0.59 23,773
RSM 312513101100 Synthetic erosion control, silt fence, polypropylene, adverse conditions, 3' high	15,000.00	LF	0.70 10,558	0.00 0	<i>0.40</i> 6,000	0.00 0	1.10 16,558
RSM 312513101200 Synthetic erosion control, place and remove hay bales	10.00	TON	<i>413.14</i> 4,131	75.97 760	<i>164.00</i> 1,640	0.00 0	<i>653.11</i> 6,531
Rock Recovery/Replacement	1.00	EA	628,798.61 628,799	634,635.05 634,635	0.00 0	0.00 0	1,263,433.66 1,263,434
HNC 312316440170 Excavate and load, bank measure, blasted rock, 3 -1/2 C.Y. bucket, hydraulic excavator	33,186.00	BCY	1.50 49,691	2.39 79,342	0.00 0	0.00 0	3.89 129,033
HNC 312323180470 Hauling, excavated or borrow material, loose cubic yards, 4 mile round trip @ base wide rate, 12 C.Y. truck, highway haulers, excludes loading	33,186.00	LCY	2.02 67,185	<i>1.27</i> 42,164	0.00 0	0.00 0	3.30 109,349
RSM 313713100100 Rip-rap and rock lining, random, broken stone, machine placed for slope protection	33,186.00	LCY	<i>14.37</i> 476,860	<i>14.87</i> 493,355	0.00 0	0.00 0	29.24 970,215
HNC 312316165000 Excavating, structural, bank measure, 140 H.P., dozer, rough grade, push to stockpile	33,186.00	BCY	1.06 35,063	0.60 19,774	0.00 0	0.00 0	1.65 54,837
New Filter Stone (Furnish & Install)	1.00	EA	21,359.18 21,359	12,110.45 12,110	1,523,805.00 1,523,805	0.00 0	1,557,274.63 1,557,275
HTW 312323160041 Backfill with Crushed Stone	17,980.00	CY	<i>1.19</i> 21,359	0.67 12,110	84.75 1,523,805	0.00 0	86.61 1,557,275
09013002 03 Upland Excavation	1.00	EA	2,035,625.65 2,035,626	2,543,290.60 2,543,291	9,335.00 9,335	0.00 0	4,588,251.25 4,588,251
			471,033.86	458,471.11	3,467.50	0.00	932,972.47

Print Date Wed 8 February 2012 Eff. Date 2/8/2012

U.S. Army Corps of Engineers Project : Port Canaveral Section port work omited REV 2-8-2012 COE Standard Report Selections

Project Direct Costs Report Page 9

iption	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
Existing Rock Revetment Removal/Replacement	1.00	EA	471,034	458,471	3,468	0	932,972
HNC 312316463850 Excavating, bulk, open site, bank measure, loose	100,000.00	BCY	<i>4.30</i> 429,886	3.99 399,379	0.00 0	0.00 0	8.29 829,265
rock, 140 H.P. dozer, 300 push			0.20	0.52	0.00	0.00	0.91
HNC 312213103020 Rough grading, open site, large area, 300 H.P., dozer	100,000.00	BCY	28,659	52,278	0.00	0.00	80,937
			0.53	0.26	0.00	0.00	0.79
RSM 312216101020 Fine grading, loam or topsoil fine grade for large area, 15,000 S.Y. or more	18,250.00	SY	9,738	4,682	0	0	14,420
			0.15	0.12	0.19	0.00	0.46
RSM 329219131000 Seeding, mechanical seeding hydro or air seeding for large areas, includes lime, fertilizer and seed	18,250.00	SY	2,751	2,132	3,468	0	8,350
			1,564,591.79	2,084,819.49	5,867.50	0.00	3,655,278.78
Northside Channel Widener	1.00	EA	1,564,592	2,084,819	5,868	0	3,655,279
			3.56	3.61	0.00	0.00	7.18
RSM 312316480110 Excavation, bulk, dragline, bank measure, heavy clay, 3/4 C.Y. bucket, excavate and load on truck	354,069.00	BCY	1,261,757	1,279,306	0	0	2,541,063
			0.29	0.52	0.00	0.00	0.81
HNC 312213103020 Rough grading, open site, large area, 300 H.P., dozer	364,069.00	BCY	104,339	190,327	0	0	294,666
			0.53	1.68	0.00	0.00	2.21
HNC 312323182310 Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip @ 20 MPH (4.2 cycles/hour), 40 C.Y., off highway haulers, excludes loading	364,069.00	LCY	191,720	611,536	0	0	803,256
			0.42	0.00	0.40	0.00	0.82
RSM 312513101000 Synthetic erosion control, silt fence, polypropylene, ideal conditions, 3' high	6,000.00	LF	2,507	0	2,400	0	4,907
			151.84	151.78	0.00	0.00	303.62
RSM 015436500100 Mobilization or demobilization, dozer, loader, backhoe or excavator, above 150 H.P., up to 50 miles	10.00	EA	1,518	1,518	0	0	3,036
			0.15	0.12	0.19	0.00	0.46
RSM 329219131000 Seeding, mechanical seeding hydro or air seeding for large areas, includes lime, fertilizer and seed	18,250.00	SY	2,751	2,132	3,468	0	8,350
Chain Link Fence	1.00	EA	16,788.26 16,788	2,970.00 2,970	81,000.00 81,000	0.00 0	100,758.26 100,758
			5.60	0.99	27.00	0.00	33.59

Project Direct Costs Report Page 10

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
RSM 323113201200 Fence, chain link industrial, aluminized steel, add for corner post, 6 ga. wire, 2-1/2" posts @ 10' OC, 8' high, 3" diameter, includes excavation, in concrete, add for corner posts	3,000.00	EA	16,788	2,970	81,000	0	100,758
Monument Relocation	1.00	EA	20,755.03 20,755	9,149.30 9,149	10,560.00 10,560	3,423.42 3,423	43,887.75 43,888
Submarine Monumnet	1.00	EA	20,755.03 20,755	9,149.30 9,149	10,560.00 10,560	3,423.42 3,423	43,887.75 43,888
HNC 024113332110 Minor site demolition, concrete, unreinforced, 7" to 24" thick, remove with backhoe, excludes hauling	77.00	СҮ	97.55 7,511	11.33 872	0.00 0	0.00 0	<i>108.88</i> 8,384
RSM 033053405250 Structural concrete, in place, lift slab (4000 psi) above the foundation, average, includes columns, forms(4 uses), reinforcing steel, concrete, placing and finishing	1,600.00	SF	7.58 12,121	0.58 925	6.60 10,560	0.00 0	<i>14.75</i> 23,606
RSM 015419500500 Crane crew, daily use for small jobs, 80-ton truck- mounted hydraulic crane, portal to portal	1.00	DAY	898.41 898	7,228.37 7,228	0.00 0	<i>0.00</i> 0	<i>8,126.78</i> 8,127
(Note: Crane to relocate Submarine Sail)							
HNC 312323184200 Hauling, rock, 12 C.Y. truck, 5 mile haul, includes loading	77.00	LCY	2.92 225	1.61 124	0.00 0	0.00 0	4.52 348
HTW 028110301236 Commercial RCRA landfills, solid, non-hazardous, sanitary landfill	77.00	СҮ	0.00 0	0.00 0	0.00 0	44.46 3,423	44.46 3,423
30 Planning, Engineering and Design	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
3023 Constructn Contracts(s) Documnts	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
302301 Plans and Specifications (P&S)	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
30230102 Plans and Specifications	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
USR 7.5 percent of Construction Cost of Remaining Work (excluding cost for Lands and Damages)	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228

(Note: Per Cost Engineering Appendix which indicates a total of 15 percent for PED and S&A.)

Project Direct Costs Report Page 11

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost
31 Construction Management	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
3123 Construction Contracts	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
312311 Supervision and Administration	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
31231103 District Office S&A Documents	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228
(Note: Technical Management S&A All Other District Office S&A)							
USR 7.5 percent of Construction Cost of Remaining Work (excluding cost for Lands and Damages)	1.00	EA	0.00 0	0.00 0	0.00 0	2,229,227.99 2,229,228	2,229,227.99 2,229,228

(Note: Per Cost Engineering Appendix which indicates a total of 15 percent for PED and S&A.)

BUCKET DREDGE PRODUCTION ESTIMATE RECAP - VOLUMES UPDATED 2011

CH2M HILL, INC.

Nov. 2011

Estimated By:

J. McWilliams

Dredge Area	Grade + OD MLLW	Available to Grade CY	Available Overdepth CY	Total Available CY	Removed to Grade CY	Removed Overdepth CY	Total Removed CY	Production per Day Paid CY/Day	Duration Weeks	Unit Price/Area \$/CY
13-OR	-46 + 2	0	629,041	629,041	0	629,041	629,041	9,897	9.1	\$ 6.26
11-MR; 12-MRW; 9B-NCW	-46 + 2	796,605	602,918	1,399,523	796,605	602,918	1,399,523	13,408	14.9	\$ 4.62
10-IR; 9A-NCW	-44 + 1	508,689	91,643	600,332	508,689	91,643	600,332	10,730	8.0	\$ 5.77
7-WAC; 8-MTB; 6B-BC	-43 + 1	192,822	123,305	316,127	192,822	123,305	316,127	9,272	4.9	\$ 6.68
6A-BC	-35 + 1	113,501	7,733	121,234	113,501	7,733	121,234	12,975	1.3	\$ 4.77
S. Jetty Sediment Trap	-46 + 2	26,300	17,500	43,800	26,300	17,500	43,800	9,339	0.7	\$ 6.63
Totals		1,637,917	1,472,140	3,110,057	1,637,917	1,472,140	3,110,057		38.9	

Unit Price Calculation, Dredging

Duration, Weeks	38.9			
Weekly Cost	\$ 433,596	See "Cos	t" Tab	
Total Cost, Dredging (Weekly Cost X Wks)	\$ 16,849,809	-		
Quantity/Unit Price	3,110,057	\$	5.418	Per CY

Summary

Description	Quantity	Unit	Unit Price	Total
Mobilization/Demobilization	1	LS		\$ 1,781,000
Dredging and Disposal	3,110,057	CY	\$ 5.42	\$ 16,856,509
TOTAL				\$ 18,637,509

PORT CANAVERAL DEEPENING AND WIDENING BUCKET DREDGE PRODUCTION ESTIMATE RECAP - VOLUMES UPDATE CH2M HILL, INC. ADJUSTMENTS TO COST ESTIMATE 2011 Nov. 2011

Update	Description
1	Fuel price increased to \$3.05 per gallon, based on prices for 50,000 gallon lots (Marine Diesel), July - September, FOB Port Canaveral, FL.
2	Economic index for equipment costs updated for 2011 based on EP 1110-1-8, Appendix E (value = 8102 for marine equipment), November 2009
3	Labor costs updated based on Davis-Bacon Wages for Heavy Construction/Dredging, Brevard County, FL (latest decision), + benefits and vacation
4	Marine insurance costs (Hull and Machinery, Protection and Indemnity) updated based on quote from Marsh-McLennan, Inc., New Orleans, LA
5	Production rates were adjusted based on updated quantities, slope dredging, and adjusted average bank heights
6	Sales tax rate adjusted for 2011 (6% sales tax)
7	Cost of Money rate adjusted for June - December 2011 (2.5%)

PORT CANAVERAL DEEPENING AND WIDENING BUCKET DREDGE PRODUCTION ESTIMATE CH2M HILL, INC. Nov. Nov. 2011

Equipment Costs (Calculated using "CkRate")

-1			
Equipment	Monthly	Weekly	Daily
Large Clamshell Dredge (24 CY and up)	\$ 294,255	\$ 67,957	\$ 9,708
Dump Scow, 5000 CY	\$ 84,475	\$ 19,509	\$ 2,787
Dump Scow, 5000 CY	\$ 84,475	\$ 19,509	\$ 2,787
Tender Tug, 1500 HP	\$ 164,345	\$ 37,955	\$ 5,422
Survey Vessel, 24 Ft.	\$ 32,506	\$ 7,507	\$ 1,072
Towing Vessel, 3000 HP+ (Charter)	\$ 347,165	\$ 80,177	\$ 11,454
Labor Costs (Dredging)	\$ 355,069	\$ 82,002	\$ 11,715
Totals, Ownership & Operating Costs	\$ 1,362,290	\$ 314,617	\$ 44,945

Supervision and Survey/Management Costs

Item		Monthly	Weekly	Daily
Project Management		\$ 108,351	\$ 25,023	\$ 3,575
Manatee Observers		\$ 22,733	\$ 5,250	\$ 750
Office Costs		\$ 4,000	\$ 924	\$ 132
Vehicles 6 Ea	ch	\$ 5,456	\$ 1,260	\$ 180
Survey Equipment		\$ 5,000	\$ 1,155	\$ 165
Office Equipment		\$ 1,000	\$ 231	\$ 33
Consumables		\$ 1,000	\$ 231	\$ 33
Totals, Management Expenses		\$ 147,539	\$ 34,074	\$ 4,868

Grand Total, Dredging Operations		\$ 1,877,472	\$ 433,596	\$ 61,942
Subtotal Cost, Dredging Operations		\$ 1,877,472	\$ 433,596	\$ 61,942
Profit	8.4%	\$ 126,071	\$ 29,116	\$ 4,159
Overhead	16.0%	\$ 241,573	\$ 55,790	\$ 7,970
Total Job Costs		\$ 1,509,829	\$ 348,690	\$ 49,813

Mobilization and Demobilization

Item	Distance/Qty.	Number	Unit	Rate	Т	otal Cost
Bonds			1.0	\$ 160,000	\$	160,000
Project Startup			10.0	\$ 4,868	\$	48,677
Tow Dredge	1,000	5	8.3	\$ 11,454	\$	95,448
Dredge Hire Under Tow	1,000	5	8.3	\$ 7,767	\$	64,721
Tow Scows (Tandem)	1,000	5	8.3	\$ 11,454	\$	95,448
Lightboat Back	1,000	10	4.2	\$ 11,454	\$	47,724
Scow Hire Under Tow	1,000	5	8.3	\$ 4,459	\$	37,160
Mobilize Tender	1,000	10	4.2	\$ 5,422	\$	22,592
Mobilize Survey Vessel			5.0	\$ 1,000	\$	5,000
Set up on site			4.0	\$ 49,813	\$	199,252
Dismantle			4.0	\$ 49,813	\$	199,252
Tow Dredge	1,000	5	8.3	\$ 11,454	\$	95,448
Dredge Hire Under Tow	1,000	5	8.3	\$ 7,767	\$	64,721
Tow Scows (Tandem)	1,000	5	8.3	\$ 11,454	\$	95,448
Lightboat Up	1,000	10	4.2	\$ 11,454	\$	47,724
Scow Hire Under Tow	1,000	5	8.3	\$ 4,459	\$	37,160
Demobilize Tender	1,000	10	4.2	\$ 5,422	\$	22,592
Demobilize Survey Vessel			5.0	\$ 1,000	\$	5,000
Project Closure			15.0	\$ 4,868	\$	73,015
Subtotal, Mob/Demob Overhead				16.0%	\$ \$	1,416,385 226,622
Profit				8.4%	\$	137,191
Subtotal Cost, Mob/Demob					\$	1,780,197

Grand Total Moh/Demoh	\$ 1 780 197
	φ 1,700,137

Cost Basis, Equipment Cost (Per USACE Methods)

Item	Basis
Large Clamshell Dredge (24 CY and up)	Plant Value \$5.5M in 1985
Dump Scow, 5000 CY	Plant Value \$7.0M in 2000
Dump Scow, 5000 CY	Plant Value \$7.0M in 2000
Tender Tug, 1500 HP	Plant Value \$1.0M in 1990
Survey Vessel, 24 Ft.	Plant Value \$100K in 2000
Towing Vessel, 3000 HP+ (Charter)	Plant Value \$2.0M in 1990
Labor Costs (Dredging)	Davis Bacon Brevard Co.

SADDM 1110-1-1 Profit guidelines

Risk	0.07	20%	1.4%
Difficulty	0.10	15%	1.5%
Size	0.03	15%	0.5%
Duration	0.07	15%	1.1%
Investment	0.12	5%	0.6%
Govt. Asst.	0.07	5%	0.4%
Subcontract	0.12	25%	3.0%
Contractor's Profit:			8.4%

Dredge Area	13-OR	
Parameter	Depth	Volume (CY)
Grade MLLW	-46.0	-
Allowable OD	2.0	629,041
Total Volume (CY)		629,041
Dredge Parameters		
Dredge Area (SF)	SF	8,738,000
Length (LF)	LF	21,500
Avg. CY/LF	CY/LF	29.3
Avg. Width (Ft)	Ft	406.4
Cut Width (Ft)	Ft	80.0
Setting Distance (Ft)	Ft	40.0
Avg. Top El	MLLW	-46.0
Avg. Dredge El.	MLLW	-48.0
Cut	Ft	2.0
Avg. CY/Set	CY	230.4
Bucket Volume	CY	26.0
Bucket Area	SF	260.0
Fill Efficiency	%	0.8
Volume/Set	CY	19.3
No. Buckets/Set	Ea	12.0
Cycle Time	Min	1.2
Dredge time/set	Min	14.6
Set time	Min	5.0
Total Time/Set	Min	19.6
No. Sets	Ea	2,730.6
Total Oper Time	NOH	889.9
Daily Working Time	NOH/Day	14.0
No. Days Required	Days	63.6
Draduction/Dov		0.000.0
Production/Day	CT/Day	9,896.6
Daily Operating Cost		\$ 61,942.34
Cost/CY		\$ 6.26

Category	Weekly Hrs	Pct	Day
Weather	16.0	10%	2.3
Scow Chg	10.5	6%	1.5
Traffic	10.5	6%	1.5
Crew Chg	7.0	4%	1.0
Mechanical	12.0	7%	1.7
Repairs	12.0	7%	1.7
Relocating	2.0	1%	0.3
	Delays, Day		10.0
	NOH Day		14.0

Dredge Area	11-MR; 12-MR\	N; 9B-NCW
Parameter	Depth	Volume (CY)
Grade MLLW	-46.0	796,605
Allowable OD	2.0	602,918
Total Volume (CY)		1,399,523
Dredge Parameters		
Dredge Area (SF)	SF	7,427,000
Length (LF)	LF	12,700
Avg. CY/LF	CY/LF	110.2
Avg. Width (Ft)	Ft	584.8
Cut Width (Ft)	Ft	80.0
Setting Distance (Ft)	Ft	40.0
Avg. Top El	MLLW	-43.1
Avg. Dredge El.	MLLW	-48.0
Bank Height	Ft	4.9
Avg. CY/Set	CY	603.0
·		
Bucket Volume	CY	26.0
Bucket Area	SF	260.0
Fill Efficiency	%	0.8
Avail. Volume/Set	CY	47.1
No. Buckets/Set	Ea	29.0
Cycle Time	Min	1.2
Dredge time/set	Min	35.3
Set time	Min	5.0
Total Time/Set	Min	40.3
No. Sets	Ea	2,321.0
Total Oper Time	NOH	1,558.3
Daily Working Time	NOH/Day	14.9
No. Days Required	Days	104.4
Production/Day	CY/Day	13,407.5
Daily Operating Cost		\$ 61,942.34
Cost/CY		\$ 4.62

Category	Weekly Hrs	Pct	Day
Weather	12.0	7%	1.7
Scow Chg	10.5	6%	1.5
Traffic	8.0	5%	1.1
Crew Chg	7.0	4%	1.0
Mechanical	12.0	7%	1.7
Repairs	12.0	7%	1.7
Relocating	2.0	1%	0.3
	Delays, Day		9.1
	NOH Day		14.9

Dredge Area	10-IR; 9A-NCW	1
Parameter	Depth	Volume (CY)
Grade MLLW	-44.0	508,689
Allowable OD	1.0	91,643
Total Volume (CY)		600,332
Dradao Paramatara		
Dredge Area (SE)	QE	1 755 000
Longth (LE)		3 300
		3,300
Avg. CT/LF		F21.9
Avg. Width (Ft)		0.0
Cut Width (Ft)		60.0
		40.0
Avg. Top El		-30.2
Avg. Dredge El.		-45.0
Bank Height	FL	8.8
Avg. CY/Set	CY	1,094.6
Bucket Volume	CY	18.0
Bucket Area	SF	180.0
Fill Efficiency	%	0.8
Avail. Volume/Set	CY	58.8
No. Buckets/Set	Ea	77.0
	•	
Cycle Time	Min	1.2
Dredge time/set	Min	92.4
Set time	Min	5.0
Total Time/Set	Min	97.4
No. Sets	Ea	549.0
Total Oper Time	NOH	891.2
Daily Working Time		15.0
	NOH/Day	10.9
No. Days Required	Days	0.06
Production/Day	CY/Day	10,729.7
Daily Operating Cost		\$ 61,942.34
Cost/CY		\$ 5.77

Weekly Hrs	Pct	Day
7.0	4%	1.0
10.5	6%	1.5
6.0	4%	0.9
7.0	4%	1.0
12.0	7%	1.7
12.0	7%	1.7
2.0	1%	0.3
Delays, Day		8.1
NOH Day		15.9
	Weekly Hrs 7.0 10.5 6.0 7.0 12.0 12.0 2.0 Delays, Day NOH Day	Weekly Hrs Pct 7.0 4% 10.5 6% 6.0 4% 7.0 4% 12.0 7% 12.0 7% 2.0 1% Delays, Day NOH Day

Dredge Area	7-WAC; 8-MTB; 6B-BC						
Parameter	Depth	Volume (CY)					
Grade MLLW	-43.0	192,822					
Allowable OD	1.0	123,305					
Total Volume (CY)		316,127					
Dredge Parameters							
Dredge Area (SF)	SF	3,920,000					
Length (LF)	LF	4,200					
Avg. CY/LF	CY/LF	75.3					
Avg. Width (Ft)	Ft	933.3					
Cut Width (Ft)	Ft	80.0					
Setting Distance (Ft)	Ft	40.0					
Avg. Top El	MLLW	-41.7					
Avg. Dredge El.	MLLW	-44.0					
Bank Height	Ft	2.3					
Avg. CY/Set	CY	258.1					
Bucket Volume	CY	18.0					
Bucket Area	SF	180.0					
Fill Efficiency	%	0.8					
Avail. Volume/Set	CY	15.5					
No. Buckets/Set	Ea	18.0					
Cycle Time	Min	1.2					
Dredge time/set	Min	21.6					
Set time	Min	5.0					
Total Time/Set	Min	26.6					
No. Sets	Ea	1,225.0					
Total Oper Time	NOH	543.1					
Daily Working Time	NOH/Day	15.9					
No. Days Required	Days	34.1					
Production/Day	CY/Day	9,272.0					
Daily Operating Cost		\$ 61,942.34					
Cost/CY		\$ 6.68					

Weekly Hrs	Pct	Day
7.0	4%	1.0
10.5	6%	1.5
6.0	4%	0.9
7.0	4%	1.0
12.0	7%	1.7
12.0	7%	1.7
2.0	1%	0.3
Delays, Day		8.1
NOH Day		15.9
	Weekly Hrs 7.0 10.5 6.0 7.0 12.0 12.0 2.0 Delays, Day NOH Day	Weekly Hrs Pct 7.0 4% 10.5 6% 6.0 4% 7.0 4% 12.0 7% 12.0 7% 2.0 1% Delays, Day NOH Day

Dredge Area	6A-BC	
Parameter	Depth	Volume (CY)
Grade MLLW	-35.0	113,501
Allowable OD	1.0	7,733
Total Volume (CY)		121,234
Dredge Parameters		
Dredge Area (SF)	SF	300,000
Length (LF)	LF	2,700
Avg. CY/LF	CY/LF	44.9
Avg. Width (Ft)	Ft	111.1
Cut Width (Ft)	Ft	80.0
Setting Distance (Ft)	Ft	40.0
Avg. Top El	MLLW	-24.8
Avg. Dredge El.	MLLW	-36.0
Bank Height	Ft	11.2
Avg. CY/Set	CY	1,293.2
Bucket Volume	CY	18.0
Bucket Area	SF	180.0
Fill Efficiency	%	0.8
Avail. Volume/Set	CY	74.8
No. Buckets/Set	Ea	90.0
Cycle Time	Min	1.0
Dredge time/set	Min	90.0
Set time	Min	5.0
Total Time/Set	Min	95.0
No. Sets	Ea	94.0
Total Oper Time	NOH	148.8
Daily Working Time	NOH/Day	15.9
No. Days Required	Days	9.3
Production/Day	CY/Day	12,974.8
Daily Operating Cost		\$ 61,942.34
Cost/CY		\$ 4.77

Category	Weekly Hrs	Pct	Day
Weather	7.0	4%	1.0
Scow Chg	10.5	6%	1.5
Traffic	6.0	4%	0.9
Crew Chg	7.0	4%	1.0
Mechanical	12.0	7%	1.7
Repairs	12.0	7%	1.7
Relocating	2.0	1%	0.3
	Delays, Day		8.1
	NOH Day		15.9

Dredge Area	S Jetty Sediment Trap					
Parameter	Depth	Volume (CY)				
Grade MLLW	-46.0	26,300				
Allowable OD	2.0	17,500				
Total Volume (CY)		43,800				
Dredge Parameters						
Dredge Area (SF)	SF	260,000				
Length (LF)	LF	1,000				
Avg. CY/LF	CY/LF	43.8				
Avg. Width (Ft)	Ft	260.0				
Cut Width (Ft)	Ft	80.0				
Setting Distance (Ft)	Ft	40.0				
Avg. Top El	MLLW	-43.3				
Avg. Dredge El.	MLLW	-48.0				
Bank Height	Ft	4.7				
Avg. CY/Set	CY	539.1				
Bucket Volume	CY	18.0				
Bucket Area	SF	180.0				
Fill Efficiency	%	0.8				
Avail. Volume/Set	CY	31.5				
No. Buckets/Set	Ea	38.0				
Cycle Time	Min	1.2				
Dredge time/set	Min	46.2				
Set time	Min	5.0				
Total Time/Set	Min	51.2				
No. Sets	Ea	82.0				
Total Oper Time	NOH	70.0				
Daily Working Time	NOH/Day	14.9				
No. Days Required	Days	4.7				
Production/Day	CY/Day	9,338.5				
Daily Operating Cost		\$ 61,942.34				
Cost/CY		\$ 6.63				

Category	Weekly Hrs	Pct	Day
Weather	12.0	7%	1.7
Scow Chg	10.5	6%	1.5
Traffic	8.0	5%	1.1
Crew Chg	7.0	4%	1.0
Mechanical	12.0	7%	1.7
Repairs	12.0	7%	1.7
Relocating	2.0	1%	0.3
	Delays, Day		9.1
	NOH Day		14.9

PORT CANAVERAL DEEPENING AND WIDENING BUCKET DREDGE PRODUCTION ESTIMATE CH2M HILL, INC. Nov. 2011

No. of Employees	No. of Sub. Employees	Classification	Hours per Week	We	Rate Total Weekly Total Daily Total Monthly		Total Weekly Total Da		Total Daily Total M		Fringes Monthly		Vacation Monthly	
											\$	6.50	8%	
1	1	Captain	84	\$	29.00	\$	2,436.00	\$	348.00	\$	10,547.88	\$	2,364.18	\$ 843.83
3	2	Operator	106	\$	28.20	\$	8,967.60	\$	1,281.09	\$	38,829.71	\$	4,728.36	\$ 3,106.38
3	2	Mate	106	\$	22.58	\$	7,180.44	\$	1,025.78	\$	31,091.31	\$	4,728.36	\$ 2,487.30
6	4	Deckhand	106	\$	18.26	\$	11,613.36	\$	1,659.05	\$	50,285.85	\$	9,456.72	\$ 4,022.87
3	2	Mechanic	106	\$	24.70	\$	7,854.60	\$	1,122.09	\$	34,010.42	\$	4,728.36	\$ 2,720.83
6	4	Boatman	106	\$	24.70	\$	15,709.20	\$	2,244.17	\$	68,020.84	\$	9,456.72	\$ 5,441.67

15

\$	53,761,20	\$	7.680.17	\$	232.786.00	\$	35.462.70	\$	18.622.88
~	001101120	~		Ψ.	2021100100	~	001102110	~	

Total Labor Fringes Vacation Per Diem/Travel	\$ 1	50.00	\$ \$ \$	232,786.00 35,462.70 18,622.88 68,197.50
Total Per Montl Total Per Week	h K	:	\$ \$	355,069.08 82,002.10
Total Per Day			\$	11,714.59

Total Per Day

Note: Rates and fringes from Davis-Bacon Wage Rates, Brevard County, FL

Management Costs	Ye	arly Salary	Benefits	Monthly
Project Manager	\$	100,000	\$ 140,000	\$ 11,667
Project Engineer	\$	80,000	\$ 112,000	\$ 9,333
Engineer	\$	70,000	\$ 98,000	\$ 8,167
Survey	\$	60,000	\$ 84,000	\$ 7,000
Survey	\$	60,000	\$ 84,000	\$ 7,000
QC/Survey	\$	75,000	\$ 105,000	\$ 8,750
Superintendent	\$	90,000	\$ 126,000	\$ 10,500
Office Assistant	\$	30,000	\$ 42,000	\$ 3,500
Travel & Per Diem		7	\$ 200	\$ 42,434
Total, Management				\$ 108,351

PROJECT: Canaveral Harbor, Section 203 Study LOCATION: Port Canaveral, Brevard County, Florida

DISTRICT: SAJ Jacksonville PREPARED: 9/10/2012

POC: CHIEF, COST ENGINEERING, Tracy T. Leeser, P.E.

This Estimate reflects the scope and schedule in report; Integrated Section 203 Navigation Study Report

						Program Year (Budget EC): 2012 Effective Price Level Date: 1 OCT 11				TOTAL PROJECT COST (FULLY FUNDED)					
MDC		0007	ONITO	ESTIMA	TED COST	500	COCT	PROJECT F	IRST COST	Sp	ent Thru:		COCT	ONTO	F1.0.1
NUMBER	CIVII WORKS Feature & Sub-Feature Description	(\$K)	(\$K)	(%)	(\$K)	ESC (%)	(\$K)	(SK)	IOTAL (\$K)	1.	2-Dec-11 (\$K)		(\$K)	(\$K)	FULL (\$K)
A	B	C	D	<u>E</u>	F	<u>G</u>	<u> </u>	<u>((())</u>	J		K	L	<u>(010)</u> M	<u>(</u> ()())	<u>o</u>
	#N/A					-									
12	NAVIGATION PORTS & HARBORS	\$29,723	\$6,233	21%	\$35,956		\$29,723	\$6,233	\$35,956	\$	13,775		\$30,820	\$6,463	\$51,058
	CONSTRUCTION ESTIMATE TOTALS:	\$29,723	\$6,233	-	\$35,956		\$29,723	\$6,233	\$35,956	\$	13,775	-	\$30,820	\$6,463	\$51,058
01	LANDS AND DAMAGES		-	-		-									
30	PLANNING, ENGINEERING & DESIGN	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697				\$2,267	\$475	\$2,743
31	CONSTRUCTION MANAGEMENT	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697				\$2,400	\$503	\$2,904
	PROJECT COST TOTALS:	\$34,181	\$7,168	21%	\$41,349		\$34,181	\$7,168	\$41,349	\$	13,775	-	\$35,488	\$7,442	\$56,705
		CHIEF, COS	T ENGINEEI	RING, Tracy	T. Leeser, P	.E.									
		PROJECT MANAGER, Osvaldo Rodriguez, P.E. CHIEF, REAL ESTATE, Clyde H. Sellers CHIEF, PLANNING, Stuart J. Appelbaum, P.E.					ESTIMATED FEDERAL COST: ESTIMATED NON-FEDERAL COST: ESTIMATED TOTAL PROJECT COST:					65% 35%	\$36,858 \$19,847		
												T COST:	-	\$56,705	
									Provide a local						
						Navigation Depths 20'-45' @ 75/25					@ 75/25				
		CHIEF, OPE	RATIONS, J	im W. Jeffor	ds, P.E.	Lands & damages 100% non-federal									
		CHIEF, CON	ISTRUCTION	N, Jack Rinto	oul, P.E., PMI	þ									
		CHIEF, CON	ITRACTING,	Cynthia S. T	Folle										
		CHIEF, PM-	PB, Karen.S.	Tippett											
		CHIEF, DPM	l, David S. Ho	obbie, PMP											

**** TOTAL PROJECT COST SUMMARY ****

**** CONTRACT COST SUMMARY ****

PROJECT: Canaveral Harbor, Section 203 Study LOCATION: Port Canaveral, Brevard County, Florida This Estimate reflects the scope and schedule in report;

Integrated Section 203 Navigation Study Report

DISTRICT: SAJ Jacksonville

PREPARED: 9/10/2012 POC: CHIEF, COST ENGINEERING, Tracy T. Leeser, P.E.

	Estimate Prepared: Effective Price Level:	12-Dec-11 12-Dec-11	RI	ISK BASED		Proç Eff	gram Year (Be ective Price L	udget EC): .evel Date:	2012 1 OCT 11	FU	ILLY FUNDE	D PROJEC	T ESTIMATE	
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	ESC	COST	CNTG	FULL
NUMBER A	Feature & Sub-Feature Description B REMAINING CONSTRUCTION BY PORT	<u>(\$K)</u> C	(\$K) D	<u>(%)</u> 20.97	<u>(\$K)</u> F	<u>(%)</u> G	<u>(\$K)</u> H	<u>(\$K)</u> I	<u>(\$K)</u> J	Date P	<u>(%)</u> L	<u>(\$K)</u> M	(\$K)	<u>(\$K)</u> 0
12	#IV/A NAVIGATION PORTS & HARBORS	\$29,723	\$6,233	21%	\$35,956		\$29,723	\$6,233	\$35,956	2014Q2	3.7%	\$30,820	\$6,463	\$37,283
	CONSTRUCTION ESTIMATE TOTALS:	\$29,723	\$6,233	21%	\$35,956		\$29,723	\$6,233	\$35,956			\$30,820	\$6,463	\$37,283
01	LANDS AND DAMAGES													
30 7.5%	PLANNING, ENGINEERING & DESIGN Project Management lanning & Environmental Compliance P Engineering & Design Engineering Tech Review ITR & VE Contracting & Reprographics Engineering During Construction Planning During Construction Project Operations	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697	2012Q4	1.7%	\$2,267	\$475	\$2,743
31 7.5%	CONSTRUCTION MANAGEMENT Construction Management Project Operation: Project Management	\$2,229	\$467	21%	\$2,697		\$2,229	\$467	\$2,697	2014Q2	7.7%	\$2,400	\$503	\$2,904
	CONTRACT COST TOTALS:	\$34,181	\$7,168	-	\$41,349		\$34,181	\$7,168	\$41,349		-	\$35,488	\$7,442	\$42,929

U.S. Army Corps of Engineers Project : Canaveral Harbor, Florida - Section 203 Study REV 9-11-2012

Time 11:17:17

Title Page

Canaveral Harbor, Florida - Section 203 Study REV 9-11-2012

Estimated by Jeff McWilliams Designed by Jim Moore Prepared by Kathleen Roy

Preparation Date 9/11/2012 Effective Date of Pricing 9/11/2012 Estimated Construction Time 400 Days

This report is not copyrighted, but the information contained herein is For Official Use Only.

Labor ID: NLS2010 EQ ID: EP09R03

Currency in US dollars

U.S. Army Corps of Engineers Project : Canaveral Harbor, Florida - Section 203 Study REV 9-11-2012

Time 11:17:17

Library Properties Page viii

Designed by	Design Document	
Jim Moore	Document Date	9/11/2012
Estimated by	District	
Jeff McWilliams	Contact	Jim Moore
Prepared by	Budget Year	2012
Kathleen Roy	UOM System	Original
Direct Costs	Timeline/	Currency
LaborCost	Preparation Date	9/11/2012
EQCost	Escalation Date	9/11/2012
MatlCost	Eff. Pricing Date	9/11/2012
SubBidCost	Estimated Duration	400 Day(s)
	Currency	US dollars
	Exchange Rate	1.000000

Costbook CB10EB: MII English Cost Book 2010

Labor NLS2010: National Labor Library - Seattle 2010

wdol.gov is the website for current Davis Bacon & Service Labor Rates. Fringes paid to the laborers are taxable. In a non-union job the whole fringes are taxable. In a union job, the vacation pay fringes i Labor Rates

LaborCost1 LaborCost2 LaborCost3 LaborCost4

Equipment EP09R03: MII Equipment Region 3 2009

03 SOUTHEAST		F	Shipping Rates		
Sales Tax	8.50	Electricity	0.089	Over 0 CWT	14.96
Working Hours per Year	1,530	Gas	2.950	Over 240 CWT	13.61
Labor Adjustment Factor	0.86	Diesel Off-Road	3.040	Over 300 CWT	11.62
Cost of Money	2.50	Diesel On-Road	3.490	Over 400 CWT	9.72
Cost of Money Discount	25.00			Over 500 CWT	5.42
Tire Recap Cost Factor	1.50			Over 700 CWT	5.42
Tire Recap Wear Factor	1.80			Over 800 CWT	8.01
Tire Repair Factor	0.15				
Equipment Cost Factor	1.00				
Standby Depreciation Factor	0.50				

Labor ID: NLS2010 EQ ID: EP09R03
Project Cost Summary Report Page 1

Description	Quantity	UOM	CostToPrime	PrimeCMU	ContractCost	Escalation	Contingency	SIOH	ProjectCost
Project Cost Summary Report			47,956,558.86	0.00	47,956,558.86	0.00	0.00	0.00	47,956,558.86
Completed Work	1.0000	EA	13,775,063.00	0.00	13,775,063.00	0.00	0.00	0.00	13,775,063.00
Port Work	1.0000	EA	13,775,063.00	0.00	13,775,063.00	0.00	0.00	0.00	13,775,063.00
Work Completed By the Port	1.0000	EA	13,775,063.00	0.00	13,775,063.00	0.00	0.00	0.00	13,775,063.00
Remaining Work	1.0000	EA	34,181,495.86	0.00	34,181,495.86	0.00	0.00	0.00	34,181,495.86
12 Navigation Ports & Harbors	1.0000	EA	29,723,039.88	0.00	29,723,039.88	0.00	0.00	0.00	29,723,039.88
1201 Ports	1.0000	EA	27,714,777.88	0.00	27,714,777.88	0.00	0.00	0.00	27,714,777.88
120115 Mechanical Dredging	1.0000	EA	18,637,508.94	0.00	18,637,508.94	0.00	0.00	0.00	18,637,508.94
12011502 Site Work	1.0000	EA	18,637,508.94	0.00	18,637,508.94	0.00	0.00	0.00	18,637,508.94
120101 Mob, Demob & Preparatory Work	1.0000	EA	1,781,000.00	0.00	1,781,000.00	0.00	0.00	0.00	1,781,000.00
12011502 01 Mechanical Dredging	1.0000	EA	16,856,508.94	0.00	16,856,508.94	0.00	0.00	0.00	16,856,508.94
120199 Associated General Items	1.0000	EA	9,077,268.94	0.00	9,077,268.94	0.00	0.00	0.00	9,077,268.94
090130 Site Work	1.0000	EA	9,033,381.19	0.00	9,033,381.19	0.00	0.00	0.00	9,033,381.19
Boresight Tower Guy Foundation Demolition	1.0000	EA	17,266.60	0.00	17,266.60	0.00	0.00	0.00	17,266.60
Sign Relocation	1.0000	EA	57,038.94	0.00	57,038.94	0.00	0.00	0.00	57,038.94
09019902 02 Dolphins	1.0000	EA	190,000.00	0.00	190,000.00	0.00	0.00	0.00	190,000.00
09013002 09 Steel Sheet Piling	1.0000	EA	1,189,695.84	0.00	1,189,695.84	0.00	0.00	0.00	1,189,695.84
New SSP Wall At Boat Ramp	1.0000	EA	1,189,695.84	0.00	1,189,695.84	0.00	0.00	0.00	1,189,695.84
09013002 06 Riprap	71,100.0000	TON	2,890,370.30	0.00	2,890,370.30	0.00	0.00	0.00	2,890,370.30
Revetments	71,100.0000	TON	2,890,370.30	0.00	2,890,370.30	0.00	0.00	0.00	2,890,370.30
Mob/Demob	1.0000	EA	22,800.00	0.00	22,800.00	0.00	0.00	0.00	22,800.00
Environmental Protection	1.0000	EA	46,862.01	0.00	46,862.01	0.00	0.00	0.00	46,862.01
Rock Recovery/Replacement	1.0000	EA	1,263,433.66	0.00	1,263,433.66	0.00	0.00	0.00	1,263,433.66
New Filter Stone (Furnish & Install)	1.0000	EA	1,557,274.63	0.00	1,557,274.63	0.00	0.00	0.00	1,557,274.63
09013002 03 Upland Excavation	1.0000	EA	4,588,251.25	0.00	4,588,251.25	0.00	0.00	0.00	4,588,251.25
Existing Rock Revetment Removal/Replacement	1.0000	EA	932,972.47	0.00	932,972.47	0.00	0.00	0.00	932,972.47
Northside Channel Widener	1.0000	EA	3,655,278.78	0.00	3,655,278.78	0.00	0.00	0.00	3,655,278.78
Chain Link Fence	1.0000	EA	100,758.26	0.00	100,758.26	0.00	0.00	0.00	100,758.26
Monument Relocation	1.0000	EA	43,887.75	0.00	43,887.75	0.00	0.00	0.00	43,887.75
Submarine Monumnet	1.0000	EA	43,887.75	0.00	43,887.75	0.00	0.00	0.00	43,887.75

Labor ID: NLS2010 EQ ID: EP09R03

Project Cost Summary Report Page 2

Description	Quantity	UOM	CostToPrime	PrimeCMU	ContractCost	Escalation	Contingency	SIOH	ProjectCost
Navigation Aids	1.0000	EA	2,008,262.00	0.00	2,008,262.00	0.00	0.00	0.00	2,008,262.00
Inbound/Outbound Navigation Aids	1.0000	EA	1,975,000.00	0.00	1,975,000.00	0.00	0.00	0.00	1,975,000.00
West Surge Warning Sign Replacement	1.0000	EA	33,262.00	0.00	33,262.00	0.00	0.00	0.00	33,262.00
30 Planning, Engineering and Design	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
3023 Constructn Contracts(s) Documnts	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
302301 Plans and Specifications (P&S)	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
30230102 Plans and Specifications	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
31 Construction Management	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
3123 Construction Contracts	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
312311 Supervision and Administration	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99
31231103 District Office S&A Documents	1.0000	EA	2,229,227.99	0.00	2,229,227.99	0.00	0.00	0.00	2,229,227.99

Detail Base Bid Page 3

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
Detail Base Bid			3,287,829.53	3,306,900.99	2,015,315.00	39,346,513.34	47,956,558.86	47,956,558.86	47,956,558.86
Completed Work	1.0	EA	0.00	0.00	0.00	13,775,063.00	13,775,063.00	13,775,063.00	13,775,063.00
Port Work	1.0	EA	0.00	0.00	0.00	13,775,063.00	13,775,063.00	13,775,063.00	13,775,063.00
Work Completed By the Port	1.0	EA	0.00	0.00	0.00	13,775,063.00	13,775,063.00	13,775,063.00	13,775,063.00

(Note: The West Turning Basin (WTB) Corner Cut-Off (CCO) and Grouper Road relocation have been constructed in advance by the Canaveral Port Authority. This work precedes the Section 203 project out of necessity to accommodate classes of vessels smaller in size than the Section 203 design vessels, but greater than vessels currently calling on, or home-porting at Port Canaveral. Starting in September 2008, through completion in September 2011, the Canaveral Port Authority competitively bid and awarded contracts for construction of the Grouper Road relocation and CCO.)

Interim Corner Cut Off	1.0	EA	0.00	0.00	0.00	7,028,340.00	7,028,340.00	7,028,340.00	7,028,340.00
(Note: Results of Actual Contracts Awarded plus Engine	ering & De	esign (Cost)						
Corner Cut Off Phase 2	1.0	EA	0.00	0.00	0.00	6,292,539.00	6,292,539.00	6,292,539.00	6,292,539.00
(Note: Results of Actual Contracts Awarded plus Engine	ering & De	esign (Cost)						
Grouper Road Relocation	1.0	EA	0.00	0.00	0.00	454,184.00	454,184.00	454,184.00	454,184.00
(Note: Results of Actual Contracts Awarded plus Engine	ering & De	esign (Cost)						
Remaining Work	1.0	EA	3,287,829.53	3,306,900.99	2,015,315.00	25,571,450.34	34,181,495.86	34,181,495.86	34,181,495.86
Navigation Ports & Harbors	1.0	EA	3,287,829.53	3,306,900.99	2,015,315.00	21,112,994.36	29,723,039.88	29,723,039.88	29,723,039.88
Ports	1.0	EA	3,287,829.53	3,306,900.99	2,015,315.00	19,104,732.36	27,714,777.88	27,714,777.88	27,714,777.88
Mechanical Dredging	1.0	EA	0.00	0.00	0.00	18,637,508.94	18,637,508.94	18,637,508.94	18,637,508.94
Site Work	1.0	EA	0.00	0.00	0.00	18,637,508.94	18,637,508.94	18,637,508.94	18,637,508.94
Mob, Demob & Preparatory Work	1.0	EA	0.00	0.00	0.00	1,781,000.00	1,781,000.00	1,781,000.00	1,781,000.00
Dredging, mobilization and demobilization	1.0	LS	0.00	0.00	0.00	1,781,000.00	1,781,000.00	1,781,000.00	1,781,000.00

(Note: All dredging costs and the cost estimating procedure were performed in accordance with EP-1110-1-8; SADDM 1110-1-1; ER-1110-1-1300; ER 1110-2-1302, which provide the guidelines necessary to calculate the dredging costs. Assumptions regarding equipment values are given in the estimate. Ownership and operating costs for all dredging and marine equipment were calculated using the USACE "Checkrate" Excel program, with applicable cost adjustments for FY 2012 and USACE regional factors. Port Canaveral is located within Region III. The total overall cost was divided by the quantity to obtain a dredging cost of \$5.42 per CY in 2012 dollars. The detailed dredging cost estimating spreadsheet performed by Mr. McWilliams is included in this Attachment L.)

Mechanical Dredging	1.0	EA	0.00	0.00	0.00	16,856,508.94	16,856,508.94	16,856,508.94	16,856,508.94
Dredging, dragline or clamshell, harbor channel, middle basin and ocean access	3,110,057.0	BCY	0.00	0.00	0.00	16,856,508.94	16,856,508.94	16,856,508.94	16,856,508.94
channel									

(Note: All dredging costs and the cost estimating procedure were performed in accordance with EP-1110-1-8; SADDM 1110-1-1; ER-1110-1-1300; ER 1110-2-1302, which provide the guidelines necessary to calculate the dredging costs. Assumptions regarding equipment values are given in the estimate. Ownership and operating costs for all dredging and marine equipment were calculated using the USACE "Checkrate" Excel program, with applicable cost adjustments for FY 2011 and USACE regional factors. Port Canaveral is located within Region III. The total overall cost was divided by the quantity to obtain a dredging cost of \$5.42 per CY in 2012 dollars. The detailed dredging cost estimating spreadsheet performed by Mr. McWilliams is included in this Attachment L.)

Detail Base Bid Page 4

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
Associated General Items	1.0	EA	3,287,829.53	3,306,900.99	2,015,315.00	467,223.42	9,077,268.94	9,077,268.94	9,077,268.94
Site Work	1.0	EA	3,267,074.50	3,297,751.69	2,004,755.00	463,800.00	9,033,381.19	9,033,381.19	9,033,381.19
Boresight Tower Guy Foundation Demolition	1.0	EA	11,230.07	6,036.53	0.00	0.00	17,266.60	17,266.60	17,266.60
Structural demolition, concrete pulverizer, 14.5" thick	100.0	CF	11,230.07	6,036.53	0.00	0.00	17,266.60	17,266.60	17,266.60
Sign Relocation	1.0	EA	45,150.54	6,013.40	5,875.00	0.00	57,038.94	57,038.94	57,038.94
Signs, traffic sign removal and relocation, 41 S.F. to 100 S.F., including supports	5.0	EA	45,150.54	6,013.40	5,875.00	0.00	57,038.94	57,038.94	57,038.94
(Note: Several property notification signs with ele	ctrical suppo	rt are lo	cated along the	shoreline whic	h will require re	location with the	shoreline adjustr	ment.)	
Dolphins	1.0	EA	0.00	0.00	0.00	190,000.00	190,000.00	190,000.00	190,000.00
Monopile Doplin With Cap and Bollard	1.0	EA	0.00	0.00	0.00	150,000.00	150,000.00	150,000.00	150,000.00
<u></u>									

(Note: The mooring dolphin to be removed is located along the northside widening just east of the Trident Wharf. It consists of prestressed concrete pilings with a concrete cap and a pile supported walkway to the uplands. It will be replaced in a new location with a large diameter steel monopile with a concrete cap and mooring bollard. This element is estimated using knowledge of many similar small demolition project performed at the port. The demolition and replacement cost estimate is \$190,000 Lump sum.)

Demolish Existing Open Pile Dolphin	1.0	EA	0.00	0.00	0.00	40,000.00	40,000.00	40,000.00	40,000.00
Steel Sheet Piling	1.0	EA	480,059.91	91,935.93	366,700.00	251,000.00	1,189,695.84	1,189,695.84	1,189,695.84
New SSP Wall At Boat Ramp	1.0	EA	480,059.91	91,935.93	366,700.00	251,000.00	1,189,695.84	1,189,695.84	1,189,695.84
Mobilization and Demobilization, add to below, minimum	1.0	LS	0.00	0.00	0.00	50,000.00	50,000.00	50,000.00	50,000.00
Excavating, chain trencher, utility trench, common earth, 6" wide, 36" deep, backfill by hand, add	1,100.0	LF	2,421.32	159.21	0.00	0.00	2,580.53	2,580.53	2,580.53
Cast-in place retaining walls, reinforced concrete cantilever, 33 degree slope embankment, 10' high, includes excavation, backfill & reinforcing	1,100.0	LF	273,923.68	19,206.14	106,700.00	0.00	399,829.82	399,829.82	399,829.82
Steel sheet piling seawalls, steel sheeting, 12' high, shore driven	1,100.0	LF	155,091.11	63,748.89	92,400.00	0.00	311,239.99	311,239.99	311,239.99
Sheet piling, wales, connections and struts, 2/3 salvage	15,000.0	LB	0.00	0.00	30,000.00	0.00	30,000.00	30,000.00	30,000.00
Structural concrete, placing, pile caps, direct chute, over 10 CY, includes strike off & consolidation, includes material	201.0	СҮ	0.00	0.00	0.00	201,000.00	201,000.00	201,000.00	201,000.00
Screw anchor eye bolts, plain steel, for CIP concrete, 1" x 9" long, includes material only	16.0	EA	48,000.00	8,800.00	135,200.00	0.00	192,000.00	192,000.00	192,000.00

Labor ID: NLS2010 EQ ID: EP09R03

Detail Base Bid Page 5

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
Railing, pipe, aluminum, clear finish, 3 rails, 3'-6" high, posts @ 5' O.C., 1-1/4" dia, shop fabricated	40.0	LF	623.79	21.70	2,400.00	0.00	3,045.49	3,045.49	3,045.49
Riprap	71,100.0	TON	678,220.08	647,505.22	1,541,845.00	22,800.00	2,890,370.30	2,890,370.30	2,890,370.30
Revetments	71,100.0	TON	678,220.08	647,505.22	1,541,845.00	22,800.00	2,890,370.30	2,890,370.30	2,890,370.30
Basin. The estimated tonnage of rock work i existing granite rock revetment extending up Mob/Demob	to the natura	EA	area of channel of +10 NGVD +/ 0.00	widening is r)	eferred to as A	areas 9A and 9B	in the survey d	rawings. The s	tructure is an 22.800.00
Mobilization/Demobilization (Note: Per Revetment Engineer's Estimate)	1.0	EA	0.00	0.00	0.00	22,800.00	22,800.00	22,800.00	22,800.00
Environmental Protection	1.0	EA	28,062.29	759.72	18,040.00	0.00	46,862.01	46,862.01	46,862.01
Geotextile Subsurface Drainage Filtration, fabric ply bonded to 3-dimensional nylon mat, ideal conditions, 0.4" thk	40,000.0	SF	13,373.14	0.00	10,400.00	0.00	23,773.14	23,773.14	23,773.14
Synthetic erosion control silt fence	15 000 0	IF	10 557 74	0.00	6 000 00	0.00	16 557 74	16 557 74	16 557 74

, , , , , , , , , , , , , , , , , , ,									
Environmental Protection	1.0	EA	28,062.29	759.72	18,040.00	0.00	46,862.01	46,862.01	46,862.01
Geotextile Subsurface Drainage Filtration, fabric ply bonded to 3-dimensional nylon mat, ideal conditions, 0.4" thk	40,000.0	SF	13,373.14	0.00	10,400.00	0.00	23,773.14	23,773.14	23,773.14
Synthetic erosion control, silt fence, polypropylene, adverse conditions, 3' high	15,000.0	LF	10,557.74	0.00	6,000.00	0.00	16,557.74	16,557.74	16,557.74
Synthetic erosion control, place and remove hay bales	10.0	TON	4,131.41	759.72	1,640.00	0.00	6,531.12	6,531.12	6,531.12
Rock Recovery/Replacement	1.0	EA	628,798.61	634,635.05	0.00	0.00	1,263,433.66	1,263,433.66	1,263,433.66
Excavate and load, bank measure, blasted rock, 3-1/2 C.Y. bucket, hydraulic excavator	33,186.0	BCY	49,690.80	79,342.08	0.00	0.00	129,032.87	129,032.87	129,032.87
Hauling, excavated or borrow material, loose cubic yards, 4 mile round trip @ base wide rate, 12 C.Y. truck, highway haulers, excludes loading	33,186.0	LCY	67,184.86	42,163.93	0.00	0.00	109,348.79	109,348.79	109,348.79
Rip-rap and rock lining, random, broken stone, machine placed for slope protection	33,186.0	LCY	476,860.09	493,355.00	0.00	0.00	970,215.09	970,215.09	970,215.09
Excavating, structural, bank measure, 140 H.P., dozer, rough grade, push to stockpile	33,186.0	BCY	35,062.86	19,774.04	0.00	0.00	54,836.90	54,836.90	54,836.90
New Filter Stone (Furnish & Install)	1.0	EA	21,359.18	12,110.45	1,523,805.00	0.00	1,557,274.63	1,557,274.63	1,557,274.63
Backfill with Crushed Stone	17,980.0	CY	21,359.18	12,110.45	1,523,805.00	0.00	1,557,274.63	1,557,274.63	1,557,274.63
Upland Excavation	1.0	EA	2,035,625.65	2,543,290.60	9,335.00	0.00	4,588,251.25	4,588,251.25	4,588,251.25
Existing Rock Revetment Removal/Replacement	1.0	EA	471,033.86	458,471.11	3,467.50	0.00	932,972.47	932,972.47	932,972.47

Labor ID: NLS2010 EQ ID: EP09R03

Detail Base Bid Page 6

scription	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
Excavating, bulk, open site, bank measure, loose rock, 140 H.P. dozer, 300' push	100,000.0	BCY	429,886.16	399,379.01	0.00	0.00	829,265.17	829,265.17	829,265.17
Rough grading, open site, large area, 300 H.P., dozer	100,000.0	BCY	28,659.08	52,277.85	0.00	0.00	80,936.93	80,936.93	80,936.93
Fine grading, loam or topsoil fine grade for large area, 15,000 S.Y. or more	18,250.0	SY	9,737.92	4,682.34	0.00	0.00	14,420.27	14,420.27	14,420.27
Seeding, mechanical seeding hydro or air seeding for large areas, includes lime, fertilizer and seed	18,250.0	SY	2,750.70	2,131.91	3,467.50	0.00	8,350.11	8,350.11	8,350.11
Northside Channel Widener	1.0	EA	1,564,591.79	2,084,819.49	5,867.50	0.00	3,655,278.78	3,655,278.78	3,655,278.78
Excavation, bulk, dragline, bank measure, heavy clay, 3/4 C.Y. bucket, excavate and load on truck	354,069.0	BCY	1,261,756.80	1,279,306.40	0.00	0.00	2,541,063.19	2,541,063.19	2,541,063.19
Rough grading, open site, large area, 300 H.P., dozer	364,069.0	BCY	104,338.82	190,327.45	0.00	0.00	294,666.27	294,666.27	294,666.27
Hauling, excavated or borrow material, loose cubic yards, 1 mile round trip @ 20 MPH (4.2 cycles/hour), 40 C.Y., off highway haulers, excludes loading	364,069.0	LCY	191,719.64	611,535.91	0.00	0.00	803,255.55	803,255.55	803,255.55
Synthetic erosion control, silt fence, polypropylene, ideal conditions, 3' high	6,000.0	LF	2,507.46	0.00	2,400.00	0.00	4,907.46	4,907.46	4,907.46
Mobilization or demobilization, dozer, loader, backhoe or excavator, above 150 H.P., up to 50 miles	10.0	EA	1,518.37	1,517.82	0.00	0.00	3,036.19	3,036.19	3,036.19
Seeding, mechanical seeding hydro or air seeding for large areas, includes lime, fertilizer and seed	18,250.0	SY	2,750.70	2,131.91	3,467.50	0.00	8,350.11	8,350.11	8,350.11
Chain Link Fence	1.0	EA	16,788.26	2,970.00	81,000.00	0.00	100,758.26	100,758.26	100,758.26
Fence, chain link industrial, aluminized steel, add for corner post, 6 ga. wire, 2-1/2" posts @ 10' OC, 8' high, 3" diameter, includes excavation, in concrete, add for corner posts	3,000.0	EA	16,788.26	2,970.00	81,000.00	0.00	100,758.26	100,758.26	100,758.26
Monument Relocation	1.0	EA	20,755.03	9,149.30	10,560.00	3,423.42	43,887.75	43,887.75	43,887.75
Submarine Monumnet	1.0	EA	20,755.03	9,149.30	10,560.00	3,423.42	43,887.75	43,887.75	43,887.75
Minor site demolition, concrete, unreinforced, 7" to 24" thick, remove with backhoe, excludes	77.0	CY	7,511.21	872.40	0.00	0.00	8,383.62	8,383.62	8,383.62

hauling

Detail Base Bid Page 7

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
Structural concrete, in place, lift slab (4000 psi) above the foundation, average, includes columns, forms(4 uses), reinforcing steel, concrete, placing and finishing	1,600.0	SF	12,120.71	924.87	10,560.00	0.00	23,605.58	23,605.58	23,605.58
Crane crew, daily use for small jobs, 80-ton truck-mounted hydraulic crane, portal to portal	1.0	DAY	898.41	7,228.37	0.00	0.00	8,126.78	8,126.78	8,126.78
(Note: Crane to relocate Submarine Sail)									
Hauling, rock, 12 C.Y. truck, 5 mile haul, includes loading	77.0	LCY	224.70	123.66	0.00	0.00	348.36	348.36	348.36
Commercial RCRA landfills, solid, non- hazardous, sanitary landfill	77.0	CY	0.00	0.00	0.00	3,423.42	3,423.42	3,423.42	3,423.42
Navigation Aids	1.0	EA	0.00	0.00	0.00	2,008,262.00	2,008,262.00	2,008,262.00	2,008,262.00
Inbound/Outbound Navigation Aids	1.0	EA	0.00	0.00	0.00	1,975,000.00	1,975,000.00	1,975,000.00	1,975,000.00
Dredging Aids to Navigation, Inbound, Relocate	2.0	EA	0.00	0.00	0.00	275,000.00	275,000.00	275,000.00	275,000.00
(Note: Price developed by CH2M HILL per Attachm	ent N (USCG	Coord	ination On Naviga	tion Aids (Ran	ge Markers)))				
Dredging Aids to Navigation, Outbound, New	2.0	EA	0.00	0.00	0.00	1,700,000.00	1,700,000.00	1,700,000.00	1,700,000.00
(Note: Price developed by CH2M HILL per Attachm	ent N (USCG	Coord	ination On Naviga	tion Aids (Ran	ge Markers)))				
West Surge Warning Sign Replacement	1.0	EA	0.00	0.00	0.00	33,262.00	33,262.00	33,262.00	33,262.00
West Surge Warning Sign Replacement	1.0	EA	0.00	0.00	0.00	33,262.00	33,262.00	33,262.00	33,262.00
(Note: In 2001, Olsen & Associates, Jacksonville, F signs was \$44,000. Using one-half of this value for new Surge Warning Sign is approximately \$30,000	lorida, prepar one sign, an in 2008 dolla	red a co d escal rs. Thi	ost estimate for ins lating to 2007 usin s value was then e	stalling the two ig 3% per year escalated by 3	Surge Warnin up to 2006 an .5% to arrive at	ng Signs. The en d 4.6 percent for t a cost 0f \$33,26	gineer's estimate 2007 and 2008, 2 in 2012 dollars	e in 2001 for insta the estimate for s.)	alling the two installing one
Planning, Engineering and Design	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
Constructn Contracts(s) Documnts	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
Plans and Specifications (P&S)	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
Plans and Specifications	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
7.5 percent of Construction Cost of Remaining Work (excluding cost for Lands and Damages)	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
(Note: Per Cost Engineering Appendix which indica	ates a total of	15 per	cent for PED and	S&A.)					
Construction Management	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
Construction Contracts	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
Supervision and Administration	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
District Office S&A Documents	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99
(Note: Technical Management S&A All Other Dis	trict Office S	&A)							

Labor ID: NLS2010 EQ ID: EP09R03

Detail Base Bid Page 8

Description	Quantity	UOM	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectCost	CostToPrime	ContractCost
7.5 percent of Construction Cost of Remaining Work (excluding cost for Lands and Damages)	1.0	EA	0.00	0.00	0.00	2,229,227.99	2,229,227.99	2,229,227.99	2,229,227.99

(Note: Per Cost Engineering Appendix which indicates a total of 15 percent for PED and S&A.)

Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment M

Cost and Schedule Risk Analysis Report Rev Date: February 2012

Canaveral Port Authority

Section 203 Feasibility Study for Widening and Deepening Canaveral Harbor and Channel Preferred Alternative

COST & SCHEDULE RISK ANALYSIS

Analysis Date:	February 2, 2012
Reference Estimate ID:	10222008
Class Estimate:	Class 4
Estimate Date:	December 8, 2011
Requested By:	HQUSACE Review Committee
CSR Analysis By:	Robert Wells/PDX/503.872.4622

Overview

This Analysis was prepared to meet the request of the client and intends to ascertain the probability of cost and schedule overruns, and to assign a studied growth potential as a value applied as a contingency. This analysis included input and guidance from the project delivery team (PDT), and utilized Crystal Ball software to perform the Monte Carlo analysis. It should be noted that this analysis does not intend to recreate the estimate.

Specific Outcomes

The Cost and Schedule Risk Analysis has the following outcomes:

- (1) Cost and schedule risk register.
- (2) The "most likely" total project cost estimate.
- (3) The "best case" and "worst case" estimates.
- (4) Cost and Schedule Risk assessment models using Crystal Ball

General Project Description

This project is predominantly a Feature 12 (dredging) project at Port Canaveral, Florida. This Analysis references the related Basis of Estimate for relevant project information, including Project Description, Scope of Work, Markups, Escalation, Market Conditions, Allowances, Major Assumptions, Exclusions and pricing information.

Cost and Schedule Risk Analysis

The specifics of this analysis were executed with guidance provided by James Neubauer, P.E., C.C.E, PM1, U.S. Army Corps of Engineers, Walla Walla District, National Civil Works Cost Center. Mr. Neubauer provided the procedure for determining the additional cost escalation impact resulting from schedule risk, and for determining the additional escalation cost resulting from Feature 12 projects, where such projects are unduly influenced by volatile fuel escalation.

In order, these steps were followed in order to arrive at a studied contingency amount:

- 1. The estimate was validated and examined for and removed contingencies at top and lower levels.
- 2. The analyst, the project manager and the estimator conferred with USACE on specific cost risk analysis methods and issues specific to this study.

- 3. The analyst, the project manager and the estimator conferred on the PDT membership, the PDT was formed and instructed on the process, and risk concerns and discussion were recorded on the Risk Register.
- 4. The analyst compiled and organized the Risk Register, determining Risk Levels from reported likelihoods and consequences.
- 5. The identified High Risk items were selected for market study and inclusion in the Monte Carlo analysis.
- 6. The preliminary results were communicated and discussed among the analyst, the project manager and the estimator.
- 7. The draft report was issued, reviewed, and published.

Specifically, the PDT concerns pointed to

- bid market volatility,
- fuel cost uncertainty,
- presence or exposure to rocket fuel,
- and associated delay risks with risk level to warrant inclusion in the study.

All of these are considered risk to cost occurring outside of the base estimate escalation calculation. Therefore the procedure to capture the cost and schedule risk is to assign as contingency the cost risk resulting from uncertain delays or unexpected escalation of key materials, commodities or consumables.

Findings and Recommendations

The findings of this study include:

- Cost and schedule risk register addressing all project features. This register is appended to this report as Appendix A.
- The cost contingency in percentages, where that percentage is the amount to be added to the base estimate prior to escalation. This is shown in Table: Contingency Analysis, below.
- Cost and schedule risk assessment model using Crystal Ball is appended to this report as Appendix B.

The contingency calculations (as shown in the Table below) are predominantly influenced by the bid market and fuel forecast modeling.

Recommendations relevant to the sensitivity analysis include:

• Bid Market. The model examined the possibility the bid market would influence cost of the project. This is understood as driven by the scarcity or surplus of dredging equipment required for the project. Mitigation or avoidance measures include determining scarcity or surplus by interviewing prospective bidders or through local trade associations, or by requesting proposals with foreknowledge

that bids may not reflect advantageous market conditions, and are rejected and postponed until the market is seeking projects.

- Material escalation. The concern is primarily a consumable, diesel fuel, which is of concern, rather than a material placed as a scope deliverable. Diesel fuel, crude oil and related products are known to be volatile and unpredictable. A mitigation method proposed during our PDT discussion is to identify fuel as a separate bid item. This will remove the risk for fuel escalation from the contractor and place it on the project owner. However, the contractor's premium for risk will be avoided. The strategy of bidding fuel separately must be well thought out and utilizing a proved method in order to avoid exposing the owner to more risk.
- Rocket motor fuel. As this is an unlikely event outside the control of the project, mitigation in the form of insurance or by means of project or program reserves is recommended.

Most Likely Cost Estimate	\$35,5	55,343
	-	
Confidence Level	Value	Contingency
0%	\$29,262,851	-17.70%
5%	\$33,644,299	-5.37%
10%	\$34,723,938	-2.34%
15%	\$35,546,233	-0.03%
20%	\$36,278,428	2.03%
25%	\$36,831,733	3.59%
30%	\$37,322,064	4.97%
35%	\$37,833,692	6.41%
40%	\$38,333,898	7.81%
45%	\$38,933,619	9.50%
50%	\$39,475,431	11.03%
55%	\$39,986,087	12.46%
60%	\$40,481,471	13.85%
65%	\$41,051,987	15.46%
70%	\$41,615,286	17.04%
75%	\$42,296,386	18.96%
80%	\$43,009,622	20.97%
85%	\$43,831,039	23.28%
90%	\$44,974,780	26.49%
95%	\$46,635,066	31.16%
100%	\$54,671,528	53.76%

Table: Contingency Analysis

Further to the above chart, the Total Project Cost chart is displayed graphically below, showing the selection of the 80th percentile and the corresponding total project cost values.

Additionally, the sensitivity analysis (Tornado Chart below) is as is expected with a large proportion of the Feature 12 sensitivity to variance dependent on bid market and fuel cost.

List of Appendices:

Appendix A: Risk Register. Appendix B: Cost and Schedule Model. Appendix C: Market Study and Opinion Basis

Reference Documents

Excel file with Crystal Ball data: CSRA_RiskAnalysis_CPA_Section_203_Cost 2012-01-27 0730.xlsx

USACE EM 1110-2-1304 - Civil Works Construction Cost Index System USACE ER 1110-2-1302 – Civil Works Cost Engineering USACE ECB 2007-17 Cost Risk Analysis Methods for Civil Works Projects APPENDIX A – RISK REGISTER

							P	Port Cana	veral Se	ction 20	3 - PDT	Risk R	egister	(Draft)						
B	_		Risk	Level								Overall Proje	ct Scope							
Amanc	Very Likely	Low	Moderate	High	Hig	gh H	ligh					Feature 12 at	Port Canavera	al						
6 P	Likely	Low	Moderate	High	Hig	gh H	ligh					Thresholds for Impact	or cost and tin Cost	ne Time						
	Very	Low	Low	Moderate	Mode	erate H	ligh					Negligable Marginal	- 50K + - 300K +	- 1 MO + - 3 MO +						
ŝ	Unlikely	Negligible	Marginal	Significant	Critti	tcal Ci	risis	•				Significant Critical	- 1.5M + - 4M +	- 6-8 MO + - 12 - 24 MO -	+					
		Impact	t or Conseque	ence of Occ	urrence			_		\sim		Crisis	- 10M +	36 MO +						
										Proje	ct Cost	1		Project	Schedule		-			
Risk No.	Risk/Opportunity I	Event	Con	cerns			PDT Discuss	sions	Likelihood*	Impact*	Risk Level*	Rough Order Impact (\$)	Likelihood*	Impact*	Risk Level*	Rough Order Impact (mo)	Variance Distribution	Correlation to Other(s)	Responsibility / POC	Affected Project Component
	Contract Ricks (Interne	al Rick Itoms	these that are	generated equi	and or on	entrolled within t	the PDT's opt	oro of influence)								<u></u>		,		
	Contract Risks (interna	ai Risk items a	ne mose mai are	generated, cau	sed, or cor	muolied within	ule PDTS spr	tere or inituence.)	1	1				[[
	Innovative project				r	If hopper dredge new BO by NMFS,	restrictions for c	outer reach are lifted in dule could be reduced	by											
CR-1	construction		Estimate assumes	ordinary production	1	USE	e of alternative eo	quipment.	VERY UNLIKELY	SIGNIFICANT	LOW	(\$1,000,000)	VERY UNLIKELY	MARGINAL	LOW	-1 to -3 MO	Uniform		Construction	Cost & Schedule
	Section 203 assignme	ent to				CWRB or HQ	policy issue may	delay congressional												
CR-2	USACE		Delay in approv	ved Study Report			approval.		UNLIKELY	SIGNIFICANT	MODERATE	<5%	UNLIKELY	Critical	HIGH	6-12 MO	Uniform	PR-1	Project Manager	Project Cost & Schedule
CR-3	Incomplete Studies		PED may require a	dditional information	n.	Data develo supplem	oped by local spo entation for PED	onsor may require I development.	UNLIKELY	MARGINAL	LOW	\$144,000	UNLIKELY	MARGINAL	LOW	4			Project Sponsor(s)	Project Cost & Schedule
						Could be a s	wing either way t	based on estimated												
CR-4	Market conditions and bidding competition	d I	Project susceptible to	supply-demand for	ces	production rate McV	s and markups; Williams original	-9.4% to +15%, per J elicitation	LIKELY	CRITICAL	HIGH	- \$4M to + \$6M	LIKELY	SIGNIFICANT	HIGH	-2 - +6 MO	Uniform		Contracting	Project Cost & Schedule
						Cost of fuels as market (volatil	determined by b lity and unexpect	idders in an uncertain ed escalation or de-												
CR-5	key materials	non	Fuel pricin	ng is volatile		escalation are una e	able to be modele escalation calculation	ed with current price a ations).	LIKELY	CRITICAL	HIGH	-3M to 4.5M	LIKELY	NEGLIGIBLE	LOW		Uniform		Contracting	Project Cost
						Dredging near	evisting hulkhes	ad walls might cause												
					r	movement or failur walls has show	re of walls. Howe vn only two walls	ver, previous analysis sections to be at risk	of											
						(NCP#3 & 4 and replace walls con	wall "L"). Local sp currently with pro	ponsor is committed to oject, and provide Hol	o t											
						damage as a res Local Sponsor	sult of dredging p Risk to project (ent costs if wall(s) inc rior to replacement by cost and schedule is	1											
CR-6	Bulkhead Stability		Dredging induced I	bulkhead wall failure	Э	therefore con	nsidered zero dol	lars or time added.	UNLIKELY	NEGLIGIBLE	LOW	\$0	UNLIKELY	NEGLIGIBLE	LOW	0		Scope	Structural Design	Project Cost & Schedule
						Additional simula	tions have been	performed with ERD												
CR-7	Additional Simulation	s	Requirement of ad	ditional simulations.		input on run matr supplemental accept	rices. Results acc work considered ted methodology	cepted by ATR. Risk on negligible based on and results.	VERY UNLIKEL	(NEGLIGIBLE	LOW	\$75.000	VERY UNLIKELY	MARGINAL	LOW	2			Project Manager	Project Cost & Schedule
		-				The possibility of	this outcome way	s examined in the stur	hz											
						and the project is this outcome. Sh	s designed to mir ould it occur, rep	nimize the likelihood o airs to structures wou	f d											
					r	be required and i may be required.	minor adjustmen Catastrophic imp	ts to channel geometr acts are not anticipati	/ id.											
CR-8	Jetty impact from dre	dging	Risk	to jetty		Keler to Engineer	report.	tachiment o for detaile	VERY UNLIKEL	SIGNIFICANT	LOW	\$1,600,000	VERY UNLIKELY	MARGINAL	LOW	2		Scope	Project Sponsor(s)	Project Cost & Schedule
						Sand hypassing in	2007 and 2010	hy the USACE and in												
					4 44	2011 by USAF, rer Sand could accum	moved sand accu ulate and shoal r	umulation at north jetty north bank of channel												
					F	prior to future perior less than 60,000 c	odic bypass even y/yr and would e	ts; but amount would xist for 1 or 2 years at	be											
CR-9	Increase dredging fro Jetty shoaling.	m	Sand shoaling	g around N. Jetty	r c	over last 10 years bypassing results i	and USACE corr in Likelihood cha	nged to unlikely.	UNLIKELY	MARGINAL	LOW	\$600,000	UNLIKELY	MARGINAL	LOW	2			Project Sponsor(s)	Project Cost & Schedule
										1										
						265 historic and and analyzed du	8 supplemental I ring the soil inve	borings were reviewer stigation. Geotechnics												
						properties of prop considered well u	posed deepening Inderstood. How	and widening areas ever, additional boring	s											
CR-10	Unanticipated soil co	nditions	Limited Geol	technical Data		and soils report property bulkhe facilitate final	may be needed a ead and dike relo design of these	aiong the proposed Al ocation during PED to structural features	LIKELY	NEGLIGIBL F	MODERATE	\$50.000	LIKELY	MARGINAI	MODERATE	2	Uniform		Technical Lead	Project Cost
						AF upland pro	perty and overall	I channel bathymetry								-		1		
CR-11	Survey information		Scope may not be	properly represente	d	pi	ossible price adju	ustment	LIKELY	MARGINAL	MODERATE	\$250,000	LIKELY	MARGINAL	LOW	2	Uniform		Project Manager	Project Cost & Schedule
					ŀ	Hurricane shoaling	g could be on ord	ler of 300,000 cy, sligh	dy X0											
						cy). Impacts to na be on order of 50	avigation channe 0,000 cy. Thoug	I, beyond the trap, co h not expected to clos	ild e											
						channel, this cl dredging, followed	hannel shoaling v I by dredging of t	would require prompt rap when possible. T	ne											
	Tropical storm during					will occur regard represents a c	snoanny and ti dless of the proje ost and obligatio	ct improvements, and n independent of the												
	construction causes	and/or				project. Remo temporarily div	oval of this shoal ert dredging reso	ing would, however, purces and potentially												
CR-12	impacts navigation ch	nannel.	Tropical st	orm damage		iengthen schedu	ue. model as hal worst, 300KC	IT the production at the CY.	VERY UNLIKEL	CRITICAL	LOW	\$3,200,000	VERY UNLIKELY	SIGNIFICANT	LOW	3-6 MO	1		Contracting	Project Cost & Schedule

00.40	Permits, licenses, submittal		Costs are estimated at \$75,000 based on previous flushing analysis performed in Canaveral Harbor. Anticipate requests for additional information from state regulatory			1.014	0.00		00000700007					
CR-13a	approvais	Regulatory approval delays	agencies during permitting.	LIKELY	NEGLIGIBLE	LOW	\$75,000	LIKELY	SIGNIFICANT	HIGH	ь	Uniform	Project Manager	Project Cost & Schedule
			ODMDS disposal concurrence from EPA required. MPRSA Section 103 Tier III testing and evaluation for new											
CR-13b	Permits, licenses, submittal	Regulatory approval delays	work dredged material from non-exclusionary locations have historically demonstrated general compliance with disposal criteria. Costs are estimated at \$300,000 based on recent efforts in Canaveral Harbor	LIKELY	MARGINAI	MODERATE	\$300.000	LIKELY	SIGNIFICANT		6	Uniform	Project Manager	Project Cost & Schedule
OIT 100	аррготав	roganiory approval datayo	Environmental work windows could extend work period if	LINEL	in a convic	MODEIGTE	\$555,555	LINEET			0	onioni	ridjede manager	
	F . (required by resource agencies. Currently, standard manatee, sea turtle, and Right whale protection measures and compliance with the Canaveral Harbor light											
CR-14	Environmental work windows	Regulatory constraints on dredging	management plan do not restrict working hours for dredging projects.	UNLIKELY	MARGINAL	LOW	<1%	UNLIKELY	MARGINAL	LOW	1			Project Cost & Schedule
			A similar event in 1997 caused a 1 year delay of sand											
			was found in the dredge area north of the inlet. Less likely to occur further south, in inlet/entrance area. Also, more is											
CR 15	Rocket explosion deposits solid rocket motor fuel in	Processes of colid realist mater fuel	since the 1997 event. Cost would be limited to dredging areas outside the jetties (approximately half the total ODMDS disperal volume pet the quantity estimate)		SIGNIEICANT	LOW	\$2.400.000		SIGNIEICANT	LOW	0	Uniform	Project Managor	Project Cost & Schodule
GR-13	uleuge alea	Presence of solid rocket motor ruler	Comos disposa volume per tre quantity estimate).	VERTONEIREET	SIGNIFICANT	LOW	\$2,400,000	VENTONEIREET	SIGNIFICAN	LOW	8	Unioni	r loject manager	
CR-16	Dredging - Turtles	Presence of turtles	If turtle taken can cause dredging to stop	LIKELY	NEGLIGIBLE	LOW	\$75,000	LIKELY	NEGLIGIBLE	LOW	<1			Project Cost & Schedule
CR-17	Permitting – Turtles	Permitting for turtles	NMFS may require additional monitoring to prevent sea turtle take during removal of the riprap	UNLIKELY	MARGINAL	LOW	\$100,000	UNLIKELY	NEGLIGIBLE	LOW				Project Cost & Schedule
			Shoreline rip-rap along AF property has been reported in BA to NMFS as foraging habitat by sea turtles (Dial Cordy											
CR-18	Permitting - Turtles	Habitat Replacement	2007). Report indicates relocation of rip-rap with result in temporary loss of habitat considered not likely to affect sea turtles due to other available habitat in the area.	UNLIKELY	MARGINAL	LOW	\$0	UNLIKELY	NEGLIGIBLE	LOW	0		Resource Management	Project Cost & Schedule
CR 10	Dradaing Manataa	Descrete of Manalase				1.011	67F 000			1.014				Desired Cost & Cobodula
GR-19	Dreuging – Manatee	Presence of Manatees	NMFS requires at-sea monitoring during vessel transits to	UNLIKELT	NEGLIGIBLE	LOW	\$75,000	UNLIKELT	NEGLIGIBLE	LOW	<1			Project Cost & Schedule
CR-20	Dredging - Whales	Presence of whales	ODMDS to ensure potential vessel strikes are minimized. No impacts due to dredging disposal operations have been previously reported.	VERY UNLIKELY	NEGLIGIBLE	LOW	\$0	VERY UNLIKELY	NEGLIGIBLE	LOW	0			Project Cost & Schedule
			Potential for some dredged material from military property to be evaluated unsuitable for ODMDS disposal during											
			Section 103 analysis. Historically some isolated areas in the upper MTB have not passed testing criteria due to unkown anthropogenic or synergistic effects requiring											
			alternate (upland) disposal methods. Recently, however, all DMU's within the Civil Works maintenance dredging project limits have been approved for ODMDS disposal.											
			Survey areas 8,9A,9B bound the military property. These locations are 876,801 CY of proposed ODMDS disposal. Assuming 5% of ths material (43,840 CY) may be deemed											
CR-21	Dredged Material	Unsuitable dredged material for ODMDS disposal	unsuitable, it would require upland placement. A contingent excavation costs from the MII cost estimate is applied for this volume.	UNLIKELY	MARGINAL	LOW	>\$447200	UNLIKELY	NEGLIGIBLE	LOW	1			
CR-22	Site Access	DOD restricted access property	Could lead to schedule delays if access is constrained for security purposes.	UNLIKELY	NEGLIGIBI F	LOW	\$0	UNLIKELY	NEGLIGIBI F	LOW	1		Construction	Project Cost & Schedule
			···· > Forkeren											
CR-23	Unknown utilities	Existing utilities unforeseen	Could lead to work stoppage, costs for repairs	UNLIKELY	NEGLIGIBLE	LOW	\$11,500	UNLIKELY	NEGLIGIBLE	LOW	0.5		 Construction	Project Cost & Schedule
CR-24	Unidentified hazardous waste	Possibility of hazardous waste	Could stop work and require remediation	VERY UNLIKELY	SIGNIFICANT	LOW	\$1,000,000	VERY UNLIKELY	SIGNIFICANT	LOW	3-6 MO	Uniform	Project Manager	Project Cost & Schedule
CR-25	Consideration for standard weather impact	Weather affecting production	Impacts production rate provided in "Checkrate"	UNLIKELY	NEGLIGIBLE	LOW	\$0	UNLIKELY	MARGINAL	LOW			Construction	Project Cost & Schedule
CR-26	Labor disruptions	Labor issues	Self explanatory	UNLIKELY	NEGLIGIBLE	LOW		UNLIKELY	MARGINAL	LOW			Construction	Project Cost & Schedule
CR-27	Existence of debris	Debris other than hazardous	dredge area. Depending on the dredge method or equipment, dredging activities might get delayed.	VERY LIKELY	MARGINAL	MODERATE	\$185,000	VERY LIKELY	NEGLIGIBLE	LOW	1		Cost Engineering	Project Cost & Schedule
			Slope Sloughing might cause the dredge contractor to remove more material than anticipated. Contractor may											
CR-28	Slope Sloughing	Sloughing of material	have to dredge wider or make more passes to achieve design depth at the edge of project.	UNLIKELY	MARGINAL	LOW	\$0	UNLIKELY	MARGINAL	LOW	2		Cost Engineering	Project Cost & Schedule

CR-29	Dredging scope/design	Design does not capture all anticipated work	Result in change orders/claims for additional dredging in excess of 200,000CY	UNLIKELY	SIGNIFICANT	MODERATE	\$1,000,000	UNLIKELY	SIGNIFICANT	MODERATE	4 - 6 MO	Uniform	Cost Engineering	Project Cost & Schedule
			10 hadrente i antigente based en desdeine industry											
	Estimate reasonableness of		experience, current fleet availability, and local knowledge of											
CR-30	crews and productivities	Productivity assumptions	site conditions. Impact contingency of 2% of dredging costs if market conditions constrain availability.	UNLIKELY	MARGINAL	LOW	\$375,000	UNLIKELY	NEGLIGIBLE	LOW	0.5		Cost Engineering	Project Cost & Schedule
	Consideration and local													
	quotes for special													
CR-31	tugs, diving)	Local equipment quotes	Minor item for dredging projects	UNLIKELY	NEGLIGIBLE	LOW	\$0	UNLIKELY	NEGLIGIBLE	LOW	0		Cost Engineering	Project Cost & Schedule
F	Programmatic Risks (Externa	I Risk Items are those that are generated, cause	ed, or controlled exclusively outside the PDT's sph	ere of influence	e.)		-	1	1		-	1		[
	(delayed, incremental or full		Demobilize, remobilize, additional scope/shoaling, delay of											
PR-1	funding)	Funding delay	initial funding	UNLIKELY	SIGNIFICANT	MODERATE	\$2,000,000	UNLIKELY	CRITICAL	MODERATE	24	Triangular	Contracting	Project Cost & Schedule
	Priorities change on existing													
PR-2	program	Priorities	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
PP-3	Local communities pose	Loools	Solf evaluation		MARGINAL	LOW			MARGINAL	LOW			Contracting	Project Cost & Schodulo
1105		LUCAIS	Seil explanatory	UNLIKELT	MARGINAL	LOW		UNLIKELT	MARGINAL	LOW			Contracting	Pibject Cost & Schedule
PR-4	Loss of public trust / goodwill	Trust	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
	Political factors change at													
PR-5	local, state or federal	Political changes	Self explanatory	UNLIKELY	NEGLIGIBLE	LOW		UNLIKELY	NEGLIGIBLE	LOW			Contracting	Project Cost & Schedule
	Stakeholders request late													
PR-6	changes	Late changes	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
PR-7	New stakeholders emerge and demand new work	Growth through politics	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
	Influential stakeholders													
	request additional needs to													
PR-8	serve other purposes	Growth through politics	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
DR 0	Political opposition / threat	Deliving income	Coll analasatas		MARCINAL	1.011			MADOINAL	1.0111			Desired Manager	Design Cost & Cabadala
FR-3	of lawsuits	Political issues	Sell explanatory	UNLIKELT	MARGINAL	LOW		UNLIKELT	MARGINAL	LOW			Project Manager	Project Cost & Schedule
	Stakeholders choose time													
PR-10	and / or cost over quality	Quality jeopardized	Self explanatory	UNLIKELY	MARGINAL	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
	Acts of God (seismic													
	events: volcanic activity,													
	earinquakes, tsunamis; or severe weather: freezing,													
PR-11	flooding or hurricane)	Force majeure	Self explanatory	UNLIKELY	NEGLIGIBLE	LOW		UNLIKELY	MARGINAL	LOW			Contracting	Project Cost & Schedule
	Federal government does													
	not fund Corps to construct sand bypass project in		Will result in significant shoaling of sand around and											
PR-12	future.	Sand shoaling	cy/yr.	UNLIKELY	MARGINAL	LOW	\$600,000	UNLIKELY	MARGINAL	LOW	3		Project Manager	Project Cost & Schedule

*Likelihood, Impact, and Risk Level to be verified through market research and analysis (conducted by cost engineer).

1. Risk/Opportunity identified with reference to the Risk Identification Checklist and through deliberation and study of the PDT.

2. Discussions and Concerns elaborates on Risk/Opportunity Events and includes any assumptions or findings (should contain information pertinent to eventual study and analysis of event's impact to project).

3. Likelihood is a measure of the probability of the event occurring -Very Unlikely, Unlikely, Moderately Likely, Likely, Likely, Very Likely. The likelihood of the event will be the same for both Cost and Schedule, regardless of impact.

4. Impact is a measure of the event's effect on project objectives with relation to scope, cost, and/or schedule -Negligible, Marginal, Significant, Critical, or Crisis. Impacts on Project Cost may vary in severity from impacts on Project Schedule.

5. Risk Level is the resultant of Likelihood and ImpactLow, Moderate, or High. Refer to the matrix located at top of page.

6. Variance Distribution refers to the behavior of the individual risk item with respect to its potential effects on Project Cost and Schedule. For example, an item with clearly defined parameters and a solid most likely scenario would probably follow a triangular or normal distribution. A risk item for which the PDT has little data or probability of modeling with respect to effects on cost or schedule (i.e. *anyone's guess*) would probably follow a uniform or discrete uniform distribution. 7. The responsibility or POC is the entity responsible as the Subject Matter Expert (SME) for action, monitoring, or information on the PDT for the identified risk or opportunity.

8. Correlation recognizes those risk events that may be related to one another. Care should be given to ensure the risks are handled correctly without a "double counting."

Affected Project Component identifies the specific item of the project to which the risk directly or strongly correlates.
Project Implications identifies whether or not the risk item affects project cost, project schedule, or both. The PDT is responsible for conducting studies for both Project Cost and for Project Schedule.

11. Results of the risk identification process are studied and further developed by the Cost Engineer, then analyzed through the Monte Carlo Analysis Method for Cost (Contingency) and Schedule (Escalation) Growth.

Likelihood	Probability of occurance (range)
Very Unlikely	1-15%
Unlikely	15%-35%
Moderately Likely	35%-65%
Likely	65%-85%
Very Likely	85%-99%
These occurrence ranges we	re used to convert qualitative statements of

occurrence to quantified ranges of probability

APPENDIX B – COST AND SCHEDULE MODEL

COST MODEL RESULTS MODEL MODEL MODEL	COST MODEL RESULTS		SCHEDULE MODEL RESULTS	TOTAL SCHED MODEL
--	--------------------	--	------------------------	----------------------

Sum of assumptions	0.0 MO	0.0 MO	Total		
			Schedule		
		Half of duration	Forecast		
		assumed elapsed			
Project forecast	0.0 MO	0.0 MO			
0%	-2.0 MO	0.0 MO	-2.0 MC		
5%	4.6 MO	0.0 MO	4.6 MO		
10%	6.0 MO	0.0 MO	6.0 MO		
15%	6.9 MO	0.8 MO	7.8 MO		
20%	8.2 MO	0.9 MO	9.1 MO		
25%	9.5 MO	1.0 MO	10.5 MO		
30%	10.8 MO	1.1 MO	11.9 MO		
35%	11.8 MO	1.1 MO	12.9 MO		
40%	12.5 MO	1.2 MO	13.7 MO		
45%	13.1 MO	2.4 MO	15.4 MC		
50%	13.6 MO	2.9 MO	16.5 MC		
55%	14.2 MO	3.2 MO	17.4 MO		
60%	15.0 MO	3.5 MO	18.4 MO		
65%	15.8 MO	3.7 MO	19.6 MO		
70%	16.8 MO	4.1 MO	21.0 MO		
75%	17.8 MO	5.0 MO	22.8 MO		
80%	18.9 MO	5.5 MO	24.3 MO		
85%	20.4 MO	5.8 MO	26.2 MO		
90%	23.5 MO	6.9 MO	30.4 MO		
95%	27.6 MO	7.9 MO	35.6 MO		
100%	42.6 MO	11.8 MO	54.3 MO		
Minimum	-2.0 MO	0.0 MO			
Maximum	42.6 MO	11.8 MO			
Trials	10,000	10,000			
Mean	14.2 MO	3.1 MO			

Sum of assumptions		0
Estimated value		35,555,343
Project forecast		35,555,343
0%	20 220 624	17 510/
0%	29,330,021	-17.31%
0% 10%	33,401,002	-0.09%
10%	34,470,091	-3.03%
20%	35 886 832	-0.93%
2070	36 371 605	2 30%
30%	36 793 645	3 48%
35%	37 251 /30	4 77%
40%	37,231,430	6.05%
45%	38 216 022	7 48%
50%	38.698.334	8.84%
55%	39.153.944	10.12%
60%	39.589.016	11.34%
65%	40.090.933	12.76%
70%	40,570,641	14.11%
75%	41,143,380	15.72%
80%	41,755,842	17.44%
85%	42,454,937	19.41%
90%	43,333,586	21.88%
95%	44,646,573	25.57%
100%	51,105,944	43.74%
Minimum	29,330,621	
Maximum	51,105,944	
Trials	10,000	
Mean	38,809,047	

TOTAL PROJECT COST CALCULATIONS - ESC

TOTAL PROJECT COST CALCULATIONS + ESC

ESCALATION COST IMPACT CALCULATIONS

Escalation	Project cost	Escalation	Percentile	Total Cost	Derived	Percentile	*Total Cost	*Derived
Per Month at	less gals fuel	Cost for		including cost risk	contingency %		including cost risk	contingency %
1.61%	1,288,808	Percentile		and cost of	on base estimate		cost of schedule	on base estimate
Per Year	at \$ per gal (in est)			schedule risk	of		risk and estimate	(with esc) of
(fuel excluded)*	\$3.05			(no estimate esc)	35,555,343		escalation	35,903,131
-0.267%	25,399,757	-67,770	0%	29,262,851	-17.70%	0%	29,610,639	-17.53%
0.618%	29,530,818	182,617	5%	33,644,299	-5.37%	5%	33,992,087	-5.32%
0.809%	30,545,827	247,246	10%	34,723,938	-2.34%	10%	35,071,726	-2.32%
1.045%	31,288,354	327,014	15%	35,546,233	-0.03%	15%	35,894,021	-0.03%
1.225%	31,955,967	391,596	20%	36,278,428	2.03%	20%	36,626,216	2.01%
1.418%	32,440,741	460,128	25%	36,831,733	3.59%	25%	37,179,521	3.56%
1.608%	32,862,781	528,419	30%	37,322,064	4.97%	30%	37,669,852	4.92%
1.747%	33,320,565	582,263	35%	37,833,692	6.41%	35%	38,181,480	6.35%
1.854%	33,776,896	626,138	40%	38,333,898	7.81%	40%	38,681,686	7.74%
2.093%	34,285,158	717,597	45%	38,933,619	9.50%	45%	39,281,407	9.41%
2.235%	34,767,469	777,097	50%	39,475,431	11.03%	50%	39,823,219	10.92%
2.362%	35,223,079	832,143	55%	39,986,087	12.46%	55%	40,333,875	12.34%
2.503%	35,658,152	892,454	60%	40,481,471	13.85%	60%	40,829,259	13.72%
2.658%	36,160,069	961,054	65%	41,051,987	15.46%	65%	41,399,775	15.31%
2.851%	36,639,777	1,044,645	70%	41,615,286	17.04%	70%	41,963,074	16.88%
3.098%	37,212,516	1,153,006	75%	42,296,386	18.96%	75%	42,644,174	18.78%
3.315%	37,824,978	1,253,780	80%	43,009,622	20.97%	80%	43,357,410	20.76%
3.572%	38,524,073	1,376,102	85%	43,831,039	23.28%	85%	44,178,827	23.05%
4.165%	39,402,721	1,641,194	90%	44,974,780	26.49%	90%	45,322,568	26.24%
4.884%	40,715,708	1,988,493	95%	46,635,066	31.16%	95%	46,982,854	30.86%
7.558%	47,175,080	3,565,583	100%	54,671,528	53.76%	100%	55,019,316	53.24%
*Fuel escalation is co	nsidered a separate	risk (see: CR-5)	This table w	yould be used if continu	gency % is to be	This table wo	ould be used if continu	ency % is to be
1.61%/vr escalation h	ased on published ta	able for feature	figured prio	r to the \$347.788 esca	alation in the	figured after	to the \$347,788 esca	lation in the
ine rouge coordination b			estimate			estimate		

Risk No.	Risk/Opportunity Event	MODEL EXPE AN	ING, STUDY A RT OPINION D EVENT CAL	AND RESEAR INFORMATIO CULATIONS	CH, N		COS	ST MODELING				SCHEDULE	NODELING	
с	ontract Risks (Internal Risk	Study, Research, Basis of Expert Opinion	Prob of Occur.	Event occur?	Short Name	Range Low	Range High	CB Cost Assumption	Cost Trial Result	Range Low	Range High	CB Sched Assumption	Start Impact Result	Midpoint Impact Result
CR-1	Innovative project construction	Production rates are presented by J. McWilliams, P.E., refer to CR-1	0.08	0.08	Innovation	(\$1,000,000)	(\$500,000)	-750000	\$0					
CR-2	Section 203 assignment to USACE	uncertain range of 2% to 5%	\ge	\times	\geq	\ge	\geq	\ge	\geq	\ge	\times	\ge	\ge	\ge
CR-3	Incomplete Studies	Based on \$150 average hourly rate for additional studies.												
CR-4	Market conditions and bidding competition	Market tends to be boom or bust, forcing wide swings in response to equipment supply and market demand.	0.75	0.75	Bid Market	(\$4,000,000)	\$6,000,000	1000000	\$0	-2.0 MO	6.0 MO	2.0 MO	0.0 MO	\ge
CR-5	Unexpected escalation on key materials	DOE forecast for schedule period suggests only moderate escalation, horever the volatility of desel fuel deserves consideration (Link to DOE – note: prices shown includes approx 3m gai of fuel. Range considered is -\$1 to +1.50	0.75	0.75	Material escalation	(\$3,000,000)	\$4,500,000	750000	\$0					
CR-6	Bulkhead Stability													
CR-7	Additional Simulations	\$75,000 and 2 month time of performance based on previous simulation effort by STAR Center												
CR-8	Jetty impact from dredging	4500 tons of boulders for repair at \$150/t plus \$450K mobilization plus 15% EDSA plus 20% contingency. Estimate prepared by Kevin Bodge, Ph.D., P.E.												
CR-9	Increase dredging from Jetty shoaling.	Based on an estimated unit rate of \$10 per CV from sand by-pass dredging completed in this location previously. Source: Kevin Bodge, PhD.,P.E.					1							
CR-10	Unanticipated soil conditions	Based on previous cost and time estimates for similar work completed for this project. Escatation Impact is considered the only schedule impact cost exposure as cost is captured in historical.	0.75	0.75	Soil Conditions	\$25,000	\$75,000	50000	\$0	1.5 MO	2.5 MO	2.0 MO	\times	0.0 MO
CR-11	Survey information	Based on survey costs from previous efforts.	0.75	0.75	Survey information	\$125,000	\$375,000	250000	\$0					

	Tropical storm during construction causes sediment trap to infill and/or impacts exuitation												
CR-12 CR-13a	Permits, licenses, submittal	Cost and schedule estimates are based on previous work performed by ANAMAR and CH2M HLL in Canaveral Harbor for the Local Sponsor in non-federal dredging projects	0.75	0.75	Regulatory approvals	\$250,000	\$500,000	375000	\$0	5.0 MO	7.0 MO	6.0 MO	0.0 MO
CR-13b	Permits, licenses, submittal approvals	Cost and schedule estimates are based on previous work performed by ANAMAR and CH2M HILL in Canaveral Harbor for the Local Sponsor in non-federal dredging projects	0.75	0.75	Regulatory approvals	\$250,000	\$500,000	375000	\$0	6.0 MO	9.0 MO	7.5 MO	0.0 MO
CR-14	Environmental work windows						·						
CR-15	Rocket explosion deposits solid rocket motor fuel in dredge area	Cost increase and delay is presented as a contract contingency allowance if fuel is encountered in the approximately 1.5 MCV of dredging to occur outside the jetties and requires additional monitoring.	0.25	0.25	Rocket motor fuel	\$2,000,000	\$2,800,000	2400000	\$0	8.0 MO	10.0 MO	9.0 MO	0.0 MO
CR-16	Dredging - Turtles	Based on a \$3,125 dredging hourly standby rate for up to 24 hours. Based on cost for similar monitoring performed in Canaveral Herbor											
	- Turues	penormos in oditavci di natrodi.											
CR-18 CR-19	Permitting - Turtles Dredging – Manatee	Based on a \$3,125 dredging hourly standby rate for up to 24 hours.											
CR-20	Dredging - Whales												

1			1			1				Ì				1
CR-21	Dredged Material	Based on \$10.20 unit rate for excavation provided in MII estimate.												
			1											
CR-22	Site Access		1											
		Applied as a 20% contingency on												
CR-23	Unknown utilities	101453205240) from MII cost estimate.			1		1						<u> </u>	1
CR-24	Unidentified hazardous	Applied as 5% contingency of total dredging costs	0.25	0.25	Hazardous Waste	\$421 413	\$842 825	632119 0875	\$0	3.0 MO	6.0.100	4.5 MC	$\left \right>$	0.0 MO
0.1121	Consideration for standard		0.20	0.20							0.0 MO	4.5 MG		0.0 MO
CR-25	weather impact	Applied as 5% contingency of total dredging costs.												
00.00	l -h d'													
CR-26	Labor disruptions									1				
CR-27	Existence of debris	Applied as 1% of overall dredging costs.	0.25	0.25	Existence of debris	\$0	\$250,000	125000.125	\$0					
CR-28	Slope Sloughing													
		Based on 200.000 CY at \$5.42 dredging											\searrow	
CR-29	Dredging scope/design	unit rate provided in "Checkrate" and MII.	0.25	0.25	Dredging scope/design	\$722,667	\$1,084,000	903333.3333	\$0	4.0 MO	6.0 MO	5.0 MC	\sim	0.0 MO
CR-30	Estimate reasonableness of crews and productivities	f												
	Consideration and local													
	quotes for special													
CR-31	tugs, diving)													
P	rogrammatic Risks (Extern													
	Adequacy of project	Range of 3 to 24 months depending on												\sim
PR-1	incremental or full funding)	approval cycle availability, MODELED AS TRIANGULAR (LOW, LOW, HIGH)	0.25	0.25	Funding adequacy	\$250,000	\$2,000,000	833333.3333	\$0	3.0 MO	24.0 MO	10.0 MC	0.0 MC	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Priorities change on													
PR-2	existing program	-												
PR-3	Local communities pose objections													
	Loss of public trust /													
PR-4	goodwill	4												
PR-5	Political factors change at local, state or federal													
	Stakeholders request late]												
PR-6	changes	4												
	New stakeholders emerge													
PR-7	and demand new work	4												
	Influential stakeholders request additional needs to													
PR-8	serve other purposes	J												

PR-	Political opposition / threat of lawsuits		
PR-	Stakeholders choose time 0 and / or cost over quality		
PR-	Acts of God (seismic events: volcanic activity, earthquakes, tsunamis; or severe weather: freezing, 1 flooding or hurricane)		
PR-	Federal government does not fund Corps to construct sand bypass project in 2 future.	Based on an estimated unit rate of \$10 per CV from sand by-pass dredging completed in this location previously. Source: Kevin Bodge, PhD.,P.E.	

APPENDIX C - MARKET RESEARCH

PORT CANAVERAL DEEPENING/WIDENING HOPPER DREDGE CONCEPTUAL ESTIMATE SECTIONS 13-OR, 12-MRW, 11-MR, 9-B

Back to Register

Volumes	Grade	OD		Total]		
13-OR	-	629,041		629,041			
12. 11. 9	796,605	602,918		1,399,523			
Total	796,605	1,231,959		2,028,564			
Removed	796,605	1,231,959		2,028,564	(As	sume pay plus	unpaid = total available)
Assumptions: (Generic Large Ho	opper Dredge				7,600	CY Hopper Capacity (Water)
Load Ratio (hop	per to soft clay)	:		30%			
Mud Capacity/H	Hopper			2,280	СҮ		(Does not assume agitation dredging)
Mud Production	n Rate			4,200	CY/	'NOH	(33" suction diameter)
Production Det	aile						
Loading				33	Mir	nutes	
Turning	2 each	5 min		10	Mir	nutes	
Sail Loaded	8 mi	10 mph		48	Mir	nutes	
Sail Light	8 mi	12 mph		40	Mir	nutes	
Discharge/Was	hout			10	Mir	nutes	
Total Cycle				141	Mir	nutes]
5				2.3	Но	urs	
Production (Ne	t)			973	CY/	'NOH	1
Efficiency (NOH)	90%		22	Но	urs/Day	Net Operating Hours
Total Productio	n/Day (Net)			21,020	CY/	'Day	
							-
Cost Details:	d		•	70.000	D	Devi	
Daily Cost (Dred	age)		\$	78,000	Per	Day	
Supervision/Fie	Id OH		\$ \$	3,612	Per	Day	From Dredge Estimate
Survey Vessel			\$	1,072	Per	Day	From Dredge Estimate
Subtotal		04.494	\$	82,684	Per	Day	
		24.4%	\$	20,175	Per	Day	(16.0% OH and 8.4% Profit as per estimate)
Total Cost/Day			\$ •	102,859	Per	Day	
TOTAL COST/CY			\$	4.89			
Mob/Demob	4	Days	\$	102,859	\$	411,434	
Dredge Cost	2,028,564	CY	\$	4.89	\$	9,919,678	_
TOTAL COST, H	OPPER DREDGE	:			\$	10,331,112	
Clamshell Dred	ge Cost				\$	11,337,360	From Dredge Estimate
Savings by Hop	per Dredge:				\$	1,006,248	ן
				Say:	\$	1,000,000	

Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment N

USCG Coordination on Navigation Aids (Range Markers)

December 7, 2007

Commander, 7th Coast Guard District (DPW) Attn: Mr. Joe Embres 909 SE 1^{er} Avenue Miami, FL 33131

RE: Port Canaveral Section 203 Feasibility Study – Navigation Improvements & Aids

A study of potential navigation improvements at Port Canaveral, Florida has been prepared by the Canaveral Port Authority (CPA) under the authority granted by Section 203 of Water Resources Development Act (WRDA) of 1986 (P.L. 99-662). The study evaluated the feasibility of improvements to the existing Federal navigation project at Port Canaveral and identified the solution that best meets the economic, environmental, physical, and social needs of the region and the nation.

Since the last major navigation improvements to the Federal navigation project at Port Canaveral were completed by the Corps of Engineers in 1995, the use of the Port by larger and deeper cruise ships and cargo vessels has resulted in a need to provide deeper and wider channels and expanded turning basins. There are great opportunities for increasing the efficiency of existing operations by providing deeper and wider channels that allow larger cruise ships to use the Port, and larger cargo vessels to carry greater loads. There are vessels presently calling at Port Canaveral that could benefit from deeper, wider channels, as well as new vessels currently on order that would use Port Canaveral if existing channels were improved.

Since construction of the 400-ft wide channel in 1995 and the increase in ever larger cruise ship traffic homeported at Port Canaveral's West Basin, the pilots have made several requests to the U.S. Coast Guard to provide outbound transit navigation aids (range structures) similar to the inbound range structures presently located west of the West Basin and aligned with the 400-ft channel centerline. To date, no federal funds have been available for the range structures and nothing has been constructed.

In addition to deepening all channel reaches, the Section 203 Feasibility Study proposes to widen the federal channel inside the jetties from 400 to 500 ft. A 100-ft widener is to be constructed on the north side of the existing channel between Middle and Trident Basins. Achieving the 100-ft widening for the west access channel, west of the Middle Basin, results from redefining the northern channel boundary 12 ft north of the existing northern boundary and widening the channel by 88 ft along the south side of the channel, deepening a portion of the barge canal.

Mr. Joe Embres/7th Coast Guard District December 7, 2007 Page 2

The enclosures depict and describe all of the features of the preferred alternative for the federal navigation project including the location of the existing inbound and proposed outbound range structures relative to the existing 400-ft and proposed 500-ft channel centerlines. While the proposed project serves to further straighten the main east-west channels within Canaveral Harbor, the 500-ft channel centerlines in the vicinity of the inbound and proposed outbound range structures do not share the same alignment.

Irrespective of whether these aids to navigation are federally or non-federally funded, the federal project costs must include budgetary estimates of the cost to relocate and replace the inbound structures and to construct new outbound structures on the new channel alignment. It is our understanding that significant technology improvements in lights and powering may notably affect the design and therefore the construction cost of these structures as compared to any cost estimates prepared previously.

We respectfully request that an updated design and construction cost estimate be provided in support of this project at the Coast Guard's earliest convenience and no later than December 31, 2007, if at all possible.

The tentative project schedule for milestone completion is as follows:

Construction Authorization – October 2008; Engineering Design, Permitting, Construction Bid/Award – January 2010 Federal Project Construction – April 2011.

Should you have any questions or need additional information, please contact the undersigned at (321) 783-7831, ext 217. We look forward to your response.

Sincerely,

Jon O. Brazee, P.E. Deputy Executive Director, Chief Engineer Canaveral Port Authority

Encl

cc: Collins K. McKay, P.E. CH2M HILL, Cape Canaveral Office Consultant to the Canaveral Port Authority

McKay, Collins/CCG

From: Sent: To: Cc: Subject:	Joseph.B.Embres@uscg.mil on behalf of Embres, Joseph [Joseph.B.Embres@uscg.mil] Tuesday, June 17, 2008 9:07 AM McKay, Collins/CCG Pantelakos, Charlie FW: Status of Prot Canaveral navigation aids estimate
Sorry this is the be	st we can do at this time
Original Message From: Pantelakos, Cha Sent: Tuesday, June 2 To: Embres, Joseph Subject: RE: Status o	e arlie 17, 2008 8:19 AM of Prot Canaveral navigation aids estimate
Sir,	
I reviewed the aid Hammer in 06. The RRI estimate the remainin may be considered is cost less than 10K.	folders and spoke with the OIC of ANT Ponce. The RFL was rehab by CGC L was inspected in 07. Both structures are in very good condition. I ng service life of both structures to be 20 yrs. The only upgrade that converting the range to a 24 hour configuration. The upgrade would
v/r Charlie	
Original Message From: Embres, Joseph Sent: Monday, June 10 To: Pantelakos, Char Subject: FW: Status of	e 6, 2008 1:04 PM lie of Prot Canaveral navigation aids estimate
Can you help me with	this??
Original Message From: Collins.McKay@ Sent: Monday, June 10 To: Embres, Joseph Cc: Jdiamantides@dma- Subject: FW: Status o	e CH2M.com [mailto:Collins.McKay@CH2M.com] 5, 2008 12:40 PM -us.com of Prot Canaveral navigation aids estimate
Joe	
I know you are short- the "latest and great to the ASA/HQUSACE re Section 203 Feasibil:	-handed from your last email. However, we are trying to incorporate test" coordination we can get at this time from USCG since, according eview of our draft study, such coordination is a requirement of the ity Study program.
Have you been able to	o confer with your USCG colleagues regarding the two questions below?
Thanks again Joe.	
Collins	
Original Message From: McKay, Collins, Sent: Wednesday, June To: Joseph.B.Embres@u Subject: RE: Status o	e /CCG e 11, 2008 3:30 PM uscg.mil of Prot Canaveral navigation aids estimate
Joe	

Thank you for your prompt response to my last email. We are preparing to re-submit our

Section 203 Feasibility Study to the ASA/HQUSACE and are updating our project cost estimates. We have two question for you.

1. Your recent estimate included relocation of the existing inbound range. We initially assumed the USCG would take this opportunity to replace them due to age and newer technology available. We are not familiar with the USCG criteria for replacing range markers and wanted to check if you considered this option when making your estimate?

2. Has the one responsible estimator at USCG been able to work on this any further? And, if not, would it be possible over the next week?

As always, thank you for your assistance on our project.

Collins

----Original Message----From: Joseph.B.Embres@uscg.mil [mailto:Joseph.B.Embres@uscg.mil] Sent: Monday, May 05, 2008 9:37 AM To: McKay, Collins/CCG Subject: RE: Status of Prot Canaveral navigation aids estimate

Family emergency is still ongoing, just not as intense for me at this time, thanks for asking.

Getting exact cost for the navigation improvement is extremely difficult. If you would believe the CG has only 1 individual that can supply those numbers and he is responsible for not only the Seventh District but also the Eighth District. That said, we have come up with the following cost estimates (give or take 25%): Establish the outgoing range \$ 1.7 million, relocate the inbound range \$ 275K. We will continue our attempt to obtain more accurate figures.

We have looked at your plan for the reconfiguration of the channel and have some concerns regarding the changing center-line and how it affects CG standard methodology of marking channels. We will need to discuss this with pilots.

Please keep me informed as to the progress.

----Original Message----From: Collins.McKay@ch2m.com [mailto:Collins.McKay@ch2m.com] Sent: Thursday, May 01, 2008 4:11 PM To: Embres, Joseph Subject: RE: Status of Prot Canaveral navigation aids estimate

Joe

The last time we exchanged emails you had a family emergency. I hope that all is well with you and your family now.

If you are back to work, I was wondering if you have had a chance to re-kindle the cost estimating for the navigation aids at Port Canaveral. We have received comments from the Assistant Secretary of the Army on our Section 203 Feasibility Study. They have asked for documentation of our coordination with USCG re navigation improvements. If not, maybe there is a person you could pass it on to.

Again, I sincerely hope that all is well with you and look forward to working with you on this matter.

Collins

-----Original Message-----From: Joseph.B.Embres@uscg.mil [mailto:Joseph.B.Embres@uscg.mil] Sent: Wednesday, February 20, 2008 1:33 PM To: McKay, Collins/CCG Subject: RE: Status of Prot Canaveral navigation aids estimate

Sorry for the delay on this but I have had a major family medical emergency and have been out for several weeks. I should be back, at least for partial days, next week.

----Original Message----From: Collins.McKay@ch2m.com [mailto:Collins.McKay@ch2m.com] Sent: Monday, February 18, 2008 12:08 PM To: Embres, Joseph Subject: Status of Prot Canaveral navigation aids estimate

Mr. Embres

As consultant to the Canaveral Port Authority (CPA), I send you this email alerting you of a FedEx package coming your way. I want to make sure you understand its context. Back in December, CPA sent you a letter, with attachments, requesting an update of the construction cost estimate for the Port Canaveral navigation aids (inbound and outbound). After receipt of the letter you requested an overlay drawing at 1:10,000 scale to overlay onto the navigation chart for the location. The FedEx package you should receive today is that document.

We also inquire into the status of the estimate. We are a few days away from our response to the USACE comments on our draft Section 203 Feasibility Study and would like to incorporate the figures if you have them. At this time, we have estimated their cost by escalating the estimates from several years ago. This may not be accurate since technology has changed and escalation rates have not been steady with certain market factors such as fuel cost causing major fluctuations.

On behalf of the Canaveral Port Authority,

Thank you.

Collins

Collins K. McKay, P.E.

Picture (Metafile) 445 Challenger Road - Suite 130 Cape Canaveral, Florida 32920

Office: 321-799-1236 Fax: 321-799-1183 Email: cmckay@ch2m.com <mailto:cmckay@ch2m.com>

Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment O

Project Schedule

Rev Date: October 2012

			Harb	Schee Canaveral Po Section 203 Fea por Widening and	edule Port Authority easibility Study Id Deepening Project
ID	Task Name	Duration	Start	Finish	
1	CWRB BRIEFING	1 day	Wed 10/3/12	Wed 10/3/12	Juli [Aug]Sep[Oct [Nov[Dec]Jan]Feb[Mar]Apr]May]Jun] Juli [Aug]Sep[Oct [Nov[Dec]Jan]Feb[Mar]Apr]May]Jun] Juli [Aug]Sep[Oct 10/3/2012
2	CONSTRUCTION AUTHORIZATION. NEGOTIATE AND SIGN PROJECT COOPERATION AGREEMENT	89 days	Thu 10/4/12	Mon 12/31/12	
3	ENGINEERING DESIGN, CONSTRUCTION PLANS & SPECIFICATIONS.	150 days	Tue 7/31/12	Thu 12/27/12	
4	ENVIRONMENTAL PERMITS & EASEMENTS ACQUIRED.	210 days	Sun 10/14/12	Sat 5/11/13	
5	BIDDING & AWARD CONSTRUCTION CONTRACT.	81 days	Sun 5/12/13	Wed 7/31/13	
6	CONSTRUCTION INCLUDING MOBILIZATION/DEMOBILIZATION, UPLAND EXCAVATION, DREDGING AND NON-DREDGING WORK AS DESCRIBED IN ENGINEERING APPENDIX.	427 days	Thu 8/1/13	Wed 10/1/14	
7	CONSTRUCTION MIDPOINT	0 days	Fri 2/21/14	Fri 2/21/14	♦ 2/21/2014
Project: Canaveral Port Authority Date: Tue 10/9/12		Task C	Pro Mile	estone	Summary External Tasks Deadline Project Summary External Milestone
				Page	ge 1
Port Canaveral Section 203 Feasibility Study Engineering Appendix

Attachment P

Canaveral Ocean Dredged Material Disposal Site (ODMDS) Site Management and Monitoring Plan (SMMP)

CANAVERAL HARBOR OCEAN DREDGED MATERIAL DISPOSAL SITE

U.S. Army Corps of Engineers

SITE MANAGEMENT AND MONITORING PLAN

This page intentionally left blank

The following Site Management and Monitoring Plan for the Canaveral Harbor ODMDS has been developed and agreed to pursuant to the Water Resources Development Act Amendments of 1992 (WRDA 92) to the Marine Protection, Research, and Sanctuaries Act of 1972 for the management and monitoring of ocean disposal activities, as resources allow, by the U.S. Environmental Protection Agency and the U.S. Army Corps of Engineers.

Colonel Alfred A. Pantano District Commander Jacksonville District U.S. Army Corps of Engineers Jacksonville, Florida

Date

Gwendolyn Keyes Fleming Date Regional Administrator U.S. Environmental Protection Agency Region 4 Atlanta, Georgia

This plan is effective from the date of signature for a period not to exceed 10 years. The plan shall be reviewed and revised more frequently if site use and conditions at site indicate a need for revision.

CANAVERAL HARBOR OCEAN DREDGED MATERIAL DISPOSAL SITE SITE MANAGEMENT AND MONITORING PLAN

TABLE OF CONTENTS

Section

1.0 INTRODUCTION	1
1.1 Site Management and Monitoring Plan Team	1
2.0 SITE MANAGMENT	2
2.1 Disposal Site Characteristics	2
2.2 Management Objectives	3
2.3 Disposal History and Dredged Material Volumes	4
2.4 Dredged Material Characteristics	8
2.4.1 Previously Placed Materials	8
2.4.2 Anticipated Materials	8
2.4.3 Associated Beach Quality Materials	8
2.4.4 Dredge Material Quality Verification	9
2.5 Time of Disposal	9
2.6 Disposal Technique	9
2.7 Disposal Location	9
2.8 Permit and Contract Conditions	2
2.9 Permit Process	3
2.10 Information Management of Dredged Material Placement Activities1	3
3.0 SITE MONITORING	4
3.1 Baseline Monitoring	4
3.2 Disposal Monitoring	7
3 3 Post Discharge Monitoring	, 8
3.4 Material Tracking and Disposal Effects Monitoring	8
3.4.1 Summary of Results of Past Monitoring Surveys	9
3.4.2 Future Monitoring Surveys	0
3.5 Reporting and Data Formatting	4
3.5.1 Project Initiation and Violation Reporting	4
3.5.2 Disposal Monitoring Data	4
3.5.3 Post Disposal Summary Reports	4
3.5.4 Environmental Monitoring	4
4.0 MODIFICATION OF THE CANAVERAL HARBOR ODMDS SMMP2	5
5.0 REFERENCES	6

LIST OF FIGURES

<u>Figure No.</u>	<u>Title</u>	Page 1
Figure 1.	Canaveral Harbor ODMDS Location Map	3
Figure 2.	Volume and Sources of Dredged Material Disposed in the Canaveral Harbor	
	ODMDS	6
Figure 3.	Canaveral Harbor ODMDS Release Zones	12
Figure 4.	Canaveral Harbor ODMDS 2010 Bathymetry	17

LIST OF TABLES

<u>Table No.</u>	Title	Page Page
Table 1.	Dredged Material Disposal Projects 2002-2011	5
Table 2.	Annual Disposal Volumes 2002-2011	6
Table 3.	Projected Volume of Dredged Material Disposed in the Canaveral Harbor	
	ODMDS	7
Table 4.	Capacity Estimates Based on Existing Bathymetry and a Minimum Allowa	able
	Depth of 40 feet (MLLW)	8
Table 5.	Canaveral Harbor ODMDS Disposal Release Zones	10
Table 6.	Summary of Permit and Contract Conditions	13
Table 7.	Surveys Conducted at the Canaveral Harbor ODMDS	15-16
Table 8.	Canaveral Harbor ODMDS Monitoring Strategies and Thresholds for	
	Action	21-23

APPENDICES

Appendix B: Water Column Evaluations: Numerical Model (STFATE) Input Parameters

Appendix C: Template for MPRSA 103 Standard Permit Conditions

Appendix D: Template for Ocean Disposal Contract Specifications

Appendix E: Surveys and Studies Conducted at the Canaveral Harbor ODMDS (1984-2000)

Appendix A: Historic Dredged Material Disposal Volumes

2012 Canaveral Harbor ODMDS Site Management and Monitoring Plan

1.0 INTRODUCTION

It is the responsibility of the U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers (USACE) under the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972 to manage and monitor each of the Ocean Dredged Material Disposal Sites (ODMDSs) designated by the EPA pursuant to Section 102 of MPRSA. Section 102(c)(3) of the MPRSA requires development of a Site Management and Monitoring Plan (SMMP) for each ODMDS and review and revision of the SMMP not less frequently than every 10 years. The 1996 document, *Guidance Document for Development of Site Management Plans for Ocean Dredged Material Disposal Sites* (EPA/USACE, 1996) and the EPA Region 4 and USACE South Atlantic Division Memorandum of Understanding (EPA/USACE, 2007) have been used as guidance in developing this SMMP.

A SMMP was originally developed as part of the designation process and was published in August 1990 as part of, *Final EIS Canaveral Harbor, Florida Ocean Dredged Material Disposal Site Designation* (EPA, 1990). It was revised in 2001 to incorporate the provisions of the 1992 Water Resources Development Act, which requires the SMMPs to be reviewed and revised not less frequently than every ten years. This revision to the Canaveral Harbor ODMDS SMMP incorporates monitoring results since the 2001 SMMP and updates management strategies for the ODMDS based on those results. The SMMP provisions shall be requirements for all dredged material disposal activities at the site. All Section 103 (MPRSA) ocean disposal permits or contract specifications shall be conditioned as necessary to assure consistency with the SMMP.

<u>1.1 Site Management and Monitoring Plan Team.</u> An interagency SMMP team was established to assist EPA and USACE in developing the 2001 Canaveral Harbor ODMDS SMMP. The team consisted of the following agencies and their respective representatives:

- Jacksonville District U.S. Army Corps of Engineers
- State of Florida (Coastal Zone Management Office)
- EPA Region 4
- U.S. Navy
- Canaveral Port Authority
- National Marine Fisheries Service (NMFS)
- U.S. Coast Guard

These agencies will continue to be consulted in revisions to the Canaveral Harbor ODMDS SMMP. Other agencies such as the Bureau of Ocean Energy Management (BOEM) will be asked to participate where appropriate. The team will assist EPA and USACE on deciding on appropriate disposal practices, appropriate monitoring techniques, the level of monitoring, the significance of results and potential management options.

Specific responsibilities of EPA and the Jacksonville District Corps of Engineers are:

EPA: EPA is responsible for designating/dedesignating MPRSA Section 102 Ocean Dredged Material Disposal Sites, for evaluating environmental effects of disposal dredged material at these sites and for reviewing and concurring on dredged material suitability determinations.

USACE: The USACE is responsible for evaluating dredged material suitability, issuing MPRSA Section 103 permits, regulating site use and developing and implementing disposal monitoring programs.

2.0 SITE MANAGEMENT

Section 228.3 of the Ocean Dumping Regulations (40 CFR 220-229) states: "Management of a site consists of regulating times, rates, and methods of disposal and quantities and types of materials disposed of; developing and maintaining effective ambient monitoring programs for the site; conducting disposal site evaluation studies; and recommending modifications in site use and/or designation."

2.1 Disposal Site Characteristics

The designation of the Canaveral Harbor ODMDS can be found in 40 CFR 228.15(h)(10). Coordinates in the CFR are provided in NAD 27. They have been converted to NAD83 in this document. The Canaveral Harbor ODMDS is a 2 nautical mile (nmi) by 2 nmi area centered at 28°18.750'N latitude and 80°30.986'W longitude (NAD 83) or state plane coordinates 1,446,630 ft N and 811,757 ft E (NAD83). The site coordinates are as follows:

	Geog	graphic	State	Plane
	NA	D 83	(Florida East 090	1 U.S. Ft) NAD 83
North	28 ° 20.267'N	80° 31.170'W	1,455,819 N	810,734 E
East	28 ° 18.867'N	80° 29.236'W	1,447,378 N	821,139 E
South	28° 17.234'N	80° 30.870'W	1,437,446 N	812,416 E
West	28 ° 18.617'N	80° 32.736'W	1,445,788 N	802,376 E

The site (see Figure 1) lies in the Canaveral Bight on the shallow continental shelf, centered 4.5 nmi offshore Cocoa Beach, Florida, has a depth range of 12 meters (39 feet) to 17 meters (54 feet) and an area of 4 nmi². Physical and biological conditions at the ODMDS are described in,

Final Environmental Impact Statement Canaveral Harbor, Florida Ocean Dredged Material Disposal Site Designation (EPA, 1990).

Figure 1: Canaveral Harbor ODMDS Location Map.

<u>2.2 Management Objectives</u>. Appropriate management of an ODMDS is aimed at assuring that disposal activities will not unreasonably degrade or endanger human health, welfare, the marine environment or economic potentialities (MPRSA §103(a)). The primary objectives in the management of the Canaveral Harbor ODMDS are:

- Protection of the marine environment;
- Documentation of disposal activities and compliance; and
- Maintenance of a long term disposal alternative for dredged material generated in the

Canaveral, Florida vicinity

The following sections provide the framework for meeting these objectives to the extent possible.

<u>2.3 Disposal History and Dredged Material Volumes</u>. It is intended that the Canaveral Harbor ODMDS will be used for dredged material from the greater Canaveral, Florida vicinity. The three primary users of the Canaveral Harbor ODMDS are:

- U.S. Army Corps of Engineers for Civil Works (West and Middle Turning Basins, Entrance Channel (Cut 1), Inner Channel (Cuts 2 and 3), and the Barge Canal)
- U.S. Navy (Trident Access Channel and Turning Basin, Cut 1A, Entrance Channel Widener)
- Canaveral Port Authority (West and Middle Turning Basins and Berthing Areas, Sand Trap)

Since 1974, approximately 28 million cubic yards of dredged materials have been disposed in the Canaveral Harbor ODMDS (Tables 1 and 2 and Appendix A). Since 1990 (the date of site designation), approximately 14.6 million cubic yards of dredged materials have been disposed in the Canaveral Harbor ODMDS. Between 1974 and 1990, the average annual volume of dredged material disposed in the ocean was about 943,000 cubic yards and between 1990 and 2000 the average annual disposal volume was about 847,000 cubic yards. Over the last ten years, the annual average has decreased to 550,000 cubic yards per year. The reduction in annual volumes is due to a lack of significant construction dredging projects, beneficial use of material at the nearshore site and sand tightening of the north jetty structure, which has resulted in a reduction in the amount of shoaling. Figure 2 shows the yearly record of ocean dredged material disposal in the Canaveral Harbor ODMDS for the period 1990 through 2011.

Canaveral Harbor ODMDS SMMP

February 2012

					Maintenance/	Volume Disposed Per Zone		ne	ODMDS	
Dates	Dredging Area	Permitee	Permit No.	Characteristics	NewWork	North	South	East	West	Total
	CT5,CT10,NCP1-									
	2,NCP4,SCP1-									
8/25/02-9/14/02	2,WTB	СРА	200005030	silt with sand	Maintenance		91,079			91,079
6/15/02-8/28/02	Cuts2b&2c,MTB-4	CW/Navy	199904378		Maintenance			665,396		665,396
6/27/03-7/23/03	WTB, MTB, TAC, CT8	CPA	200005030	silt/clay/sand	Maintenance		133,804			133,804
	Cut1,WTB,WAC,Cut									
5/11/03-6/26/03	2b	CW/Navy	199904378	silt/clay/sand	Maintenance			526,500		526,500
6/15/04-8/1/04	Cut2,Cut1,TAC,TTB	CW/Navy	199904378	silt/clay	Maintenance			263,643		263,643
12/21/04-12/22/04	NCP3,CT8	CPA	200005030	silt/clay/sand	Maintenance		10,565			10,565
6/15/05-10/29/05	Cut2,Cut1	CW/Navy	199904378	silt/clay	Maintenance			417,995		417,995
	Cuts1b&1&2&3,MT			silts/clays/san						
6/20/06-11/11/06	В	CW		d	Maintenance			378,060		378,060
	WTB,CT8,CT10,CT5,									
9/10/06-11/2/06	NCP1/2	СРА	200005030		Maintenance	104,471				104,471
	South Jetty									
5/1/07-7/9/07	Sediment Trap	СРА	2005-3195		New Work		368,160			368,160
11/5/07-11/26/07	CT6/7,CT10,NCP3/4	CPA	200005030	mud		124,756				124,756
6/30/07-2/6/08	EC,TAC,TTB,MTB	CW/Navy			Maintenance			436,627		436,627
	Cuts1b&1&2,TAC,T			mud,sand,clay						
7/17/2008-10/6/08	TB,Poseidon Wharf	CW/Navy	20075637	,soft clay	Maintenance			286,230		286,230
2/11/09-2/28/09	WTB	СРА	200005030		Maintenance			92,160		92,160
2/28/09-4/4/09	ICCO	CPA	19871217		New Work		239,714			239,714
				mud,clay,sand						
5/12/10-8/5/10	Cuts1,&2,TAC,TTB	CW/Navy	20075637	,soft-clay	Maintenance			1,170,762		1,170,762
	South Jetty									
5/14/11-6/14/11	Sediment Trap	CPA	2005-3195	Sand,silt,clay	Maintenance	172,130				172,130
				Silt,clay,silty						
5/27/11-9/3/2011	WTB CCO Phase 2	СРА	19871217	sand	New Work		322,580			322,580
Total						401,357	1,165,902	4,237,373	0	5,804,632

Table 1: Dredged Material Disposal Projects 2002-2011

U.S. EPA Region 4 / USACE Jacksonville District

Year	СРА	CW	Navy	Total
2002	91,079	624,407	40,989	756,475
2003	133,804	526,500	-	660,304
2004	10,565	238,162	25,481	274,208
2005		416,257	1,738	417,995
2006	104,471	378,060	-	482,531
2007	492,916	305,535	131,092	929,543
2008		263,683	22,547	286,230
2009	331,874	-	-	331,874
2010		1,152,022	18,740	1,170,762
2011	494,710	-	-	494,710
Total	1,659,419	3,904,626	240,587	5,804,632
Percent	29%	67%	4%	100%

Table 2: Annual Disposal Volumes 2002-2011

Figure 2: Volume and Sources of Dredged Material Disposed at the Canaveral Harbor ODMDS

Future volumes and rates of disposal, from both Federal and non-federal applicants, are expected to average around 900,000 cubic yards per year. Short term (10 year) projected disposal volumes are shown in Table 3 and total 9.2 million cubic yards over ten years. Civil works projects for Canaveral Harbor are anticipated to account for a majority of the total volume of material to be disposed at the ODMDS.

Year	Type of Action	Source	Volume ¹ (yd ³)	Sponsor 2	Composition
2012-2022	MD	Entrance Channel, West and Middle Turning Basins, Inner Channel and Barge Canal	364,000 per year	Civil Works	Silt and Fine Sand
2012-2022	MD	Entrance Channel Widener, Cut 1A & Trident Access Channel and Turning Basin	26,000 per year	Navy	Silt and Fine Sand
2012-2022	MD	Berthing Areas	74,000 per year	СРА	Silt and Fine Sand
2012	NW	CT5&6	178,000	CPA	Silty Sand
2012-2022	NW	Canaveral Shoals I offshore borrow area access lane	200,000	CW/KSC/ PAFB/BC	Silty Sand
2012-2022	MD	S. Jetty Sed. Trap	50,000 per year	СРА	Silt and Fine Sand
2012	NW	NCB8	139,000	CPA	Silts and Sands
2012	NW	Permitted CCO Ph 2 Deepening	202,000	CPA	Silt and Fine Sand
2012	NW	NCB 5/6	36,000	СРА	Silts and Fine Sand
2013-2014	NW	NCB 8 Expansion Setback	166,000	CPA	Silt and Fine Sand
2014	NW	Deepening and Widening of the Entrance Channel and Channel to MTB	3,100,000	Civil Works	Unknown

Table 3	Projected	Volume of Dreds	ed Material D	isposed in the	Canaveral Harbor	ODMDS (10 year)
Lable 5.	Trojecteu	volume of Dieug		isposed in the		ODIVIDD (10 year)

¹In situ

²NW: New Work; MD: Maintenance Dredging; CPA: Canaveral Port Authority; KSC: Kennedy Space Center; PAFB: Patrick Air Force Base; BC: Brevard County

The Canaveral Harbor ODMDS has been determined to be a dispersive site (EPA, 1990). However, the dispersiveness of the site and consequently the long-term capacity of the ODMDS has yet to be determined. Site-specific field data has been collected to facilitate modeling the long-term capacity of the ODMDS (see Section 3.4.1). Capacity estimates based on the available fill volume using existing bathymetry and a maximum depth of –40 feet MLLW have been conducted for each release zone (see Table 4). Dispersion and consolidation of the disposed dredged material was not considered, nor was the need for side-slopes of the disposal mound. Therefore, use of these estimates for long range planning purposes should be cautioned. The capacity to a depth of –40 feet MLLW was estimated at 23.9 million cubic yards or 18.4 million cubic yards in situ based on a bulking factor of 1.3 (Hensch, 2011).

Release Zone ¹	Capacity	In Situ Capacity
	(million cubic yards)	(million cubic yards)
North	3.6	2.8
East	7.6	5.9
West	4.3	3.3
South	8.2	6.3
Total	23.9	18.4

Table 4: Capacity Estimates Based on Existing Bathymetry and a Minimum Allowable

 Depth of -40 feet (MLLW).

¹See Section 2.7

Until the capacity of the ODMDS has been determined utilizing USACE approved models, use of the ODMDS should not exceed half the estimated remaining site capacity (9.2 million cubic yards). This will allow sufficient time for a more detailed assessment of site capacity, implementation of management options, or environmental studies for site expansion to be conducted if necessary without adversely impacting maintenance dredging of the Port. Based on current estimates, exceedence of this volume is not anticipated. Should the approval of any project cause the exceedence of this value, an analysis of the remaining capacity of the ODMDS will have to be conducted by the USACE or permit applicant, as the case may be, prior to approval for ocean disposal of the project. The analysis should demonstrate that more than half the remaining capacity will not be consumed within the next ten years from the date of the analysis.

2.4 Dredged Material Characteristics.

<u>2.4.1 Previously Placed Materials.</u> Materials placed in the Canaveral Harbor ODMDS have historically consisted of silty sand, and silts and clay. Since 1992, most dredged material with less than 20 percent silt has been placed in a nearshore area rather than the ODMDS.

<u>2.4.2. Anticipated Materials.</u> Two basic sources of material are expected to be placed at the site; new work dredged material and maintenance material. These materials will consist of mixtures of silt, clay and sand in varying percentages. Dredged material with less than 20 percent silt is anticipated to be placed at the nearshore area rather than the ODMDS.

<u>2.4.3 Associated Beach Quality Materials</u>. USACE Beneficial Use of Dredged Material EM 1110-2-5026 requires dredged material be maximized within the coastal system. Dredged materials that qualify for beach or near-shore placement per the FDEP's 'Sand Rule' shall be beneficially placed in such location, to the maximum extent practicable. It is expected that the State of Florida will exercise its authority and responsibility, regarding beach nourishment, to the full extent during any future permitting activities. Beneficial use of beach compatible dredged material for beach nourishment is strongly encouraged and supported by EPA.

U.S. EPA Region 4 / USACE Jacksonville District

<u>2.4.4 Dredge Material Quality Verification</u>. The suitability of dredged material for ocean disposal must be verified by the USACE and agreed to via written concurrence from EPA prior to disposal. Verification will be valid for three years from the most current verification.

Verification process:

- 1) Case-specific evaluation against the exclusion criteria (40 CFR 227.13(b))
- 2) Determination of testing requirements for non-excluded material based on the potential of sediment contamination since last verification.
- 3) When applicable, execute testing and determination of suitability of non-excluded material for ocean disposal.

Verification documentation for suitability will be completed prior to use of the Canaveral Harbor ODMDS. Documentation will be in the form of a MPRSA Section 103 Evaluation. Potential testing and the Evaluation will follow the procedures outlined in the 1991 EPA/USACE Dredged Material Testing Manual and 2008 Southeast Regional Implementation Manual (SERIM) or the appropriate updated versions. This includes how dredging projects will be subdivided into project segments for sampling and analysis. The MPRSA Section 103 Evaluation will be in the form outlined in Appendix C of the SERIM. Water Quality Compliance determinations will be made using the STFATE (ADDAMS) model and the input parameters provided in Appendix B of this document. Only material determined to be suitable through the verification process by the USACE and EPA, Region 4 will be placed at the Canaveral Harbor ODMDS.

<u>2.5 Time of disposal</u>. At present no restrictions have been determined to be necessary for disposal related to seasonal variations in ocean current or biotic activity. As monitoring results are compiled, should any such restrictions appear necessary, disposal activities will be scheduled so as to avoid adverse impacts. During the winter, precautions necessary to protect whales, as described in Section 2.6, are required. Additionally, if new information indicates that endangered or threatened species are being adversely impacted, restrictions may be incurred.

<u>2.6 Disposal Technique</u>. No specific disposal technique is required for this site. However, in order to protect North Atlantic right whales, disposal vessel (either hopper dredge or tug and scow) speed and operation will be restricted in accordance with the most recent USACE South Atlantic Division Endangered Species Act Section 7 Consultation Regional Biological Opinion for Dredging of Channels and Borrow Areas in the Southeastern United States. In addition, the disposal vessel's captain should be aware of the vessel approach restrictions in 50 CFR §224.103 which at the time of this SMMP prohibits approach within 500 yards of a right whale by vessel, aircraft, or any other means.

<u>2.7 Disposal Location</u>. 40 CFR §227.28 requires that disposal occur no less than 330 feet (100 meters) inside the designated site boundaries. Release zones have been established to satisfy this criterion as well as manage dredged material disposal from multiple site users and multiple

projects. The release zones are described below in Table 5 and shown in Figure 3. Disposal shall be initiated within the applicable release zone boundary and completed (i.e. doors closed) prior to leaving the ODMDS boundaries. Placement methods, which prevent mounding of dredged materials from becoming an unacceptable navigation hazard, will be used. Dredged material shall be disposed so that at no point will depths less than -40 feet Mean Lower Low Water (MLLW) occur (i.e., a clearance of 40 feet above the bottom will be maintained) until further studies have been completed (see Section 2.3).

Table 5: Canaveral Harbor ODMDS Disposal Release Zones

North Zone				
Vertices	Geographi	c NAD 83	State Plane (Florida I NAD	East 0901 U.S. Ft) 83
North	28 ° 19.921'N	80° 31.133'W	810,940	1,453,721
East	28 ° 19.380'N	80° 30.386'W	814,961	1,450,458
South	28 ° 18.746'N	80 ° 31.003'W	811,666	1,446,607
West	28 ° 19.120'N	80 ° 31.503'W	807,714	1,449,851
The north zerojects.	one is for disposal of	material from the C	Canaveral Port Authority	maintenance

North Zone

South Zone

Vertices	Geographic NAD 83		State Plane (Florida East 0901 U.S. F NAD 83			
North	28 ° 18.746'N	80 ° 31.003'W	811,666	1,446,607		
East	28 ° 18.208'N	80 ° 30.269'W	815,618	1,443,364		
South	28 ° 17.578'N	80° 30.899'W	812,525	1,439,532		
West	28 ° 18.113'N	80° 31.620'W	808,372	1,442,757		
The south zone is for disposal of material from the Canaveral Port Authority construction projects and any civil works construction projects such as the proposed port widening and deepening.						

Vertices	Geographi	c NAD 83	State Plane (Florida East 0901 U.S. Ft) NAD 83		
North	28 ° 19.380'N	80° 30.386'W	814,961	1,450,458	
East	28 ° 18.839'N	80° 39.638'W	818,982	1,447,196	
South	28° 18.208'N	80° 30.269'W	815,618	1,443,364	
West	28 ° 18.746'N	80 ° 31.003'W	811,666 1,446,607		
The cost To	l na is for disposal of r	notonial from the U	S Norry and USACE Civ	wil Works	

The east zone is for disposal of material from the U.S. Navy and USACE Civil Works maintenance projects.

West Zone

Vertices	Geographi	e NAD 83	State Plane (Florida East 0901 U.S. Ft) NAD 83				
North	28 ° 19.284'N	80° 31.738'W	807,714	1,449,851			
West	28 ° 18.746'N	80 ° 31.003'W	811,666	1,446,607			
South	28 ° 18.113'N	80° 31.620'W	808,372	1,442,757			
East	28 ° 18.648'N	80° 32.342'W	804,488	1,445,982			
The west zone is for disposal of material from the U.S. Navy and USACE Civil Works							
maintenance	e projects.						

While control of placement to minimize mounding is preferred, the physical removal or leveling of material above -30 feet MLLW is a management alternative.

Figure 3: Canaveral Harbor ODMDS Disposal Release Zones

<u>2.8 Permit and Contract Conditions</u>. The disposal monitoring and post-disposal monitoring requirements described under Site Monitoring will be included as permit conditions on all MPRSA Section 103 permits and will be incorporated in the contract language for all federal projects. A summary of the management and monitoring requirements to be included are listed in Table 6. Template language that can be used is included in appendices (see Appendix C and D).

Table 6. Summary of Permit and Contract Condition

Condition	Reference
Dredged Material Suitability and Term of Verification	Canaveral Harbor ODMDS SMMP page 9, Southeast Regional Implementation Manual
Disposal within Appropriate Zones	Canaveral Harbor ODMDS SMMP page 9-11
Northern Right Whale Avoidance	Canaveral Harbor ODMDS SMMP page 9
Post Bathymetric Surveys within 30 days of Project Completion	Canaveral Harbor ODMDS SMMP page 18
Biannual Full Site Bathymetry Surveys	Canaveral Harbor ODMDS SMMP page 22
Disposal Monitoring and Recording of Disposal Locations	Canaveral Harbor ODMDS SMMP page 18
Reporting Requirements: Disposal Summary Reports within 90 Days of Project Completion	Canaveral Harbor ODMDS SMMP page 24

<u>2.9 Permit Process.</u> All disposal of dredged material in the ocean, with the exception of Federal Civil Works projects, requires an ocean dumping permit issued by the USACE pursuant to Section 103 of the MPRSA. A summary of the permitting process can be found at: <u>http://www.epa.gov/region4/water/oceans/Dredged_Material_Permit_Process.htm.</u>

<u>2.10 Information Management of Dredged Material Placement Activities.</u> As discussed in the following sections, a substantial amount of diverse data regarding use of the Canaveral Harbor ODMDS and effects of disposal is required from many sources. If this information is readily available and in a useable format it can be used to answer many questions typically asked about a disposal site:

- What is being dredged?
- How much is being dredged?
- Where did the dredged material come from?
- Where was the dredged material placed?
- Was dredged material dredged and disposed correctly?
- What will happen to the environment at the disposal site?

In an attempt to streamline data sharing, EPA Region 4 and USACE South Atlantic Division have agreed on an eXtensible Markup Language (XML) standard for sharing of disposal monitoring data (see also Section 3.5). Additional standards will continue to be investigated for sharing of other disposal site related information (e.g. environmental monitoring data, testing data, etc.).

3.0 SITE MONITORING

The MPRSA establishes the need for including a monitoring program as part of the Site Management Plan. Site monitoring is conducted to ensure the environmental integrity of a disposal site and the areas surrounding the site and to verify compliance with the site designation criteria, any special management conditions, and with permit requirements. Monitoring programs should be flexible, cost effective, and based on scientifically sound procedures and methods to meet site-specific monitoring needs. The intent of the program is to provide the following:

(1) Information indicating whether the disposal activities are occurring in compliance with the permit and site restrictions;

(2) Information indicating the short-term and long-term fate of materials disposed of in the marine environment.

(3) Information concerning the short-term and long-term environmental impacts of the disposal;

The main purpose of a disposal site monitoring program is to determine whether dredged material site management practices, including disposal operations, at the site need to be changed to avoid significant adverse impacts.

<u>3.1 Baseline Monitoring</u>. Disposal has occurred at the present site since 1974 and predates any data gathering at the site. Therefore, no true baseline information has or can be collected. The results of investigations presented in the designation EIS (See FEIS Appendices A, B, C, D, F, and G) and subsequent surveys listed in Appendix E and Table 7 will serve as the main body of data for the monitoring of the impacts associated with the use of the Canaveral Harbor ODMDS.

IF

Survey/Study Title	Conducted By:	Date	Purpose	Results
Canaveral Harbor ODMDS Dredged Material Erosion Rate Analysis	EPA Region 4 / Sandia National Laboratories	2001	Determine erosive properties of dredged material as a function of density, consolidation and shear stress as input to long term fate models.	 Disposed dredged material reaches full consolidation within 2 months. Disposed dredged material is susceptible to erosion until full consolidation. Parameters for LTFATE model calculated
Spatial Analysis of Sediment Grain Size in the Vicinity of the Canaveral Harbor ODMD	EPA Region 4	2003	Determine extent of physical impact due to dredged material disposal as determined by changes in grain size distribution.	-fine grain material in the vicinity of the Canaveral Harbor ODMDS does not appear to be originating from the ODMDS.
Ocean Current & Wave Measurements at the Canaveral Harbor ODMDS	EPA	2004	Determine site specific wave and current parameters for long and short term dredged material fate models.	 -Currents are predominately northerly directed & of sufficient magnitude to initiate mound erosion 20% of the time. -Highest waves occur during late hurricane season and winter and are in excess of 3 meters. -Median wave height: 0.75 meters -Median wave period: 8.5 seconds -Wave periods are of sufficient length to influence near bottom currents.

Table 7. Surveys and Studies Conducted at the Canaveral Harbor ODMDS (2001-present)

Г

r

- ie

-1

Survey/Study Title	Conducted By:	Date	Purpose	Results
Trend Assessment Survey at the Canaveral Harbor ODMDS	EPA Region 4	2007	Periodically evaluate the impact of disposal on the marine environment (40CFR 228.9)	 Organic tins elevated in northern disposal zone. No significant differences identified between biological stations inside and outside the ODMDS. Lower number of taxa and density of organisms in active disposal zones (north & east zones).
Cape Canaveral Tributyltin Study	EPA Region 4	2010	Determine bioavailability of organic tin through measurement of pore water concentrations.	-Organic tins not detected in the pore water. -Organic tins no longer elevated in the sediments in north disposal zone.
Post Disposal Bathymetry Surveys	USACE, Canaveral Port Authority	Annually 2001- 2011	 Insure safe navigation depth. Monitor bathymetric trends. Determine the aerial extent of the disposal mounds. 	 Minimum depth has increased at center of ODMDS from -30.5 feet (2000) to -39.3 feet (2010) Mounds approaching -40 feet in north and east zones. see Figure 4.

r

Table 7. Surveys and Studies	Conducted at the	Canaveral Harbor	ODMDS ((2001-present)
------------------------------	------------------	------------------	---------	----------------

r.

Figure 4: Canaveral Harbor ODMDS October 2010 Bathymetry

<u>3.2 Disposal Monitoring</u>. For all disposal activities, an electronic tracking system (ETS) must be utilized. The ETS will provide surveillance of the transportation and disposal of dredged material. The ETS will be maintained and operated to continuously track the horizontal location and draft condition (nearest 0.5 foot) of the disposal vessel (i.e. hopper dredge or disposal scow) from the point of dredging to the disposal site and return to the point of dredging. Data shall be collected at least every 500 feet during travel to and from the ODMDS and every minute or every 200 feet of travel, whichever is smaller, while approaching within 1,000 feet of the ODMDS. In addition to the continuous tracking data, the following trip

U.S. EPA Region 4 / USACE Jacksonville District

information shall be electronically recorded for each disposal cycle:

- a. Load Number
- b. Disposal Vessel Name and Type (e.g. scow)
- c. Tow Vessel Name (if applicable)
- d. Captain of Disposal or Tow Vessel
- e. Estimated volume of Load
- f. Description of Material Disposed
- g. Source of Dredged Material
- h. Date, Time and Location at Start at Initiation and Completion of Disposal Event

It is expected that disposal monitoring will be conducted utilizing the Dredge Quality Management (DQM) system for Civil Works projects [see <u>http://dqm.usace.army.mil/Specifications/Index.aspx</u>], although other systems are acceptable. Disposal monitoring and ETS data will be reported to EPA Region 4 on a weekly basis utilizing the eXtensible Markup Language (XML) specification and protocol per Section 3.5. EPA Region 4 and the USACE District shall be notified within 24 hours if disposal occurs outside of the ODMDS or specified disposal zone or if excessive leakage occurs.

3.3 Post Discharge Monitoring. The USACE or other site user will conduct a bathymetric survey within 30 days after disposal project completion. Surveys will not be required for projects less than 50,000 cubic yards. Bathymetric surveys will be used to monitor the disposal mound to insure a navigation hazard is not produced, to assist in verification of material placement, to monitor bathymetry changes and trends and to insure that the site capacity is not exceeded, i.e., the mound does not exceed the site boundaries. Surveys will conform to the minimum performance standards for Corps of Engineers Hydrographic Surveys for "Other General Surveys & Studies" as described in the USACE Engineering Manual, EM1110-2-1003, Hydrographic Surveying dated January 1, 2002 [http://140.194.76.129/publications/engmanuals/em1110-2-1003/toc.htm]. The number and length of transects required will be sufficient to encompass the release zone utilized and a 500 foot wide area around it. The surveys will be taken along lines spaced at 500-foot intervals or less. The minimum performance standards from table 3-1 Hydrographic Surveying shall be followed. Horizontal location of the survey lines and depth sounding points will be determined by an automated positioning system utilizing a differential global positioning system. The vertical datum will be referenced to prescribed NOAA Mean Lower Low Water (MLLW) datum. The horizontal datum should be referenced to the local State Plane Coordinate System (SPCS) for that area or in Geographical Coordinates (latitude-longitude). The horizontal reference datum should be the North American Datum of 1983 (NAD 83).

<u>3.4 Material Tracking and Disposal Effects Monitoring</u>. Surveys can be used to address possible changes in bathymetric, sedimentological, chemical, and biological aspects of the ODMDS and surrounding area as a result of the disposal of dredged material at the site. The 2001 Canaveral

Harbor ODMDS SMMP included a Long-Term Monitoring Strategy aimed at primarily addressing capacity and the long-term fate of dredged material disposed at the ODMDS. Most of the tasks were completed. However, the modeling to address capacity issues and the long-term fate of the material was not initiated.

3.4.1 Summary of Results of Past Monitoring Surveys

Appendix E and Table 7 lists the past surveys at the Canaveral Harbor ODMDS. In general, the surface of the site is covered by rippled very fine sand below which fine grained mud exists. The surface sands probably represent *in-situ* washing of the sediment with removal of fines from the upper surface. However, it is difficult to determine if the observed sand-over-mud stratigraphy is: 1) uniquely related to surficial washing of muddy dredged materials, 2) a natural phenomenon reflecting existing sedimentation of fines derived from coastal erosion or riverine input, 3) a result of reworking of ancient muddy sediments, or 4) a reflection of all of the above sources.

The surveys/studies listed in appendix E and table 7 have indicated that the ODMDS is a dispersive site for fine grained material and as a result dredged material may extend beyond the designated site boundaries. Indicators of dredged material (from the sediment mapping, REMOTS, sidescan sonar and bathymetric surveys) appear within the ODMDS and to the northwest. Dredged material to the northwest of the site is likely either a result of offsite transport or historic short dumping. Current measurements indicate predominate currents are to the north. Erosion of fine-grained material from the bottom appears to be taking place within the center of the disposal site and is apparently related to the presence of dredged material deposits over consolidated clays. A bathymetric survey conducted in January 2000 indicated significant mounding occurring near the center of the ODMDS. Since 2000, the mound height has decreased by nine feet as disposal has been diverted from this location. However, a mound with a relief of approximately 7 feet has developed in the northwest portion of the east release zone. See figure 4 for the most recent site bathymetry.

Erosion rate analysis has indicated that disposed dredged material is most susceptible to erosion within 60 days following disposal. Currents in the vicinity of the Canaveral Harbor ODMDS tend to the north-northeast paralleling the coast. Maximum surface currents exceeded 40 cm/sec. The median surface current was 10 cm/sec whereas the median bottom current was 6 cm/sec. The depth averaged median current was 7 cm/sec. Currents are not dominated by tides although there exists a tidal component. Velocities on the order of 16 cm/sec are needed to initiate erosion of Canaveral Harbor dredged material. Near bottom currents of this magnitude or greater occur approximately 20 percent of the time. If storms or other high current/wave events occur shortly after disposal, offsite transport of disposed dredged material is likely to occur.

A 2007 Trend Assessment Study of the Canaveral Harbor ODMDS indicated elevated organic tins in the sediments within the north release zone. Concentrations of tributyltin were as high as $57\mu g/kg$ compared to background levels of less than $0.7\mu g/kg$. All other analytes were at

background levels. There were no significant differences identified between biological stations inside and outside the ODMDS. However, there were a lower number of taxa and density of organisms observed in the active release zones (North and East).

As a follow-up to the 2007 Trend Assessment Study, a study of the pore water concentration of organic tins was conducted in 2010. Organic tin partitioning is highly complex and the relationship between concentrations and observed effects is much stronger for pore water. Five sediment samples and five pore water samples were collected within the north release zone. Organic tins were not detected in either the pore water or sediment samples indicating that organic tin levels are no longer elevated due to degradation, dispersion or burial.

3.4.2 Future Monitoring Surveys

Based on the type and volume of material disposed and impacts of concern, various monitoring surveys can be used to examine if and the direction the disposed dredged material is moving, and what environmental effect the material is having on the site and adjacent areas.

At the current time, no nearby biological resources have been identified that are of concern for potential impact. The Canaveral Harbor ODMDS is at least one nautical mile from all known fish havens, artificial reefs, and fishing areas. The site has been identified as partially dispersive. This means that it is expected that material will be moved outside the site boundaries. It is also expected that this material will not move in distinct mounds, but instead will blend with the surrounding environment causing a progressive transition to sediments containing a higher percentage of silt and clay. Changes in sediment composition will likely alter the benthic community structure. However, based on previous benthic studies, it is unlikely that permanent or long-term adverse impacts will result due to changes in sediment composition.

Concern has been raised regarding the potential for disposed dredged material impacting offshore sand sources and the magnitude and extent of disposed dredged material dispersal outside of the ODMDS boundaries. Additionally, mounding at the site has raised capacity concerns. Future surveys as outlined in Table 8 will focus on monitoring for adverse environmental effects and determining the rate and direction of disposed dredged material dispersal and the capacity of the ODMDS. Should future disposal at the Canaveral Harbor ODMDS result in unacceptable adverse impacts, further studies may be required to determine the persistence of these impacts, the extent of the impacts within the marine system, and/or possible means of mitigation. In addition, the management plan presented may require revision based on the outcome of any monitoring program.

February 2012

						Management Options		
Goal	Technique	Sponsor	Rationale	Frequency	Threshold for Action	Threshold Not Exceeded	Threshold Exceeded	
Trend Assessment	Water and Sediment Quality, Benthic Community Analysis (40CFR228.13)	U.S. EPA	Periodically evaluate the impact of disposal on the marine environment (40CFR 228.9)	Approximately every 10 years.	-Absence from the site of pollution sensitive biota -Progressive non-seasonal changes in water or sediment quality	Continue Monitoring	-Conduct Environmental Effects Monitoring or Advanced Environmental Effects Monitoring -Review dredged material evaluation procedures	
Environmental Effects Monitoring	Chemical Monitoring	EPA/ USACE	Determine if chemical contaminants are significantly elevated ¹ within and outside of site boundaries	Implement if disposal footprint extends beyond the site boundaries or if Trend	Contaminants are found to be elevated ¹	Discontinue monitoring.	 Institute Advanced Environmental Effects Monitoring Implement case specific management options (ie. Remediation, limits on quantities or types of 	
	Benthic Monitoring	EPA/ USACE	Determine whether there are adverse changes in the benthic populations outside of the site and evaluate recovery rates	Assessment results warrant.	Adverse changes observed outside of the site that may endanger the marine environment		quantities of types of material).-Consider isolating dredged material (capping)	
¹ Significantly ele found to be suitab ² Examples of sub	vated: Concentrati le for disposal at t -lethal effects incl	ions above t he ODMDS ude withou	the range of contaminan S. t limitation the develop	t levels in dredge ment of lesions, t	ed sediments that the Region umors, development abnorm	al Administrator nality, and/or dec	and the District Engineer reased fecundity.	

Table 8. Canaveral Harbor ODMDS Monitoring Strategies and Thresholds for Action

U.S. EPA Region 4 / USACE Jacksonville District

February 2012

				_		Management Options	
Goal	Technique	Sponsor	Rationale	Frequency	Threshold for Action	Threshold Not Exceeded	Threshold Exceeded
Advanced Environmental Effects Monitoring	Tissue Chemical Analysis	EPA/ USACE	Determine if the site is a source of adverse bioaccumulation which may endanger the marine environment	Implement if Environmental Effects Monitoring warrants.	Benthic body burdens and risk assessment models indicate potential for food chain impacts.	Discontinue monitoring	-Discontinue site use - Implement case specific management options (i.e. Remediation, limits on quantities or types of material).
	Benthic Monitoring		Determine if the site is a source of adverse sub-lethal ² changes in benthic organisms which may endanger the marine environment		Sub-lethal effects are unacceptable.		
Monitor Bathymetric Trends	Bathymetry	USACE	Determine the extent of the disposal mound and major bathymetric changes	Every 2 years	Disposal mound occurs outside ODMDS boundaries	Continue Monitoring	-Modify disposal method/placement -Restrict disposal volumes -Enlarge site
Insure Safe Navigation Depth	Bathymetry	Site User	Determine height of mound and any excessive mounding	Post disposal for projects greater than	Mound height > -40 feet mean lower low water (MLLW)	Continue Monitoring	-Modify disposal method/placement -Restrict disposal volumes
				50,000 cy	Mound height > -30 feet MLLW	Continue Monitoring	- Physically level material

Table 8. Canaveral Harbor ODMDS Monitoring Strategies and Thresholds for Action

U.S. EPA Region 4 / USACE Jacksonville District

Canaveral Harbor ODMDS SMMP

February 2012

						Management Options	
Goal	Technique	Sponsor	Rationale	Frequency	Threshold for Action	Threshold Not Exceeded	Threshold Exceeded
Long-term Fate	LTFATE Modeling	CPA/ USACE	Determine dispersivenes of site and potential aerial extent of impact	-As resources allow	Measurable deposition (>5cm) outside of site boundaries	-Reduce buffer size to increase capacity -Continue site use without restrictions	-Increase buffer as needed. -Restrict disposal volumes. -Create sand berms to retard dredged material transport.
	Regional Grain Size Analysis or SPI	CPA/ USACE	Determine if site use if affecting grain size outside of the ODMDS	10 years	Significant decrease in mean grain size outside of ODMDS	Continue site use without restrictions	
Site Capacity	MDFATE Modeling	CPA/ USACE	Determine capacity of the site	-As resources allow - See section 2.3	Volumes exceed estimated capacity	Continue to use site without restrictions	 -Enlarge site or designate new site. -Decrease depth restriction to -30 feet.
Compliance	Disposal Site Use Records in EPA Region 4's XML format	Site User	-Insure management requirements are being met -To assist in site monitoring	Weekly during the project	Disposal records required by SMMP are not submitted or are incomplete	Continue Monitoring	-Restrict site use until requirements are met

Table 8. Canaveral Harbor ODMDS Monitoring Strategies and Thresholds for Action

3.5 Reporting and Data Formatting.

<u>3.5.1 Project Initiation and Violation Reporting.</u> The USACE or other site user shall notify EPA 15 days prior to the beginning of a dredging cycle or project disposal. The user is also required to notify the USACE and the EPA within 24 hours if a violation of the permit and/or contract conditions related to MPRSA Section 103 or SMMP requirements occur during disposal operations.

<u>3.5.2 Disposal Monitoring Data.</u> Disposal monitoring data shall be provided to EPA Region 4 electronically on a weekly basis. Data shall be provided per the EPA Region 4 XML format and delivered as an attachment to an email to <u>DisposalData.R4@epa.gov</u>. The XML format is available from EPA Region 4.

3.5.3 Post Disposal Summary Reports. A Post Disposal Summary Report shall be provided to EPA within 90 days after project completion. These reports should include: dredging project title; permit number and expiration date (if applicable); contract number; name of contractor(s) conducting the work, name and type of vessel(s) disposing material in the ODMDS; disposal timeframes for each vessel; volume disposed at the ODMDS (as paid in situ volume, total paid and un paid *in situ* volume, and gross volume reported by dredging contractor), number of loads to ODMDS, type of material disposed at the ODMDS; identification by load number of any misplaced material; dates of pre and post disposal bathymetric surveys of the ODMDS and a narrative discussing any violation(s) of the 103 concurrency and/or permit (if applicable). The narrative should include a description of the violation, indicate the time it occurred and when it was reported to the EPA and USACE, discuss the circumstances surrounding the violation, and identify specific measures taken to prevent reoccurrence. The Post Disposal Summary Report should be accompanied by the bathymetry survey results (plot and X,Y,Z ASCII data file), a summary scatter plot of all disposal start locations, and a summary table of the trip information required by Section 3.2 with the exception of the disposal completion data. If all data is provided in the required XML format, scatter plots and summary tables will not be necessary.

<u>3.5.4 Environmental Monitoring.</u> Material tracking, disposal effects monitoring, and any other data collected shall be coordinated with and be provided to SMMP team members and federal and state agencies as appropriate. Data will be provided to other interested parties requesting such data to the extent possible. Data will be provided for all surveys in a report generated by the action agency.

The report should indicate:

- 1)How the survey relates to the SMMP and previous surveys at the Canaveral Harbor ODMDS
- 2)Provide data interpretations, conclusions, and recommendations
- 3)Project the next phase of the SMMP

Monitoring results will be summarized in subsequent revisions to the SMMP.

4.0 MODIFICATION OF THE CANAVERAL HARBOR ODMDS SMMP

Should the results of the monitoring surveys or reports from other sources indicate that continued use of the ODMDS would lead to unacceptable effects as determined by EPA and USACE; the ODMDS SMMP will be modified to mitigate the adverse impacts. The SMMP will be reviewed and revised at a minimum of every ten years. The SMMP will be reviewed and updated as necessary if site use changes significantly. For example, the SMMP will be reviewed if the quantity or type of dredged material placed at the site changes significantly or if conditions at the site indicate a need for revision.

5.0 REFERENCES

Continental Shelf Associates, Inc. 1986. *Final Report for Field Survey of the Canaveral Harbor Candidate Ocean Dredged Material Disposal Site*. A report for U.S. Department of the Army, Corps of Engineers, Jacksonville District.

Fredette, Thomas J., Nelson, David A., Clausner, James E., and Anders, Fred J. 1990. *Guidelines for Physical and Biological Monitoring of Aquatic Dredged Material Disposal Sites*, Technical Report D-90-12, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Hensch, Michael. 2011. Memorandum. Canaveral Harbor ODMDS Volume Calculations. December 12, 2011.

Pequegnat, Willis E., Gallaway, Benny J., and Wright, Thomas D., 1990. *Revised Procedural Guide for Designation Surveys of Ocean Dredged Material Disposal Sites*, Technical Report D-90-8, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sandia National Laboratories. 2001 May. *Canaveral Harbor ODMDS Dredged Material Erosion Rate Analysis*. Carlsbad, NM..

U.S. Army Corps of Engineers (COE). 2002. *Engineering & Design - Hydrographic Surveying*. Engineering Manual 1110-2-1003, Department of the Army, Washington D.C.

U.S. Environmental Protection Agency (EPA). 1990. Environmental Impact Statement (EIS) for Canaveral Harbor, Florida Ocean Dredged Material Disposal Site Designation A Supplement to the Jacksonville Harbor Dredged Material Disposal Final Environmental Impact Statement, August 1990.

U.S. Environmental Protection Agency (EPA). 1991. *Canaveral Harbor, Florida, ODMDS Benthic Communities*, May 27, 1991. Prepared by Barry A. Vittor & Associates, Inc. under contract to Battelle Ocean Sciences for U.S. EPA, Office of Marine and Estuarine Protection.

U.S. Environmental Protection Agency (EPA). 1996. *Postdisposal Areal Mapping of Sediment Chemistry at the Canaveral, Florida ODMDS*, April 8, 1996. Prepared by Center for Applied Isotope Studies under contract to Battelle Ocean Sciences for U.S. EPA, Office of Wetlands, Oceans and Watersheds.

U.S. Environmental Protection Agency (EPA). 1989. *Sediment Mapping and Rapid Surveillance of Fernandina and Canaveral, Florida ODMDS, Florida ODMDS,* September 8, 1989. Prepared by Center for Applied Isotope Studies under contract to Battelle Ocean Sciences for U.S. EPA, Office of Wetlands, Oceans and Watersheds.

U.S. Environmental Protection Agency (EPA). 1990. *Canaveral Harbor Dredged Material Disposal Site REMOTS Survey*, August 24, 1990. Prepared by Science Applications International Corporation for U.S. EPA, Office of Research and Development.

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, 1991. *Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual)*, February 1991. Prepared by Environmental Protection Agency Office of Marine and Estuarine Protection and Department of Army United States Army Corps of Engineers under EPA Contract No. 68-C8-0105.

U.S. Environmental Protection Agency and U.S. Army Corps of Engineers, 1996. *Guidance Document for Development of Site Management Plans for Ocean Dredged Material Disposal Sites*, February 1996. Prepared by Environmental Protection Agency Office of Water and Department of Army United States Army Corps of Engineers.

U.S. Environmental Protection Agency Region 4 and U.S. Army Corps of Engineers South Atlantic Division, 2008. *Southeast Regional Implementation Manual Requirements and Procedures for Evaluation of the Ocean Disposal of Dredged Material in Southeastern Atlantic and Gulf Coastal Waters*, August 2008.

Vann, Julie E. A Study of Dredged Material Dispersion on the Inner Continental Shelf, Cape Canaveral, Florida [thesis]. Melbourne, FL: Florida Institute of Technology; 1995.

APPENDIX A

VOLUME OF DREDGED MATERIAL DISPOSED IN THE CANAVERAL ODMDS (1974-2000)

This page intentionally left blank

Year	Type of Action	Source	Volume (yd ³)	Sponsor	Composition
1974	NW	Entrance Channel Trident Basin	645,198	Navy	Sandy Silt
1974	MD	Entrance Channel Trident Basin	223,986	Navy	Sandy Silt
1975	NW	Entrance Channel Trident Basin	2,196,470	Navy	Sandy Silt
1975	MD	Entrance Channel Trident Basin	187,212	Navy	Silty Sand
1975	MD	Trident Basin	63,077	Navy	Sandy Silt
1976	NW	Entrance Channel	1,343,121	Civil Works	Sandy Silt
1976	MD	Entrance Channel	341,888	Civil Works	Sandy Silt
1977	MD	Entrance Channel	48,017	Civil Works	Sandy Silt
1978	MD	Entrance Channel	282,517	Civil Works	Sandy Silt
1980	MD	Entrance Channel	1,402,547	Civil Works	Sandy Silt
1981	MD	Entrance Channel	257,326	Civil Works	Sandy Silt
1983	MD	Entrance Channel	929,555	Civil Works	Sandy Silt
1985	MD	Entrance Channel	2,958,827	Civil Works	Silty Sand
1986	NW	Entrance Channel	63,370	Civil Works	Silty Sand
1986	MD	Entrance Channel	351,535	Civil Works	Silty Sand
1988	MD	Entrance Channel	442,750	Civil Works	Silty Sand
1988	MD	Entrance Channel	1,200,188	Civil Works	Silt
1989	MD	Entrance Channel	203,000	Civil Works	Silt
1990	MD	Entrance Channel	173,772	Civil Works	Silt
1991	MD	Middle Turning Basin	497,380	Civil Works	Silt
1992	MD	Entrance Channel	342,000	Civil Works	Silt
1992	MD	Middle Turning Basin	208,000	Civil Works	Silt
1993	MD	Entrance Channel	1,878,460	Civil Works	Silt
1993	MD	Trident Access Channel	108,410	Navy	Silty Sand
1993	NW	W. Turning Basin SE Corner Cutoff	400,000	СРА	Clay
1994	NW	Entrance Channel	454,000	Civil Works	Silty Sand
1994	NW	Middle Turning Basin	1,039,000	Civil Works	Silty Sand

Volume of Dredged Material Disposed in the Canaveral ODMDS (1974-2000)
Year	Type of Action	Source	Volume (yd ³)	Sponsor	Composition
1994	MD	Entrance Channel	98,820	Civil Works	Silt
1994	MD	Trident Access Channel	17,510	Navy	Sandy Silt
1994	MD	W. Turning Basin CT5	24,000	CPA	Sandy Clay
1994	NW	W. Turning Basin CT10	86,000	CPA	Silty Sand
1995	MD	Entrance Channel	243,180	Civil Works	Silt
1995	MD	Trident Access Channel Turning Basin	12,090	Navy	Silt
1996	MD	Entrance Channel	245,274	Civil	Sandy Silt
1996	NW	W. Turning Basin CT8	212,000	CPA	Silty Sand
1997	MD	Entrance Channel	773,999	Civil Works	Sandy Silt
1997	MD	Trident Turning Basin	36,965	Navy	Silts & Clays
1998	MD	Entrance Channel	688,839	Civil Works	Sandy Silt
1998	MD	Entrance Channel, TTB, & Poseidon Wharf	160,044	Navy	Sandy Silts Clays
1998	MD	W. Turning Basin CT5	5,600	CPA	Sandy Clay
1999	MD	Entrance Channel	1,312,703	Navy	Sandy Silt
2000	MD	Entrance Channel	300,320	Civil Works	Silt

NW: New Work MD: Maintenance DredgingCPA: Canaveral Port AuthorityAll volumes are *in situ* volumes from surveys conducted at the dredging site.

APPENDIX B

WATER COLUMN EVALUATIONS NUMERICAL MODEL (STFATE) INPUT PARAMETERS

Water Column Evaluations Numerical Model (STFATE) Input Parameters Canaveral ODMDS

SITE DESCRIPTION

Parameter	Value	Units
Number of Grid Points (left to right)	45	
Number of Grid Points (top to bottom)	45	
Spacing Between Grid Points (left to right)	350	ft
Spacing Between Grid Points (top to bottom)	350	ft
Constant Water Depth	47	ft
Roughness Height at Bottom of Disposal Site	.005 ¹	ft
Slope of Bottom in X-Direction	0	Deg.
Slope of Bottom in Z-Direction	0	Deg.
Number of Points in Ambient Density Profile Point	3	
Ambient Density at Depth = 3 ft	1.0257	g/cc
Ambient Density at Depth = 26 ft	1.0257	g/cc
Ambient Density at Depth = 47 ft	1.0259	g/cc

AMBIENT VELOCITY DATA

Parameter	Value	Units
Profile	2-Point at const	ant depth
X-Direction Velocity = 8 feet	-0.17	ft/sec
Z-Direction Velocity = 8 feet	0.29	ft/sec
X-Direction Velocity = 38 feet	-0.17	ft/sec
Z-Direction Velocity = 38 feet	0.11	ft/sec

DISPOSAL OPERATION DATA

Parameter	Value	Units
Location of Disposal Point from Top of Grid	7,875	ft
Location of Disposal Point from Left Edge of Grid	7,875	ft
Dumping Over Depression	0	

INPUT, EXECUTION AND OUTPUT

Parameter	Value	Units
Location of the Upper Left Corner of the Disposal Site - Distance from Top Edge	1,800	ft
Location of the Upper Left Corner of the Disposal Site - Distance from Left Edge	1,800	ft
Location of the Lower Right Corner of the Disposal Site - Distance from Top Edge	13,950	ft
Location of the Lower Right Corner of the Disposal Site - Distance from Left Edge	13,950	ft
Duration of Simulation	14,400	sec
Long Term Time Step	600	sec

COEFFICIENTS

Parameter	Keyword	Value
Settling Coefficient	BETA	0.000 ¹
Apparant Mass Coefficient	СМ	1.000 ¹
Drag Coefficient	CD	0.500 ¹
Form Drag for Collapsing Cloud	CDRAG	1.000 ¹
Skin Friction for Collapsing Cloud	CFRIC	0.010 ¹
Drag for an Ellipsoidal Wedge	CD3	0.100 ¹
Drag for a Plate	CD4	1.000 ¹
Friction Between Cloud and Bottom	FRICTN	0.010 ¹
4/3 Law Horizontal Diffusion Dissipation Factor	ALAMDA	0.001 ¹
Unstratified Water Vertical Diffusion Coefficient	АКҮО	Pritchard Expression
Cloud/Ambient Density Gradient Ratio	GAMA	0.250 ¹
Turbulent Thermal Entrainment	ALPHAO	0.235 ¹
Entrainment in Collapse	ALPHAC	0.100 ¹
Stripping Factor	CSTRIP	0.003 ¹

¹ Model Default Value

Expected dilution at 4 hours = 2,500:1.

Expected dilution at edge of disposal site > 60,000:1

Dilution will be dependent on the characteristics of the dredged material and the size of the disposal vessel. These values are for a very silty material with high water content and a 4,000 cubic yard scow.

Canaveral ODMDS STFATE Input Parameters

Canaveral Harbor ODMDS Background Water Concentration.			
Chemicals of Concern	Background Concentration Levels (µg/l)		
Arsenic	1.36 ¹		
Cadmium	0.008 1		
Chromium (VI)	0.29 ²		
Copper	0.34 1		
Lead	0.076 ²		
Mercury	0.01 ^{2,4}		
Nickel	0.25 ²		
Selenium	5.0 ^{1,4}		
Silver	0.009 ¹		
Zinc	2.331		
Cyanide	0 5		
Tributyltin (TBT)	0.01 ^{1,4}		
Aldrin	0.005 ^{1,4}		
Chlordane	0.005 ^{1,4}		
DDT	0.012 ^{1,4}		
Dieldrin	0.005 ^{1,4}		
alpha - Endosulfan	0.005 ^{1,4}		
beta - Endosulfan	0.010 ^{1,4}		
Endrin	0.010 ^{1,4}		
gamma-BHC (Lindane)	0.002 ^{1,4}		
Heptachlor	0.004 ^{1,4}		
Heptachlor Epoxide	0.005 ^{1,4}		
Toxaphene	0 5		
Pentachlorophenol	4.85 ^{1,4}		

 ¹ 2007 EPA Status and Trends Survey at the Canaveral ODMDS
 ² Site Designation Studies for a New Ocean Dredged Material Disposal Site off Jacksonville, Florida: Spring and Fall 2010 Survey Results
 ³ Reference Station Water from the 2006 Mayport Harbor 103 Evaluation
 ⁴ Analyte not detected. Value based on one half the reporting limit.
 ⁵ Analyte detection limits are well above WQC. If analytes are detected in the dredged material elutriate, a concentration of zero will be assumed at the ODMDS.

APPENDIX C

TEMPLATE GENERIC SPECIAL CONDITIONS FOR MPRSA SECTION 103 PERMITS CANAVERAL HARBOR, FL ODMDS

GENERIC SPECIAL CONDITIONS FOR MPRSA SECTION 103 PERMITS

I. DISPOSAL OPERATIONS

A. For this permit, the term disposal operations shall mean: navigation of any vessel used in disposal of operations, transportation of dredged material from the dredging site to the Canaveral Harbor ODMDS, proper disposal of dredged material at the disposal area within the Canaveral Harbor ODMDS, and transportation of the hopper dredge or disposal barge or scow back to the dredging site.

B. The Canaveral Harbor ODMDS is defined as the rectangle with center coordinates of 28°18.750'N latitude and 80°30.986'W longitude (NAD 83) or state plane coordinates 1,446,630 ft N and 811,757 ft E (NAD83). The site coordinates are as follows:

	Geog	graphic	State Plane		
	NA	AD 83	(Florida East 0901 U.S. Ft) NAD 83		
North	28 ° 20.267'N 80 ° 31.170'W		1,455,819 N	810,734 E	
East	28 ° 18.867'N	28° 18.867'N 80° 29.236'W		821,139 E	
South	28 ° 17.234'N 80 ° 30.870'W		1,437,446 N	812,416 E	
West	28 ° 18.617'N	28 ° 18.617'N 80 ° 32.736'W		802,376 E	

C. No more than [NUMBER] cubic yards of dredged material excavated at the location defined in [REFERENCE LOCATION IN PERMIT] are authorized for disposal at the Canaveral Harbor ODMDS.

D. The permittee shall use an electronic positioning system to navigate to and from the Canaveral Harbor ODMDS. For this section of the permit, the electronic positioning system is defined as: a differential global positioning system or a microwave line of site system. Use of LORAN-C alone is not an acceptable electronic positioning system for disposal operations at the Canaveral Harbor ODMDS. If the electronic positioning system fails or navigation problems are detected, all disposal operations shall cease until the failure or navigation problems are corrected.

E. The permittee shall certify the accuracy of the electronic positioning system proposed for use during disposal operations at the Canaveral Harbor ODMDS. The certification shall be accomplished by direct comparison of the electronic positioning system's accuracy with a known fixed point.

F. The permittee shall not allow any water or dredged material placed in a hopper dredge or disposal barge or scow to flow over the sides or leak from such vessels during transportation to the Canaveral Harbor ODMDS.

G. A disposal operations inspector and/or captain of any tug boat, hopper dredge or other vessel used to transport dredged material to the Canaveral Harbor ODMDS shall insure compliance with disposal operation conditions defined in this permit.

1. If the disposal operations inspector or the captain detects a violation, he shall report the violation to the permittee immediately.

2. The permittee shall contact the U.S. Army Corps of Engineers, Jacksonville District's Regulatory Division [TELEPHONE NUMBER] and EPA Region 4 at (404) 562-9391 to report the violation within twenty-four (24) hours after the violation occurs. A complete written explanation of any permit violation shall be included in the disposal summary report.

H. When dredged material is disposed, no portion of the hopper dredge or disposal barge or scow shall be outside of the boundaries of the Canaveral Harbor ODMDS as defined in Special Condition B. Additionally, disposal shall be initiated within the disposal release zone defined by the following coordinates:

L			
Vertices	Geographic NAD 83	State Plane (Florida East 0901 U.S	3.
	Ft) NAD 83		
Center			
North			
West			
South			
East			

[insert coordinates for appropriate release zone]

I. [Reserved]

J. The permittee shall use an electronic tracking system (ETS) that will continuously track the horizontal location and draft condition of the disposal vessel (hopper dredge or disposal barge or scow) to and from the Canaveral Harbor ODMDS. Data shall be collected at least every 500 feet during travel to and from the ODMDS and every minute or every 200 feet of travel, whichever is smaller, while approaching within 1,000 feet and within the ODMDS. The permittee shall use Florida State Plane or latitude and longitude coordinates (North American Datum 1983). State Plane coordinates shall be reported to the nearest foot and latitude and longitude coordinates shall be reported as decimal degrees out to 6 decimals. Westerly longitudes are to be reported as negative. Draft readings shall be recorded in feet out to 2 decimals.

K. The permittee shall record electronically for each load the following information:

- a. Load Number
- b. Disposal Vessel or Scow Name
- c. Tow Vessel Name (if scow used)
- d. Captain of Disposal or Tow Vessel

- e. Estimated volume of Load
- f. Description of Material Disposed
- g. Source of Dredged Material
- h. Date, Time and Location at Start at Initiation and Completion of Disposal Event
- i. The ETS data required by Special Condition I.J.

L. The permittee shall conduct a bathymetric survey of the Canaveral Harbor ODMDS within 30 days following project completion.

1. The number and length of the survey transects shall be sufficient to encompass the release zone specified in Special Condition H and a 500 foot wide area around the site. The transects shall be spaced at 500-foot intervals or less.

2. Vertical accuracy of the survey shall be ± 0.5 feet. Horizontal location of the survey lines and depth sounding points will be determined by an automated positioning system utilizing either microwave line of site system or differential global positioning system. The vertical datum shall be mean lower low water (m.l.l.w) and the horizontal datum shall use Florida State Plane or latitude and longitude coordinates (North American Datum 1983). State Plane coordinates shall be reported to the nearest 0.10 foot and latitude and longitude coordinates shall be reported as decimal degrees to 6 decimal points.

M. Enclosed is the Regional Biological Opinion (RBO) dated [INSERT DATE], for swimming sea turtles, whales, and sturgeon. The RBO contains mandatory terms and conditions to implement the reasonable and prudent measures that are associated with "incidental take" that is also specified in the RBO. Your authorization under the Corps permit is conditional upon your compliance with all of the mandatory terms and conditions associated with the incidental take of the attached RBO, which terms and conditions are incorporated by reference in the permit. Failure to comply with the terms and conditions associated with the incidental take of the RBO, where a take of the listed species occurs, would constitute an unauthorized take, and it would also constitute noncompliance with your Corps permit. However, depending on the affected species NMFS is the appropriate authority to determine compliance with the terms and conditions of its RBO and with the Endangered Species Act (ESA). For further clarification on this point, you should contact the appropriate agency. Should they determine that the conditions of the RBO have been violated; normally they will enforce the violation of the ESA, or refer the matter to the Department of Justice.

II. REPORTING REQUIREMENTS

A. All reports, documentation and correspondence required by the conditions of this permit shall be submitted to the following addresses: U.S. Army Corps of Engineers (Corps), Regulatory Division, Enforcement Section, P.O. Box 4970, Jacksonville, Florida 32232-0019 and U. S. Environmental Protection Agency (EPA) Region 4 s Wetlands, Coastal and Oceans Branch, 61 Forsyth Street, Atlanta, GA 30303. The Permittee shall

reference this permit number, [INSERT PERMIT NUMBER], on all submittals.

B. At least 15 days before initiating any dredging operations authorized by this permit, the Permittee shall provide to the Corps and EPA a written notification of the date of commencement of work authorized by this permit.

C. Electronic data required by Special Conditions I.J and I.K shall be provided to EPA Region 4 on a weekly basis. Data shall be submitted as an eXtensible Markup Language (XML) document via Internet e-mail to <u>DisposalData.R4@epa.gov</u>. XML data file format specifications are available from EPA Region 4.

D. The permittee shall send one (1) copy of the disposal summary report to the Jacksonville District's Regulatory Division and one (1) copy of the disposal summary report to EPA Region 4 documenting compliance with all general and special conditions defined in this permit. The disposal summary report shall be sent within 90 days after completion of the disposal operations authorized by this permit. The disposal summary report shall include the following information:

1. The report shall indicate whether all general and special permit conditions were met. Any violations of the permit shall be explained in detail.

2. The disposal summary report shall include the following information: dredging project title; dates of disposal; permit number and expiration date; name of contractor(s) conducting the work, name and type of vessel(s) disposing material in the ODMDS; disposal timeframes for each vessel; volume disposed at the ODMDS (as paid *in situ* volume, total paid and un paid *in situ* volume, and gross volume reported by dredging contractor), number of loads to ODMDS, type of material disposed at the ODMDS; identification of any misplaced material (outside disposal zone or the ODMDS boundaries); dates of pre and post disposal bathymetric surveys of the ODMDS and a narrative discussing any violation(s) of the 103 permit. The disposal summary report should be accompanied by the bathymetry survey results (plot and X,Y,Z ASCII data file).

III. PERMIT LIABILITY

A. The permittee shall be responsible for ensuring compliance with all conditions of this permit.

B. The permittee and all contractors or other third parties who perform an activity authorized by this permit on behalf of the permittee shall be separately liable for a civil penalty of up to \$50,000 for each violation of any term of this permit thy commit alone or in concert with the permittee or other parties. This liability shall be individual, rather than joint and several, and shall not be reduced in any fashion to reflect the liability assigned to and civil penalty assessed against the permittee or any other third party as defined in 33 U.S.C. Section 1415(a).

C. If the permittee or any contractor or other third party knowingly violates any term of this permit (either alone or in concert), the permittee, contractor or other party shall be individually liable for the criminal penalties set forth in 33 U.S.C. Section 1415(b).

APPENDIX D

TYPICAL CONTRACT LANGUAGE FOR IMPEMENTING THE CANAVERAL HARBOR ODMDS SMMP REQUIREMENTS

TYPICAL CONTRACT LANGUAGE FOR IMPEMENTING SMMP REQUIREMENTS

3.3 DISPOSAL OF DREDGED MATERIAL

3.3.1 General

All material dredged shall be transported to and deposited in the disposal area(s) designated on the drawings. The approximate maximum and average distance to which the material will have to be transported are as follows:

Disposal Area&	Maximum Distance Statute Miles	Average Distance Statute Miles
Canaveral Harbor ODMDS		

[INSERT DISPOSAL [XX miles] [XX miles] AREA 2]

[IF MATERIAL FROM DIFFERENT PROJECT AREAS GO TO DIFFERENT DISOSAL AREAS, IT COULD BE SPECIFIED HERE]

- 3.3.2 Ocean Disposal Notification
 - a.& The Corps or the contractor shall notify EPA Region 4 's Wetlands, Coastal and Oceans Branch (61 Forsyth Street, Atlanta, GA 30303) at least 15 calendar days and the local Coast Guard Captain of the Port at least 5 calendar days prior to the first ocean disposal. The notification will be by certified mail with a copy to the Contracting Officer. The following information shall be included in the notification:
 - (1) Project designation; Corps of Engineers' Contracting Officer's name and contract number; and, the Contractor's name, address, and telephone number.
 - (2) Port of departure.
 - (3) Location of ocean disposal area (and disposal zone if required).
 - (4) Schedule for ocean disposal, giving date and time proposed for first ocean disposal.

3.3.3 Ocean Dredged Material Disposal Sites (ODMDS)

The material excavated shall be transported to and deposited in the Canaveral Harbor ODMDS shown on the drawings. When dredged material is disposed, no portion of the hopper dredge or disposal barge or scow shall be outside of the boundaries of the Canaveral Harbor ODMDS as shown on the drawings. Additionally, disposal shall be initiated within the disposal release zone defined by the following coordinates: [insert coordinates for appropriate release zone]

Vertices	Geographic NAD 83		State Plane (Florida Ft) NA	a East 0901 U.S. D 83
Center				
North				
West				
South				
East				

3.3.4 Logs

The Contractor shall keep a log for each load placed in the Canaveral Harbor ODMDS. The log entry for each load shall include:

- a. Load Number
- b. Disposal Vessel or Scow Name
- c. Tow Vessel Name (if scow used)
- d. Captain of Disposal or Tow Vessel
- e. Estimated volume of Load
- f. Description of Material Disposed
- g. Source of Dredged Material
- h. Date, Time and Location (coordinates) at Start of Initiation and Completion of Disposal Event

At the completion of dredging and at any time upon request, the log(s) shall be submitted in paper and electronic formats to the Contracting Officer for forwarding to the appropriate agencies.

3.3.5 Overflow, Spills and Leaks

Water and dredged materials shall not be permitted to overflow or spill out of barges, hopper dredges, or dump scows during transport to the disposal site(s). Failure to repair leaks or change the method of operation which is resulting in overflow of spillage will result in suspension of dredging operations and require prompt repair or change of operation to prevent overflow or spillage as a prerequisite to the resumption of dredging.

3.3.6 Electronic Tracking System (ETS) for Ocean Disposal Vessels

The Contractor shall furnish an ETS for surveillance of the movement and disposition of dredged material during dredging and ocean disposal. This ETS shall be established, operated and maintained by the Contractor to continuously track in real-time the horizontal location and draft condition of the disposal vessel (hopper dredge or disposal barge or scow) for the entire dredging cycle, including dredging area and disposal area. The ETS shall be capable of displaying and recording in real-time the disposal vessel's draft and location.

[USE LANGUAGE BELOW FOR NON DQM PROJECTS]

3.3.6.1 ETS Standards

The Contractor shall provide automated (computer) system and components to perform in accordance with COE EM 1110-1-2909. A copy of the EM can be downloaded from the following web site: http://www.usace.army.mil/inet/usace-docs eng-manuals/em.htm. Horizontal location shall have an accuracy equal to or better than a standard DGPS system, equal to or better than plus/minus 10 feet (horizontal repeatability). Vertical (draft) data shall have an accuracy of plus/minus 0.5 foot. Horizontal location and vertical data shall be collected in sets and each data set shall be referenced in real-time to date and local time (to nearest minute), and shall be referenced to the same state plane coordinate system used for the survey(s) shown in the contract plans. The ETS shall be calibrated, as required, in the presence of the Contracting Officer at the work location before disposal operations have started, and at 30-day intervals while work is in progress. The Contracting Officer shall have access to the ETS in order to observe its operation. Disposal operations will not commence until the ETS to be used by the Contractor is certified by the Contracting Officer to be operational and within acceptable accuracy. It is the Contractor's responsibility to select a system that will operate properly at the work location. The complete system shall be subject to the Contracting Officer's approval.

- 3.3.6.2 ETS Data Requirements and Submissions
 - a.& The ETS for each disposal vessel shall be in operation for all dredging and disposal activities and shall record the full round trip for each loading and disposal cycle. (NOTE: A dredging and disposal cycle constitutes the time from commencement of dredging to complete discharge of the material.) The Contracting Officer shall be notified immediately in the event of ETS failure and all dredging operations for the vessel shall cease until the ETS is fully operational. Any delays resulting from ETS failure shall be at the Contractor s expense.
 - b.&Data shall be collected, during the dredging and disposal cycle, every 500 feet (at least) during travel to the disposal area, and every minute or every 200 feet, whichever is smaller, while approaching within 1,000 feet and within the disposal area.

c.&Plot Reporting (2 types):

- a. Tracking Plot For each disposal event, data collected while the disposal vessel is in the vicinity of the disposal area shall be plotted in chart form, in 200-foot intervals, to show the track and draft of the disposal vessel approaching and traversing the disposal area. The plot shall identify the exact position at which the dump commenced. A sample Track and Draft Plot Diagram is on the web site indicated in paragraph CONSTRUCTION FORMS AND DETAILS below.
- b. Scatter Plot Following completion of all disposal events, a single and separate plot will be prepared to show the exact disposal locations of all

dumps. Every plotted location shall coincide with the beginning of the respective dump. Each dump shall be labeled with the corresponding Trip Number and shall be at a small but readable scale. A sample Scatter Plot Diagram is on the web site indicated in paragraph CONSTRUCTION FORMS AND DETAILS below.

- c. Summary Table A spreadsheet which contains all of the information in the log(s) [Section 3.3.4] above shall be prepared and shall correspond to the exact dump locations represented on the Scatter Plot. A sample Summary Table spreadsheet is on the web site indicated in paragraph CONSTRUCTION FORMS AND DETAILS below.
- d.&ETS data and log data required by Section 3.3.4 shall be provided to EPA Region 4 on a weekly or more frequent basis. Data shall be submitted to EPA Region 4 as an eXtensible Markup Language (XML) document via Internet e-mail to DisposalData.R4@epa.gov. XML data file format specifications are available from EPA Region 4. All digital ETS data shall be furnished to the Contracting Officer within 24 hours of collection. The digital plot files should be in an easily readable format such as Adobe Acrobat PDF file, Microstation DGN file, JPEG, BMP, TIFF, or similar. The hard copy of the ETS data and tracking plots shall be both maintained onboard the vessel and submitted to the Contracting Officer on a weekly basis.

[FOR DQM PROJECTS]

See: http://dqm.usace.army.mil/Specifications/Index.aspx

For scows, the monitoring profile, TDS profile or Ullage profile shall be used.

3.3.6.3 Misplaced Materials

Materials deposited outside of the disposal zone specified in 3.3.3 will be classified as misplaced material and will result in a suspension of dredging operations. Redredging of such materials will be required as a prerequisite to the resumption of dredging unless the Contracting Officer, at his discretion, determines that redredging of such material is not practical. If redredging of such material is not required then the quantity of such misplaced material shall be deducted from the Contractor's pay quantity. If the quantity for each misplaced load to be deducted cannot initially be agreed to by both the Contractor and Contracting Officer, then an average hopper/scow load quantity for the entire contract will be used in the determination. Misplaced loads may also be subject to penalty under the Marine, Protection, Research and Sanctuaries Act. Materials deposited above the maximum indicated elevation or outside of the disposal area template shown will require the redredging or removal of such materials at the Contractor's expense. In addition, the Contractor must notify the Contracting Officer and the Environmental Protection Agency Region 4's Wetlands, Coastal and Oceans Branch (61 Forsyth Street, Atlanta, GA 30303) within 24 hours of a misplaced dump or any other violation of the Site Management and Monitoring Plan for the Canaveral Harbor ODMDS. Corrective actions must be implemented by the next dump and the Contracting Officer must be informed of actions taken.

APPENDIX E

SURVEYS AND STUDIES CONDUCTED AT THE CANAVERAL HARBOR ODMDS 1984-2000

Survey/Study Title	Conducted By:	Date	Purpose	Results
Interpretative Analysis of Surficial Sediments as an Aid in Transport Studies of Dredged Materials in Cape Canaveral, FL	U.S. COE Waterways Experiment Station	1984	Determine the direction and amount of sediment transport from a dredged material disposal site.	 -No trends in sediment distribution -Sand waves indicate recent current activity capable of transporting sediment. -Detailed site-specific data are necessary in order to make conclusive statements about sediment transport off the disposal site.
Field Survey of the Canaveral Harbor ODMDS	Continental Shelf Associates for COE	1986	Video, Bathymetry, Hydrography, Water Quality, Sediment Benthic Survey, Tissue Analysis	-Baseline Survey -All data collected except could not obtain video due to poor clarity.
Sediment Mapping at Charleston, SC and Canaveral, FL	UGA Center for Applied Isotopes for EPA	1988	Characterization of bottom sediments using gamma spectrometery	 Showed possible presence of dredged material west of the site (low gamma activity). Showed a mound of dredged material in the center of the site (low gamma activity).
Sidescan Sonar	EPA	July 1988	Clear candidate site with respect to obstructions and outcrops (live bottom)	-Areas of differing sediment character identified coincidental with low gamma activity.

Surveys and Studies Conducted at the Canaveral Harbor ODMDS

Survey/Study Title	Conducted By:	Date	Purpose	Results
Video & Still Photography	EPA	July 1988	Visually observe the nature of the sediment exhibiting unique gamma isotope signatures as well as differing sonar returns.	 -Could not obtain video due to poor clarity. -Photo's verified that the areas identified in sediment mapping and sidescan sonar surveys contained dredged material. -The dredged material identified to the west of the site appears to be from direct disposal and not transport.
Sediment Mapping Rapid Surveillance of Fernandina Beach Canaveral, FL ODMDSs	UGA Center for Applied Isotopes for EPA	April 1989	Examine areas identified in previous survey and areas to the northwest of the site boundaries	-Area of low gamma activity extends beyond the site boundaries to the northwest
REMOTS (<u>R</u> emote <u>E</u> cological Monitoring <u>of the</u> <u>S</u> eafloor)	Science Applications International Corp. for EPA	1990	Delineate the areal extent of dredged material at the Canaveral ODMDS, assess the biological status of the area, compare the mapped results of the gamma sled with those of REMOTS.	 -Verified sediment mapping results. -Concluded site is dispersive for fines. Fines are eroded from the surface of the deposited material. -Dredged material may extend well beyond designated site boundaries. -Recommend precision bathymetric and sidescan survey and current meters and wave gauges.
Canaveral Harbor, FL ODMDS Benthic Communities Study	Battelle Ocean Sciences/Barry Vittor & Associates for	1990	Benthic community characterization	-Sampled 15 sites based on REMOTS data. -Species abundance very high and individual abundance moderately high.

Surveys and Studies Conducted at the Canaveral Harbor ODMDS

Survey/Study Title	Conducted By:	Date	Purpose	Results
	EPA			
Bathymetric Survey	COE - Jacksonville District	December 1991	Monitor bathymetry changes	 -Minimum depth of 39.6 feet northwest of center of ODMDS -Depth at southern corner of ODMDS = 52.4 feet
Bathymetric Survey	COE - Jacksonville District	January 1993	Monitor bathymetry changes	 -Minimum depth of 40.2 feet northwest of center of ODMDS -Depth at southern corner of ODMDS = 52.7 feet
Bathymetric Survey	COE - Jacksonville District	March 1994	Monitor bathymetry changes	 -Minimum depth of 40.0 feet northwest of center of ODMDS -Depth at southern corner of ODMDS = 51.0 feet
Disposal Monitoring	Lyman Burk	October 1994	-Compliance	-Disposal occurred throughout site. -No disposal occurred outside of site.
Post Disposal Sediment Mapping at the Canaveral, FL ODMDS	UGA Center for Applied Isotopes for EPA	March 1995	Document changes in seafloor environment since 1989.	 -Mound in center of site is still present. -Western & northwestern extensions of dredged material still present. -New deposit of dredged material detected just inside the eastern corner of the ODMDS. -Possible presence of dredged material still exists to west of site. This material does not match material in site or surrounding ambient material.

Surveys and Studies Conducted at the Canaveral Harbor ODMDS

Survey/Study Title	Conducted By:	Date	Purpose	Results
Thesis: A Study of Dredged Material Dispersion on the Inner Continental Shelf, Cape Canaveral, FL	Julie Ellen Vann: Florida Institute of Technology	August 1995	Estimate potential for burial of the inner shelf sediments and benthic communities by disposed dredged material	 -Dispersion of plume phase of disposal the significant factor in overall dispersion. -Erosion of bulk or solid phase is less significant. More current data is necessary to assess this phase. -Dredged material has dispersed to cover a 596 km² area.
Disposal Monitoring	Gahagan Bryant Assoc.	August 1995		-Disposal occurred mostly at the center of the site. -No disposal occurred outside of site.
Bathymetric Survey	COE - Jacksonville District	July 1996	Monitor bathymetry changes	 -Minimum depth of 42.2 feet north corner of ODMDS -Depth at southern corner of ODMDS = 52.9 feet
Disposal Monitoring	СРА	August 1996	Compliance for CT#8 (permit #199101718)	-Disposal occurred mostly at the center of the site. -No disposal occurred outside of site.
Bathymetric Survey	COE - Jacksonville District	January 2000	Monitor bathymetry changes	 -Minimum depth of 33.2 feet northwest of center of ODMDS -Depth at southern corner of ODMDS = 50.5 feet -Significant shoaling occurring
Acoustic Plume	EPA/NOAA	August	Estimate Dispersion	-Results inconclusive. Leakage plumes and

Surveys and Studies Conducted at the Canaveral Harbor ODMDS

Survey/Study Title	Conducted By:	Date	Purpose	Results
Tracking		2000	Coefficient	barge malfunction interfered with ability to measure plumes.
Erosion Rate Study	EPA / Sandia National Laboratories	October 2000	Determine Erodibility of Dredged Material as function of bulk density and shear stress for use in long term fate models.	 Disposed dredged material reaches full consolidation within 2 months. Disposed dredged material is susceptible to erosion until full consolidation. Parameters for LTFATE model calculated
Bathymetric Survey	COE - Jacksonville District	November 2000	Monitor bathymetry changes	 -Minimum depth of 30.5 feet northwest of center of ODMDS -Depth at southern corner of ODMDS = 52.0 feet -Significant shoaling occurring

Surveys and Studies Conducted at the Canaveral Harbor ODMDS