Jacksonville Harbor (Mile Point) Navigation Study Duval County, Florida

FINAL INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

APPENDICES

APPENDIX A – ENGINEERING APPENDIX B – SOCIO-ECONOMICS APPENDIX C – REAL ESTATE APPENDIX D – MITIGATION PLAN AND INCREMENTAL ANALYSIS APPENDIX E – PERTINENT CORRESPONDENCE APPENDIX F – SECTION 404(B) EVALUATION APPENDIX G – COASTAL ZONE MANAGEMENT CONSISTENCY APPENDIX H – PUBLIC COMMENT ON DRAFT INTEGRATED FEASIBILITY STUDY AND ENVIRONMENTAL ASSESSMENT

NAVIGATION STUDY FOR JACKSONVILLE HARBOR (MILE POINT), FLORIDA

DRAFT INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

APPENDIX A ENGINEERING

NAVIGATION STUDY FOR JACKSONVILLE HARBOR (MILE POINT), FLORIDA

FINAL INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

APPENDIX A ENGINEERING

Table of Contents

<u>Subject</u>

Paragraph No. Page No.

A. INTRODUCTION

General	1	A-1
Recommended Plan	2	A-1
Alternatives	3	A-2

B. HYDROLOGY AND HYDRAULICS

General	4	A-2
Sea Level Rise	5	A-4
Currents	6	A-6
Methodology	7	A-6
Effects of Recommended Plan	8	A-6

C. <u>GEOTECHNICAL</u>

General	9	A-7
D. DESIGN AND CONSTRUCTION		
General	10	A-7
Structure Removal and Required Excavation	11	A-8
Side Slopes	12	A-8
Overdepth	13	A-8
Relocated Training Wall	14	A-8

Table of Contents (continued)

<u>Subject</u>	Paragraph No	. Page No.
Flow Improvement Channel Disposal Area Construction Procedure	15 16 17	A-9 A-9 A-10
E. <u>RELOCATIONS</u>		
General Utilities	18 19	A-10 A-10
F. SHIP SIMULATION STU	IDY	
Discussion	20	A-10
G. OPERATION AND MAINTER	NANCE	
General Estimated Annual Cost Navigation Aids	21 22 23	A-11 A-11 A-12
H. QUANTITIES AND COST ES	<u>TIMATE</u>	
Summary of Quantities Summary of Costs	24 25	A-12 A-12
<u>LIST OF TABLES</u> (tables follow text)		
<u>Title</u>		Table No.
Regional Sea Level vs. Year – Mile Point Summary of Construction Quantities		A-1 A-2

LIST OF PLATES (plates follow tables)

Title	Plate No.
Project Location Map Project Vicinity Map – Existing Project Project Vicinity Map – Recommended Plan Alternative VE-3B - Plan Typical Excavation Sections Alternative VE-3B - Bathymetry Relocated Training Wall East and West Legs Typical Sections Material Placement/Mitigation Area – Site Plan Alternate 2 – Proposed Widened Channel Plan Proposed Flow Improvement Channel Vicinity Map Proposed Flow Improvement Channel Plan and Typical Section Utilities Present By River Segment - 1998	A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 A-11 A-12
	/ · · · /

ATTACHMENTS (attachments follow plates)

Title	Attachment No.
Hydrodynamic Modeling	A
Geotechnical	B
Ship Simulation Report	C
Proof of Concept Study for Mile Point Channel Wideners	D
VE Study FY'08	E
VE Study FY'11	F

JACKSONVILLE HARBOR (MILE POINT), FLORIDA APPENDIX A ENGINEERING

A. INTRODUCTION

1. <u>General.</u> This Appendix presents the discussion of applicable design considerations and construction methods utilized to adequately address the project requirements and to establish a basis for the cost estimates. General requirements for real estate and operation and maintenance are also presented. This Appendix has been prepared in accordance with the applicable policy guidance as contained in ER 1110-2-1150, Engineering and Design for Civil Works Projects; ER 1110-2-1403, Studies by Coastal, Hydraulic, and Hydrologic Facilities and Others; and ER 1110-2-1404, Hydraulic Design of Deep Draft Navigation Projects.

2. <u>Recommended Plan.</u> The recommended NED plan, Alternative VE-3B+F.I.C., combines the reconfiguration of the existing training wall with the creation of a flow improvement channel in Chicopit Bay. The training wall reconfiguration includes removal of the western 3110 feet of existing Mile Point training wall and the construction of a new Western Leg and a relocated Eastern Leg training wall of approximately 4250 feet and 2050 feet, respectively. The Flow Improvement Channel (F.I.C.) consists of dredging a channel 80 feet wide and 6 feet deep for a length of approximately 3623 feet through Western Chicopit Bay. A plan view of the recommended plan is shown on Plate A-3.

The initial plan, Alternative 3B, was modified by the results of a Value Engineering (VE) Study which incorporates the beneficial use of dredged material by creating a salt marsh mitigation area that restores wetlands lost on Great Marsh Island. The original Plan 3B utilized the Buck Island Disposal Area for placement of dredged material which would have resulted in increased cost and loss of capacity in the D/A. A plan view of the Material Placement/Salt Marsh Mitigation Area is shown on Plate A-8. The VE program has also identified concrete structural units for the West Leg training wall that will serve as both initial containment for the mitigation area and ongoing shoreline protection beyond the project life of 50 years. The VE Study Reports are provided as Attachments to this Appendix. Further modification of Alternative 3B occurred with the addition of the F.I.C.; refer to Plates A-10 and A-11. Western Chicopit Bay has experienced shoaling as a result of the breakthrough at Great Marsh Island and tidal flushing could be increased by opening a flow channel that was present prior to the breakthrough's occurrence.

A discussion of the plan formulation involved in the selection of the recommended plan is presented in the main portion of this report. All soundings presented in this report are at Mean Low Water (MLW). Jacksonville Harbor is scheduled to be updated to the datum of Mean Lower Low Water (MLLW) in the future once data collection is complete and processed. The project features shall be designed and constructed to MLLW at the time of Plans and Specifications development. This conversion will likely increase stone quantities by a nominal amount. 3. <u>Alternatives</u>. One alternative that remains under consideration at the request of the St. Johns Bar Pilots consists of a proposed widening of the existing channel in the Mile Point reach (Cuts 9 through 19) by varying amounts with disposal of dredged material in Buck Island as shown on Plate A-9. The widening only alternative benefits high powered vessels with a DWT to horsepower ratio of 0.75 or greater. This alternative would allow for alleviation of the restrictions associated with the difficult cross-currents; however, it does not meet the study objective of reducing the effects of the currents on the erosion of the Mile Point shoreline. This Alternative was combined with the recommended plan to further increase safety and navigability of this reach of the project and this combination was carried to the final array of alternatives that can be found in the Main Report.

B. <u>HYDROLOGY AND HYDRAULICS</u>

4. <u>General.</u> The St. Johns River is the longest river in Florida, meandering more than 300 statute miles. The river discharges into the Atlantic Ocean at Mayport in Duval County. The total elevation drop from its headwaters to the Atlantic Ocean is less than 30 feet—an average slope of about one inch per mile.

Over most of its length, the river's average depth is relatively shallow. However, the 26-mile stretch of river from the mouth to downtown Jacksonville (the deepest segment) has an average depth of approximately 30 ft. Many small rivers, creeks, and tributaries feed into the St. Johns River, increasing the overall river flow, and affecting the tidal signal, especially during storm events. Some of the larger rivers and creeks along the lower portion of the St. Johns River include: Pablo Creek, Sisters Creek, Clapboard Creek, and Cedar Point Creek. Others, farther upriver, include: Dunn Creek, Broward River, Trout River, Arlington River, and Ortega River.

The St Johns River runs through the city of Jacksonville, located in northeast Florida. Deep-draft vessels transit as far as downtown Jacksonville, or about 24 miles upriver from the confluence with the Atlantic Ocean. Beyond this point, commercial traffic is light, and comprised mostly of tug-assisted barges.

The effect of tides on the river is significant. Tidal influences are prevalent from the mouth of the river to slightly more than 100 statute miles upriver, near Georgetown, where the tide becomes negligible. The exact point where the river becomes non-tidal will constantly change, depending on the strength of the tide signal (e.g., spring or neap tides), and the interaction of the tide with the variable river flow. Tidal effects have been reported as far south as Lake Harney, upstream of De Land.

The total flow in the lower reaches of the river is comprised of about 80%-90% tideinduced flow, with the remaining flow caused by wind, freshwater inflow (from tributaries and rain), and industrial and treatment plant discharges. The river flow generally increases downstream, with the highest flows occurring at the mouth of the river. The total discharge of the river will often exceed 200,000 cfs. Freshwater flows within River is seasonal, generally following the seasonal rain patterns with higher flows occurring in the late summer to early fall, and lower flows occurring in the winter months. The average annual non-tidal freshwater discharge at the river mouth is approximately 15,000 cfs.

The main area of interest in this study centers on the intersection of the St Johns River and the Intracoastal Waterway (IWW). This area is known as Mile Point. The IWW crosses the main channel of the St Johns River at an angle of approximately 45° from the north, out of Sisters Creek. From the south, it crosses at an angle almost parallel to the main channel flow out of Pablo Creek, with flow usually running in the opposite direction of flow in the river. The intersection of the St Johns River and the IWW is subject to cross-currents in the upper depths of the river due to the significant flow rates coming out of Pablo Creek and the large confluence angle with the St Johns River.

Pablo Creek is a navigable waterway that experiences flows in excess of 55,000 cubic feet per second during ebb tide, as measured with Acoustic Doppler Current Profile (ADCP) surveys. This flow coming from the south, out of Pablo Creek can exceed 25% of the total flow of the St. Johns River at Mile Point. In addition, the confluence angle of these two waterways is more than 130 degrees. As the St. Johns River flows in a southeasterly direction during ebb flow, Pablo Creek's flow collides with the river in a northwesterly direction. This combination of high flow and extreme confluence angle causes a deflection of the main channel flows to the northeast.

ADCP surveys clearly show that during flood tide, the majority of the flow (and fast moving water, >5fps) is concentrated toward the southern bank of the river (outer bend) with very slow moving water along the northern bank (inner bend). This is the flow distribution one would expect to see at a river bend. However, during the ebb tide the flow distribution is drastically shifted/deflected to the north. Fast moving water flows can be seen along the northern shoreline, with water moving significantly faster along the northern (inner) bend compared to the southern (outer) bend where the Federal Channel is located. One must consider that the north bank at Mile Point is on the inside of the river bend, where normally sedimentation, not erosion, usually occurs. The unique geometric configuration of this intersection of the IWW and the St Johns River, which produces a dramatic shift in the St Johns River's currents, is the only logical explanation for the extreme cross-currents experienced at this turn. This phenomenon can be visibly seen at the project site, has been measured with multiple ADCP surveys, is reproduced in both two- and three-dimensional modeling, and verified by the St Johns River Bar Pilots. These dangerous cross-currents are the reason for the Bar Pilots' navigation restrictions.

On the southern bank of the St Johns River at Mile Point, the Mile Point Training Wall, also known locally as the "Little Jetties", exists in a deteriorated state. Past records indicate the Mile Point Training Wall was constructed prior to 1910. An examination of the training wall was performed in 1928. According to that examination, the training wall ranged in height from an original design height of 6 feet above mean low water (MLW) to areas with a height of only 0.5 feet above MLW. Maintenance work around 1931 rebuilt the training wall to an original design elevation of 6 feet above MLW. Work began under contract on April 21, 1931 and resulted in the repair of 5,990 linear feet of the training wall. Over 18,000 tons of granite averaging in weight from 1,000 to 1,500 pounds per stone was placed in the Mile Point Training Wall. Currently, the training wall is in a deteriorated state. At high water, only a few sections of the training wall are visible above the water line. Many sections of the training wall are submerged even at low water.

In the recent past, homeowners on the north bank of the river at Mile Point have seen severe erosion of their property and are seriously concerned about future property losses. The homeowners have speculated that this erosion is caused by hydrodynamic effects of dredging done by U.S. Corps of Engineers in the past, installation of the large Atlantic Marine dry dock, as well as by the deterioration of the Little Jetties training wall. Also of concern in this area is the breakthrough of Great Marsh Island on the southern bank of the St Johns at Mile Point, allowing water to flow directly from the St Johns River into nearby Chicopit Bay. This has caused severe shoaling in parts of Chicopit Bay. At low tide, the water depth in some parts of the bay is less than six inches deep.

5. Sea Level Rise. Relative sea level (RSL) refers to local elevation of the sea with respect to land, including the lowering or rising of land through geologic processes such as subsidence and glacial rebound. It is anticipated that sea level will rise within the next 100 years. To incorporate the direct and indirect physical effects of projected future sea-level change on design, construction, operation, and maintenance of coastal projects, the U.S. Army Corps of Engineers (USACE) has provided guidance in the form an Engineering Circular, EC 1165-2-211. EC 1165-2-211 provides both a methodology and a procedure for determining a range of sea level change estimates based on global sea level change rates, the local historic sea level change rate, the construction (base) year of the project, and the design life of the project. Three estimates are required by the guidance, a Baseline estimate representing the minimum expected sea level change, an Intermediate estimate, and a High estimate representing the maximum expected sea level change. The local rate of vertical land movement is found by subtracting regional MSL trend from local MSL trend. The regional mean sea level trend is assumed equal to the eustatic mean sea level trend of 1.7 mm/year. Therefore at Mile Point, there is 0.70 mm/year of subsidence. Adjusting equation (2) to include the historic global mean sea-level change rate of +1.7 mm/year results in updated values for the variable b being equal to 2.36E-5 for modified NRC Curve I (Intermediate), 6.20E-5 for modified NRC Curve II, and 1.005E-4 for modified NRC Curve III (High).

Equation 2: $E(t) = 0.0017t + bt^2$

Equation (3) of EC 1165-2-211 Appendix B calculates eustatic sea level change over the life of the project. E(t) is eustatic sea level change and b is a constant provided in EC 1165-2-211; t_1 is the time between the project's construction date and 1986 and t_2 is the time between a future date at which one wants an estimate for sea-level change and 1986 (or $t_2 = t_1$ + number of years after construction (Knuuti, 2002)). For example, if a designer wants to know the projected eustatic sea-level change at the end of a project's period of analysis, and the project is to have a fifty year life and is to be constructed in 2015, $t_1 = 2015 - 1986 = 29$ and $t_2 =$ 2065 - 1986 = 79.

Equation 3:
$$E(t_2) - E(t_1) = 0.0017(t_2 - t_1) + b(t_2^2 - t_1^2)$$

Modifying equation (3), to include site-specific sea level change data, results in an equation for Relative Sea Level (RSL). This equation is used to estimate Baseline, Intermediate and High sea level change values over the life of the project.

$$RSL(t_2) - RSL(t_1) = (e+M)(t_2 - t_1) + b(t_2^2 - t_1^2)$$

 $RSL(t_1)$ and $RSL(t_2)$ are the total RSL at times t_1 and t_2 , and the quantity (e + M) is the local change in sea level in m/year that accounts for the eustatic change as well as uplift or subsidence. The quantity (e+M) is found from the nearest tide gage with a tidal record of at least 40 years.

Based on historical sea level measurements taken from NOS gage 8720218 at Mayport, Florida, the historic sea level rise rate (*e*+*M*) was determined to be 2.40 +/-.31 mm/year (0.0076 ft/year) (<u>http://tidesandcurrents.noaa.gov/sltrends/index.shtml</u>). The project base year was specified as 2015, and the project life was projected to be 50 years. Table 1 shows the results of equation (3) every five years, starting from the base year of 2015. From this table, the average baseline, intermediate, and high sea level change rates were found to be +2.40 mm/year (0.0079 ft/year), +4.95 mm/year (0.0162 ft/year), and +13.25 mm/year (0.0435 ft/year), respectively.

Projecting the three rates of change to the year 2065, which corresponds to a 50year project life, provides us with a predicted low level rise of 0.12 m or approximately 0.39 feet, an intermediate level rise of 0.25 m or approximately 0.81 feet, and a high level rise of 0.66 m or approximately 2.17 feet.

In order to assess the impact that either the low level (0.39 feet), the intermediate level (0.81 feet) or the high level (2.17 feet) of predicted sea level rise may have on this project it is first important to understand the function of the affected structure. A training wall by definition is a wall built along the bank of a river or estuary parallel to the direction of flow to direct and confine the flow. With that definition in mind it should be noted that a training wall is not a coastal protection structure and the function and performance of the wall is measured by its ability to "train" river currents; therefore, as long as the water surface level is below the crest of the structure is performing at 100% design capacity. The structure design crest elevation of +7.5 feet (+2.29 m), MLLW, represents a height of 2.55 feet (0.77 m) above Mean Higher High Water (MHHW) and a height of 0.36 feet (0.11 m)

above the highest observed water level (NOAA Tidal Bench Mark Station ID #8720218 at Mayport). Thus the impact of the low and intermediate level increases of 0.39 feet and 0.81 feet, respectively, would be inconsequential to the performance of the structure and the high level increase of 2.17 feet would only affect the performance of the structure during low probability events that exceeded the MHHW level by more than 0.38 feet. Even during such low probability events, the structure will perform its intended purpose to train the river currents with the exception of that very small portion of the water column above the structure's crest. In addition, if over time the actual measured changes in relative sea level are closer to the Scenario III amounts or greater, then the structure's performance can easily be brought back to an optimal level by increasing the crest elevation by up to a foot without major expense although the crest width would have to decrease slightly to do so.

6. <u>Currents.</u> In addition to the severe erosion experienced in the Mile Point area, dangerous crosscurrents are a major concern to deep-draft commercial navigation. Meetings with the St. Johns Bar Pilot's Association have highlighted the difficult and intense nature of the crosscurrents at the confluence of the St. Johns River with Sisters Creek to the north and Pablo Creek to the south. The area of the river where the IWW crosses the St. Johns River produces currents that can actually turn an inbound and under powered ship around. In addition, the U.S. Coast Guard describes the junction of the IWW with the St. Johns River as one of particular concern, subject to strong and unpredictable crosscurrents at various stages of tide.

To avoid those difficult ebb flow crosscurrents, the St. Johns Bar Pilots and the Captain of the Port have enacted a restriction which requires vessels with a draft greater than 33 feet to wait on a flood tide before entering or leaving the harbor. The sponsor, the Jacksonville Port Authority, has requested the Corps of Engineers to recommend measures that will allow the St. Johns Bar Pilots and the Captain of the Port to remove those restrictions.

7. <u>Methodology.</u> The project alternative plans were evaluated using a St. Johns River circulation model in addition to ship simulator studies. The circulation models were developed by Corps of Engineers staff, using the hydrodynamic models RMA-2 and RMA-10. Current velocities and flow fields were developed for all alternatives using the two-dimensional model RMA-2. The recommended plan, relocation of the Mile Point Training Wall was determined to be the most effective and feasible plan. This alternative was then verified using the three-dimensional model RMA-10. Further details of this analysis are available in the Hydraulics and Hydrology Attachment. Outputs from the hydrodynamic models were then used as inputs into the ship simulator studies detailed in the Hydrodynamic Model Report (Attachment A).

8. <u>Effects of Recommended Plan.</u> Numerical hydrodynamic modeling of the proposed channel improvements and recommended features for the Mile Point project shows changes to current vectors (velocities and direction) under flood and

ebb tide. Numerical modeling results indicate that the dangerous crosscurrents exiting the IWW southern channel under ebb tide will be redirected to more closely parallel the alignment of the Federal navigation channel instead of being focused toward the erosion prone areas along the northern shoreline of Mile Point. This reduction in crosscurrents should allow for the restriction of ebb tide transit for deepdraft vessels to be lifted. Examination of the maximum flood and ebb tide current vectors indicate that flow velocity magnitudes within the Federal navigation channel are very similar between the existing and with-project condition and in isolated areas of the Mile Point turn are about 1 feet/sec less under the with-project condition. This comparison suggests that little or no significant net increase in shoaling rates will occur within the Jacksonville Harbor Federal channel over existing project conditions.

A natural shift of the Intracoastal Waterway at the entrance to Pablo Creek will be expected as a result of the realignment of the training wall. Lower water velocities will increase the opportunities for sedimentation on the western side of the entrance. Higher velocities along the eastern side have the potential to scour and undermine the location of the new training wall; therefore this training wall will be designed with significant scour protection.

It is anticipated that the new realignment of the Mile Point Training Wall will produce flows coming out of the IWW that are more aligned with the Federal navigational channel. This should cause a drop in water velocity magnitude in the areas north of the navigational channel at Mile Point, as seen in Figures 19 and 20 of the Hydraulics and Hydrology Attachment.

Little or no significant net increase in shoaling of the Intracoastal Waterway or the Federal Navigational channel is predicted as a result of the reconfiguration of the Mile Point Training Wall.

C. <u>GEOTECHNICAL</u>

9. <u>General</u>. The geotechnical investigations and the geologic conditions encountered within the scope of study of the Feasibility Report are presented in an Attachment to this Appendix. The Attachment includes preliminary core boring locations and associated analytical data. The current level of field work completed pertains to the Feasibility Study. Additional investigations with borings will be needed to enhance the data to bring it to Plans and Specifications (P&S) standards.

D. DESIGN AND CONSTRUCTION

10. <u>General</u>. A project location map is shown on Plate A-1 and a vicinity map is shown on Plate A-2. The proposed project plan is shown on Plate A-3 and typical sections of the relocated Training Wall East and West Legs are provided on Plate A-7. Other plan details are provided on Plates A-4, A-5, A-6, A-8, A-10 and A-11.

11. <u>Structure Removal and Required Excavation</u>. The western most 3110 feet of the existing training wall will be removed and the entire mouth of San Pablo creek at its confluence with the St. Johns River will be dredged to -12 feet MLW plus 1 foot of allowable overdepth. Total estimated quantity of material to be excavated is up to approximately 889,000 cubic yards (cy). All usable stone material recovered from the existing training wall will be stockpiled for use in the East Leg of the relocated training wall and all other material excavated will be placed as beneficial use in the Salt Marsh Mitigation Area and as foundation for the relocated training wall legs. It is estimated that approximately 14,600 cy of armor stone can be recovered for reuse purposes; however, additional geophysical exploration is needed to more precisely ascertain the exact quantities of stone available for reuse.

12. <u>Side Slopes</u>. The design side slopes were derived from historical project information, an analysis of the materials to be dredged and existing channel topography. For estimating excavation volumes, side slopes along the channel length with predominantly SP material have been excavated to 1V:3H. Existing boring data in the area to be excavated for this project show SP material.

13. <u>Overdepth</u>. An additional 1-foot of allowable overdepth is included in the estimated excavation quantities. The allowable overdepth would be included to provide for inaccuracies in the dredging process.

14. Relocated Training Wall. Design of the relocated training wall legs was predicated on an analysis of the original design, repair designs, current velocities from hydrodynamic modeling (further explained in Attachment A, Hydrodynamic Model Report), and predicted wave heights generated from ship traffic. Existing ships are defined as Panamax vessels with a Length Overall (LOA) of 950 feet and a beam of 106 feet. In order to account for the likelihood of larger vessels using Jacksonville Harbor in the future with or without deepening of the harbor once the Panama Canal expansion is complete, a vessel of 984 feet LOA and a beam of 122 feet was considered. A previous study of Chicopit Bay from 1997 identified that at any given speed the future vessels produce between one-half foot and 1-foot higher waves than existing vessels due to the increased beam/length of entry ratio. The result is a recommended design wave height of 5 feet for the East Leg and 3 feet for the West Leg. Maximum current velocities of approximately 5 feet per second (fps) are expected to occur as a result of the project although it is anticipated that the current velocities along the West Leg will decrease over time once the entire project is constructed. The East Leg training wall incorporates a larger scour apron (25') than the West Leg (10') due to the predicted permanent shift of stronger currents in Pablo Creek towards the east especially during the ebb tide. Channel migration of the IWW is anticipated and realignment of the channel to deep water may become necessary. The relocated East Leg consists of building approximately 2050 feet of training wall tying into the existing structure on Helen Cooper Floyd Park and the West Leg consists of building approximately 4250 feet of training wall across the breakthrough at Great Marsh Island. Estimated quantities associated with the East Leg are 26,900 cubic yards (cy) of armor stone and 11,900 cy of bedding stone and for the West Leg are 5,670 cy of concrete (567 units at 10cy/unit) and 32,000 sy of geotextile fabric for bags and tubes to be filled with 40,500 cy of excavated material.

Both legs will incorporate the use of a total of approximately 34,900 square yards of filter fabric. Refer to Plate A-7 for training wall typical sections and Table.

The project area is very dynamic and due to the complex hydrologic processes the conditions are subject to change over relatively short periods of time. Additional survey data and data densification will be needed to refine the design template during the Preconstruction, Engineering and Design (PED) phase along the entire alignment of the relocated training wall West and East Legs. The templates presented in Plate A-7 are considered typical and the final structure design could vary based on actual existing bottom conditions at time of PED development.

15. <u>Flow Improvement Channel</u>. Due to shoaling in Chicopit Bay, likely caused by the breakthrough at Great Marsh Island, historic flow paths from Mt. Pleasant and Greenfield Creeks to Pablo Creek have been greatly diminished. In order to restore this flow path and increase flushing of sediments and tidal exchange in Chicopit Bay, a flow improvement channel will be constructed in conjunction with the training wall relocations and restoration of Great Marsh Island. The flow improvement channel would be constructed to a depth of -6 feet MLW plus 1-foot of allowable overdepth to account for the inaccuracies of dredging. The channel will be 80 feet in width and approximately 3623 feet in length. These dimensions are predicated primarily on an analysis of historical conditions that existed prior to the breakthrough of Great Marsh Island. A total of up to approximately 72,000 cubic yards would be removed from the F.I.C. and all dredged material will be placed in the designated Material Placement Area to expand the acreage of the salt marsh restoration.

16. Disposal Area. It is anticipated that all of the construction material not recovered for reuse would be placed in the Salt Marsh Mitigation Area as a beneficial use dredged material. Refer to Plate A-3 for the approximate location of the Material Placement/Mitigation Area and Plate A-8 for the site plan. As mitigation for the relocated East Leg of the training wall the creation of approximately 18.2 acres of both high marsh and low marsh will be required. By using the remainder of the material to be excavated for the project a total of approximately 53 acres of marsh will be created. It is anticipated that the construction of the marsh will take place in 2 phases. Phase 1 will consist of the material placement from required project excavation that is anticipated to be performed primarily by hydraulic means and phase 2 will follow after a period of time to grade the material to the correct elevations, create tidal flow channels, and plant vegetation. The phasing of this construction is important to allow for evaluation of the actual final quantity of material placed in the site, the consolidation of the dredged material and settlement of underlying materials. An adjustment of the acreages of high marsh versus low marsh may be needed to balance the material that is actually placed within the site. During initial material placement it will be necessary to contain the dredged material to allow for settlement and dewatering of the dredge slurry. Containment will be accomplished on the north side by the new West Leg of the training wall, on the south side by the use of geotube(s) filled with dredged material and on the east and west by use of removable water dams. The water dams will be set to an elevation of approximately +7.5 feet MLW in order to prevent the loss of dredged material into the surrounding existing wetlands on the east and west. The geotube(s) on the south will be set to an elevation of approximately +5 feet MLW which corresponds to

the MHHW level and will allow for retention of dredged material within the disposal area, clarification of the dredge slurry and subsequent return of decant water to the environment. Final fill elevation is not precisely known due to the large number of variables involved with the construction process; however, they should not exceed +2.5 MLW. Additional surveys and geotechnical exploration will be needed during the PED phase to refine design parameters and revise quantity requirements. Additional details regarding the mitigation requirements and restoration plans are provided in Appendix D of this report.

17. <u>Construction Procedure</u>. For cost estimating purposes, it is anticipated that landside excavators would be utilized to remove material on Helen Cooper Floyd Park above the waterline and a 16 inch cutter-suction dredge would be used to remove material to elevation -13 feet MLW in addition to performing the dredging of the F.I.C. to -7 feet MLW. A crane and barge(s) would be required for removal of existing stone from the segment of training wall to be removed and for placement of the relocated training wall East and West Legs. Areas of deep water along the relocated training wall alignments will need to be filled and possibly surcharged prior to stone placement in order to provide structure foundation. Sequence of overall construction will be at the discretion of the Contractor except that the construction of the West Leg Training Wall will be required prior to material disposal in the Great Marsh Island restoration area and the construction of the F.I.C. will be the last order of work. A follow-on contract will be required to perform final restoration of Great Marsh Island including final grading for areas of low and high salt marsh, tidal channels and planting.

E. <u>RELOCATIONS</u>

18. <u>General</u>. The project sponsor would be required to assume the costs of all relocations and alterations.

19. <u>Utilities</u>. There are no known submarine crossings of local or long distance phone, cable television, electrical, sewerage or drinking water lines in the project vicinity as noted in the Jacksonville Harbor Feasibility Study dated September 1998 (see Plate A-12). During a site visit in 2008 it was noted that a wastewater outfall pipe exists that discharges into the St. Johns River near the east end of the existing training wall on Helen Cooper Floyd Park that was not identified during the 1998 study. It appears that this outfall pipe lies well outside the Federal Project and training wall relocation footprint.

F. SHIP SIMULATION STUDY

20. <u>Discussion</u>. The Report for the ship simulation study is provided in Attachment C. Development of the simulation database, model verification, alternatives testing, study conclusions, and associated recommendations are included in the report. The information provided is essential for a complete understanding of the likelihood that

an engineering solution can be provided that will lessen or eliminate the threats to navigation safety at Mile Point during ebb flow in the federal channel. Two important components of the simulation study documentation are not included in the paragraphs that follow. The testing ship track plots and the pilot post-simulation analysis question and comment sheets are not provided for review. The track plots and comment sheets are considered to be proprietary intellectual information by the St Johns Bar Pilots Association. A copy of this information is held in confidence by ERDC and the District Office (Philip Sylvester 904-232-1142). In response to a request from Headquarters, additional ship simulation work was initiated in June of 2009 to test the feasibility of a widener in Training Wall Reach as a solution to vessel controllability issues at Mile Point. Proof of Concept documentation related to that work is provided in Attachment D.

G. OPERATION AND MAINTENANCE

21. <u>General</u>. The Federal Government would be responsible for operation and maintenance of the navigation improvements proposed in this report upon completion of the construction contract. The Federal Government currently maintains the existing project. The contractor would be responsible for all maintenance during the construction contract.

22. <u>Estimated Annual Cost</u>. Due to existing current velocities, the Jacksonville Harbor and Intracoastal Waterway channels in the project vicinity presently require little to no maintenance. According to operations managers in CESAJ-OD-N this reach of the Jacksonville Harbor project is maintenance dredged approximately every 5 years and the IWW reaches DU-1 through DU-7 have required no maintenance in the past 50 years. Based on model investigations and current measurements, the resulting bottom current velocities from the relocated training wall legs and excavation and removal of a portion of the existing Training Wall and entire surrounding area to -13 feet MLW are of such magnitude to expect little deposition to occur in either of the channels. It may however become necessary to realign the Intracoastal Waterway to the east if deposition occurs along the West Leg of the relocated training wall.

The Chicopit Bay Flow Improvement Channel is also not expected to require maintenance dredging. As shown in Figures 16 and 17, on pages 22-23 of the main report, prior to the breakthrough of Great Marsh Island, a natural channel exists in the same location as the proposed Flow Improvement Channel. These historical maps show water depths up to 10 feet due to tidal flushing of Chicopit Bay as well as freshwater runoff from the neighboring creeks. Once Great Marsh Island is restored, the water from Greenfield and Mount Pleasant Creeks, as well as the large volume of water within Chicopit Bay's tidal prism will flush in and out through the Flow Improvement Channel. It is reasonable to expect the water velocities in the channel to be sufficient to prevent shoaling within the channel.

Historically the training walls along the St. Johns River have performed well and required very little maintenance. The White Shells Training Wall has received no

maintenance since 1931 and is not scheduled for any maintenance in the near term, the St. Johns Bluff Training Wall received no maintenance between 1931 and 1996 (65 years), the Bartram Island Training Wall received no maintenance between 1931 and 1998 (67 years) and the Mile Point Training Wall received no maintenance for a period of 70 years between 1931 and 2001. Therefore, with proper design and construction it is anticipated that no maintenance of the relocated training wall legs will be required over the project life of 50 years.

23. <u>Navigation Aids</u>. The U.S. Coast Guard (USCG) would be responsible for providing and maintaining navigation aids. Warning signs and lights that are within the training wall reach designated to be removed will no longer be needed once construction has been completed and will be removed along with that portion of the training wall. There are additional range lights and channel markers that will require relocation and the USCG has provided an estimated cost for this effort. These costs are incorporated into the MCACES estimate in the Cost Engineering Appendix.

H. QUANTITIES AND COST ESTIMATES

24. <u>Summary of Quantities</u>. A summary of the major construction items are presented in Table A-2 below. Mitigation construction quantities are discussed in the Mitigation Plan, Appendix D.

25. <u>Summary of Costs</u>. The estimates of first cost for construction of the NED Plan (VE-3B+FIC) were prepared using MCACES software and are presented in the Cost Engineering Appendix. The estimate includes a narrative, a summary cost, and a detailed cost showing quantity, unit cost, and the amount for contingencies for each cost item. The costs of the non-construction features of the project are also included in the cost estimate. Costs are currently provided assuming beneficial use of disposal material at Great Marsh Island.

The costs have been prepared for an effective date of February 2011.

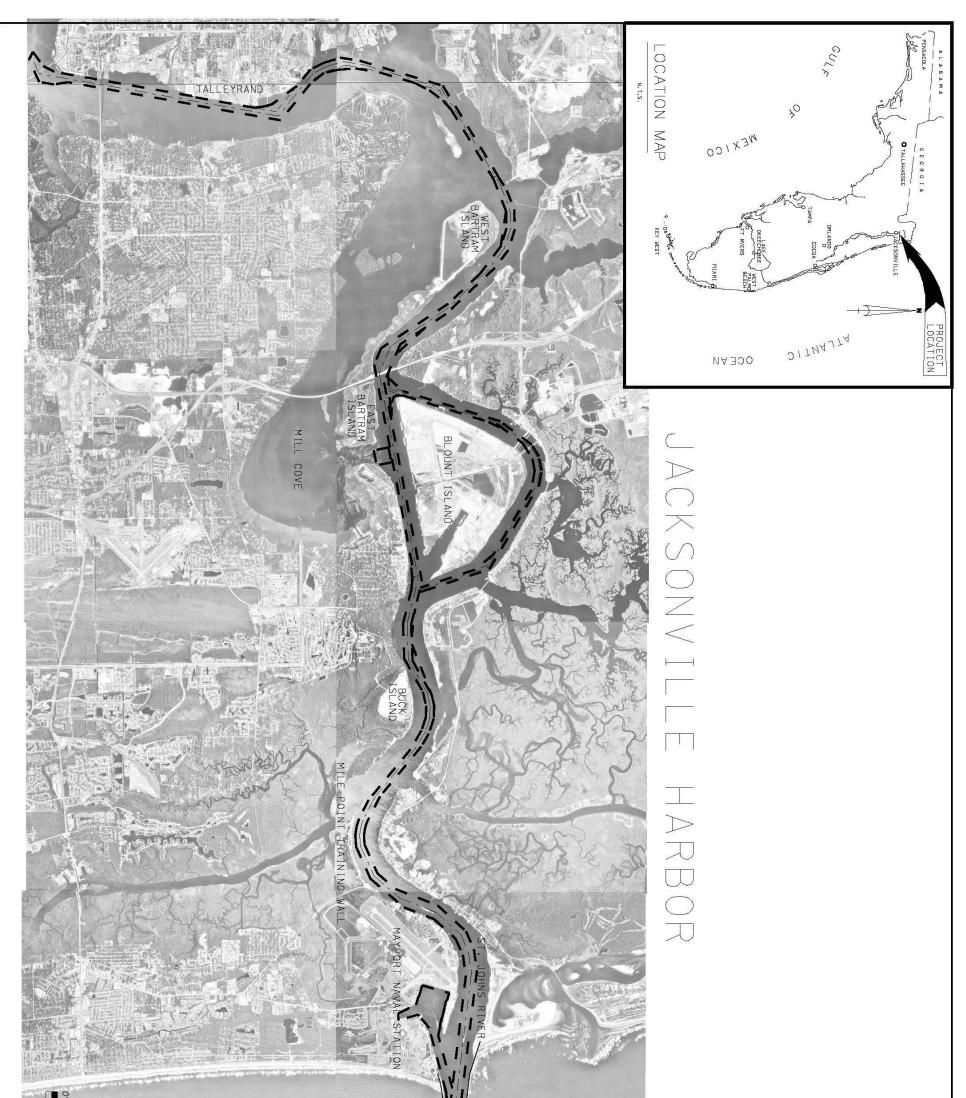
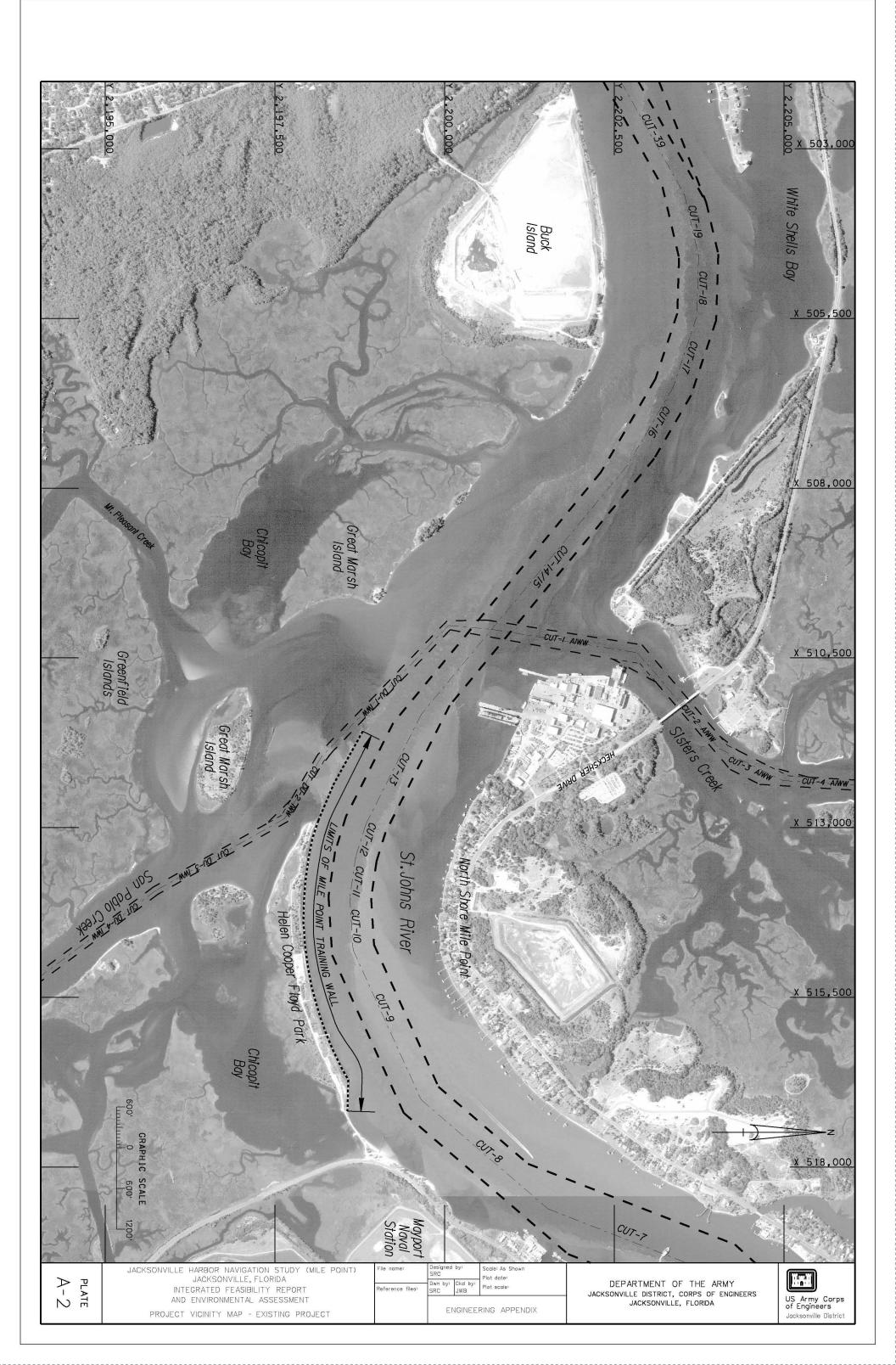
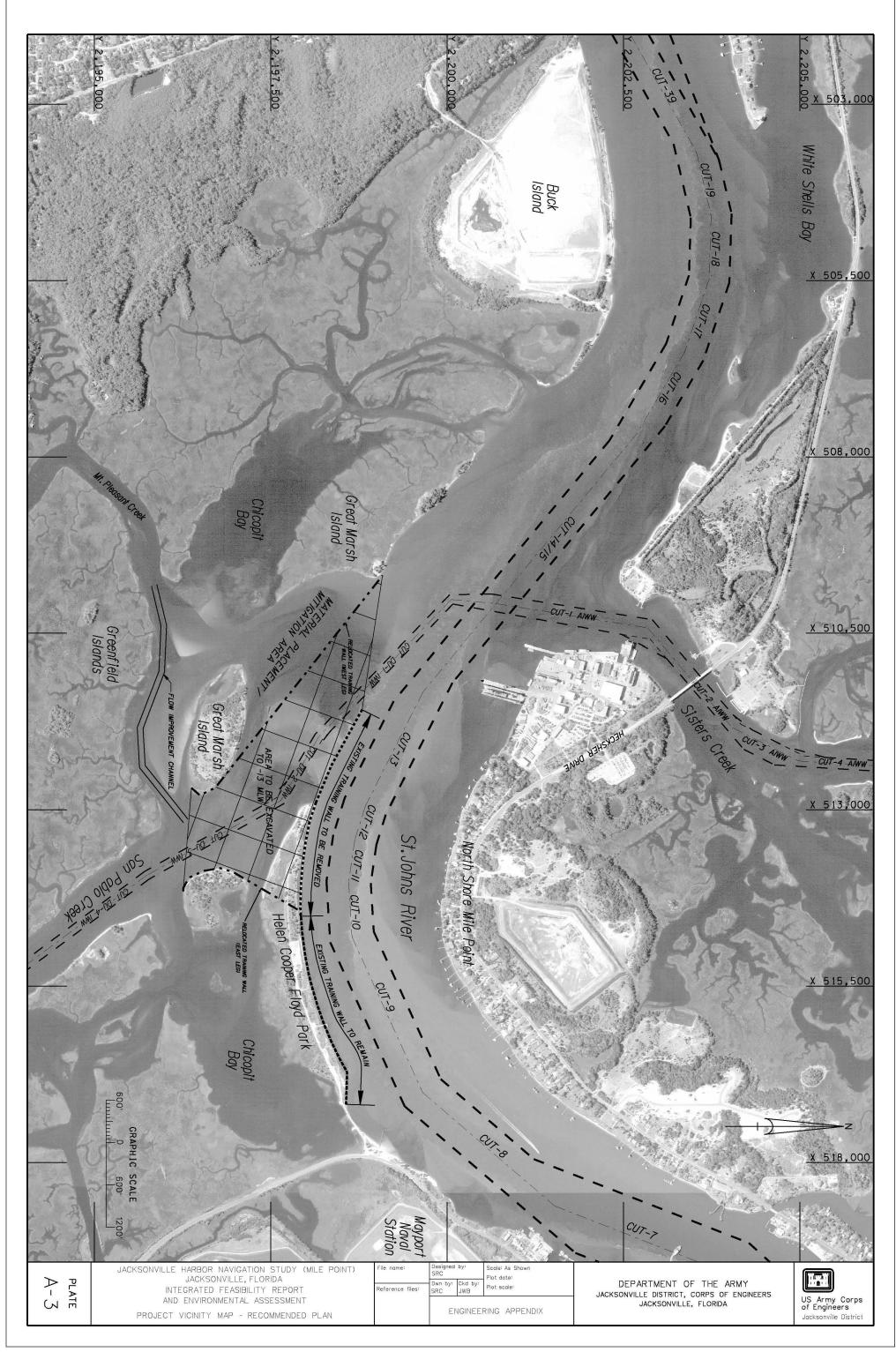
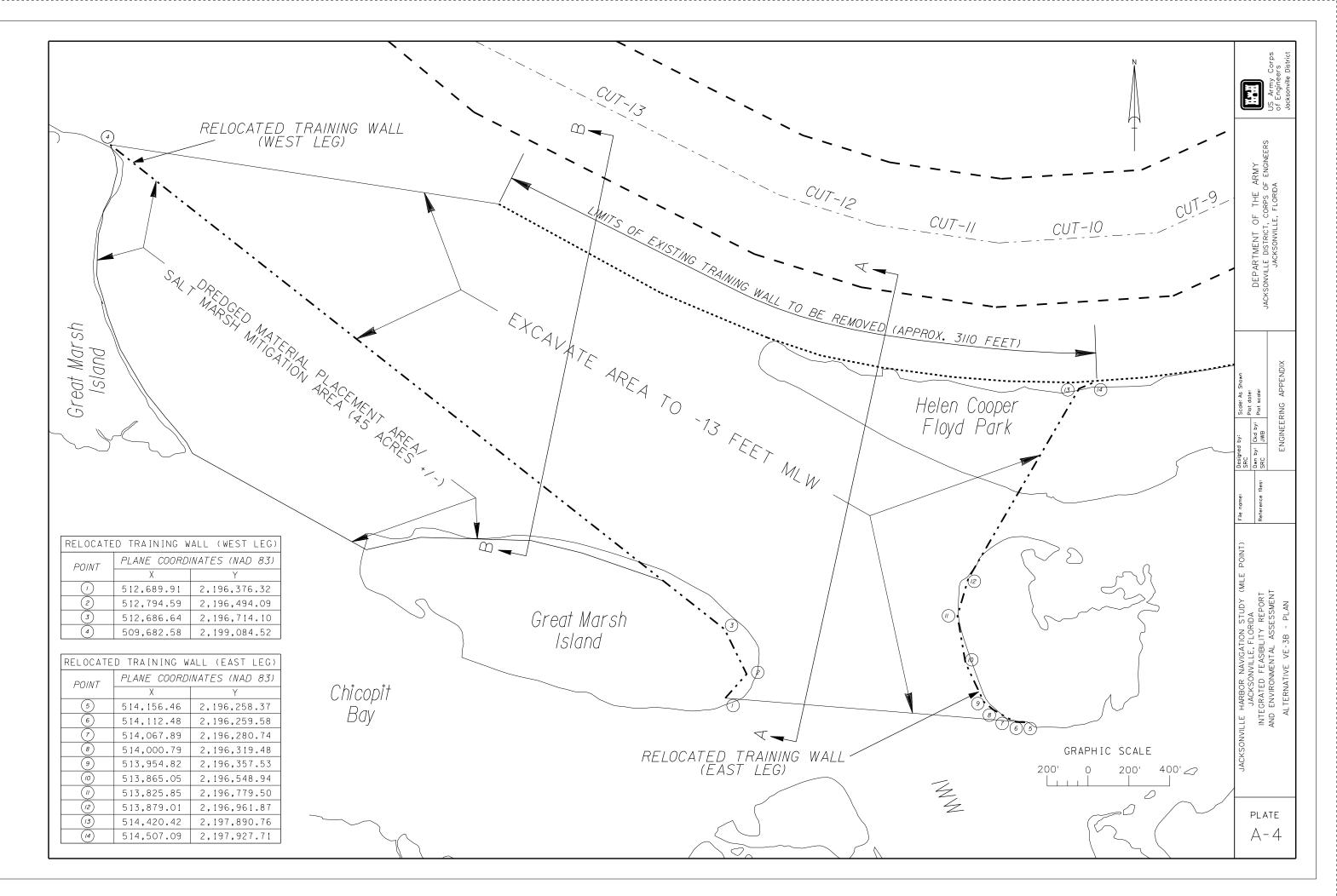
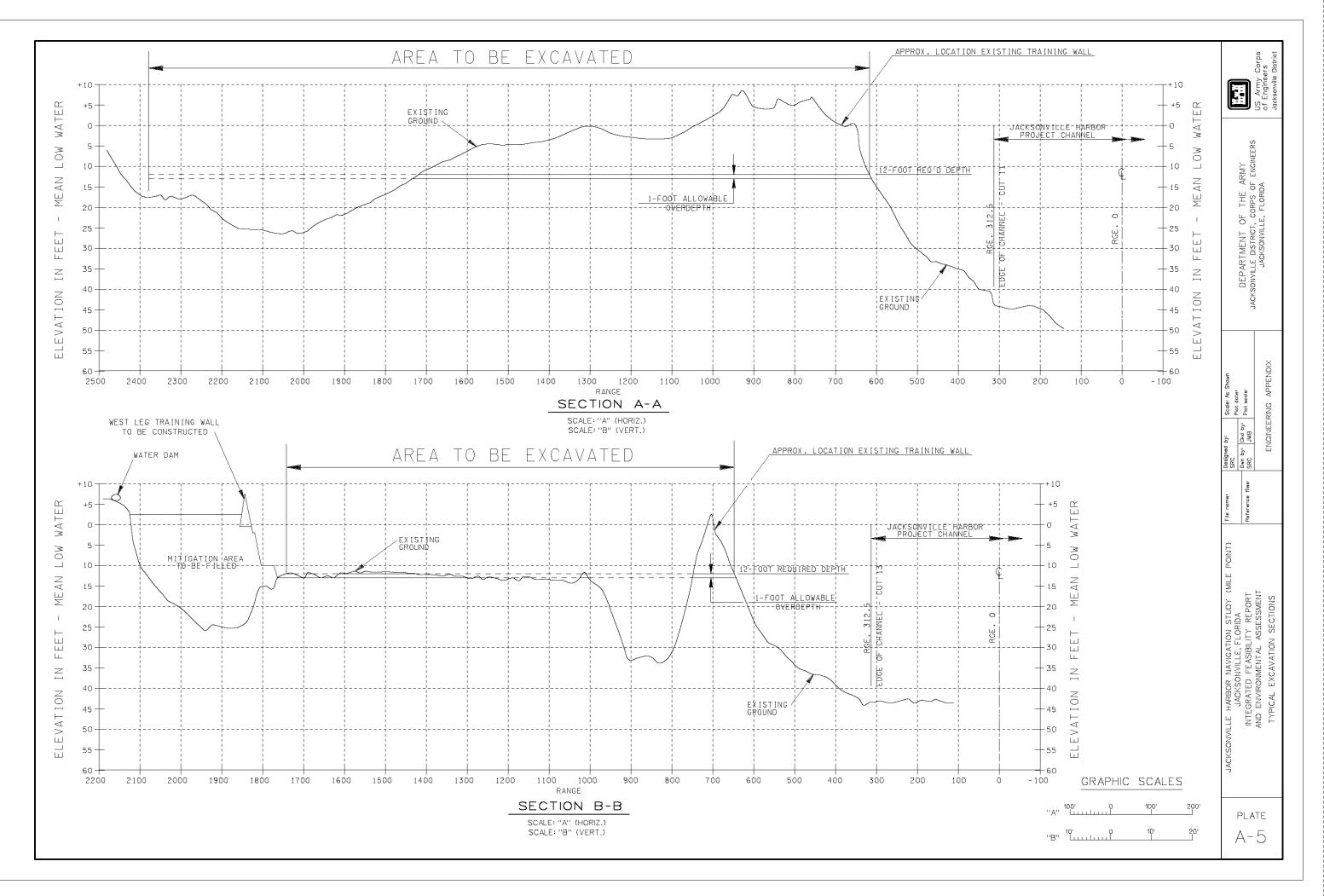

	Baseline (H	e (Historic) Intermed		Intermedia	iate (NRC Curve I)		High (NRC Curve III)		
	Year	mm	ft	Year	mm	ft	Year	mm	ft
Base Year	2015	0.0	0.00	2015	0	0.00	2015	0	0.00
	2020	12.0	0.04	2020	19.4	0.06	2020	43.7	0.14
	2025	24.0	0.08	2025	40.0	0.13	2025	92.3	0.30
	2030	36.0	0.12	2030	61.8	0.20	2030	146.0	0.48
	2035	48.0	0.16	2035	84.8	0.28	2035	204.8	0.67
25 Year	2040	60.0	0.20	2040	109.0	0.36	2040	268.5	0.88
	2045	72.0	0.24	2045	134.3	0.44	2045	337.3	1.11
	2050	84.0	0.28	2050	160.8	0.53	2050	411.1	1.35
	2055	96.0	0.31	2055	188.5	0.62	2055	490.0	1.61
	2060	108.0	0.35	2060	217.4	0.71	2060	573.8	1.88
50 Year	2065	120.0	0.39	2065	247.4	0.81	2065	662.7	2.17

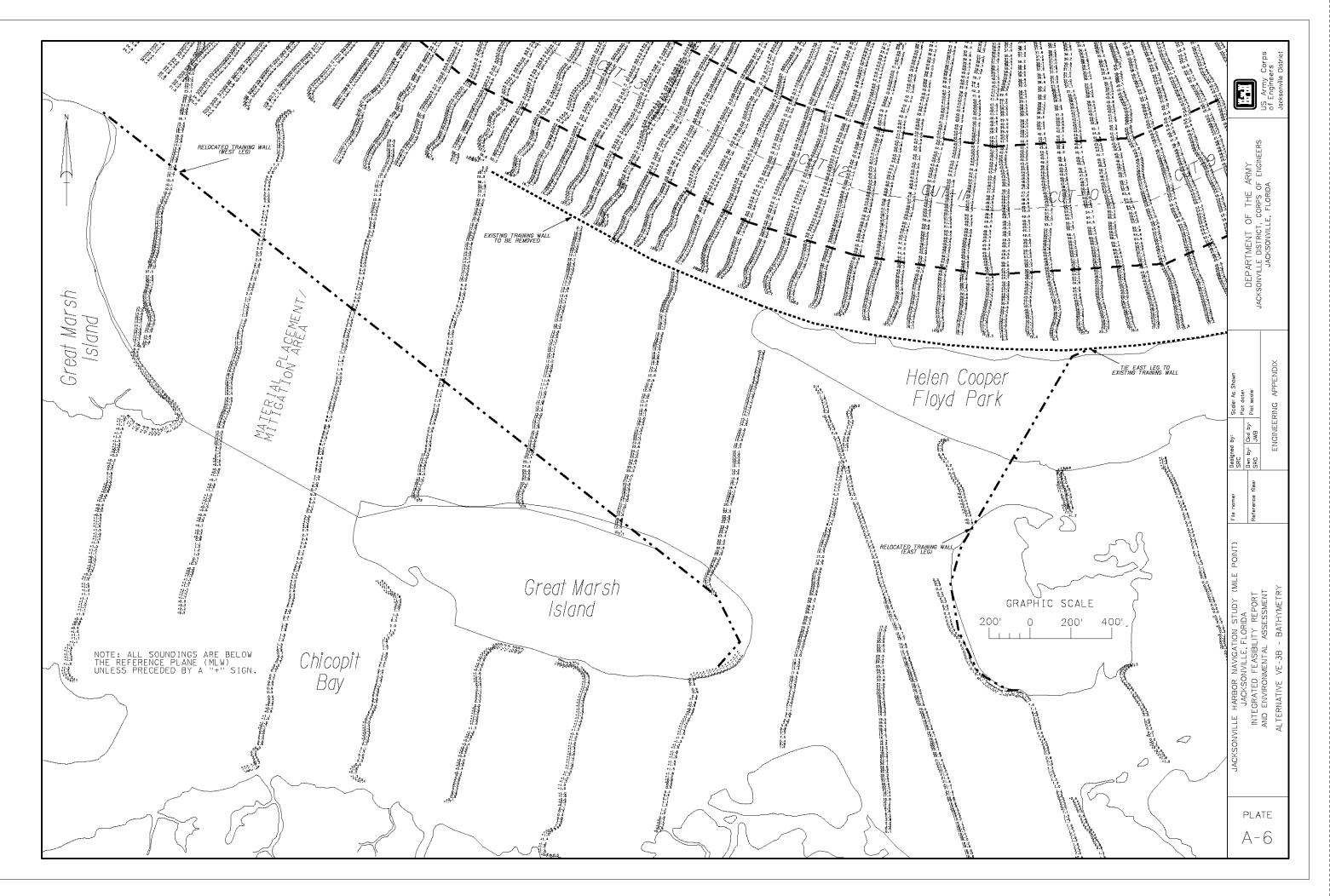
Table A-1: Regional Sea Level vs. Year- Mile Point


TABLE A-2 Summary of Construction Quantities

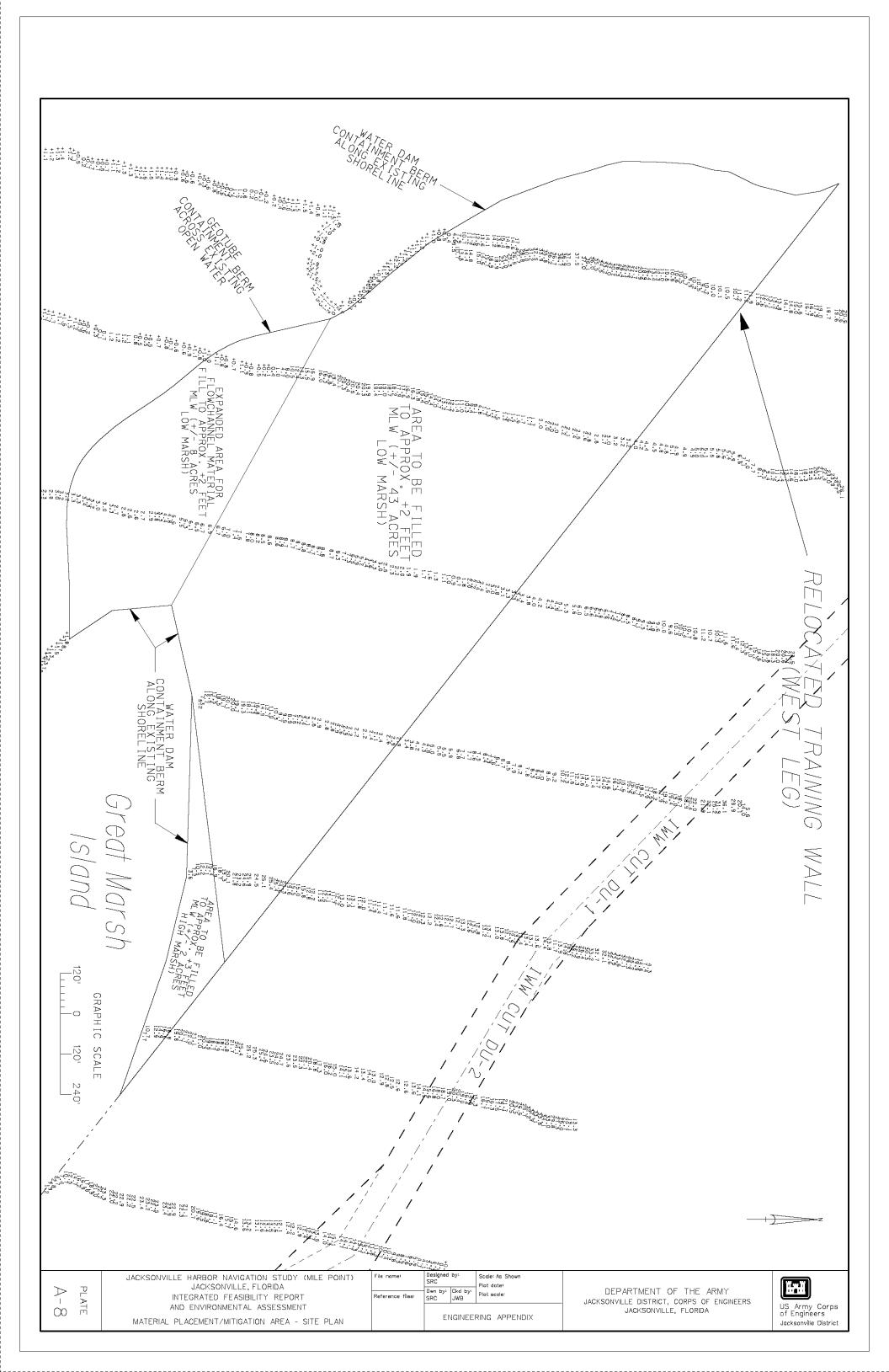

Item	Quantity
Clearing and Grubbing	13 acres
Excavation Area - Upland Removal and Disposal - Dredging and Disposal	67,000 cubic yards 822,000 cubic yards
Flow Improvement Channel - Dredging and Disposal	72,000 cubic yards
Mitigation/Placement Area - Geotextile tube Containment 3 tubes at 1400' each - Water Dam Containment	4200 linear feet 3275 linear feet
West Leg Training Wall - Filter Fabric - Filter/Bedding Stone - Concrete Structural Units (567 units at 10cy/unit)	20,300 square yards 5,000 cubic yards 5,670 cubic yards of 5000 psi marine grade, fiber
- Foundation Fill (from excavation area) with Geotextile Bags/Tubes	reinforced, pH neutral concrete 40,500 cubic yards plus 32,000 sy of bags/tubes
East Leg of Training Wall - Existing TW Stone Removal and Reuse - Filter Fabric - Filter Stone - Armor Stone	14,600 cubic yards 22,500 square yards 11,900 cubic yards 12,300 cubic yards*
the tell we are the eliment we is 00	

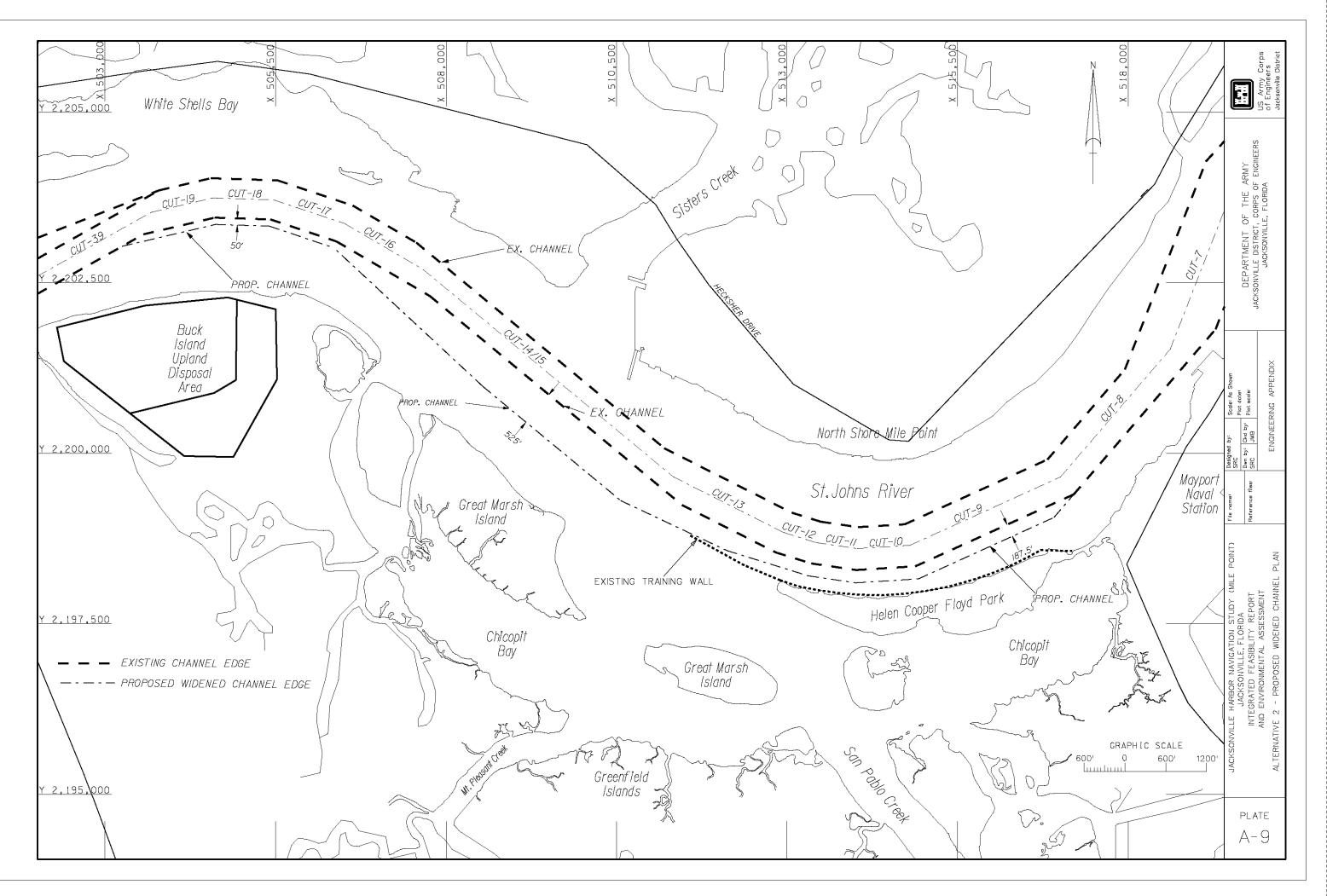

*total required in structure is 26,900 cy including reused material

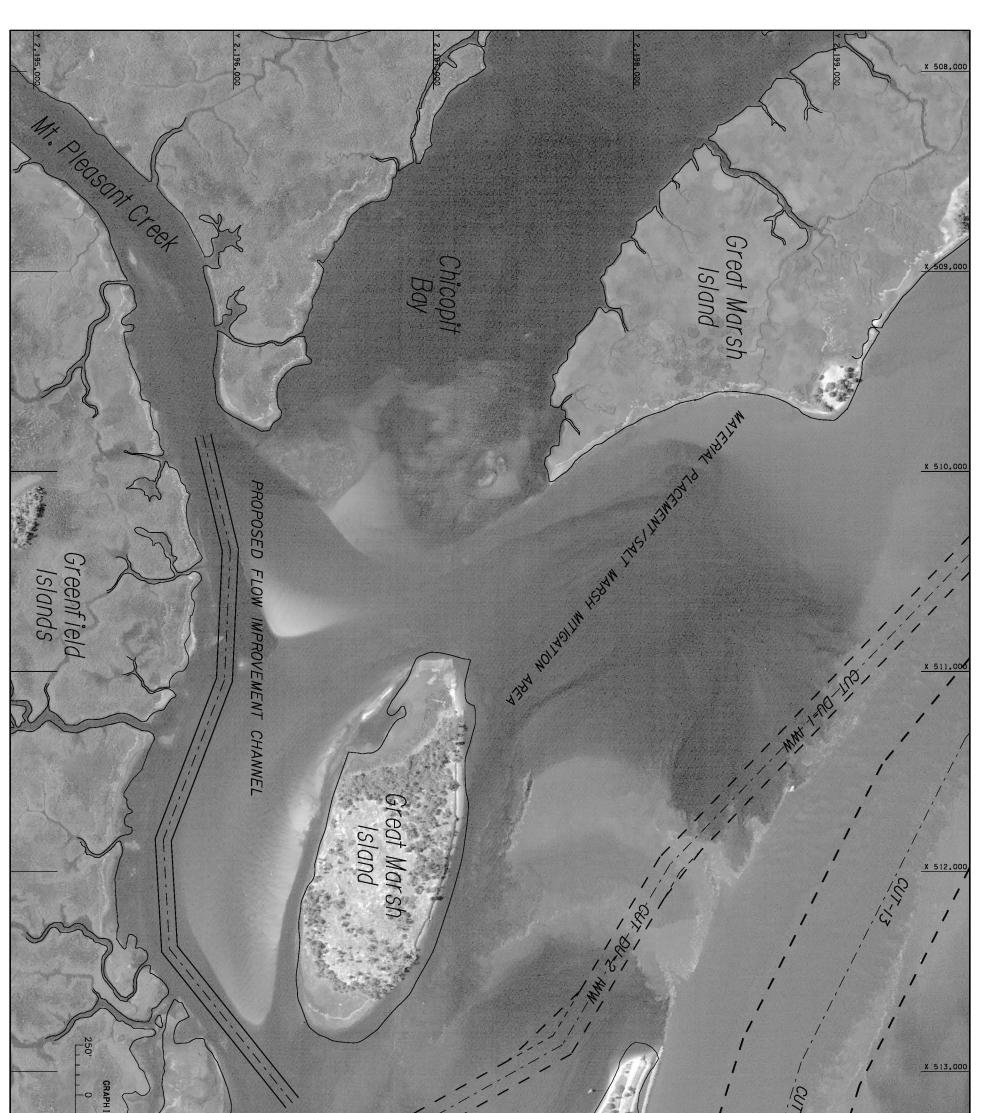

	ATLAN			
14000°	GRAPHIC SCALE			Ζ
PLATE	JACKSONVILLE HARBOR NAVIGATION STUDY (MILE POINT) JACKSONVILLE, FLORIDA INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT PROJECT LOCATION MAP	File name: Designed by: SRC Plot date: Reference files: Dwn by: Ckd by: SRC JWB Plot scale: ENGINEERING APPENDIX	DEPARTMENT OF THE ARMY — Jacksonville district, corps of engineers Jacksonville, florida	US Army Corp of Engineers Jacksonville Distri

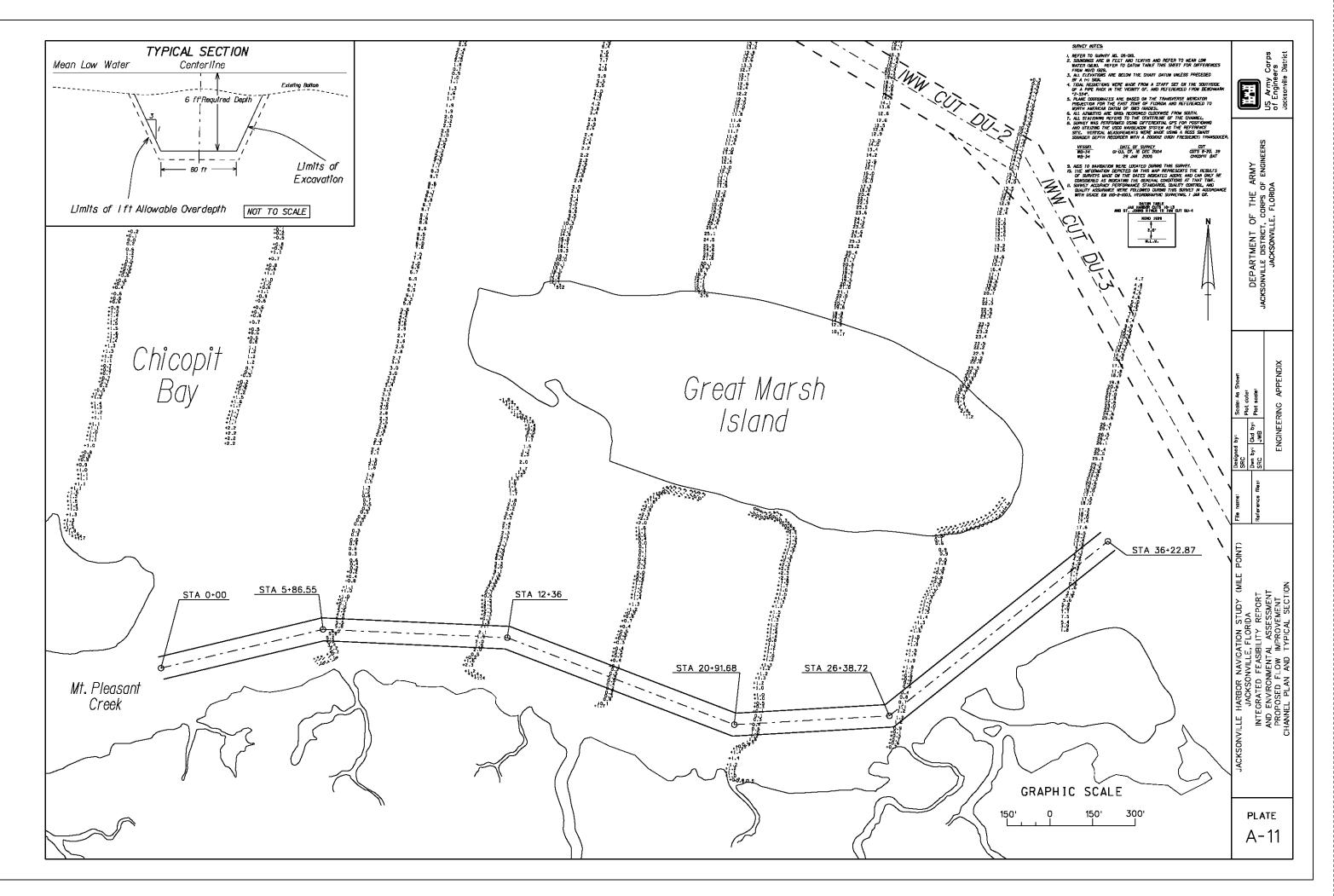


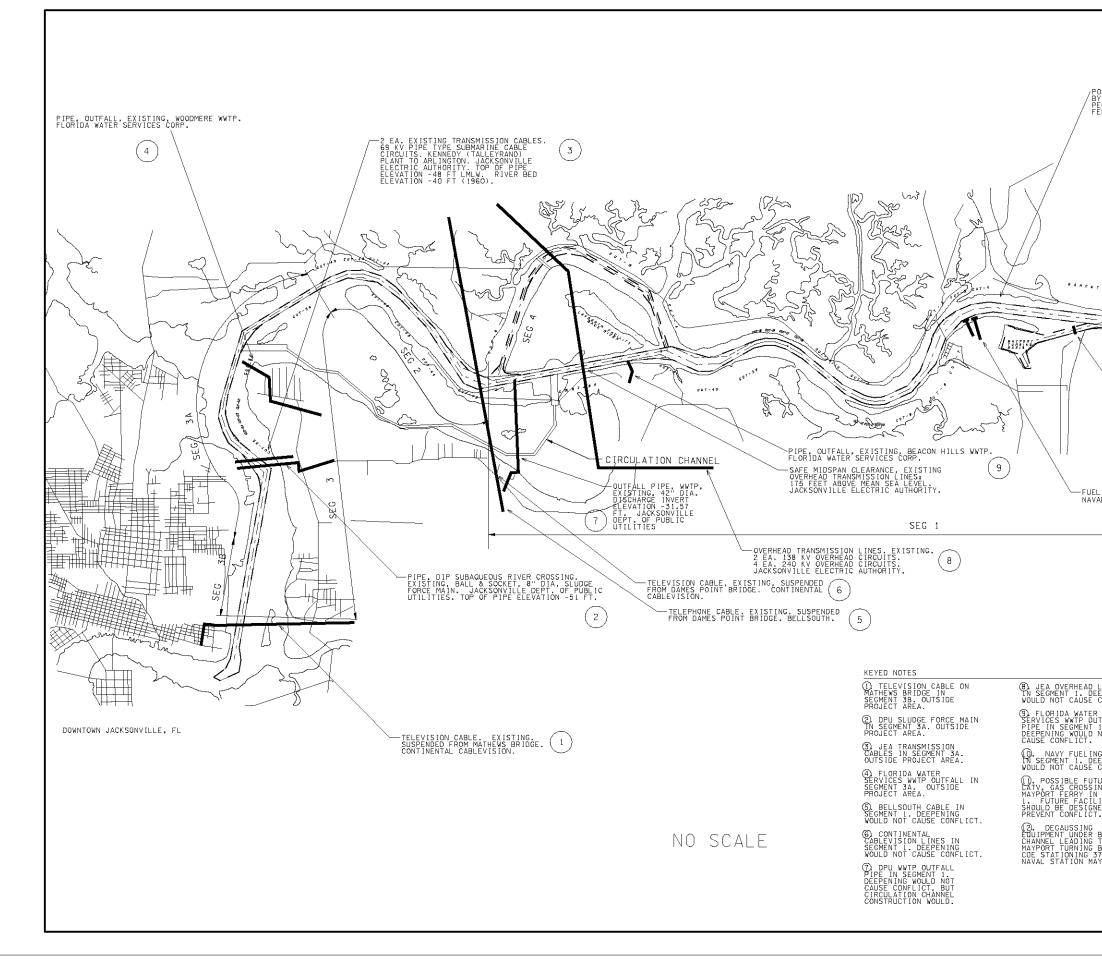












IC SCALE 250' 500 500 - HDD	Helen Cooper Floyd Park	St. Johns River) <u>x 514,000</u>
	Besigned by: SRC Scale: As Shown Dwn by: Ckd by: SRC JWB Plot date: Plot scale: Plot scale: SRC	DEPARTMENT OF THE ARMY JACKSONVILLE DISTRICT, CORPS OF ENGINEERS JACKSONVILLE, FLORIDA	US Army Corps of Engineers Jacksonville District

SSIBLE FUTURE CROSSINC CONTINENTAL CABLE AND OFLES GAS NEAR MAYPORT	US Army Corps of Engineers Jacksonville District.
CONTINENTAL CABLE AND OPLES GAS NEAR MAYPORT	DEPARTMENT OF THE ARMY Jacksonville district, corps of engineers Jacksonville, florida
ATLANTIC OCEAN CABLE, DEGAUSSING, EXISTING, NAVAL STATION (12) MAYPORT ING PIERS, 2 EA., EXISTING, STATION MAYPORT (10)	File name: Deeigned by: Scale: As Shown SRC Dwn by: Cxd by: Plot date: Reference files: SRC JWB Plot scale: ENGINE ERING APPENDIX
INES TENING STFLICT. FALL ST PIERS SENING SNELICT. RE SNEAR SEGMENT TIES S TO CD OF SIN: 13. ORT.	JACKSONVILLE HARBOR NAVIGATION STUDY (MILE POINT) JACKSONVILLE, FLORIDA INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT UTILITIES PRESENT BY RIVER SEGMENT - 1998
DORT.	plate A-12

HYDRODYNAMIC MODEL REPORT

ATTACHMENT A

JACKSONVILLE HARBOR (MILE POINT) NAVIGATION STUDY DUVAL COUNTY, FLORIDA

NUMERICAL HYDRODYNAMIC MODEL

(DRAFT)

1. INTRODUCTION. This report describes the modeling performed to provide recommendations for reducing or relocating the difficult crosscurrents during the ebb flow at the confluence of the St. Johns River with the Intracoastal Waterway (IWW) and the analysis to determine the source of the Mile Point erosion problem. The St. Johns Bar Pilots and the Captain of the Port (USCG) have enacted a restriction which requires vessels with a draft greater than 33 feet to wait on a flood tide before entering or leaving the harbor to avoid the difficult ebb flow currents.

The objectives of the proposed feasibility study involve the use of available information and hydrodynamic modeling to evaluate navigation improvements at the confluence of the Intracoastal Waterway with the St. Johns River along Training Wall Reach and Mile Point Lower Range and Turn of Jacksonville Harbor.

The objectives for the Mile Point navigation study include:

- Identify measures that reduce and/or relocate the difficult and erosive Intracoastal Waterway crosscurrents so that the St. Johns Bar Pilots and the Captain of the Port (USCG) agree to remove restrictions on deep draft navigation traffic;
- Determine the cause of the catastrophic shoreline failures at Mile Point; and
- Evaluate the hydrodynamic effects of the measures.

2. LOCATION. Mile Point is located in Duval County, Florida. It consists of about 5000 feet of shoreline located along the north shore of the St. Johns River and east of the IWW.

3. BACKGROUND. Heckscher Drive Community Club (HDCC) homeowners requested that the Corps determine the cause for the loss of land along the Mile Point shoreline. A meeting with the St. Johns Bar Pilot's Association highlighted the difficult and intense nature of the crosscurrents at the confluence of the St. Johns River with Sisters Creek to the north and Pablo Creek to the south. According to the St. Johns Bar pilots, the area of the river where the IWW

crosses the St. Johns River produces currents that can actually turn an inbound and under powered ship around. The U.S. Coast Guard describes that area as one of particular concern. It describes the junction of the IWW with the St. Johns River as subject to strong and unpredictable crosscurrents at various stages of tide.

To avoid those difficult ebb flow crosscurrents, the St. Johns Bar Pilots and the Captain of the Port have enacted a restriction which requires vessels with a draft greater than 32 feet to wait on a flood tide before entering or leaving the harbor. The sponsor, the Jacksonville Port Authority, has requested the Corps to recommend measures that will allow the St. Johns Bar Pilots and the Captain of the Port to remove those restrictions.

A House Resolution, adopted March 1998 for Mile Point, Florida, authorized the Secretary of the Army to conduct a study at Jacksonville Harbor, Florida Federal navigation project to determine whether any modifications are advisable at this time with particular reference to erosion of Mile Point shoreline. Congress added funding in the appropriations for Fiscal Year (FY) 2000 to begin the reconnaissance study. The feasibility study proceeded under that authorization.

4. Modeling. Model simulation of existing and modified or proposed conditions at Mile Point is a design process. Ship simulation of wind and current characteristics were performed by the Engineering Research and Development Center (ERDC) at Vicksburg for the proposed alternatives. SAJ constructed and applied 2-D and 3-D TABS models of the area. The 2-D model, originally developed by Resource Management Association, known as RMA-2 was used to evaluate various modifications to the jetties. The 3-D TABS model known as RMA-10 was also used. The SAJ models were used to develop water current (both magnitude and direction) output for existing conditions were developed for each alternative. Problems addressed in the model include the alternatives discussed in the following section. The Water Resources Branch coordinated with the St. John's Bar Pilots, the Captain of the Harbor Pilots and the Coast Guard to estimate the desired velocity reductions of the ebb tide currents that would allow for the removal of the navigation restrictions in place.

Mile Point alternatives were evaluated using a St. Johns River circulation model extending from the ocean boundary near Mayport, Florida to Palatka, Florida (Figure 1). An existing 2-D model was expanded to 3-D using multiple horizontal layers. The 3-D model (Figure 2) extended from Mayport to Blount Island, approximately eight miles upstream of Mile Point. The 2-D model was expanded to adequately represent the storage volumes of the Intracoastal Waterway north and south of the St. Johns River. The existing conditions model was verified with existing flow data and computed tidal stages. The average net flow (4475 cfs) for

the St. Johns River at Buffalo Bluff was used in the 2-D model. The Advanced Circulation model (ADCIRC) of the St. Johns River, developed by Taylor Engineering, Inc., was used to corroborate the attainment of good hydrodynamic results by the RMA-2 model. The qualitative effect that each practical alternative will have on shoaling in the main channel was determined.

Identified alternatives to address the ebb tide navigation restrictions within the Federal channel are:

- 1. Construct a groin field with groins extending from Mile Point north shoreline towards the Federal channel. Assume 6 groins about 150 feet long and 15 feet wide at the top spaced about 420 feet apart.
- 2. Construct a submerged weir across the IWW from the Mile Point Training Wall to the Great Marsh Island.
- 3. Hydrodynamically model the Mile Point (Little Jetties) Training Wall at its current condition and its original design length.
- 4. Short Cut Turn Widener and 150 ft Training Wall Reach Widening.
- 5. Open the landward end of the Mile Point Training Wall to restore flow back through Chicopit Bay. Past hydrodynamic model testing involved two different opening widths, one 6 feet deep by 150 feet wide and the other 6 feet deep by 350 feet wide.
- 6. Hydrodynamically model the current condition of White Shells Training Wall opposite Back Island along north shoreline and its original design dimensions.
- 7. Relocate Mile Point Training Wall.

Investigations took place to try to determine to what extent existing Federal navigation improvements, actions by others, and natural conditions are responsible for the current shoreline erosion problems:

- 1. Mile Point. Investigate the erosion of the north shoreline.
- 2. White Shells Training Wall. Investigate the erosion, deterioration, overtopping and breakthroughs at the training wall.
- 3. Ward's Bank Training Wall. Investigate the erosion and deterioration of the training wall near the carrier basin at the U.S. Naval Station Mayport.
- 4. Huguenot Park. Investigate shoreline erosion near the landward end of the north jetty.
- 5. Investigate the erosion potential at Chicopit Bay caused by the proposed shoreline restoration at Mile Point.

Project alternatives were evaluated and compared with existing condition runs. Channel current profiles of direction and velocity at 1-meter intervals were made using an Acoustic Doppler Current Profiler (ADCP). ADCP data during spring tide are available for March 21, 2000 and new data were collected on October 27, 2004.

There is a substantial amount of available recent (2003) bathymetric data. Survey data was presented in a digital format compatible with CADD. The project vertical datum is mean low water (MLW) and the horizontal datum is North American Datum 1983 (NAD 83). All surveys were done in feet.

(a) 1998 hydrographic surveys on Jacksonville Harbor indicated depths of 38 to 40 feet in the St. Johns River area over a bottom width of 500 to 650 feet.

(b) New bank to bank surveys (2003) were performed to cover the same area as 1998 surveys plus an additional 1 mile upstream and downstream. In addition, surveys were also performed to cover ½ mile up the Atlantic Intracoastal Waterway.

4.1. 2-D Modeling Approach and Data.

In this study the changes in current velocities of the proposed plans were tested using a two-dimensional hydrodynamic model. The hydrodynamic model used in this study employs the Galerkin finite element formulation to solve the vertically averaged Reynolds form of the Navier-Stokes equations with hydrostatic assumption applied. These equations are commonly known as the vertically integrated shallow water equations. The hydrodynamic model, known as RMA2-WES was originally written by Dr. Ian King and William Norton of Resource Management Associates (RMA) in Lafayette, California, under contract to the U.S. Army Corps of Engineers (USACE). The model is maintained and has been enhanced by personnel of the USACE Waterways Experiment Station (WES) in Vicksburg, Mississippi. The version used in this study was RMA2-WES 4.35.

The numerical model RMA2-WES was chosen for this study for several reasons. First, the finite element method permits the modeler to develop an unstructured mesh to define the channel geometry. The lower St. Johns River has many tributaries and secondary channels that are difficult to discretize in the sense of a structured, index based grid. The finite element method uses freely connected three-sided and four-sided elements that are knitted together by means of an element connection table, thus permitting the modeler more flexibility to resolve important geometric features that may be required to accurately compute the flow field. Second, a vertically averaged description of the hydrodynamics was sufficient to answer the questions that were posed concerning the relative impacts of the engineering alternatives on cross currents in the navigation channel at Mile Point. Third, RMA2-WES has been successfully applied to a variety of estuarine and riverine modeling studies conducted by the USACE.

The alternatives for the Jacksonville Harbor at Mile Point were compared against a base simulation of the existing conditions. The St. Johns River Mesh was built using data from a variety of sources. The bathymetric data used to generate most of the numerical mesh were digitized from the National Oceanic and Atmospheric Administration (NOAA) Nautical Charts, National Ocean Survey (NOS) Nautical Chart No. 11491 and NOS Chart No. 11492. The bathymetry of the navigation channel was obtained from the most recent hydrographic surveys available at the Jacksonville District.

The mesh for the existing (base) condition (Figure 3) has 8,999 elements and 24,873 nodes. The depths in reference to the mean low water (MLW), range from -8 ft (= elevation of +8 ft MLW) on the training walls to 83 ft between the jetties. Maximum depths at the offshore boundary are near 80 ft. Most of the navigation channel is 40 ft deep, except for the Blount Island Channel which is 30 ft, and the Terminal Channel to Drummond Creek Range with depths varying from 34 to 38 ft. The rest of the mesh from Jacksonville to Buffalo Bluff is 15 ft deep and is composed of one-dimensional elements. More resolution was added to the navigation channel and adjacent areas around Mile Point than the rest of the grid to decrease errors within the study area. The average surface area of individual elements in the navigation channel at Mile Point is about 30,000 ft².

The modeled hydrodynamic boundary conditions were the same for the base and the proposed alternatives. The water discharge into the system was constant. The stream discharge applied in the St. Johns River at Buffalo Bluff was 4475 cfs, the historical mean.

The offshore boundary was defined to be 12 miles away from the coastline and extended 9 miles north and south of the St. Johns River entrance. The boundary condition was applied only on the north and south edge and consisted of a dynamically varying water surface elevation that represents the tidal fluctuations at sea. The tide selected for the runs was the spring tide of 21 March 2000. A period of large tidal range was chosen in order to provide the strongest currents for the ship simulator tests. The period of the initial simulation was 144 hrs, starting 0000 hr on 16 March 2000, which allowed the model to stabilize before the occurrence of the spring tide. This practice is commonly referred to as model spin up. The 144 hrs were divided into 15 minutes time steps. The predicted tide data was obtained from published records by NOAA NOS for the gages located at the Nassau River entrance and Jacksonville Beach (Figure 4).

4.2. 2-D Hydrodynamic Model Verification

The parameters available to adjust the model are channel bed roughness and eddy viscosity. The roughness is controlled by assignment of the Manning's *n* coefficient values. The assignment of the coefficient values is accomplished by associating a material type with each of the element in the mesh. Several different material types can be defined to describe the different physiographic regions of the estuary. For this model, the material types represent either regions of a specific range of depth or an obstruction to the natural flow of the water. A Manning's n coefficient value of 0.025 was assigned to most of the mesh, except near the top of the training wall. The top of the jetty is hydraulically much rougher than the rest of the model domain, so it was assigned a value of 0.20. The eddy viscosity or turbulent exchange coefficient E describes the degree to which small scale turbulent flow features dissipate energy in the flow field. A high eddy viscosity coefficient indicates high levels of turbulent energy dissipation. This parameter accounts for small scale flow features that are not specifically resolved by the numerical mesh. Therefore, the value of eddy viscosity is a function of both the local flow field and the local grid size. As a rule of thumb, eddy viscosity is often assigned according to a grid Peclet number criterion. The grid Peclet number is defined as¹:

 $P = (\rho V \Delta x) / E_{ij}$

where

 ρ = density, slugs/ft³

V = velocity along a particular streamline, ft/s

 $\Delta x = \text{mesh spacing, ft}$

 E_{ij} = eddy viscosity where *i* is momentum turbulent exchange in *j*-direction, lbf•s/ft²

A Peclet number less than 50 is desirable for numerical stability. By fixing the value of Peclet numbers, eddy viscosities were calculated automatically by the model. A Peclet value of 30 was assigned to greater part of the mesh, 40 was assigned to shallow marsh areas, and values of 70 and 100 were assigned to the jetty to compensate for the numerical instability created by the rapid change in the velocity of water passing over the structure.

To verify the hydrodynamic model, the results were compared to prototype data collected by ERDC personnel. The prototype data available include flow discharge and velocity profiles at several cross sections or ranges during an average time of ten hours. There are data available for nine ranges during 21 March 2000. Also, the water surface elevation was measured around Mile Point during the same period. The spin up time of the model was approximately five days; therefore, real time comparison between the model and the prototype was made for the sixth day of simulation which corresponds to 21 March 2000 (spring tide).

Tide fluctuations from the model and prototype at Mile Point are compared in Figure 5. The shape and the range of the tidal wave of the model is a satisfactory match to the prototype. The water surface in the model at Mile Point is lower than the prototype by approximately 0.7 ft; the reason for the difference being that the model boundary condition was developed using predicted tide data instead of the actual measurement. The actual tide is influenced by winds

inducing varying effects that depend upon the speed, duration, and direction of the wind field. Therefore, the effect of winds was not accounted for in the simulation model. Wind effects were omitted because the objective of this study was to compare the impacts of the proposed alternative plans on tidal currents in the navigation channel. By choosing one wind field for simulation it is possible that the effects of the alternatives on the tidal currents could be obscured because wind effects are actually transient in nature.

During spring tide, prototype flow data were collected at nine locations (Figure 6). Flow discharges from the model and prototype are presented in figures 7, 8, and 9 for the St. Johns River at Mile Point, Pablo Creek, and Sisters Creek, respectively. In general, maximum flows were reproduced and the shape of the flow discharge curves is similar between prototype and model. The timing of the flows at Sisters Creek was one aspect of the calibration where the results were less than optimal; the modeled discharge curve seems to lag the prototype by approximately half hour. The difference can be attributed by the simplification of the river geometry for numerical simulation. In particular, the expansive tidal marshes on the north side of the river, contiguous to Sisters Creek, were schematized for the purpose of this simulation. These marshes have a marked, if unknown, effect on the timing of the tide as it propagates through the system. As expected, the velocities in the model were consistent with a depth-averaged value of the velocities measured in the prototype.

4.3. Results from Modeled Alternatives (2-D)

- Groin field consisting of groins extending from Mile Point north shoreline towards the Federal channel – Six groins about 150 feet long and 15 feet wide at the top spaced about 420 feet apart were introduced in the model (Figure 10). The groin field was effective at reducing the currents adjacent to the north Mile Point shoreline, but no significant reduction of cross currents within the navigation channel was observed.
- 2) Submerged Weir A submerged weir with a crest elevation of -14.0 ft, MLLW, was located to connect the tip of the Mile Point training wall with Great Marsh Island (Figure 11). The purpose of the weir was to reduce the outflow rate from Pablo Creek during ebb. As expected, 2D modeling results showed no significant effects on cross currents within the navigation channel. The proposed crest elevation is the highest it can be without impairing navigation, but is not high enough to limit tidal flow.
- 3) Rebuild Mile Point Training wall (Figure 12) The existing training wall has subsided and now has several sections permanently under water. Rebuilding the wall was considered as an alternative since the flow of water over the structure was thought to be contributing to cross currents within the navigation channel. Modeling of this alternative resulted in no

significant impact to cross currents. The ADCP survey measured a maximum flow of approximately 1,500 cfs over the training wall, less than five percent of the maximum ebb flow measured out of Pablo Creek.

- 4) 150 ft Training Wall Reach Widening (Figure 12) Widening of the navigation channel in the reach just upstream from the junction of Pablo Creek with the main St. Johns River was considered to reduce the intensity of the currents and add more space to improve navigation maneuverability. Since the adjacent area to be incorporated to the navigation channel is already relatively deep, the insignificant changes to the magnitude of the currents that were detected in the 2D model are not surprising.
- 5) Short Cut Turn Widener + 150 ft Training Wall Reach Widening (Figure 12) Short Cut Turn is located just upstream from Training Wall Reach. Extending the proposed 150 ft widener further north into the turn did not provide significant changes to the magnitude of the currents.
- 6) Rebuild White Shells Training Wall opposite Buck Island along north shoreline to its original design dimensions (Figure 12) – No significant changes to the currents within the navigation channel were observed after rebuilding the training wall.
- 7) Eastern Chicopit Bay Diversion (Figure 13) A canal was proposed to redirect flow to the east through Chicopit Bay. Currently the cross currents in the navigation channel are produced by the ebb flow from Pablo creek entering the main navigational channel perpendicularly. The purpose of the diversion is to reduce the magnitude of the existing cross currents by reducing the amount of ebb flow at that particular location. Various canal sizes were tested up to a depth of 30 feet and a bottom width of 200 feet. This configuration reduced the amount of ebb flow by approximately fifty percent, but the magnitude of the cross currents inside the navigation channel was reduced by less than twenty five percent. The angle of the cross currents did not change significantly.

The construction of such a large diversion canal in an environmentally sensitive area and the additional cost of having to build a bridge to maintain access to the existing park without obtaining significant relief from cross currents makes this alternative impractical.

8) Relocate Mile Point Training Wall – Reconfiguration of the intersection of Pablo Creek with the St. Johns River was performed by relocating the Mile Point Training Wall as presented in Figure14. Ebb flow from Pablo Creek is currently concentrated at the tip of the Mile Point jetty and enters the main St. Johns River navigation channel perpendicular to the main flow direction. The purpose of the training wall relocation is to redistribute the ebb flow to intersect the main navigation channel further east where the currents will be parallel to the channel.

Modeling of this alternative demonstrated a significant change in the distribution and direction of the currents within the navigation channel. Cross currents were completely eliminated inside the navigation channel during maximum ebb. The ebb currents along the bendway followed a trajectory parallel to the navigation channel. Flood currents did not seem to be negatively affected by the new configuration of the training wall. The magnitude of the currents remained similar to existing conditions.

4.4. 3-D Model Results

A 3-D model was developed to validate the only alternative found to be effective at reducing cross currents, the relocation of the training wall at Mile Point.

The 3-D numerical hydrodynamic model used in this project is known as RMA10-WES. The model was originally developed under contract to Waterways Experiment Station, now known as ERDC, by Dr. Ian King of Resource management Associates of Suisun City, CA. The version known as RMA10-WES has been modified significantly by ERDC personnel. A summary of technical specifications of the model is given:

- a) Galerkin finite element formulation;
- b) Unstructured mesh composed of bricks, tetrahedral elements, prism, and pyramids in 3-D, triangles and quadrilaterals in 2-D (horizontal averaging or vertical averaging), and line elements in 1-D;
- c) Mixed interpolation scheme for pressures and velocities (linear and quadratic);
- d) Z based vertical coordinate transform;
- e) Governing equations of the nonlinear Reynolds Form of the Navier-Stokes equations, including baroclinic forcing, wind forcing, tidal forcing, Coriolis effect, and bed friction;
- f) Three-dimensional, two-dimensional vertically averaged, two dimensional laterally averaged, and one-dimensional approximations within the same numerical mesh;
- g) Time integration via an implicit Crank-Nicholson finite difference operator;
- h) Eddy viscosity formulation for horizontal turbulence closure;
- i) Mellor-Yamada Level 2 vertical turbulence closure model;
- j) Non-linear acceleration and friction terms for the governing equations;

- k) Newton-Raphson iteration for the solution of the non-linear system of equations;
- I) Frontal solver for the solution of the matrix equations; and
- m) Two algorithms available for wetting and drying of 2-D vertically averaged elements.

The numerical mesh used for the 3-D model was cropped from the 2-D model (Figure 2). A reduced horizontal domain was necessary to accommodate additional horizontal layers (elements) without demanding extraordinary computing capacity. The 3-D mesh consisted of 51,580 nodes and 18,785 elements evenly distributed among five horizontal layers. Differing from the dynamic 2-D modeling approach, the 3-D modeling of the tentatively selected alternative was performed in steady state using flows and stages obtained from the 2-D Model as boundary conditions. The boundary inflows during maximum ebb were: 160,000 cfs, 44,000 cfs, and 25,000 cfs at St. Johns Bluff, Pablo Creek, and Sisters Creek, respectively.

The results obtained from the 3-D model confirmed the effectiveness of relocating the training wall at Mile Point. As with the 2-D model, this alternative shows a significant change in the distribution and direction of the currents within the navigation channel (figures 15 through 18). Cross currents were completely eliminated inside the navigation channel during maximum ebb and the ebb currents along the bendway follow a trajectory parallel to the navigation channel. Flood currents in the navigational channel were not negatively affected by the new configuration of the training wall. As shown in figures 19 and 20 the relocation of the training wall will rearrange the flow field at the intersection of St. Johns River with Pablo Creek. Stronger currents in the IWW will shift towards the east, following the new training wall. Therefore, the IWW navigational channel may have to be slightly relocated to accommodate new channel depths.

5. Erosion

There are four shoreline locations along the St. Johns River where erosion is occurring.

5.1. Mile Point

The Intracoastal Waterway or Florida East Coast Canal (FECC) started as a private waterway 5-foot deep and 50-foot wide from the St. Johns River to Miami that was completed in 1912. The dimensions of the project were never effectively maintained, resulting in traffic of vessels having less that 4-foot draft. The Canal was transferred to the United States by local interests and the Corps of Engineers completed construction of an 8-foot deep, 100-foot wide waterway

in 1935. Up to that point hydrographic surveys and maps of the area (Figure 21), when compared to surveys and maps dating back to 1910, show a stable sand bar at Mile Point and no significant changes or evidence of erosion at Great Marsh Island. The sand bar at Mile Point is a typical feature in riverine morphology. Sand bars are usually formed on the inside bank of a river bend as slow water velocities tend to deposit sediment material transported by river currents. A deeper channel is naturally maintained on the outside of the river bend where high velocities tend to concentrate. Other than the construction of the FECC, the only significant modification of the River was the Mile Point Training Wall, which was constructed prior to 1910.

A hydrographic survey dated 1965 shows degradation of the submerged portion of the sand bar at Mile Point. Also, aerials at the time (Figure 22) show a considerable expansion of the channel between the west end of the Mile Point Training Wall and Great March Island. The entire expansion was caused by the extraordinary erosion of a portion of Great Marsh Island's north shoreline adjacent to the training wall. The erosion of Great Marsh Island's north shore continued until a breakthrough of the island (Figure 23) occurred in the late 1990's causing shoaling that prevented access to Mt. Pleasant and Greenfield Creeks. Although erosion of the submerged sand bar at Mile Point started earlier, erosion of the sandy beach began to be noticed by local residents in the late 1960's. The beach vanished and erosion continued producing five slope failures over a fifteen year period between 1986 and 2000. Currently there is a scour area up to 60 feet deep north of the navigational channel at Mile Point Lower Range and Turn; depths in the channel are only about 42 feet. Depths between 30 to 40 feet can be found within 40 to 50 feet of the Mile Point north shoreline in some areas.

5.2. Other Erosion Sites

White Shells Training Wall (Figure 24) deteriorated through the years to the point where overtopping and multiple breakthroughs occurred. The basin behind the training wall had experienced sedimentation as a result of being isolated from the St. Johns River on the south by the training wall and the disposal of dredged material, and from Cedar Point and Hannah Mills Creeks on the north by the construction of Heckscher Drive in the late 1920's. The location of the White Shells Training Wall shares similar conditions experienced at the location of the Mile Point Training Wall, which has experienced similar deterioration and had to be restored in the past. Both structures are exposed to a differential in water pressure and the resulting flow infiltration produced by holding water from both sides twice every day as a result of tidal fluctuations.

The erosion and deterioration of the Ward's Bank Training Wall near the carrier basin at the U.S. Naval Station at Mayport and the erosion of the north shoreline at Huguenot Park near the landward end of the north jetty is caused by the

estuarine tidal dynamics (Figure 25). The change in the soil pore pressure caused by the constant and significant tidal stage fluctuation at the river entrance debilitates the river banks.

These three sites are particularly susceptible to erosion since they were artificially filled in and their soils have not been naturally consolidated as in other areas of the river. All the eroding sites were under water during the beginning of last century (Figure 26). Also, the White Shells Training Wall and the north shoreline at Huguenot Park are located on the outside bank of the river bend where erosive currents tend concentrate.

5.3. Effects of Relocating the Training Wall at Mile Point

A natural shift of the Intracoastal Waterway at the entrance to Pablo Creek will be expected as a result of the realignment of the training wall. Lower water velocities will increase opportunities for sedimentation on the western side of the entrance while higher velocities at the east have the potential to erode and undermine the location of the new training wall (Figures 20 and 21). Significant armoring and scour protection will be utilized for this training wall.

It is anticipated that the new realignment of the Mile Point training Wall will produce flows coming out of the IWW from the south that are more aligned with the Federal navigational channel. This should cause a drop in water velocity in the areas north of the navigational channel at Mile Point, as seen in Figures 19 and 20. We anticipate that this will slow the progressive erosion that has been occurring at the north bank of Mile Point.

No shoaling of the Jacksonville Harbor navigational channel is expected.

6. Conclusions

The U.S. Army Corps of Engineers, Jacksonville District performed numerical modeling of various proposed alternatives to reduce cross currents within the Jacksonville Harbor navigational channel at Mile Point. The cross currents are produced by perpendicular intersection of the Intracoastal Waterway with the St. Johns River at Pablo Creek. Only one alternative, the relocation of the training wall at Mile Point, proved to be effective at reducing the cross currents by realigning ebb flows from Pablo Creek making them parallel to the navigational channel.

A slight eastern shift of the Intracoastal Waterway entrance at Pablo Creek is expected as a result of sedimentation and erosion caused by a change in local currents.

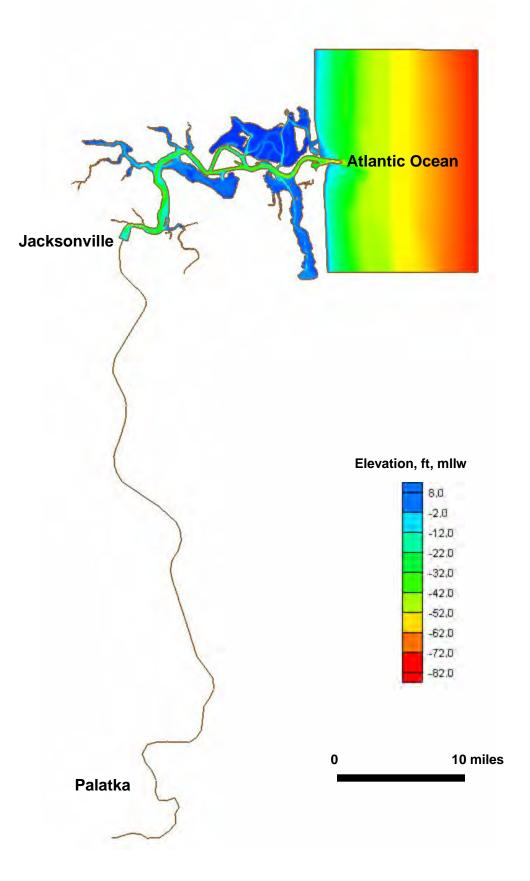
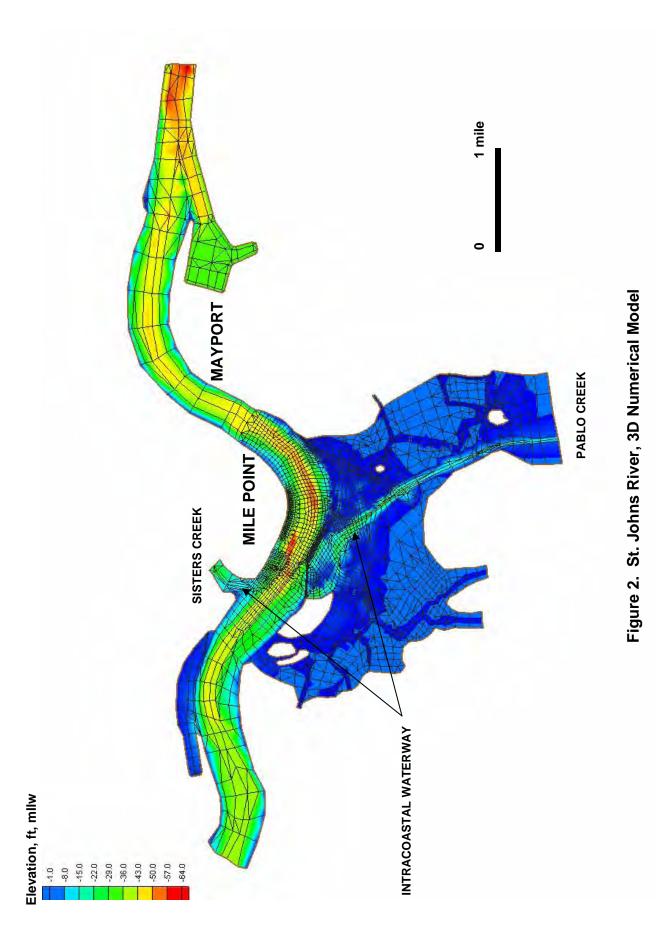



Figure 1. St. Johns River, 2D Hydrodynamic Model

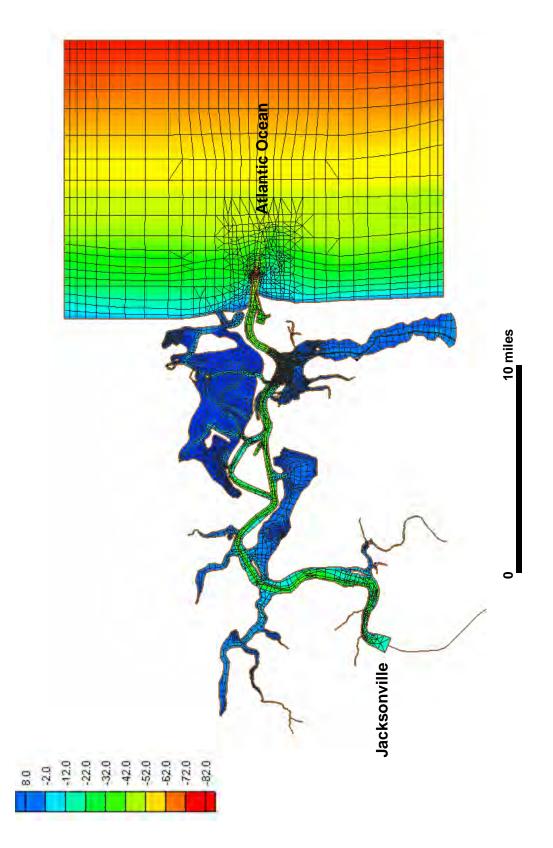


Figure 3. St. Johns River, 2D Numerical Model

Elevation, ft, mllw

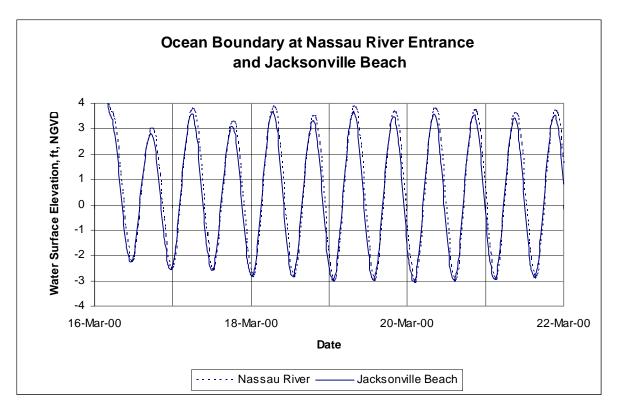


Figure 4. 2D Model, Tidal Boundary

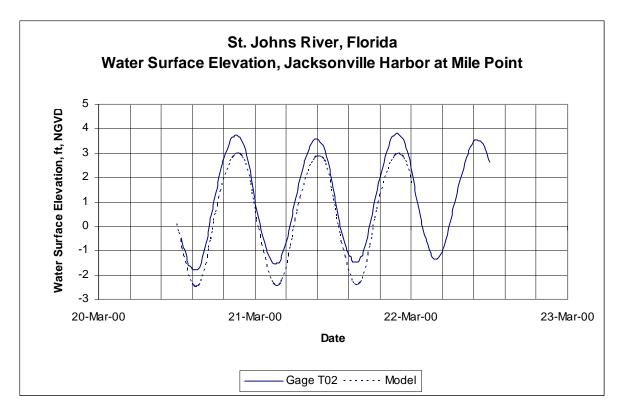


Figure 5. 2D Model, Water Surface Elevation at Mile Point

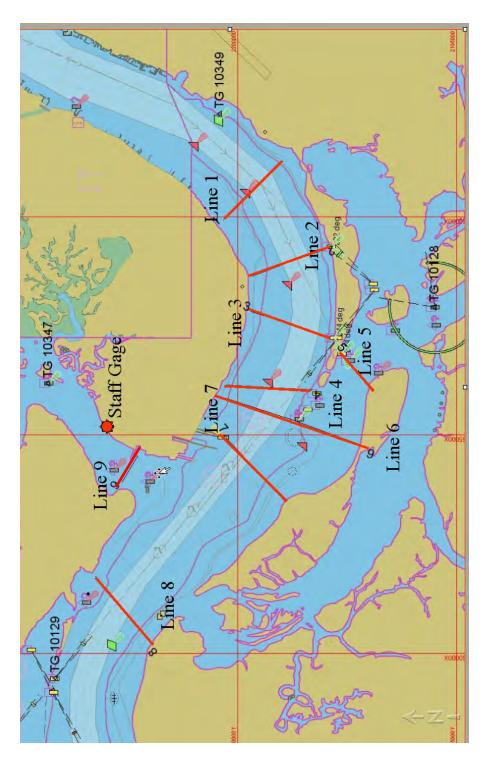


Figure 6. ADCP transect locations and tide gage locations for Mile Point reach data collection.

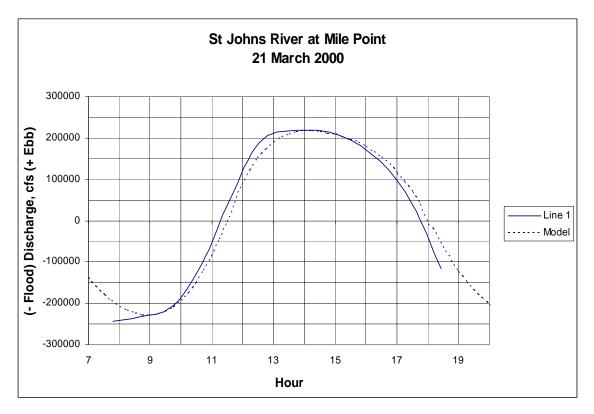


Figure 7. St. Johns River Flow at Mile Point

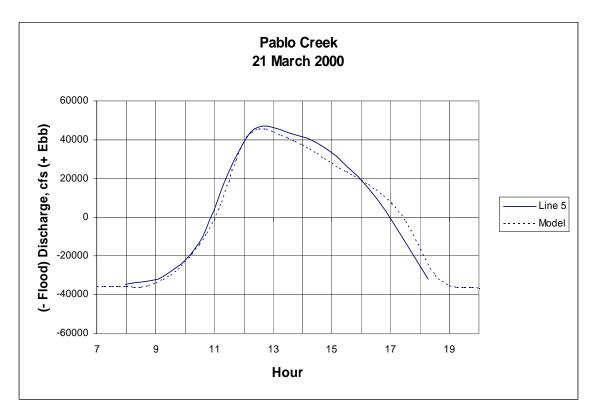


Figure 8. Flow at Pablo Creek

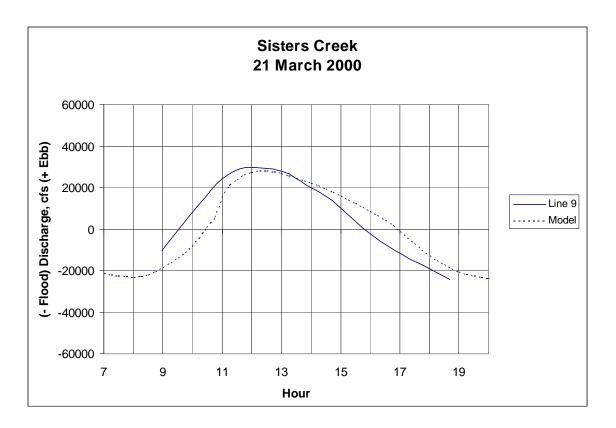
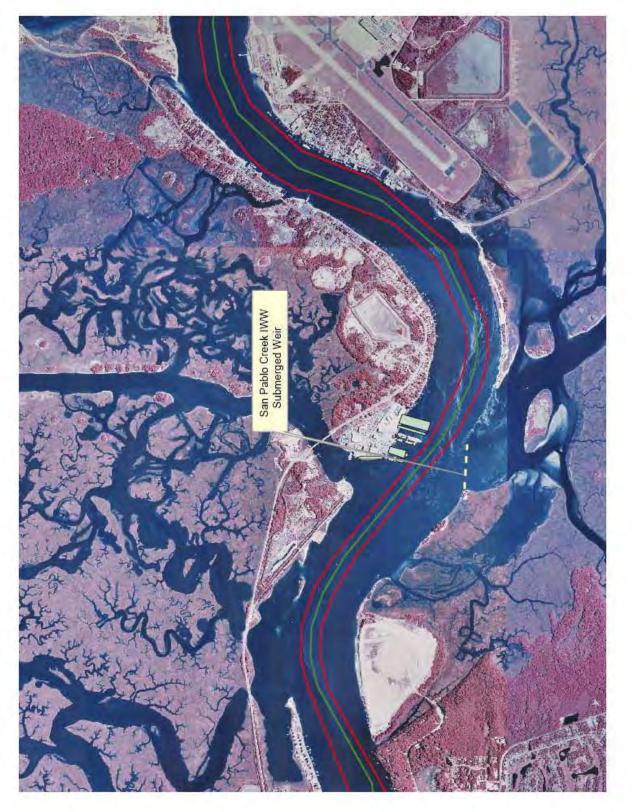



Figure 9. Flow at Sisters Creek

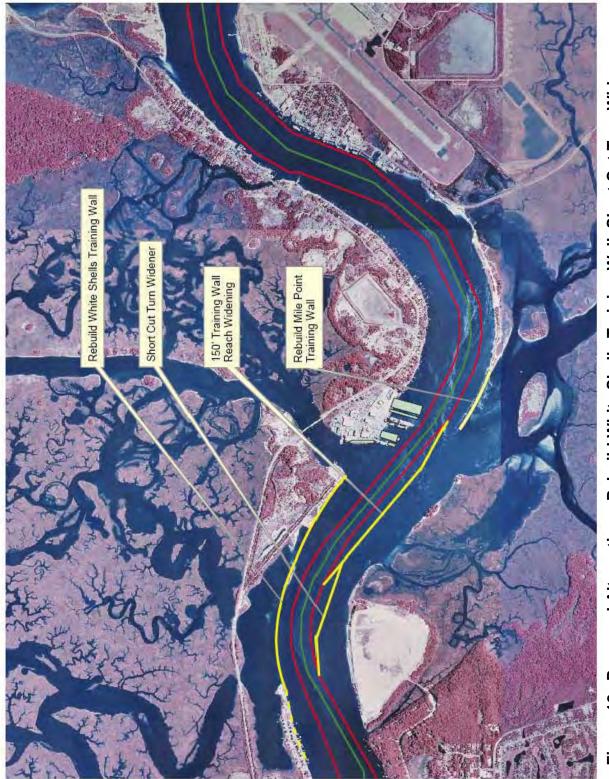


Figure 12. Proposed Alternatives: Rebuild White Shells Training Wall, Short Cut Turn Widener, 150' Training Wall Reach Widener, Rebuild Mile Point Training Wall

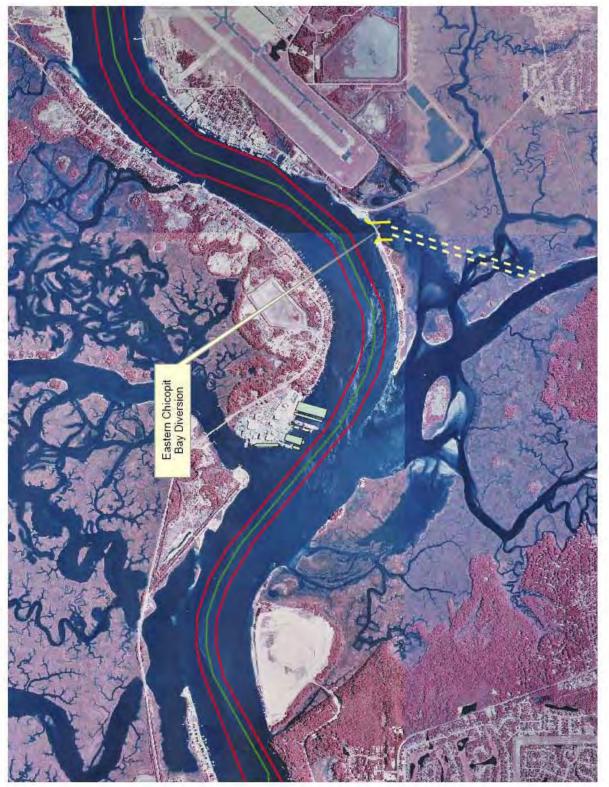


Figure 13. Proposed Alternative: Eastern Chicopit Bay Diversion

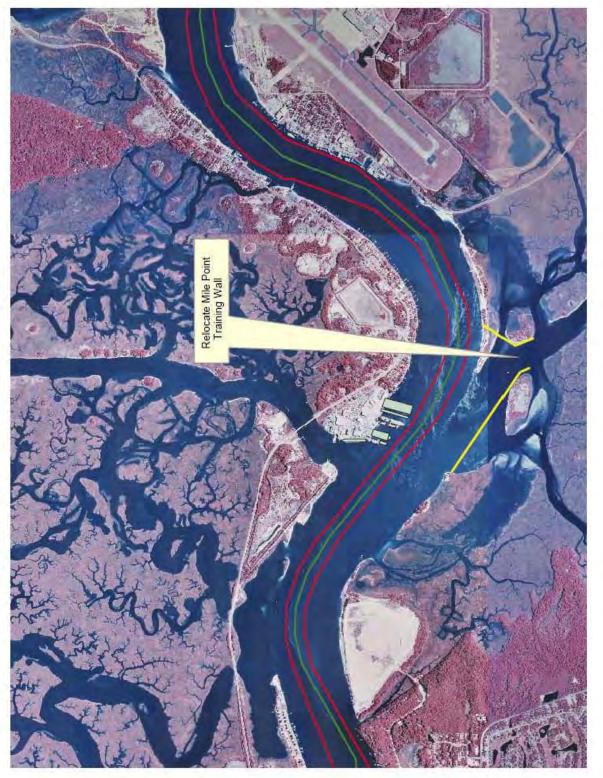


Figure 14. Proposed Alternative: Relocate Mile Point Training Wall

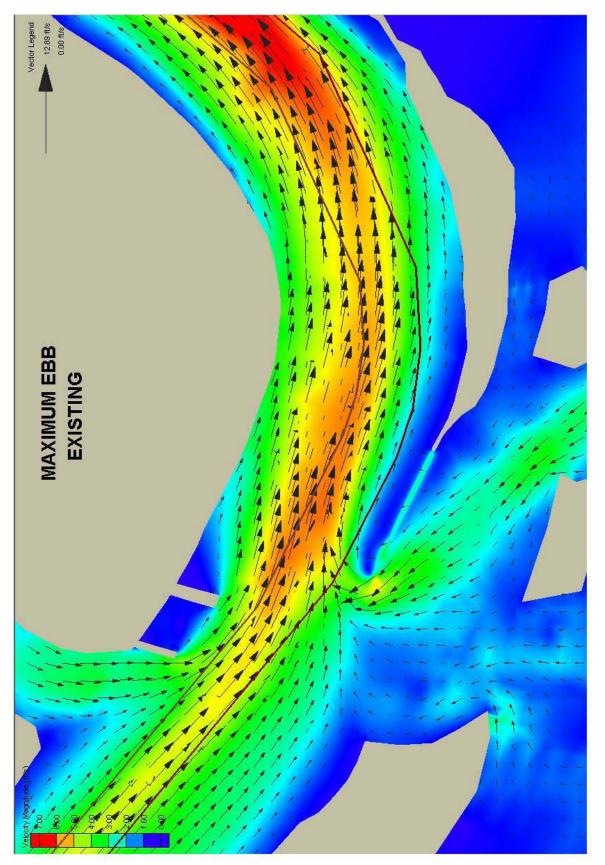
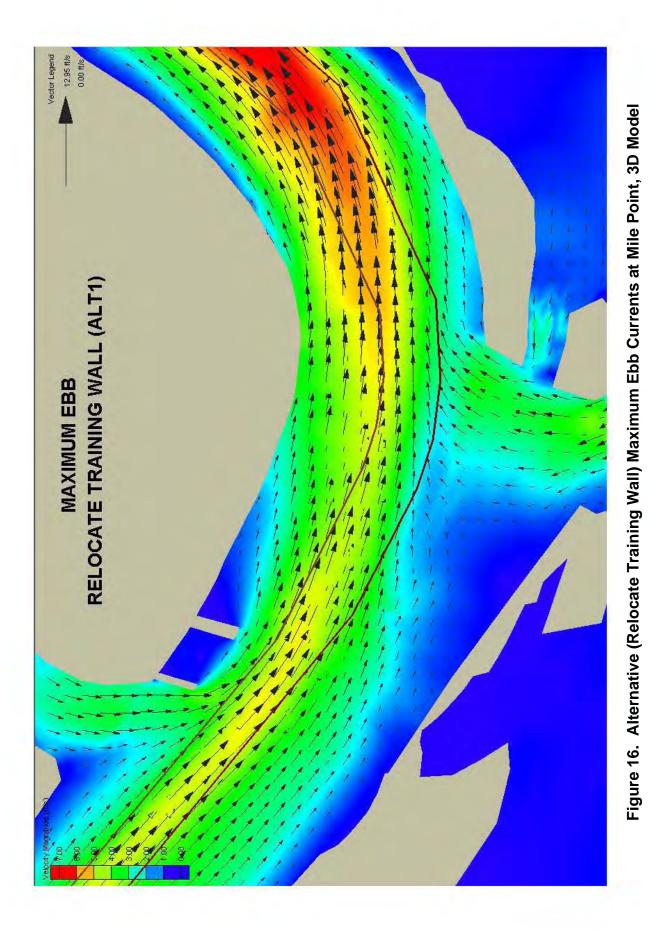



Figure 15. Existing Maximum Ebb Currents at Mile Point, 3D Model

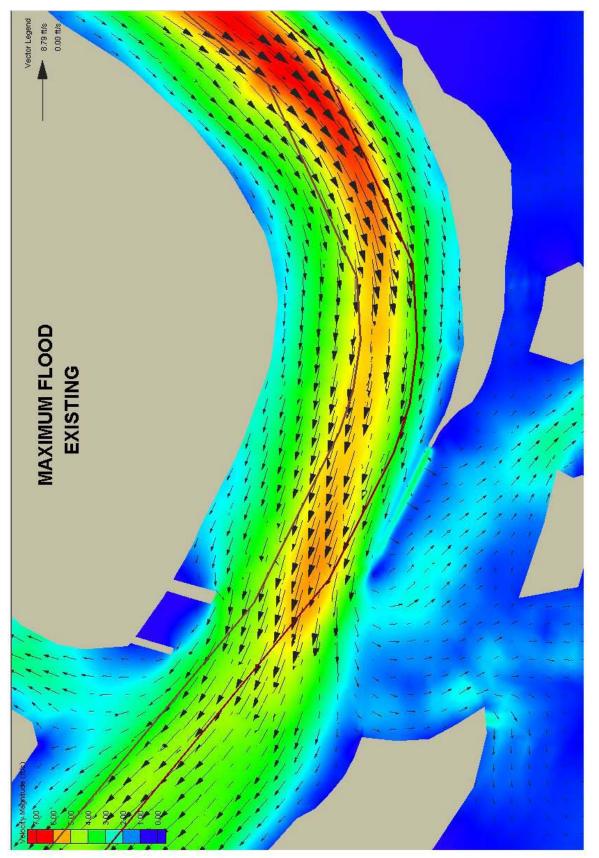


Figure 17. Existing Maximum Flood Currents at Mile Point, 3D Model

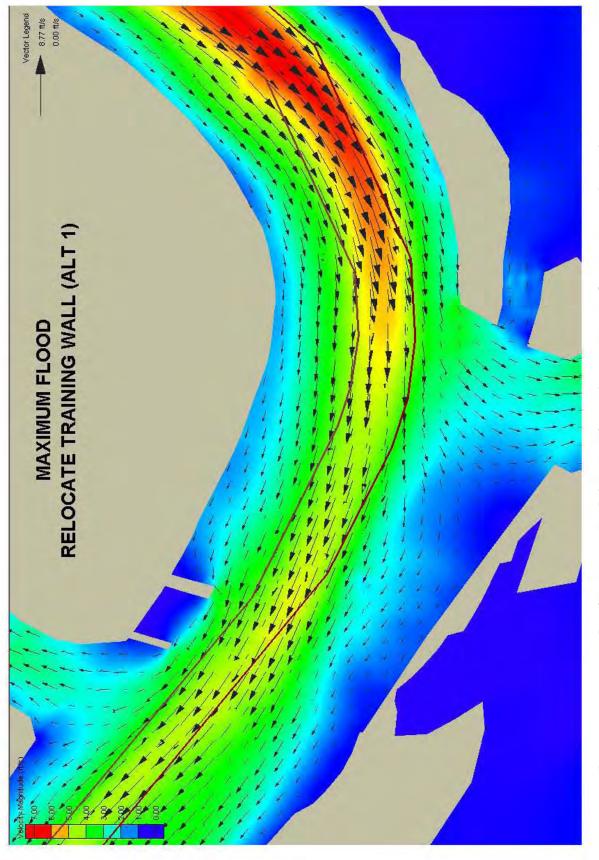
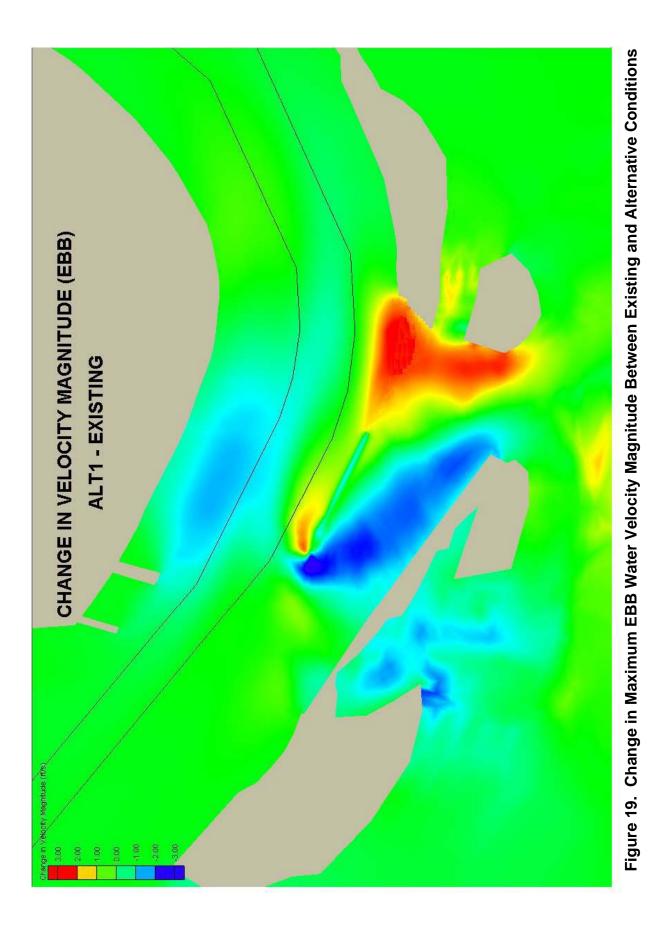
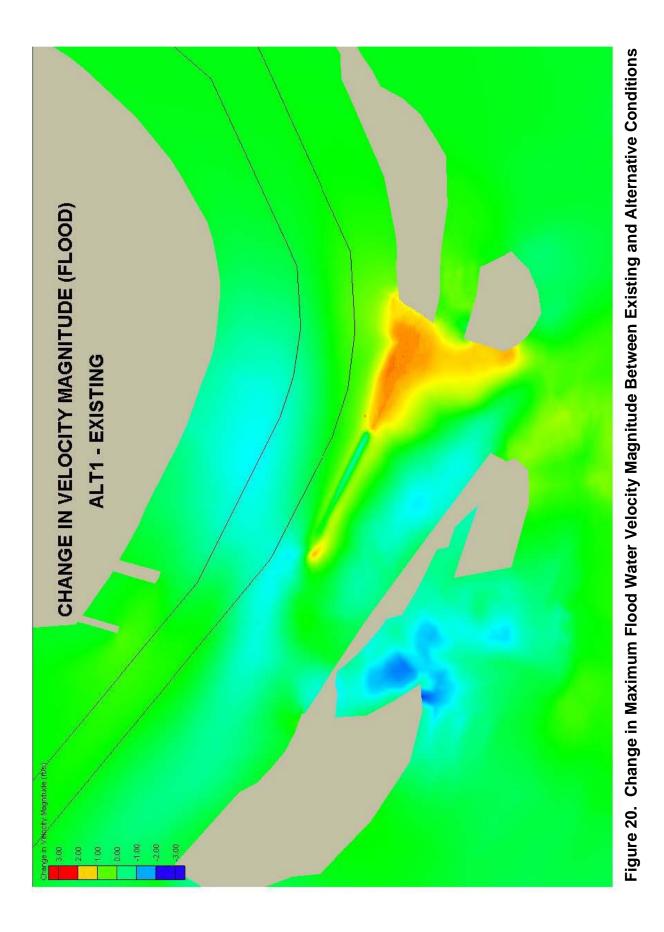
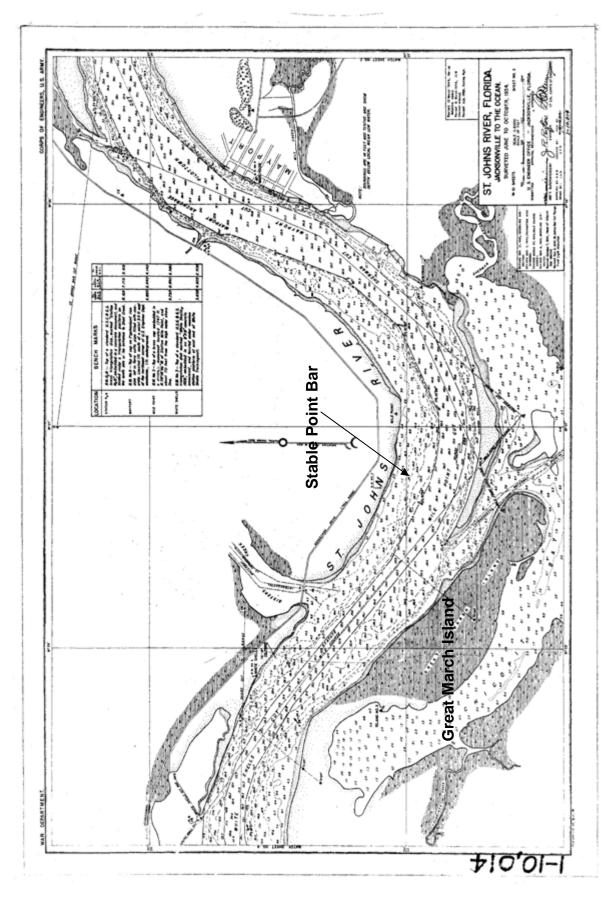





Figure 18. Alternative (Relocate Training Wall) Maximum Flood Currents at Mile Point, 3D Model

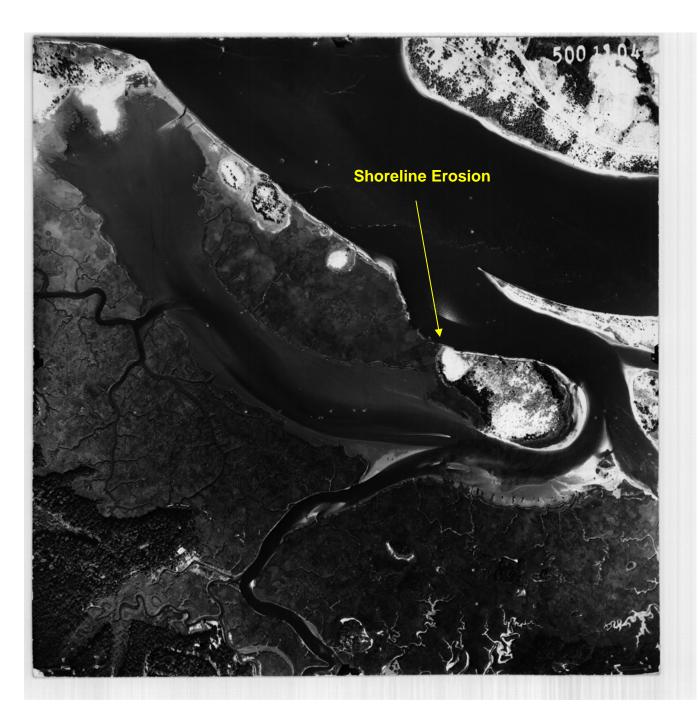


Figure 22. Aerial photo (1962).

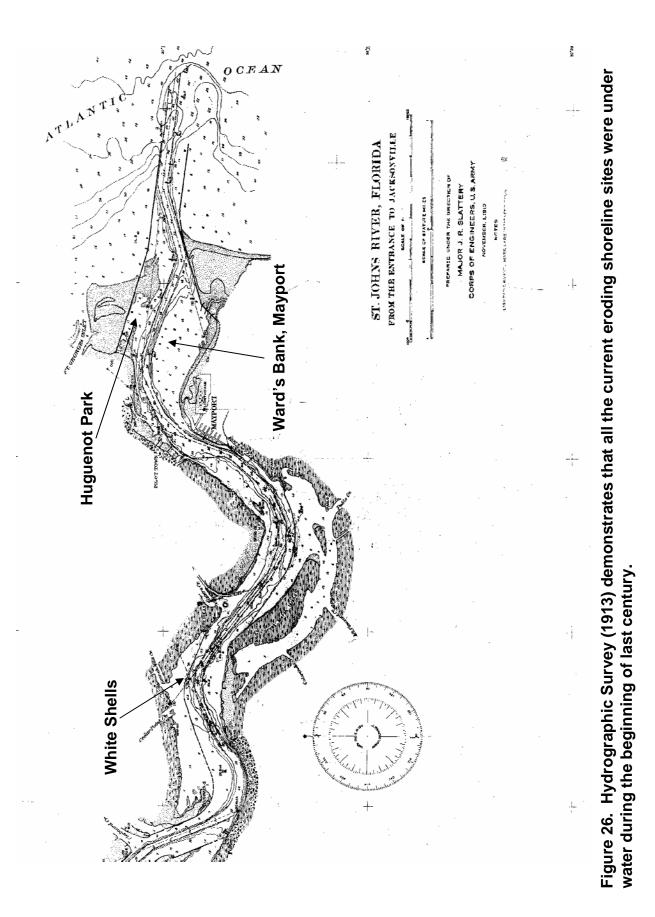

Figure 23. Aerial photo (2004) showing the change in river shoreline at Mile Point and Chicopit Bay since 1962. The erosion of Great Marsh Island's north shoreline continued until a breakthrough of the island occurred in the late 1990's.

Figure 24. Aerial photo (2004) showing the change in river shoreline near White Shells Training Wall since 1962.

Figure 25. Aerial photo (2004) showing the erosion and deterioration of the Ward's Bank Training Wall near the carrier basin at the U.S. Naval Station at Mayport and the erosion of the north shoreline at Huguenot Park near the landward end of the north Jetty since 1962.

GEOTECHNICAL ATTACHMENT

Investigations and Geologic Conditions Boring Logs and Laboratory Reports

ATTACHMENT B

Mile Point, Jacksonville Harbor, Florida Feasibility Study

GEOTECHNICAL ATTACHMENT Table of Contents

Introduction Geologic Setting Geotechnical Investigations Material Encountered Geotechnical Design Considerations Work to be Completed	Page 1 Page 1 Page 1 Page 2 Page 2 Page 2 Page 2
Core Boring and Analytical Data	Pages 4 thru 46
Boring Location Map	Plate B-1
Little Jetty Core Boring Logs and Gradation Curves	CB-ML-J98-1 CB-ML-J98-2 CB-ML-J98-3 CB-ML-J98-4 CB-ML-J98-6 CB-ML-J98-7
Mile Point Core Boring Logs	CB-JHMP05-1 CB-JHMP05-2 CB-JHMP05-3 CB-JHMP05-4 CB-JHMP05-5 CB-JHMP05-6 CB-JHMP05-7 CB-JHMP05-8 CB-JHMP05-9

MILE POINT FEASIBILITY STUDY GEOTECHNICAL ATTACHMENT ENGINEERING APPENDIX SECTION C

1. Introduction

This section provides the results of geologic investigations pertaining to the reconstruction of the intersection of the Intracoastal Waterway with the St. John's River. This reconstruction has several impacts, one to aid navigation and reduce in the impact to vessels from the cross current, and two, the reduction of erosion along the north bank of the St. John's River. This will be accomplished by degradation of the Little Jetty found along the south bank of the St. John's River at the Intracoastal Waterway. The project depth for the degradation and construction of new training walls is proposed to be -13 feet MLW.

2. Geologic Setting

The geologic setting for this project is a tidally influenced major river meander at the intersection with a tributary that drains the salt marsh. This occurs along a nearly flat reach of the St. John's River just before it reaches its mouth. Flow velocities in the river are sufficient to suspend the silt and clay in the vicinity of the project as evidenced by the sediments in the borings in the river. The sand is deposited and the finer material is swept along with the current in the river. Salt marsh sedimentation is characterized by fines of silt and clay suggesting lower carrying capacity and flow velocities.

The topography in the project area consists of relic marine terraces of Pleistocene age. The trend of these terraces is approximately that of the present coastline. The height of the terraces to the south of the Saint Johns River just to the west of the project range from approximately 30 to 50 feet above sea level; the highest point is about 85 feet near Fort Caroline National Monument. North of the river much of the area is covered by saltwater marshes with terrace heights rarely exceeding 30 feet.

Holocene and Pleistocene deposits of predominately sand and clayey sand with localized shell beds mantle the project area. These deposits are underlain by sand, shell, clay, and limestone of Pliocene to late Miocene age.

3. Geotechnical Investigations

The subsurface investigations associated with this project consist of several different periods of investigatory borings. Most are situated in the river channel and are related to the maintenance/deepening of the channel, while there are several borings along the Little Jetty to characterize the material for the previous rehabilitation of the jetty. Six of these Little Jetty borings conducted in 1998 are labeled CB-ML-J98-1 through CB-ML-J98-4 and CB-ML-J98-6 and CB-ML-J98-7 occur where the Little Jetty will be degraded for this project. These borings were

completed to approximately -14 feet, mean low water. Most recently there were nine borings completed in 2005 to depths mostly -30 feet with one to -60 feet and another to -54 feet, specifically to investigate erosion and character of materials at the intersection of the Intracoastal Waterway and the St. Johns River. One boring, CB-JHMP05-9 was completed south along the Intracoastal Waterway to elevation -33 feet to verify the sediment character in that area. Plate B-1 shows the borings found in the area of interest and the boring logs and lab analysis are contained at the end of this Attachment.

4. Material Encountered

The material encountered beneath Little Jetty to the planned dredge depth primarily consists of silty sand and poorly graded sand. However, rock can be expected to be incorporated from the jetty armoring. A few lenses of organic silt and clay less than 2 feet thick are represented on the logs in the area of the proposed jetty degradation. The boring completed in the Intracoastal Waterway south of the river encountered soft silt to an elevation of -32.6 feet below mean low water. One foot of silty sand was found below the silt at the bottom of the hole. Adjacent to Great Marsh Island and just east and west of the island, borings encountered poorly graded sand to an elevation of at least -30 feet below mean low water. This suggests that the material to be dredged east of Great Marsh Island is sand, and the material near the proposed mitigation fill area has a thick sand section beneath it.

5. Geotechnical Design Considerations

Two training walls line the margins of the Intracoastal Waterway where the waterway discharges into the St. John's River. Design of the armor gradation for the new training walls is based on the rehabilitated Little Jetty design and incorporates current design wave and flow velocities. The armor layer is to be two stones thick with a W_{50} of 2000 pounds assuming 165 pounds per cubic foot. The D_{50} is 30 inch material.

6. Work to be Completed

Geotechnical investigations will be completed for the PED phase of the project. These investigations are highlighted below.

- The proposed wetlands mitigation area west of Great Marsh Island will accept dredged material from degradation of the Little Jetty and from the dredging the channel of the Intracoastal Waterway.
- Geotechnical information is lacking in the immediate area of the proposed wetlands mitigation area and the area to be dredged south of Great Marsh Island.

• The training walls on the east and west sides of the Intracoastal Waterway need to have foundation information gathered to assure a suitable foundation.

GEOTECHNICAL ATTACHMENT

Plate B-1

ATTACHMENT B

GEOTECHNICAL ATTACHMENT

Boring Logs from 1998

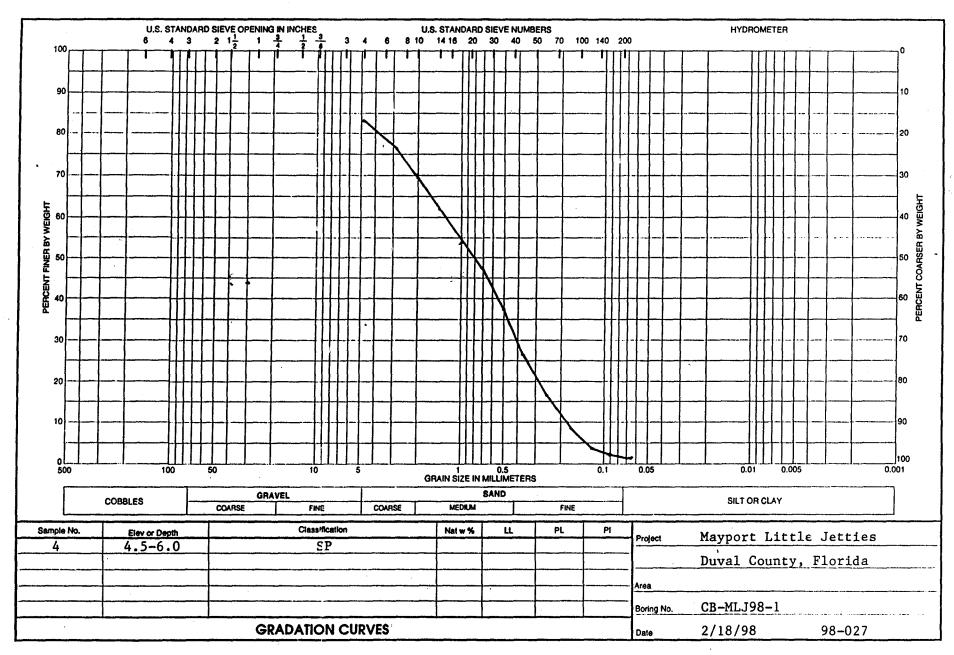
ATTACHMENT B

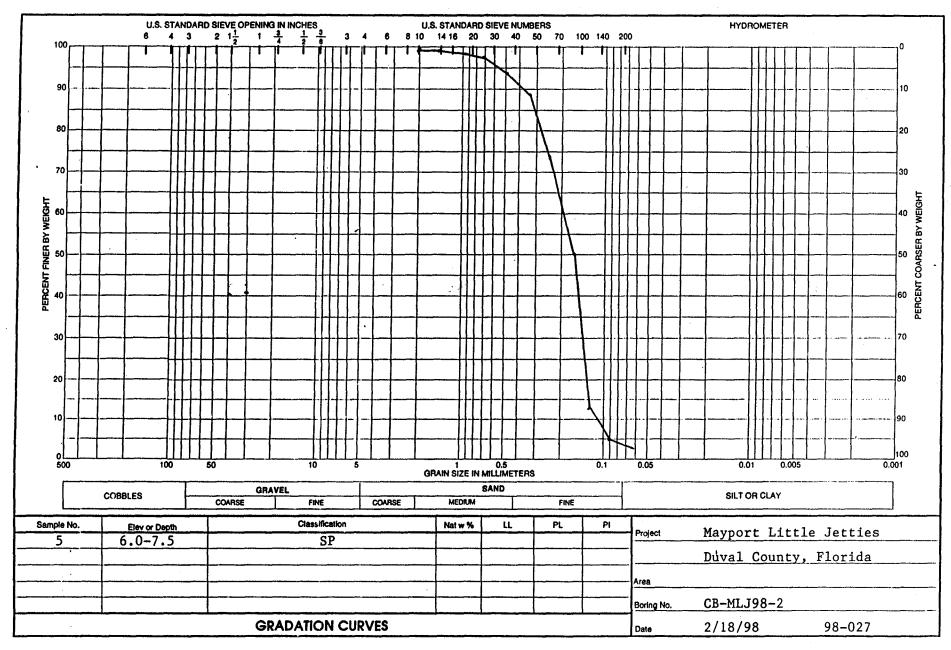
								<u>ole No.CB-MLJ</u>	
DRIL	LING	LOG	DIVISION South Atlantic		ALLATIC acksonv		istrict		SHEET 1 OF 1
PROJEC								15/16" Tricone	01 1
	ort Little		es es or Station)			R ÊLÊ\	ATION SHO	WN (TBM or MSL)	
X=35	6,593	(=2197			LW ANUFAC	TURER	S DESIGNA	TION OF DRILL	
	ING AGEN		IATES, INC.		ME 45 d	on AT'	٧		
. HOLE	NO. (As s	hown oi	drawing title		otal NO sturbed			ISAMPLES TAKEN turbed: 0	
	e number,		CB-MLJ98-1				OF CORE B		
C. Wa	OF DRILL llace	EK					UND WATER		
	TION OF	HOLE				ES	TARTED C	OMPLETED	
🖂 VE	RTICAL		CLINED					2/10/98	
. THICK	NESS OF	BURDE	N 19.5 Ft.				OF HOLE		
. DEPTH	ORILLEC	INTO	коск 0.0 Ft.				EOLOGIST	R BORING 8 %	
). TOTAL	DEPTH (OF HOLI	E 19.5 Ft.		OCKLAN	ID BUI			
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATE (Description)	RIALS	CORE REC X	SAMPLE		REMARKS	BLOWS/ .5
5.5	0.0						5.5		-
	-		Sand, fine to medium grained	1					4
	3		brown, trace of shell (SP)		80	1		Dry	6
	1						4.0		
		4.4							5
					80	2		Moist	5
2.5	3.0 -						2.5		5
	-		 Sand, fine to coarse grained brown, a little shell, trace of 					Water Bearing	3
	-		gravel (SP)	311011	90	3		GWT = 3.4' Start Mud Rotary	3
	1						1.0		2
	Γ.								
	-				80	4			<u>I</u>
:	-						5		2
		4.4						Lost circulation.	4
	1				50	5		Set HW casing.	3
							-2.0		4
-2.5	8.0		Sand, fine grained, gray (SF	2)	75	6			3
	_		oonu, nne grameu, gray (or	1	10		2.5		2 3
		14.14					-3.5		
]]	14:14			80	7			
						'	-50		3
						h	-5.0		3
-6.0	11.5 -				70	8			2
-6.5	12.0	Ϋ́Τ	Silt, dark gray (ML)		1		-6.5		2
		<u></u>	Sand, fine grained, gray,			···	0.0		7
	-		laminations of silt (SP)		75	9			9
8.0	13.5						-8.0		13
	-	14.14	Sand, fine grained, gray, tra	ce of					4
			shelt (SP)		75	10			6
	E						-9.5		10
						_			10
					100	u			12
	1						-11.0		18
	-								5
	-				100	12	ļ		18
	-						-12.5		20
	-								12
1					100	13	1		17
-14.0	19.5 -			·			-14.0		21
			End of Boring at 19.5'						
						.			
	-				ĺ				
	-		Soils are field visually classif						
	-		in accordance with the Unifie						
			Soils Classification System.						
NO 202				PROJECT					IUMBER

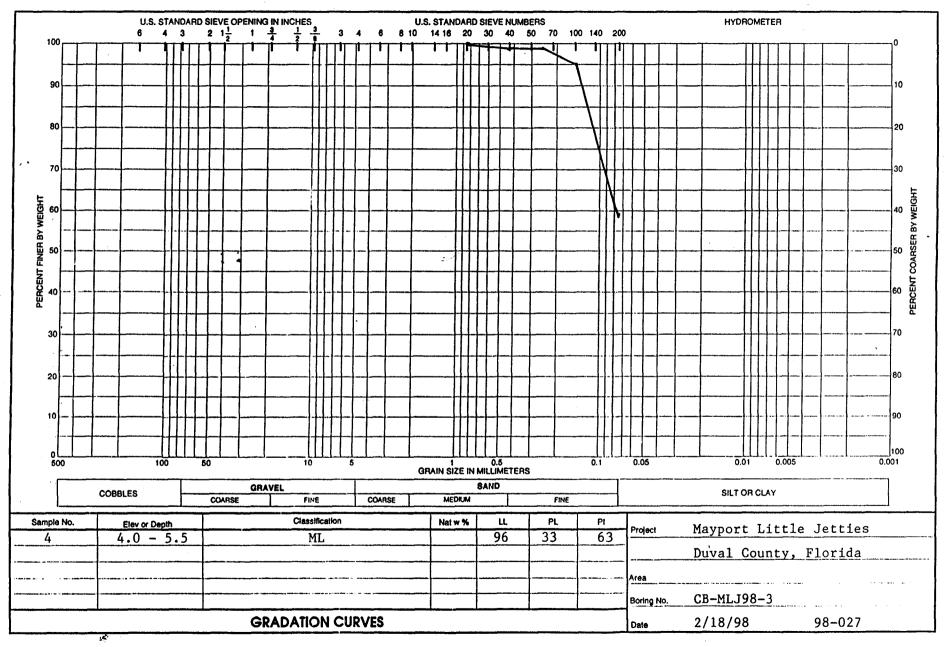
							<u> </u>	le No.CB-ML	
DRIL	LING	LOG	DIVISION South Atlantic		ckson		strict		SHEET 1 OF 1
PROJEC	T							15/16" Tricone	0, 1
	ort Little		es s or Station/			R ELEV	ATION SHO	OWN (TBN or MSL)	
X=35	7,614 Y	=21 <u>97</u> ,3		ML!		URER	S DESIGN/	TION OF ORILL	
	NG AGEN		IATES, INC.		E 45 d				
HOLE	NO. (As si	hown on	drawing title		tal NO			N SAMPLES TAKEN turbed: 0	
	e number) OF DRILL		CB-MLJ98-2				OF CORE B		
C. Wa		EK					UND WATER		
	TION OF	HOLE	· · · · · · · · · · · · · · · · · · ·	AU .91	TE HOU			COMPLETED	
🖂 VE	RTICAL		CLINED	17 514		,	/10/98	2/10/98	
THICK	NESS OF	BURDE	N 19.5 Ft.					4.9 T C.	
			ROCK 0.0 Ft.				EOLOGIST		·
TOTAL	DEPTHO		19.5 Ft.	RO	CKLAN		R		
LEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERI (Description)	ALS	CORE REC X	SAMPLE		REMARKS	BLOWS/
4.9	0.0						4.9		
	-		Sand, fine to medium grained,					L4_1 4	2
]		brown, trace of shell (SP)		100	1		Moist GWT = 0.7'	2
	-						3.4		4
	1								4
					100	2		Start Mud Rotary	6
<u>1,9</u>	3.0		Sand, fine to coarse grained,		+-		1.9		
	1		brown, trace of shell (SP)		100	з	ļ	Set HW casing	6
.4	4.5						.4	to hold fine sand	
			Sand, fine grained, brown, trad	ce				·	5
	-		of shell (SP)		90	4			7
	-						-1.1		8
ļ	_				Į į				- 7 -
	-				100	5			12
	-				L		-2.6		12
	1				75	6			7 5
					10	0			
	-						-4.1		7
	-				100	7			12
	-						-5.6		16
									10
	-				90	8			17
	-						-7.1		19
									9
	-				90	9			18
							- <i>8.6</i>	····	6
					75	10			
							-10.1		12
			Laminations of Silt		1				8
	-		Laminations of Silt		90	11			15
						 	-11.6		21
	-								12
					90	12]		
	-				<u> </u>		-13.1		21
					90	13			
	19.0		Sand, fine grained, gray (SP)		-		_14 0		21
-14.6	19,5 -		End of Boring at 19.5'				-14.6		21
	-		בוס סו ססוווק מרופיס				ŀ		
:									
1	-								
	-	1	Calls and Palation of the operation	n d	1	1	1		
	-]	 Soils are field visually classifie in accordance with the Unified 			1			
	ı —	1	Soils Classification System.				L		
				OJECT					NUMBER

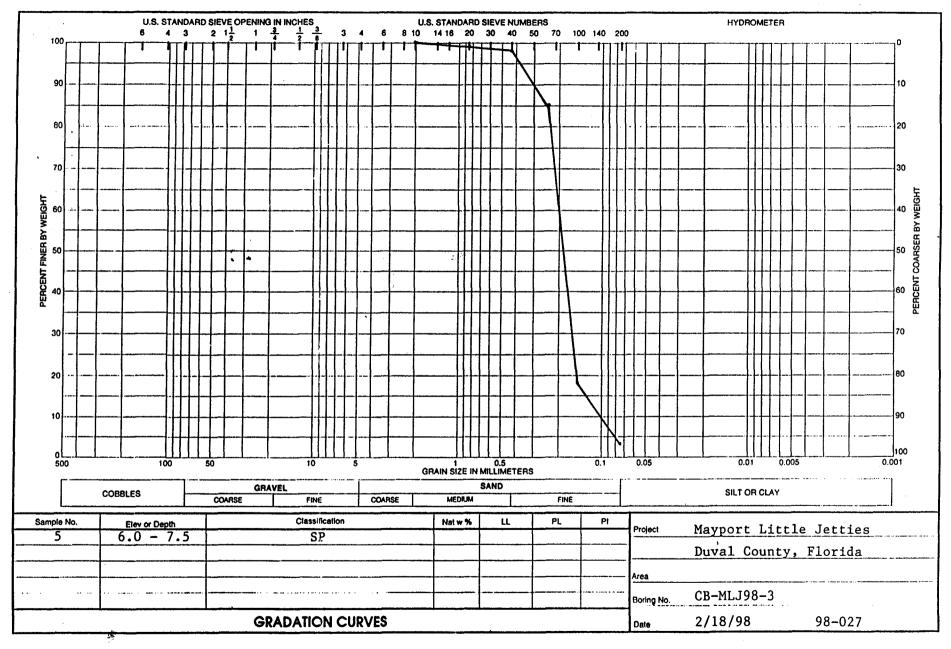
							Hole No.CB-	
	LING	LOG	South Atlantic		ALLATIC Icksonv		strict	SHEET 1 OF 1
PROJE				10. SI	ZE AND	TYPE	OF BIT 2 15/16" Tricone	
	ort Little TON (Cod		es es or Station/		TUM FOI	RELEV	ATION SHOWN (TBM or MSL	,
	8,605) Ing Agen		,764	12. M/	ANUFAC		S DESIGNATION OF DRILL	
ARDA	MAN & A	ASSOC	IATES, INC.		1E 45 (/ VERBURDEN SAMPLES TAKE	N
	NO. (As si e number)		drawing title CB-MLJ98-3		sturbed		undisturbed: 0	
	OF DAILL			-			OF CORE BOXES	·
	llace						UND WATER 3.3	
	TION OF			10. 0/			10/98 2/10/98	
			N 19.5 Ft.	-17. EI	LEVATIO	N TOP	OF HOLE 3.9 Ft.	
			ROCK 0.0 Ft.				COVERY FOR BORING 78 %	
			19.5 Ft.		DCKLAN		EOLOGIST	ļ
ELEV.	DEPTH	EGEND	CLASSIFICATION OF MATERI (Description)	ALS	CORE REC %	AMPLE UMBER	REMARKS	.5' BLOWS/
2.0	0.0				+	ωz	20	
3.9	0.0		Sand, fine grained, brown, trad	ce	+		3.9	5
	1		of shell (SP)		75	1		- 8
2.4	1.5						2.4	8
			Sand, fine grained, brown (SP)				6' 5
					100	2	Start Mud Ro	otary
							9	7 7
					100	3	Set HW casi control silt	ng to
	<u>4.0</u>	╏┟┼┼┼╴	Silt, dark gray, lenses of clay		-	ľ		
	1		(ML)					1
-1.6	5.5		- Laminations of Sand		100	4		4
			Sand, fine grained, gray (SP)				-2.1	10
								- 7
		11.11			100	5		
	-				-		-3.6	4
					75	6		5
	_	1999					-5.1	7
								4
					75	7		5
					L	L	-6.6	6
	:					ļ _		
	-				60	8	0.1	
						<u> </u>	<u>-8.1</u>	
					60	9		
-9 A	13.5					ļ	-9.6	14
	-		Sand, medium to coarse grains	ed,	1			6
			gray, trace of shell (SP)		75	10		6
							-11.1	7
] :				75			- 6
-12.1	16.0	184	Sand, fine grained, gray (SP)		- '°	11	-12 6	<u> </u>
	-		gana, nine grainea, gray (or)					
) :				60	12		17
	-	當計					-14,1	20
								10
					100	EI		13
-15.6	19.5	1				-	-15.6	18
	· -	1	End of Boring at 19.5'					
]			·	1	1	
] [
		1						
		1	 Soils are field visually classifi in accordance with the Unifie 			1	1	
	L [_]	1_	Soils Classification System.					
				ROJECT				HOLE NUMBER

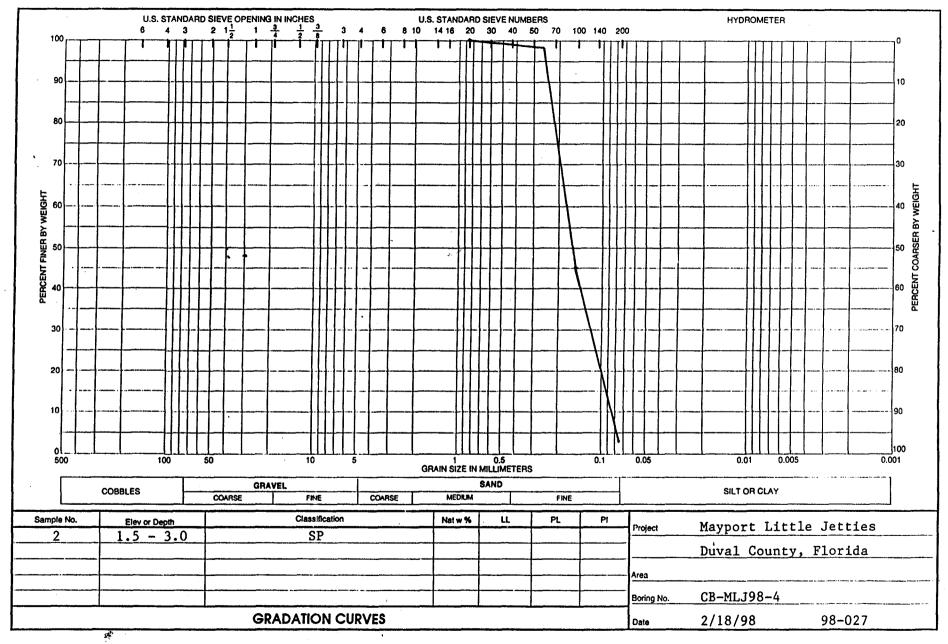
t Little N (Coo 613 Y= 5 AGEN(AN & A . (As sh Mumber) ORILLE Ce DN OF H TICAL SS OF (RILLED	Jett rdinat 2197 CY SSOC own o SSOC own o SSOC own o SSOC own o SSOC own o SSOC own o SSOC	es or Station/	10. SIZ 11. DAT ML1 12. MAR CMI 13. TO' disi 14. TO' 15. ELE 16. DAT 17. ELE 18. TO' 19. SIG ROU	CKSON COM FO W NUFAC E 45 (TAL NC TAL NC TAL NC TAL NC EVATIO	VIIIE DI TYPE R ELEX TURER ON AT . OF O 1: 13 MBER IN GRO E S 2,	VATION SH S DESIGN V VERBURDE undis OF CORE E UND WATEI TARTED	R 5.7 Completed	SHEET 1 OF 1
t Little N (Coo 613 Y= S AGEN(AN & A . (As shumber) ORILLE CCE DN OF F TICAL SS OF (RILLED EPTH O 2.0	Jett rdinat 2197 27 SSOC own o SSOC own o SSOC SSOC own o SSOC SSOC SSOC own o SSOC SSOC SSOC SSOC SSOC SSOC SSOC SSO	ies es or Station/ .952 DIATES, INC. n drawing title CB-MLJ98-4 CLINED CLINED IN 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	10. SIZ 11. DAT ML1 12. MAR CMI 13. TO' disi 14. TO' 15. ELE 16. DAT 17. ELE 18. TO' 19. SIG ROU	ZÉ AND TUM FO W NUFAC E 45 (TAL NC TAL NC TAL NC EVATIO	TURER TURER on AT . OF O J: 13 MBER IN GRO E S 2,	OF BIT 2 VATION SH S DESIGN V VERBURDE UND STEL UND WATER TARTED	OWN (TBM or MSL) ATION OF DRILL IN SAMPLES TAKEN Sturbed: 0 ROXES 1 R 5.7 COMPLETED	
N (Coo Si3 Y= SAGEN AN SA A (As sh umber) ORILLE CE ON OF H ICAL SS OF (RILLED EPTH D.0	rdinal 2197 SSOC own o R IOLE IN BURDE INTO	es or Station/ 1952 DIATES, INC. n drawing title CB-MLJ98-4 CLINED CLINED IN 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	ML1 12. MAF CMI 13. TO disi 14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG ROU	W NUFAC E 45 (TAL NC turbed TAL NU EVATIO	TURER on AT . OF O .: 13 .: 13 .: MBER .: S .: 2,	S DESIGN V VERBURDE undis OF CORE E UND WATEI TARTED	ATION OF DRILL N SAMPLES TAKEN sturbed: 0 ROXES 1 R 5.7 COMPLETED	
AN & A AGENA AN & A AN & A AN WINDER ORILLE CE DN OF H ICAL SS OF I RILLED EPTH D.O EPTH	= 2197 CY SSOC OWN O R IOLE INTO F HOL	,952 DIATES, INC. or drawing tille CB-MLJ98-4 CLINED IN 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	12. MAR CMI 13. TO disi 14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG ROU	NUFAC E 45 (TAL NC turbed TAL NU EVATIO	DN AT . OF O 1: 13 MBER N GRO E S 2;	V VERBURDE Undis OF CORE E UND WATEI TARTED	N SAMPLES TAKEN sturbed: 0 XXES 1 R 5.7 Completed	
AN & A (As shumber) ORTILLE CE DN OF H TCAL SS OF I RILLED EPTH D.O EPTH		CB-MLJ98-4 CB-MLJ98-4 CLINED IN 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	CMI 13. TO disi 14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG ROU	E 45 (TAL NO TAL NO TAL NU EVATIO	DN AT . OF O 1: 13 MBER N GRO E S 2;	V VERBURDE Undis OF CORE E UND WATEI TARTED	N SAMPLES TAKEN sturbed: 0 XXES 1 R 5.7 Completed	
. (As shumber) DRILLE CE DN OF H TCAL SS OF I RILLED EPTH O D.O		CB-MLJ98-4 CB-MLJ98-4 CLINED IN 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	disi 14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG RO(turbed TAL NU EVATIO TE HOU EVATIO	1: 13 IMBER IN GRO E S 2,	UND WATER UND WATER TARTED	sturbed: 0 HOXES 1 R 5.7 COMPLETED	
ORILLE CE DN OF H TCAL SS OF (RILLED EPTH O EPTH	IOLE IN BURDE INTO F HOL	CLINED N 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	14. TO 15. ELE 16. DA 17. ELE 18. TO 19. SIG RO(TAL NU EVATIO TE HOU EVATIO	MBER NGRO ES	OF CORE E UND WATEI TARTED	NOXES 1 R 5.7 COMPLETED	
CE DN OF F TCAL SS OF (RILLED EPTH O 2.0	IOLE IN BURDE INTO F HOL	N 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	16. DA1 17. ELE 18. TO1 19. SIG RO(TE HOL	E S 2,	TARTEO	COMPLETED	
TCAL SS OF I RILLED EPTH O EPTH	INTO	N 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	17. ELE 18. TOT 19. SIG ROO	EVATIO	2,			
SS OF OR RILLED EPTH O EPTH	ourde Into F Hol	N 19.5 Ft. ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	18. TO 19. SIG RO(/II/HB		
RILLED EPTH O EPTH	INTO F HOL	ROCK 0.0 Ft. E 19.5 Ft. CLASSIFICATION OF MATERIA	18. TO 19. SIG RO(-	2/11/98	
EPTH 0 EPTH 0.0	f Hol	E 19.5 Ft. CLASSIFICATION OF MATERIA	19. SIG ROC				DR BORING 74 %	
ЕРТН 0.0		CLASSIFICATION OF MATERIA		INATU		EOLOGIST		
<u>0.0</u>	regeno			CKLAN		RR		
			LS	CORE REC	SAMPLE		REMARKS	BLOWS/
	111					5.7		
<u>1.5</u>		Sand, fine grained, brown, trace of shell (SP)	÷					2
<u>1.5 – </u>				90	1		GWT = 0.0'	7
		Cond fine evaluations to	<u> </u>	 	i	4.2		8
		Sand, fine grained, gray, lens o silt (SP)	I	90			Charle Mud Datas	4
				90	2	<u> </u>	Start Mud Rotary	
4				<u> </u>		2.7		5
4.0 -				100	Э			
4.5		Sand, fine grained, gray (SP)			Ĩ	1.2		7
5.0	111	Silt, dark gray (ML)				1.2		3
-	11	Sand, fine grained, gray, trace	of	75	4		Set HW Casing	6
]		shell, trace of shell gravel (SP-SM)				3		11
6.5 -								3
Ţ	:: :	Sand, medium to coarse grained	Ι,	90	5			7
7.5 -		gray, trace of shell, trace of shell gravel (SP)	_			-1.8		11
30 🕇		Sand, fine grained, gray (SP)						4
1		Sand, fine to medium grained,		50	6			
- 7		gray, trace of shell (SP)				-3.3		5
-				75	7			8
-j				75	1	4.5		8
						-4.8		3
1				75	8			
1						-6.3		5
_]								4
-				80	9			4
÷			-			-7.8		5
4					_			3
Ţ			1	60	10			3
-1			ţ	 		-9.3		4
, i			:	50	it			2
<u></u>	**	Clay, dark grav (CE)			"	_10 0		
ţ		and a second second second		<u> </u>		-10.8	_	2
7.5 2	Λ			50	12			
/		Sand, fine grained, gray (SP)		1		-12.3		3
1								15
-].				80	13			27
9.5	•••••					-13.8		42
3	Τ	End of Boring at 19.5'						
-								
]								
_								
-		Soils are field visually classified	1					
		in accordance with the Unified						
		SUIIS CIASSIFICATION SYSTEM.		1				
7,		<u>5</u>	Clay, dark gray (CL) .5 Sand, fine grained, gray (SP) .5 End of Boring at 19.5' Soils are field visually classified	Clay, dark gray (CL) 5 Sand, fine grained, gray (SP) 5 End of Boring at 19.5' Soils are field visually classified in accordance with the Unified Soils Classification System.	75 80 80 60 50 Clay, dark gray (CL) 5 Sand, fine grained, gray (SP) 80 5 Soils are field visually classified in accordance with the Unified	75 8 75 8 80 9 60 10 50 11 Clay, dark gray (CL) 50 5 50 5 50 10 50 5 12 5 80 13 5 5 50 5 13 5 50 5 50 5 80 13 5 5 50	4.8 75 8 75 8 80 9 -7.8 80 9 -7.8 80 10 -9.3 50 11 -10.8 50 12 -12.3 80 13 -13.8 End of Boring at 19.5' Soils are field visually classified in accordance with the Unified	4.8 75 8 75 8 75 8 80 9 -7.8 60 10 -9.3 50 11 -10.8 50 12 -12.3 Sand, fine grained, gray (SP) 50 12 -12.3 Soils are field visually classified in accordance with the Unified

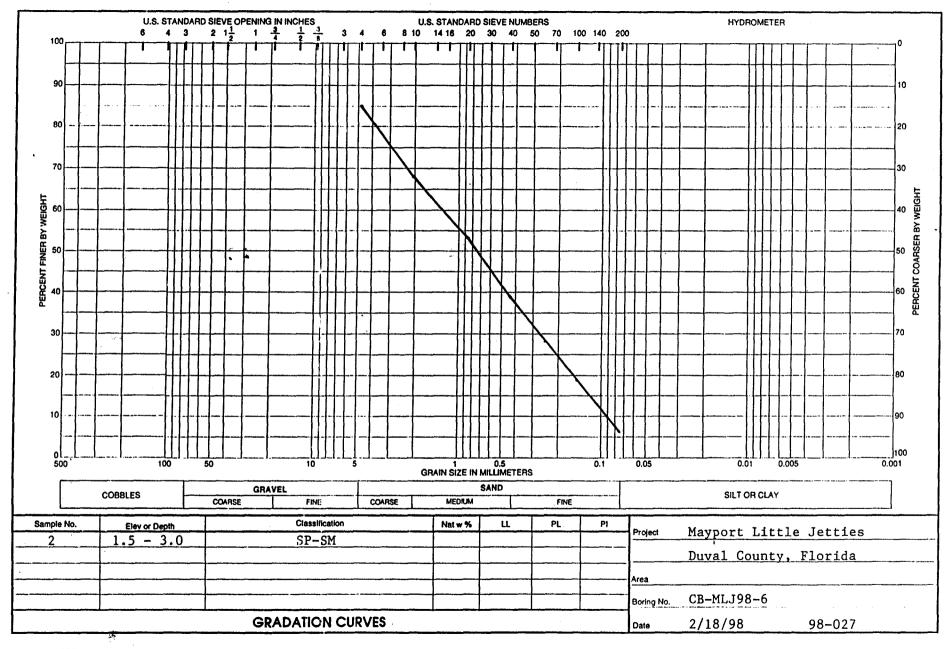

E ANC UM FO VUFAC E 45 (TAL NC turber TAL NC VATIO FE HOL VATIO FE HOL VATIO FE HOL VATIO FE C CORE REC \$ 90	TYPE RELEV TURER DD Bai D. OF O 1: 13 MBER DN GRO LI BUI LI BUI LI BUI	VERBURDEN SAMPLES TAKEN undisturbed: 0 OF CORE BOXES 1 UND WATER N/A TARTED COMPLETED /12/98 2/12/98 OF HOLE -7.8 Ft. COVERY FOR BORING 85 % SECLOGIST RR	SHEET 1 OF 1
UM FO VIUFAC E 45 - 1 TAL NC turbed TAL NC TAL NC TAL NC TAL CC REC 300	R ELE TURER on Ba o, OF O 1: 13 MBER ON GRO E S 2. ON TOP RE RE E OF G	VATION SHOWN (TBM or MSL) "S DESIGNATION OF ORILL rge IVERBURDEN SAMPLES TAKEN Undisturbed; 0 OF CORE BOXES 1 IVEND WATER N/A TARTED COMPLETED /12/98 2/12/98 POF HOLE ~7.8 Ft. COVERY FOR BORING 85 % SECLOGIST RR	
VIUFAC = 45 ° ral NC tal NC vatic e Hol vatic re Hol vatic core REC % 90	TURER on Ba b. OF O 1: 13 MBER ON GRO E S 2. ON TOP RE RE E OF G	VERBURDEN SAMPLES TAKEN UNDISTUTDED; 0 OF CORE BOXES 1 DUND WATER N/A TARTED COMPLETED /12/98 2/12/98 OF HOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
E 45 of TAL NC NUTDE: TAL NL VATIO FE HOL VATIO FE HOL VATIO FE HOL VATIO FE CRE S S 90	DN Ba D. OF O 1: 13 MBER DN GRO E S 2. DN TOP RE RE E OFG ID BUI	rge VERBURDEN SAMPLES TAKEN undisturbed: 0 OF CORE BOXES 1 UND WATER N/A TARTED COMPLETED /12/98 2/12/98 OF HOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
TAL NC turbed TAL NL EVATION TE HOL VATION TAL CC NATUR KLAN CORE REC X	0. OF 0 1: 13 MBER 0N GRO 0N GRO 2 0N TOP RE RE E OF G 10 BUI	VERBURDEN SAMPLES TAKEN undisturbed: 0 OF CORE BOXES 1 UND WATER N/A TARTED COMPLETED /12/98 2/12/98 OF HOLE -7.8 Ft. COVERY FOR BORING 85 % SECLOGIST RR	
UTDER TAL NU VATIO TAL CC NATUF CKLAN CORE REC X	1: 13 INGER IN GRO E S 2, IN TOP RE RE E OF G	undisturbed: 0 OF CORE BOXES 1 JUND WATER N/A TARTED COMPLETED /12/98 2/12/98 POF HOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
VATIO	N GRO 2, NN TOP RE RE E OF G	UND WATER N/A TARTED COMPLETED /12/98 2/12/98 POF HOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
VATIONATUR	E S 2 IN TOP RE RE RE OF G ID BUI	TARTED COMPLETED /12/98 2/12/98 P OF HOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
VATION TAL CONTRACTOR NATUR CORE REC X 90	2, In top Re re Re of G Id bui	/12/98 2/12/98 POFHOLE -7.8 Ft. COVERY FOR BORING 85 % SEOLOGIST RR	
AL CC NATUR CORE REC X 90	RE RE RE OFG ID BUI	COVERY FOR BORING 85 % EOLOGIST RR	
NATUR CKLAN CORE REC X 90	ie ofg Id Bui	RR	
CORE REC ¥	ID BUI	RR	
90	SAMPLE	REMARKS	$\neg \neg$
			BLOWS/
		-7.8	
			5
	1	Set NW Casing	3
	-	-9.3	2
75	2		2
	-	-10.8	$-\frac{2}{3}$
·			9
80	З		10
		-12.3	10
			6
80	4		8
			7
75	~		5
75	5		6
		-15.3	4
75	6		7
		-16.8	
			4
90	7		5
		-18.3	8
			7
80	8		
			5 8
80	9		7
	-	-21.3	10
			4
90	10		6
		-22.8	8
			7
100	11		12
		-24.3	
100	12		5
	-	-25.8	13
			8
100	13		10
		-27.3	12
			F
			t t
			F
			F
			.
		1	E
			Į
	90 80 90 100	90 7 80 8 80 9 90 10 100 11 100 12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

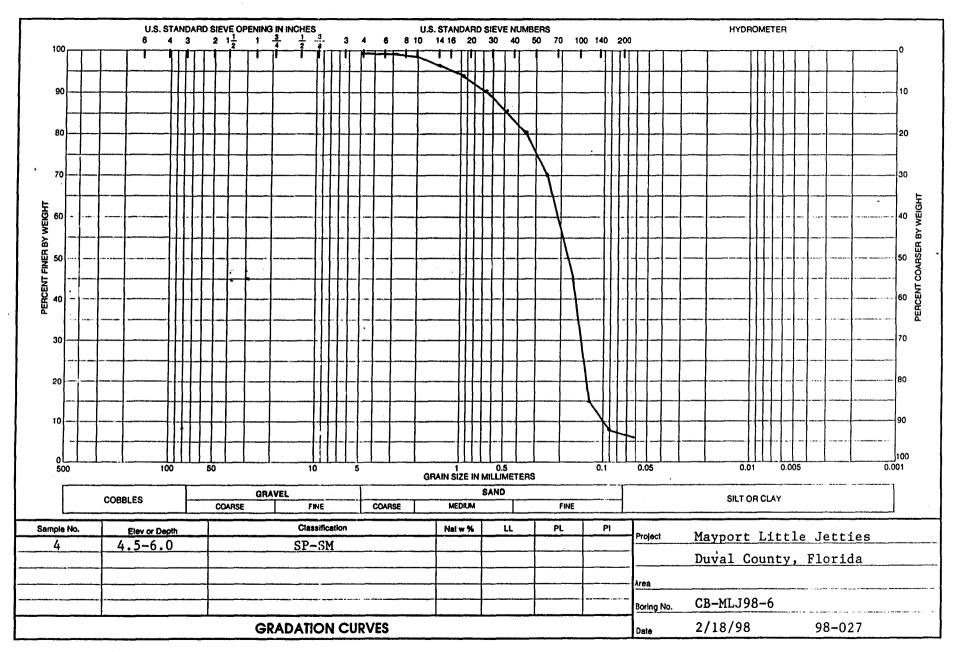

RIL	LING	LOG	South Atlantic		LLATIO	-		NO.CB-MLJ	SHEET 1
ROJEC	T							i/16" Tricone	<u>OF 1</u>
Мауро	ort Little	Jett	ies es or Station/	11. DA1	UN FOR			N (TBN or MSL)	
	8,132 X			ML		URER	DESIGNAT	ION OF DRILL	
				CM	E 45 o	n ATV			
HOLE	10. (As s/	nown o	CIATES, INC.		TAL NO. turbed			SAMPLES TAKEN	
and file	a number)		CB-MLJ98-7		-	-	F CORE BO		
NAME (C. Wai	OF ORILL	ER					ND WATER		
	TION OF	HOLE		18. DA	TE HOL		ARTED CO		
🖾 VE	RTICAL		ICLINED	17. 61		_	12/98 2/ OF HOLE 5	12/98	
THICK	NESS OF	BURD	EN 19.5 Ft.			_		BORING 77 %	
			ROCK 0.0 Ft.	19. SI	GNATUR	e of gi	EOLOGIST		
TOTAL	DEPTH		.e 19.5 Ft.	RO	CKLAN		R	·····	
LEV.	DEPTH	LEGEND	CLASSIFICATION OF MATER (Description)	IALS	CORE REC X	SAMPLE		REMARKS	9 BLOWS/
5.8	.0						5.6		*
	-		Sand, fine to medium grained, brown, a little shell, trace of						2
	-		gravel (SP)	ət i Cili	100	1		GWT = 1.2'	5
					┣		4.1		7 8
!					100	2			
						*	2.8		10
	:				—		<u> </u>		9
	-				75	3			7
1.1	4.5						1.1		9
			Sand, medium to coarse grain a little shell, a little shell gra	ed,	1				4
			(SP-SM)	/ei	50	4			4
	1 :						4		5
					50	-5			
	_]					-1.9	<u> </u>	<u> </u>
		<u>i</u> 11			60	6	ł		4
		11			1~	۱ĭ	-3.4		4
		11			-	t			5
		11			50	7	Į		4
	-]]					-4.9		4
	ł]				Γ		Cat Litt Casia a	3
-5.9	11.5 -	-11			50	8		Set HW Casing to Control Silt	7
			Laminations and lenses of si clay and fine, dark gray san		·		-8.4		1
		41	(SM)	~					2
		11			100	9]		
	.	314				+	-7.9		31
	[1			100	10			
		11				"	-9.4		
	-	11				1			
	}	11			100	1 1	1		2
		-11-1					-10.9		2
		1				T		-	2
	_	내			75	12			2
	1					4	-12.4		2
		11					{		
		궤	3		90	13			<u> </u>
-13.8	9 19.5	10	End of Baring at 10.5'				-13.9		3
	-	-	End of Boring at 19.5'			1			
]							
		3							
		3							
		-	Soils are field visually class						
	-	4	in accordance with the Unif Soils Classification System.	50		1			
	XIN 1838	PREVI	OUS EDITIONS ARE OBSOLETE.	PROJECT		-			LE NUMBER
				Maypor		1			3-MLJ98-7

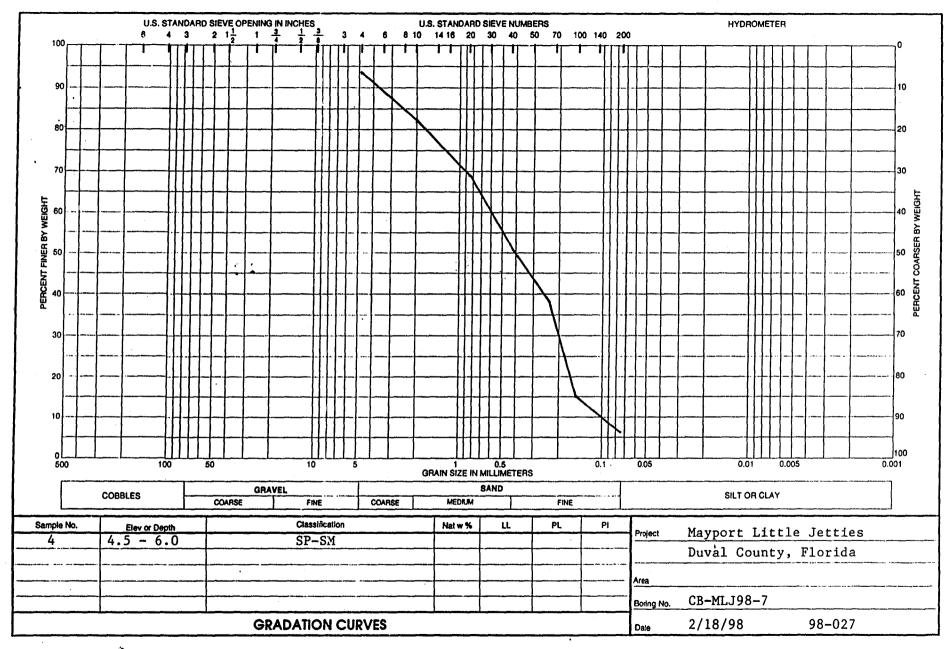

GEOTECHNICAL ATTACHMENT

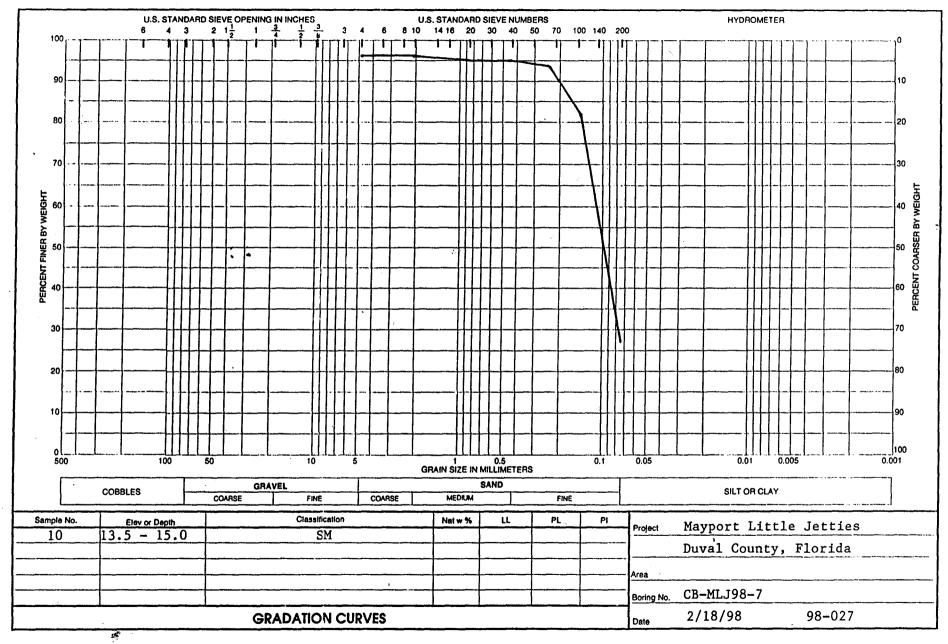

Analytical Data from 1998


ATTACHMENT B









ENG FORM 2087

GEOTECHNICAL ATTACHMENT

Boring Logs from 2005

ATTACHMENT B

								g Designatio	n CB-JHM		
	G LOG	DIVISIO			INSTAL					SHEET 1	
. PROJECT		<u> </u>	th Atlantic					istrict E OF BIT Se	e Remarks	OF 2 \$H	EE 15
	ville Harbo	or Mile Poir	nt					SYSTEM/DATUM	HORIZONTA	VERTICAL	
o a on o o i n								ne, FLE (U.S. Ft.		MLLW	
. BORING DES	GNATION		LOCATION CO	ORDINATES				RER'S DESIGNATI			R
CB-JHM				0 Y = 2,201,784		Failir	ng 15			MANUAL HAM	
DRILLING A		- 05040		ONTRACTOR FILE NO.	12. TO	TAL !	SAMP		DISTURBED	UNDISTURBED	(UD)
Corps of		s - CESAS	; 						13	0	
Danny H					13. TO	TAL	UMB	ER CORE BOXES			
DIRECTION	F BORIN	3	DEG. FROM	BEARING	14. EL	EVAT	ION G	ROUND WATER	N/A		
			VERTICAL		15. DA	TE B	DRING	3	STARTED		
			<u> </u>			ev.			· · · · · · · · · · · · · · · · · · ·	<u> </u>	0
. THICKNESS		URDEN	N/A					OP OF BORING	-43.8 Ft.		
. DEPTH DRIL	LED INTO	ROCK (N/A			_		VERY FOR BORIN			
. TOTAL DEPT	H OF BOR	ING 16	5.2 Ft.					or, Geologist	FEGIVK		
<u> </u>						~	i ayı	al, Geologist			ш
ELEV. DEPT	T TEGEND	CL	ASSIFICATION	N OF MATERIALS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/	N-VALUE
-43.8 0.0								-43.8			
	hn	SAND, si	lty, mostly fin	e-grained sand-sized	-[11	
	<u> </u>	quartz, lit dark brow	tte sitt, few sh vn. (SM)	nell up to 1/2", wet,	52	1			SPT Samp		
<u>-44.8 1.0</u>				mostly fine-grained	\dashv	2			or i banip	20	48
F		sand-size	ed quartz, trac	e shell up to 1/2",		2		<u>-45.3</u>			
		trace fine	s, wet, tan/gr	ay (SP)							
Ę					ļ				<u> </u>		ļ
ŀ									Overwashe	90	
F											
<u>-47.5 3.7</u>			an low plasti	city, very hard, few				-47.5			
F	$V \land$			d quartz, dry, tan (CL) 100	3			SPT Samp	ler . <u>0</u>	
ŀ		-		· •			ļ	-48.4 -48.5	Advanced Bo	50/0.4	
F								-40.3	Auvanced Bo	38	<u> </u>
F	$\langle \rangle \rangle$				100	4			SPT Samp	ler 56]
F								-50.0		67	123
Ł							1	-50.0	,		
F	V/λ				45	5		l	ODT Com-		1
-51.2 7.4					45				SPT Samp		66
		SAND, po	oorly-graded,	mostly fine-grained ne dark minerals,	7	6		-51.5		38	
F	• •	moist, gra		ne uark minerais,							l
F			- , /		80	7			SPT Samp	ler <u>36</u>	90
F								-53.0		54	90
-53.5 - 9.7		∽At El53	8.0 Ft.		80		1	-53.5	SPT Samp	ler 60	
-00.0 0.1	-77			city, hard, trace	67	8		-53.8	SPT Samp	ler 50/0.0'	<u> </u>
F	$\langle \rangle \rangle$		ned sand-size	d quartz, dry,	F		1	-54.0	Advanced Bo		
F		gray/gree	an (GE)								-
F				ino araval aint-d	100	10			SPT Samp		47
F		Carbonate	o.υ ⊢τ., trace f e up to 1/4". r	ine gravel-sized noderate cementatior				-55.5		26	
F			•							30	
F					73	11			SPT Samp	ler 39	
Ł		∽At El56	6.5 Ft., no cer	nentation				57.0	•	40	79
F							1	-57.0		18	<u> </u>
F							1				1
F					87	12			SPT Samp		57
1						1	1			31	1
Ľ					87	13	ł	-58.5	SPT Samp		

SAJ FORM 1836 JUN 02

Boring Designation CB-JHMP-05-1

PROJECT COORDINATE SYSTEM/DATUM HORIZONTAL VERTICAL Jacksonville Harbor Mile Point State Plane, FLE (U.S. Ft.) NAD83 MLLW LOCATION COORDINATES ELEVATION TOP OF BORING -43.8 Ft. CLASSIFICATION OF MATERIALS REC. Ref.		OF 2 SHI			ict	Dist	nville	Jackso	5 (Cont. Sheet)	LOC	LLING	ואט
Jacksonville Harbor Mile Point State Plane, FLE (U.S. Ft.) NAD83 MLLW LOCATION COORDINATES ELEVATION TOP OF BORING -43.8 Ft. -43.8 Ft. ELEV. DEPTH Open Harbor Mile Point CLASSIFICATION OF MATERIALS Ref -43.8 Ft. Red -43.8 Ft. Remarks State Plane, FLE (U.S. Ft.) NAD83 MLLW 60.0 16.2 CLASSIFICATION OF MATERIALS Ref -43.8 Ft. Ref -43.8 Ft. Ref -60.0 33 -60.0 16.2 NOTES: 13 SPT Sampler -60.0 40 -60.0 16.2 NOTES: 1 USACE Jacksonville is the custodian for these original files. 10 100# hammer w/30" drop used with 2.0" split spoon (1-3/8" 1.D. x 2" O.D.). 1 USACE Jacksonville is the custodian for these original files. 2 Solis are field visually classified in accordance with the Unified Solis Classification System. 140# hammer w/30" drop used with 2.0" split spoon (1-3/8" 1.D. x 2" O.D.). 3 From El43.8 ft to El44.8 ft. and El55.5 ft. to El57.0 ft.,. 4 4 4 4 Laboratory Testing Results 4 4 4 4 4			HORIZONTAL	UM .							т	PROJEC
X = 508,390 Y = 2,201,784 -43.8 Ft. ELEV. DEPTH By CLASSIFICATION OF MATERIALS Rec. SP SF Rop 0B REMARKS Sp SF -60.0 16.2 NOTES: 87 13 SPT Sampler 40 -60.0 16.2 NOTES: 1 USACE Jacksonville is the custodian for these original files. 140# hammer w/30" drop used with 2.0" split spoon (1-3/8" 1.D. x 2" O.D.). <				. Ft.)	(U.S.	FLE	lane,	State F	Aile Point	rbor I	sonville Ha	Jack
ELEV. DEPTH Subscript of the second sec				G	ORIN	OFE	N TO	ELEVATIO	3	NATE	ON COORD	LOCATI
-60.0 16.2 87 13 SPT Sampler 40 -60.0 -60.0 33 NOTES: 1. USACE Jacksonville is the custodian for these original files. 140# hammer w/30" drop used with 2.0' split spoon (1-3/8" 1.D. x 2" O.D.). 2. Soils are field visually classified in accordance with the Unified Soils Classification System. 3. From El43.8 ft.to El44.8 ft. and El55.5 ft. to El57.0 ft.,. 4. Laboratory Testing Results						_	t.	_43.8 F	201,784	Y = 2	508,390	X = 5
-60.0 16.2 16.7 13 SPT Sampler -60.0 33 NOTES: -60.0 33 1. USACE Jacksonville is the custodian for these original files. 140# hammer w/30" drop used with 2.0' split spoon (1-3/8" 1.D. x 2" O.D.). 2. Soils are field visually classified in accordance with the Unified Soils Classification System. 3. From El43.8 ft.to El44.8 ft. and El55.5 ft. to El57.0 ft.,. 4. Laboratory Testing Results 4. Laboratory Testing Results	N-VALUE	BLOWS/	REMARKS		RQD OR UD	BOX OR SAMPLE	RÉC.	L\$	CLASSIFICATION OF MATERIA	LEGEND	DEPTH	ELEV.
 USACE Jacksonville is the custodian for these original files. Soils are field visually classified in accordance with the Unified Soils Classification System. From EL -43.8 ft.to EL -44.8 ft. and EL -55.5 ft. to EL -57.0 ft.,. Laboratory Testing Results 	73		SPT Sample	-60.0		13	87				16. <u>2</u>	-60.0
SAMPLE SAMPLE LABORATORY DEPTH CLASSFICATION 1 0.0/1.0 SP-SC* 2 1.0/1.5 SC* 7 7.7/9.2 SC* 10 10.2/11.7 SC* *Lab visual classification based on gradation curve. No Atterberg limits.		with	nmer w/30" drop used spoon (1-3/8" 1.D. x 2	140# ha				in nd El. TORY CATION C* *	 USACE Jacksonville is the custor these original files. Soils are field visually classified if accordance with the Unified Soils Classification System. From El43.8 ft.to El44.8 ft. at -55.5 ft. to El57.0 ft.,. Laboratory Testing Results SAMPLE SAMPLE LABORA ID DEPTH CLASSIFIC 1 0.0/1.0 SP-S 2 1.0/1.5 SC' 4 4.7/6.2 SC' 7 7.7/9.2 SC' 10 10.2/11.7 SC' *Lab visual classification based on g 		16.2	60.0

LING	LOG	South Atlantic							
		South Aliantic	Ja	kson	ville D	istrict		OF 2 SH	ETS
ECT							Remarks	<u></u>	
			10. 0				HORIZONTAL	VERTICAL	
				_					
		•	111. 1						
			o.	Fall	ing to				
			12. 1	OTAL	SAMP	LES	16	0	()
E OF DRIL	LER		13.	OTAL	NUMB	ER CORE BOXES	1		
						ROUND WATER	N/A		
	BORING	DEG. FROM BEARING						COMPLETE	0
NCLINED			15.	DATE E	ORIN	G	08-28-06		
KNESS OF		URDEN N/A	16.		TION T	OP OF BORING	-36.7 Ft.	<u> </u>	
<u> </u>	_		17.	OTAL	RECO	VERY FOR BORING	75 %		·
			18. 3	IGNA	TURE /	AND TITLE OF INSP	ECTOR	·	
L DEPTH	OF BOR	ING 23.3 Ft.		Gre	g Tay	lor, Geologist			
DEPTH	LEGEND	CLASSIFICATION OF MATERIALS	RÉ	BOX OR	RQD OR UD		REMARKS	BLOWS/ 0.5 FT.	N-VALUE
0.0				T_		-36.7			
				Г				0	
		wet, green gray (CH)		1			SPT Sampler	1	
-					ļ		·	3	4
					-	-38.2			<u> </u>
-		≻At El38.6 Ft., discontinue shell							
, -			8	2		ļ	SPT Sampler	7	15
•						-39.7		8	
				Т	1		······································	3	
-			10	0 3		i,	SPT Sampler	9	
-									18
					-	-41.2			<u> </u>
-						ļ			ł
-			10	0 4			SPT Sampler	9	20
•						-42.7		11	
				T		[8	
			10	0 5			SPT Sampler	8	
-		At El43.7 Ft., few fine-grained sand-size					·		16
•		quartz			-{	44.2			
_									
-			ea 1(0 6			SPT Sampler	6	14
-		- 1			1	-45.7		8	
								5	
-			8	7 1			SPT Sampler	10	
-					ł	47.2	•	·	22
-					-1				<u> </u>
-		At El47.6 Ft., stratified with poorly-grade	ed 📘	、 _					
-		sand up to 1/2", every 2 inches	9	° °	1		SPI Sampler		19
-					_	_48.7		11	L
-					[9	
-		∽At El49.3 Ft., few shell up to 1/4"	7	3 9	-	{	SPT Sampler	16	
-				1		50.2	•		39
13.6			┟	10					
_		SAND, silty, mostly fine-grained sand-size					SPT Sampler		4
-	│ <u></u>	quartz, some fines, moist, gray/green (SM	N)	+-	╡	-51.1	Advanced Boring		
-			10	0 12		<u> </u>	SPT Sampler	64	
	BAILY IL DEPTH	CSIDN TAVEAH NG DESIGNATION 3-JHMP-05-2 ING AGENCY OTDS OF Engineers OF DRILLER ANNY HEWELL CTION OF BORING ERTICAL NCLINED KNESS OF OVERB H DRILLED INTO L DEPTH 0.0	ING AGENCY CONTRACTOR FILE N INFOS OF Engineers - CESAS CONTRACTOR FILE N INFOS OF Engineers - CESAS Image: Contractor of File N INFOS OF Engineers - CESAS Image: Centre of File N Infos of Engineers - CESAS Image: Centre of File N Infos of Engineers - CESAS Image: Centre of File N Infos of Engineers - CESAS Image: Centre of File N Infos of Engineers - CESAS Image: Centre of File N Infos of Engineers - CESAS Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N Image: Centre of File N	ESIM TAVEAL ANTION LOCATION COORDINATES 11. NO DESIGNATION LOCATION COORDINATES 11. NO DESIGNATION LOCATION COORDINATES 11. S-JHMP-05-2 X = 510,440 Y = 2,199,595 ING AGENCY CONTRACTOR FILE NO. 12. ING AGENCY CONTRACTOR FILE NO. 12. ING AGENCY CONTRACTOR FILE NO. 12. ING AGENCY DES. FROM BEARING ING NOR DES. FROM BEARING ING NOR DES. FROM BEARING ING AGENCY DES. FROM BEARING ING AGENCY DES. FROM BEARING ING AGENCH N/A 16. ING AGENCY CLASSIFICATION OF MATERIALS 16. INCLINE OF BORING 23.3 FL 18. DEPTH OF BORING 23.3 FL 14. INTOR OR K N/A 18. INCLAY, fat. high plasticity. soft, few shell up to 1/4", trace fine-grained sand-sized quartz, wet, green gray (CH) INCLAY, fat. high plasticity. soft, few shell up to 1/4" 10. INCLAY, fat. high plasticity. soft few shell 10. INCLAY,	Baller Duve Afright Stress Stat No Designation LOCATION COORDINATES 1. MANUE SJ-JHMP-05-2 X = 510,440 Y = 2,199,595 Failing Inde Ademocy CONTRACTOR FILE NO. 12. TOTAL Inde Ademocy CONTRACTOR FILE NO. 12. TOTAL Sord Engineers - CESAS 13. TOTAL Sord Engineers - CESAS 14. ELEVA THO OF BORING DEG. FROM BEARING ERTICAL VERTICAL 14. ELEVA CLINED N/A 16. ELEVA NO DESIDING DEG. FROM BEARING ERTICAL VERTICAL 17. TOTAL KNEESS OF OVERBURDEN N/A 16. ELEVA NO DESIDING DEG. FROM BEARING LDEPTH OF BORING 23.3 Ft. Gre DEPTH Gre CLASSIFICATION OF MATERIALS REC. 0.0 CLAY, fat. high plasticity, soft, few shell up to 17. TOTAL 0.0 CLAY, fat. high plasticity, soft, few shell up to 17. TOTAL 0.0 CLAY, fat. high plasticity, soft, few shell up to 17. TOTAL 0.0 CLAY, fat. high plasticity, soft, few shell up to <td>State Plan State Plan NB DESIGNATION LOCATION COORDINATES 11. MANUFACTU SJHMP-05-2 X = 510,440 Y = 2,199,595 Failing 15 ING AGENCY CONTRACTOR FILE NO. 12. TOTAL SAMP Soft Description DEC. FROM BEARING 13. TOTAL NUMBER ING AGENCY CONTRACTOR FILE NO. 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 15. DATE BORING 15. DATE BORING VERTICAL USES OF OVERBURDEN N/A 15. DATE BORING 17. TOTAL EECO NUMERD N/A 15. SIGNATURE / 17. TOTAL EECO 17. TOTAL EECO DEPTH O CLASSIFICATION OF MATERIALS NEC 57. TOTAL EECO 0.0 CLAY, fat, high plasticity, soft, few shell up to 1/4", trace fine-grained sand-sized quartz, wet, green gray (CH) 87 2 0.0 At EL -43.7 Ft., few fine-grained sand-sized quartz 100 5</td> <td>State Plane, FLE (U S. FL)State Plane, FLE (U S. FL)TorAL SAMPLES10 of Bigmeers - CESASInte AdencyTorAL SAMPLESIS of Plane, FLE (U S. FL)TorAL SAMPLESIS SIGNATURE CORE BOXESIND A BEARINGIS SIGNATURE CORE BOXESINFORMREALIS SIGNATURE CORE BOXESIND A DEAL FROMBEARINGIS SIGNATURE CORE BOXESING ADEAL FROMIS SIGNATURE AND TITLE OF INSPCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPI DEPTH OF BORINGCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPOCLAY, fat, high plasticity, soft, few shell up toAL EL -43.6 FL, discontinue shellAL EL -43.7 FL, f</td> <td>DSUP EnvicefugAtion State Plane, FLE (U.S. Ft.) NAD83 We besinkerrow I Location coordonates 11. Manufacturers besinkerrow of print. Intel Assertes <td< td=""><td>Diff Diff Diff Diff Diff Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Contractor fulle no. 12. Total status Diff Manual status Diff Contractor fulle no. 12. Total status Diff Manual status Diff Diff Each Diff Diff Diff Diff Diff Diff Each Diff Diff Diff Diff Diff Manual status Each Each Diff Diff</td></td<></td>	State Plan State Plan NB DESIGNATION LOCATION COORDINATES 11. MANUFACTU SJHMP-05-2 X = 510,440 Y = 2,199,595 Failing 15 ING AGENCY CONTRACTOR FILE NO. 12. TOTAL SAMP Soft Description DEC. FROM BEARING 13. TOTAL NUMBER ING AGENCY CONTRACTOR FILE NO. 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 14. ELEVATION COORDINATES 14. ELEVATION COORDINATES Soft Description DEC. FROM BEARING 15. DATE BORING 15. DATE BORING VERTICAL USES OF OVERBURDEN N/A 15. DATE BORING 17. TOTAL EECO NUMERD N/A 15. SIGNATURE / 17. TOTAL EECO 17. TOTAL EECO DEPTH O CLASSIFICATION OF MATERIALS NEC 57. TOTAL EECO 0.0 CLAY, fat, high plasticity, soft, few shell up to 1/4", trace fine-grained sand-sized quartz, wet, green gray (CH) 87 2 0.0 At EL -43.7 Ft., few fine-grained sand-sized quartz 100 5	State Plane, FLE (U S. FL)State Plane, FLE (U S. FL)TorAL SAMPLES10 of Bigmeers - CESASInte AdencyTorAL SAMPLESIS of Plane, FLE (U S. FL)TorAL SAMPLESIS SIGNATURE CORE BOXESIND A BEARINGIS SIGNATURE CORE BOXESINFORMREALIS SIGNATURE CORE BOXESIND A DEAL FROMBEARINGIS SIGNATURE CORE BOXESING ADEAL FROMIS SIGNATURE AND TITLE OF INSPCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPI DEPTH OF BORINGCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPCLASSIFICATION OF MATERIALSREC.SIGNATURE AND TITLE OF INSPOCLAY, fat, high plasticity, soft, few shell up toAL EL -43.6 FL, discontinue shellAL EL -43.7 FL, f	DSUP EnvicefugAtion State Plane, FLE (U.S. Ft.) NAD83 We besinkerrow I Location coordonates 11. Manufacturers besinkerrow of print. Intel Assertes Intel Assertes <td< td=""><td>Diff Diff Diff Diff Diff Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Contractor fulle no. 12. Total status Diff Manual status Diff Contractor fulle no. 12. Total status Diff Manual status Diff Diff Each Diff Diff Diff Diff Diff Diff Each Diff Diff Diff Diff Diff Manual status Each Each Diff Diff</td></td<>	Diff Diff Diff Diff Diff Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Laboration coordinates 11. Manual status Multivity Multivity Diff Contractor fulle no. 12. Total status Diff Manual status Diff Contractor fulle no. 12. Total status Diff Manual status Diff Diff Each Diff Diff Diff Diff Diff Diff Each Diff Diff Diff Diff Diff Manual status Each Each Diff Diff

DRI	LLING	LOC	3 (Cont. Sheet)	JACKSO	••	Distr	ict			SHEET 2 OF 2 SI	IEETS
PROJEC	т			COORDINA				UM	HORIZONTAL	VERTICAL	
Jack	sonville Ha	rbor I	Mile Point	State F	lane,	FLE	(U.S.	. Ft.)	NAD83	MLLW	
	DN COORDI			ELEVATIO		OFB	ORIN	G			
X = 5	510,440		,199,595	-36.7 F	t.		<u> </u>	·			
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	ALS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/	N-VALUE
					-			-51.9		50/0.2	-
								-52.7	Advanced Bor	ing	
					Γ					30	
					85	13			SPT Sample	er 62	1124
								-54.0 -54.2	Advanced Bor	<u>50/0.3</u>	1
			At El54.5 Ft., lenses of clay up to	1/4 in	62	14			SPT Sample	- 40	1
			thick	174 00.	<u> </u>	<u></u>		-55.0		50/0.3	1
								-55.7	Advanced Bor	ing	
							1		····	50	
					33	15			SPT Sample	er 45	1
					l			- <u>57.2</u>		37	82
-57.7	21.0				100	16		- <u>57.4</u> -57.7	SPT Sample Advanced Bor	er <u>.50/0.2</u>	
			SILT, inorganic-L, low plasticity, ver little fine-grained sand-sized sand,	ry soft, dry, gray				<u></u>	Auvanced Bor	77	
			(ML)	ary, gray	0				SPT Sample	er 50	1
					Į	l		-59.2		52	- 102
	1				0				SPT Sample	30	
- <u>6</u> 0.0	23.3	μш			ļ	<u> </u>		-60.0		50/0.3	
			NOTES:					140# ha	ammer w/30" drop use t spoon (1-3/8" I.D. x 2	d with	
			 USACE Jacksonville is the custo these original files. 	odian for				2.0 501	1 SPOON (1-5/6 1.D. X 2	. 0.0.).	
			 Soils are field visually classified accordance with the Unified Soils Classification System. 	in							
			3. Mud loss at El. 38.2 ft.								
			4. From El57.7 ft. to El60.0 ft., core barrel used to retrieve materia								Ì
			SPT had no recovery.		1						
			5. Laboratory Testing Results]						
			SAMPLE SAMPLE LABORA		1	ļ					ł
		1	ID DEPTH CLASSIFI		1						
			3 3.0/4.5 CH 11 13.6/14.4 SC								
			*Lab visual classification based on	oradation							
			curve. No Atterberg limits.	gradation	1	ļ	[{
		1			[
		i									
					l	Į					
]											
					1						
					1	1					1

			DIVISI	0N		· · · · · · · · · · · · · · · · · · ·	INST	ALL			<u>g = coigilatoi</u>		SHEET 1	
		LOG	Sou	th Atlantic				_			istrict		OF 2 SH	EETS
1. PRO								_				e Remarks		
J	acksonville	Harbo	or Mile Poi	Int			10. (SYSTEM/DATUM e, FLE (U.S. Ft.	HORIZONTAL	MLLW	i
2. BOR	ING DESIGN	ATION		LOCATION C	OORD	INATES	11.	MAN	NUF	CTU	RER'S DESIGNATI) NAD83		8
C	B-JHMP-0	5-3		X = 510,		Y = 2,198,831				ig 15	00		MANUAL HAM	MER
	LING AGEN			<u> </u>	CONT	RACTOR FILE NO.	12.	тот	AL S	AMPI	ES	DISTURBED 1 12	JNDISTURBED	(UD)
	orps of En		S-CESA	5	i		12	TOT	-		ER CORE BOXES	1	0	
D	anny Hew	ett						_			ROUND WATER			
	CTION OF I	BORING)	DEG. FRO	M	BEARING	14.		VAL		ROUND WATER	N/A	COMPLETE	n
_	INCLINED						15.	DAT	E B(RING	3	08-31-06	08-31-0	
6. THIC	KNESS OF	OVERE	URDEN	N/A			16.	ELE	VAT	ION T	OP OF BORING	-12.5 Ft.		
7. DEP	TH DRILLED		ROCK	N/A			17.	тот	AL P	RECON	ERY FOR BORIN	G 39 %		
							18.				ND TITLE OF INS	PECTOR		
a. IUI	AL DEPTH C	<u>г</u> т		8.0 Ft.			<u> </u>	_		Tayl	or, Geologist		<u> </u>	
ELEV.	DEPTH	LEGEND	c	LASSIFICATI	ON OF	MATERIALS	RÉ	°.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/	N-VALUE
-12.5	0.0	ΙT									-12.5	_		
	-	<u> </u>				stly fine-grained		-†					6	
	È i	: · ·	sand-size	eo quartz, tr (SP)	ace da	ark minerals, wet,	6	7 l	1		1	SPT Sampler	12	1
	-										-14,0	•		26
								-†			-14.0		20	
	_	[:	∽At El14	4.5 Ft., few s	shell u	ıp to 1/4"	10	00	2			SPT Sampler		{
l	ſ	<u> </u>							2			SFT Sampler	22	39
	-		≻At El1	5.3 Ft., disco	ontinu	e shell, dark gray		-+	_		-15.5			
	-	· · ·							_					
	-						2	0	3			SPT Sampler	9	19
	-							_+			-17.0		10	<u> </u>
	-												12	-
	-						2	0	4			SPT Sampler	10	20
	-	· · ·						_			-18.5		10	
	-	[∷:]											8	ļ
	E						2	0	5			SPT Sampler	11	19
	-						Ľ				-20.0		8	
	F												11	
	L	:: :					2	7	6			SPT Sampler	7	21
	+	····									-21.5		14	
	F	l∷-l						T					16	
	F						3	3	7			SPT Sampler	14	200
	F	:.					1			ł	-23.0		12	26
	E]∷∷[Γ]			15	
	F						4	0	8			SPT Sampler	9	1
	F										-24.5		9	18
	F F	ŀ∷ł						-1		ł		<u>-</u>	14	1
	ļ.	:::					3	3	9			SPT Sampler		1
	F	 ∷					ľ		-		26.0		15	26
	t –	 ⊡						-†		l	-26.0	· · · · · · · · · · · · · · · · · · ·	15	{
	F	···						0	10			SPT Sampler		1
	Ł							~	i V			or roampier		32
L		L' l									-27.5	(Continued)		

Boring Designation CB-JHMP-05-3

DRI	LLING	LOC	G (Cont. Sheet)	INSTALLA Jackso		Dietr	ict				SHEET OF 2			l
PROJEC	т.			COORDINA					HORIZONTAL		RTICAL			1
	sonville Ha	urbor I	Mile Point	State P					NAD83		MLLW			
	ON COORDI			ELEVATIO										•
	510,417			-12.5 F		UF B	UKIN	u						
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA		RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS		BLOWS/	0.5 FT.	N-VALUE	
			<u> </u>			-••			<u></u>			2	-	-15
					27	11			CDT Come					ŀ
					1				SPT Sample	er		1	18	F
		$\cdot \cdot \cdot$						-29.0				7		ļ.
			-		•						1	5		È.
					40	12			SPT Sampl	er	1	2	24	Ł
-30.5	18.0	•••						-30.5			1	2	24	ŀ
			NOTES: 1. USACE Jacksonville is the custor these original files. 2. Soils are field visually classified accordance with the Unified Soils Classification System. 3. Mud loss at El45.7 ft. 4. Laboratory Testing Results SAMPLE SAMPLE LABORA ID DEPTH CLASSIFIE 2 1.5/3.0 SP-S *Lab visual classification based on a curve. No Atterberg limits.	in NTORY CATION SC*				140# ha	mmer w/30" drop use spoon (1-3/8" I.D. x 3	ed wi 2" O.	th			

									g Designatio	n CB-JHMP-(
DRILL	ING I	LOG	DIVISION			INSTAL			istrict		SHEET 1 OF 2 SH	EFTO
. PROJECT			Sout	h Atlantic						e Remarks		
		Harbo	r Mile Poin	ıt					SYSTEM/DATUM		VERTICAL	
							State	e Plar	ne, FLE (U.S. Ft) NAD83	MLLW	
2. BORING	-		į L	LOCATION COOR		11. MA	ANUF/	ACTU	RER'S DESIGNAT		AUTO HAMME	
	HMP-08				Y = 2,199,652		Failir	ng 15	00		MANUAL HAN	_
3. DRILLIN	-		- CESAS	1	NTRACTOR FILE NO.	12, то		SAMP	LES	DISTURBED	UNDISTURBED	(UD)
4. NAME O				<u> </u>	<u> </u>	13 70	TAL		ER CORE BOXES			
Dann	y Hewe	ett					_					
5. DIRECTI		ORING		DEG. FROM	BEARING	14. EL	EVAT		ROUND WATER	N/A	COMPLETE	
						15. DA	ITE B	ORING	3	08-28-06	08-28-0	
6. THICKN		ÓVERR	URDEN	N/A		16. EL	EVAT			-41.5 Ft.		
					<u> </u>				VERY FOR BORIN			
7. DEPTH D	RILLED	INTO P		N/A		L			AND TITLE OF INS			
B. TOTAL D	EPTH O	F BORI	NG 20.	.0 Ft.			Greç	j Tay	or, Geologist			
ELEV. DI	EPTH	LEGEND	CL	ASSIFICATION O	F MATERIALS	RÉC.	BOX OR SAMPLE			REMARKS	BLOWS/ 0.5 FT.	N-VALUE
-41.5 0.	0				-	<u> </u>			-41.5			
<u></u>	<u>v</u>				ostly fine-grained	+		<u> </u>			18	<u> </u>
F			sand-sized tan (SP)	d quartz, trace	dark minerals, wet,	60	1			SPT Sampler	·····	1
- F	_						1]]	or a Gampler	29	58
<u>-43.0</u> 1.	5		GRAVEL	, clayey, mostly	fine to coarse	—	 	-	-43.0	· · · · · · · · · · · · · · · · · · ·		
Ļ.			gravel-size	ed limestone up	p to 1/2", some clay		2				14	4
-44.0 2.	5			rained sand-siz		40	L	1		SPT Sampler	7	21
Ŀ		· · ·	SAND, po	porly-graded, m	ostly quartz, trace	۲L	3		-44.5		14	<u> </u>
F			fines, trac wet, tan/g		sand-sized shell,						6	
F		$ \cdot \cdot \cdot $, few shell up to 1/2	27	4			SPT Sampler	9]
F		[∷]					1	1	-46.0		4	13
ţ		···					<u> </u>	1			0	1
						27	5	1		SPT Sampler		1
Ł		l:∷l				121	ľ	Į –			7	9
F		l∷h	-At El47.	.5 Ft., trace dar	k minerals		⊢	1	-47.5		·······	┢
F								1		 :	5	$\left\{ \right.$
₽ F						40	6			SPT Sampler	<u> </u>	45
t							<u> </u>	1	-49.0	•	24	
Ŀ								1			12	
F		[∷ .]				60	7			SPT Sampler	25	
-50.5 9.	.0	····					ļ	Į –	-50.5		20	45
		1//	CLAY, lea	an, low plasticity	y, soft, few		<u> </u>	1	<u> </u>		4	1
ţ		\mathbb{N}	(CL)	ed sand-sized (quartz, moist, green	87	8	1		SPT Sampler		1
F		\mathbb{N}	. ,			[]	ĺ		60.0		8	13
ŀ		V/A					╞	1	<u>-52.0</u>		6	+
<u>-52.6 - 1</u>	1.1	K/A	CAND T	avou mostly ?-	- arained		9	4			<u></u>	-
F				ayey, mostly fin ed quartz, little c		93	10	1		SPT Sampler		40
Ļ			fine-graine	ed sand-sized p	phosphate, moist,		Ļ	1	-53.5		22	
Ł			green (SC	U)			1		ĺ		12	
F						100	11			SPT Sampler	7	1
F									-55.0		9	16
Ę							\mathbf{t}	1			4	<u> </u>
F						100	12		[SPT Sampler		1
						1100	1 14	1	1		,	1 10
E E						1			-56.5		9	16

DRI	LLING	LO	G (Cont. Sheet)	INSTALLAT Jackson				<u> </u>	nation CB-JHMF	SHEET 2 OF 2 SI	EETS
PROJEC			······································	COORDINA				 UM	HORIZONTAL	VERTICAL	
Jack	sonville Ha	arbor I	Mile Point	State P	lane,	FLE	(U.S.	<u>Ft.)</u>	NAD83	MLLW	
	ON COORD			ELEVATION		OF S	ÖRIN	G			
X = 5	514,3 <u>58</u>	1	,199,652	<u>-41</u> .5 F	t.						
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIAL	L\$	RËC.	BOX OR SAMPLE	RQD OR UD		REMARKS	BLOWS/ 0.5 FT.	N-VALUE
										5	
				1	100	13			SPT Sampl	ler 8	17
								-58.0		9	
-58.7	17. <u>2</u>				100	14			ODT Come	7	
		ΠΠ	SAND, silty, mostly fine-grained san quartz, little silt, moist, tan (SM)	d-sized	100	15	1	-59.3	SPT Sampl	ler 14 50/0.3	64+
					100	16		-59.5	Advanced Bo	pring	
					100			<u>-59.8</u> -60.0	SPT Sampl Advanced Bo	orina	
					07	47				+ <u>17</u>	$\left\{ \right\}$
		1111			87	17			SPT Samp		71
-61.5	20.0	\mathbf{H}	BORING TERMINATED IN REFUSA	<u>۸</u>				<u>-61,5</u>		46	
			NOTES:					140# ha 2.0' split	mmer w/30" drop use spoon (1-3/8" I.D. x	ed with 2" Q.D.),	
			1. USACE Jacksonville is the custo	dian for				•	• •	,	
			these original files.	ulan ioi							
			2. Soils are field visually classified in	n							
			accordance with the Unified Soils Classification System.								
			3. Laboratory Testing Results								
			SAMPLE SAMPLE LABORA ID DEPTH CLASSIFIC								
			1 0.0/1.5 SC*								
			8 9.0/10.5 SC* 10 11.1/12.0 SP-S(
			15 17.2/17.8 SC*	÷							
			*Lab visual classification based on g curve. No Atterberg limits.	radation							
			curve. No Atterberg mints.				ŀ				
] '				
				:							
				i							
l	!	{									
		1									
				i							
A.I.F	DRM 183	κ6-Δ			l		L		·		I

			DIVISION			INSTAL			y Designa	CB-JHIV		SHEET 1	
DRILLIN	IG LO	DG		Atlantic				ille Di	istrict			OF 2 SH	EETS
PROJECT									OF BIT	See Remarks			
Jackson	wille H	arbor	Mile Point	t		10. CO	ORDI	NATE	SYSTEM/DAT	UM HORIZONT		ERTICAL	
									e, FLE (U.S.			MLLW	
. BORING DE			Ē	OCATION COORI		11. M/				ATION OF DRILL			
CB-JHN		-			Y = 2,198,561		Failir	1g 15	00	DISTURBED		NUAL HAM	
			- CESAS			12. TO	TAL S	SAMPL	ES	6	0		(00)
NAME OF						13. то	TAL	NUMB	ER CORE BO)	(ES 2			
Danny						14. EI	EVAT	10N G	ROUND WAT	ER N/A			
DIRECTION		RING		DEG. FROM VERTICAL	BEARING					STARTED		OMPLETE	D
						15. DA	TE B	DRING	3	08-30-	06	09-13-0	6
. THICKNES	S OF OV	/ERB	JRDEN	N/A		16. EL	EVAT	ION T	OP OF BORIN	G -38.2 Ft.			
					·	17. то	TAL	RECO	ERY FOR BO	RING 57 %			
. DEPTH DRI	LLED IN			I/A		18. SI	GNAT	URE A	ND TITLE OF			· · · · ·	
. TOTAL DE	TH OF	BORI	NG 15.	9 Ft.			Greg	[Tayl	or, Geologis	t			
ELEV. DEP	тн	LEGEND	CLA	ASSIFICATION OF	F MATERIALS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMAR	(5	BLOWS/	N-VALUE
-38.2 0.0									-38.2				
-38.2 0.0	- <u>.</u> -	$\overline{\cdot}$	SAND, por	orly-graded, mo	stly fine to				-00.2	·		8	
-	.		medium-gi	rained sand-size	ed quartz, little rown/black (SP)					ÓDT 0-	nla-		1
F	ŀ	•	onen up to	r, wet, dark Di	IOWINDIAUK (OF)	80		1		SPT Sam	hiel	23	37
Ę	Ŀ.						<u> </u>		-39.7			14	
Ł	ŀ.	··					[3	
ŀ	Ľ.					27	2			SPT Sam	pler	1	
-41.2 3.0	Ŀ.								-41.2			0	1
		7			few fine-grained	400	2	1				8	1 -
-42.0 3.8				d quartz, dry, gr	••••	100	3		-42.0	SPT Sam	pier	50/0.3'	
F F	Mod. Weathered	I I I I I I I I I I I I I I I I I I I		NE, moderately I, pitted, gray	hard, moderately	53	вох			4 x 5-1/2" Diamo	ond Set	Bit	
_		II					1		-43.5				
-44.0 5.8	ŠI	ŢĬ				100	1		-44.0	4 x 5-1/2" Diamo	ond Set	Bit	T
	— <u>†</u> ,	*: 			stly fine-grained		<u> </u>	1	<u> </u>			4	1
E	ŀ		sand-sized moist, gray	d quartz, trace s	shell up to 1/4",	53	4			SPT Sam	nier	5	
Ł	ŀ		oo, yid	, (0,)		53	1			or i oam	higi		15
<u>-45.6 - 7.4</u>		<u> </u>		5 Ft 6 to 9 nin	ces of limestone		5	ļ	-45.5 -45.6	SPT San	nler	10	
F	. ≜ l‡	Ţ	shards up	to 1 in.		_//`````	1	1		<u>0_1 381</u>	ihiei"		
			LIMESTO	NE, moderately I, pitted, gray	hard, moderately	100	Į			4 x 5-1/2" Diamo	ond Set	Bit	ļ
Ţ		II					[-47.6				
Ę		II					1	1					1
\vdash	I ge	ΪĮ.											
F	I leath	Ţ						ļ	l				
F	×	II					BOX	ľ					
È	Moderately Weathered	Ţ					1						1
Ŀ	I Z Z	II.				30		1		4 x 5-1/2" Diame	ond Set	Bit	
F	ļļ	I					1	1					1
Ļ		II					1						
F								[
ŀ	III	Ī				Į	ł	[1				ļ
<u> </u>	ļļ	II											
<u>-52.6 - 14.4</u>	╘╴┻┨╪	1	SAND no	orly-graded mr	stly fine-grained		+	ł	-52.6				-
 	[:·	\cdots	sand-sized	d quartz, moist	gray (SP)	67	6		<u> </u>	SPT Sam		79	
AJ FORM	1836									(Continu	ued)		

D	RILLI	NG L	.00	; (Cont. Sheet)	INSTALLA Jackso		Distr	rict				SHEET]
PRO	ECT	•	_		COORDIN				.OW	HORIZONTAL	VE	RTICAL		1
Ja	cksonvill	le Hari	bor N	Aile Point	State F	Plane,	FLE	(U.S.	. Ft.)	NAD83		MLLW		
LOC/	TION CO	ORDIN	ATES	ş	ELEVATIO									1
x	= 512,40	8 Y	′ = 2,	198,561	-38.2 F	t.								
ELE	/. DEP	тн	LEGEND	CLASSIFICATION OF MATERI		RÉC.	BOX OR SAMPLE	RQD OR UD		REMARK	(S	BLOWS/ 0.5 FT.	N-VALUE	
-54	1 15.9	, ,				67	6		-54.1	SPT Sam	pler	90 44	- 134	
-54	1 15.9			10 DEPTH CLASSIF 1 0.0/1.5 SP- 3 3.0/3.8 Si	I in 1 51 ft. nates X = 1 the 7, however ATORY ICATION SC* C* P*				140# h 2.0' spi Abbrev	ammer w/30" drop us lit spoon (1-3/8" I.D.) riations: = Not Recorded.	sed w	ith		ليتقيقه فالمتعادية أعينا ومنابعة لينتاب أنبوا بتنابيها بمنامع أمنيا بتنابيت ليبتلي

SAJ FORM 1836-A

			DIVISION	M			INSTA	LATIC	NN			SHEET 1	
DRI	LLING	LOG		h Atlantic				ksonv		ietrict		OF 2 S	
1. PRO	JECT					·····		_			Remarks		
		Harbo	r Mile Point	t						SYSTEM/DATUM		VERTICAL	
		110.00		•			1			ne, FLE (U.S. Ft.)	1 1	MLLW	
2. BOR	ING DESIGN	ATION		OCATION C	COORD	INATES	11. N			RER'S DESIGNATIO		TO HAMM	
	B-JHMP-0					Y = 2,197,452	ł		ng 15			NUAL HA	
3. DRIL	LING AGEN	CY	· · ·		CONT	RACTOR FILE NO.	42.7				ISTURBED UN	DISTURBE	D (UD)
	Corps of En		s - CESAS				12. T	UTAL :	SAMPI		8	0	
4. NAN	IE OF DRILL	ER					13. T	OTAL	NUMB	ER CORE BOXES	1		
	anny Hewe						14. E		ION G	ROUND WATER	N/A	_	
	ECTION OF I	BORING		DEG. FRO	м.	BEARING	<u> </u>				STARTED	COMPLET	ED
	INCLINED			1		1	15. 0	ATE B	ORING	3	08-31-06	08-31	
6 THE	CKNESS OF	AVED		N/A		•	16. E		10N T	OP OF BORING	-19.0 Ft.		
										VERY FOR BORING			
7. DEP	TH DRILLED	INTO	ROCK N	I/A						AND TITLE OF INSP			
8. TOT	AL DEPTH C)F BOR		0 Ft.] '''' ''			or, Geologist	LUIUN		
									i i i			~	ш
ELEV.	DEPTH	LEGEND	CLA	ASSIFICATI	ON OF	MATERIALS	% REC	BOX OR SAMPLE	ROD OR UD		REMARKS	BLOWS/ 0.5 FT.	N-VALUE
40.0								1		10.0			
-19.0	0.0	┠╍┠	SAND po	orly-grade	d mos	tly fine-grained				_19.0			
	Ľ	[⊡]	sand-sized	d quartz, tr		ark minerals, wet,						3	_
	ŀ	· · ·	gray (SP))			33	1	1	l	SPT Sampler	8	21
	-	· • •								-20.5		13	21
	-								1		·····	22	
	Ę	 ∙					20	2		l	SPT Sampler	19	- 28
	-									-22.0	······································	9	
	-											25	
	-	· · ·					67	3			SPT Sampler	25	-
	F	!∵∵						1	{		•		- 51
	-								4				
	-	∴:										9	_
	-	 ∵∵ 					47	4			SPT Sampler	9	12
	F	[∷]					1	1	ł	-25.0		4	13
	-						- I	1-	1			3	
	-	·					33	5					-
	-	[···]									SPT Sampler		- 7
	╞	1:::{					<u>ا</u>	1	1	-26.5	·	7	
	-	·∵•										5	
	-						27	6			SPT Sampler	7	
	F	∷ .							1	28.0		6	- 13
	Ľ	¦∵.•]							1	-28.0			
	\mathbf{F}	[⊡]										13	
	-						27	7	1		SPT Sampler	9	23
	Ł	 						L.		-29.5		14	
	F] ⊡]							1			7	
	F	 ∷ 					27	8	1	1	SPT Sampler	8	-
	È.	· · ·					_ '	Ĭ		·			- 16
-31.0	⁻ 12.0	╞╌╡							┨	-31.0		8	
	t	1	NOTES:					1	1		w/30" drop used wit		
	F							1	1		i (1-3/8" I.D. x 2" O.		
	F				ville is	the custodian for	r		1				
	F	1	these orig	marmes.				[1	Į			
	⊾ ┣─					lassified in		[
			accordance	are field vis ce with the tion Syster	Unifie								

Boring Designation CB-JHMP-05-6

DF	RILLING	LO	G (Cont. Sheet)	INSTALLA Jackso			<u> </u>	gilation	SHEET	2 Sheets]
PROJ	ECT	·	· · · · · · · · · · · · · · · · ·	COORDINA			 UM	HORIZONTAL	VERTICAL		1
	cksonville Ha	arbor	Mile Point	State P				NAD83	MLLW		ĺ
LOCA	TION COORD	INATE	\$	ELEVATIO					· · · · ·		1
X=	511,898	Y = 2	,197,452	-19.0 F	t		 				
ELEV	. DEPTH	LEGEND	CLASSIFICATION OF MATERIA	L\$	REC.	BOX OR SAMPLE		REMARK	s BLOWS/	0.5 FT. N-VALUE	
			3. Laboratory Testing Results								- 15
			SAMPLE SAMPLE LABORA ID DEPTH CLASSIFIC								Ē
			3 3.0/4.5 SP-S	C*							F
			*Lab visual classification based on g curve. No Atterberg limits.	gradation							-
											Ē
						-					-20
											Ē
											Ē
											F
-											Ē
											Ē
											-25 - -
											F
											Ē
											-30

	<u> </u>		DIVISIO				INSTA			g Designate		SHEET 1	
DRI	LLING	LOG		th Atlantic			1			istrict		OF 2 SH	IEETS
I. PRC	DJECT										ee Remarks		
	Jacksonville	Harb	or Mile Poir	nt			10. C	OORD	INATE	SYSTEM/DATUN	HORIZONTAL	VERTICAL	
										ne, FLE (U.S. F		MLLW	
	RING DESIGN		4	LOCATION C			11. M			RER'S DESIGNAT		AUTO HAMMI	
	CB-JHMP-0			X = 513,		Y = 2,197,002 TRACTOR FILE NO.	<u> </u>	Failli	ng 15	00		MANUAL HAN	
	Corps of En		s - CESAS	3			12. T	OTAL	SAMP	LES	14	0	(00)
	ME OF DRILL				·		13. Т	OTAL	NUMB	ER CORE BOXES	2		
	Danny Hew						14. E	LEVAT	ION C		N/A		
	VERTICAL	BOKIN	5	DEG. FRO	M •	BEARING					STARTED	COMPLET	ID.
	INCLINED			<u> </u>	_	<u> </u>	15. D		ORIN		09-01-06	09-01-0	06
i. THI	CKNESS OF	OVER	BURDEN	N/A			16. E	LEVAT	TION 1	OP OF BORING	-9.5 Ft.		
. DEP	TH DRILLE	D INTO	ROCK	N/A						VERY FOR BORI		—	
	TAL DEPTH (UNG 24	1.0 Ft.			18. 5			AND TITLE OF IN	SPECTOR		
	TAL PEPTH (<u> </u>	_	_	lor, Geologist			
ELEV.	DEPTH	LEGEND	CL	ASSIFICATI	ON OF	MATERIALS	REC	BOX OR SAMPLE	RQD OR UD		REMARK\$	BLOWS/ 0.5 FT.	N-VALUE
- <u>9.5</u>	0.0									-9.5			
	-	$[\cdot \cdot \cdot]$	SAND, po	porly-graded	d, mo:	stly fine-grained ark minerals, wet,			[8	
	F	[∷:]	green/gra		aceŭ	art milerals, wet,	40	1			SPT Sampler	8	1
	F									-11.0	·	7	15
	-								1			20	
	<u> </u>						60	2			SDT Complet		-
	F	$ \cdot \cdot \cdot $								1	SPT Sampler	42	82
	F							-		-12.5		40	<u> </u>
	F	$ \cdot \cdot $										13]
	Ł	! ∷:					41	3			SPT Sampler	13	22
	E	 .∴								- <u>14.</u> 0		9	22
	-]			9	
	F						33	4			SPT Sampler	9	1
	F									-15.5		11	20
	-								1	-10.0	· · · ·	7	
	Ę	[]					41	5		Į.	SPT Sampler	7	-
	-										er i oumpion	12	19
	Ł								-	-17.0			
	-										007.0	8	-
	F						33	6			SPT Sampler	7	19
	F	$\left\{ \vdots \right\}$						-	4	-18.5		12	1
	1							1				8	1
	F						41	7			SPT Sampler	15	31
	t	 ⊡]	-20.0		16	<u> </u>
	Ł	$ \cdots $					[1			18	
	E						33	8]		SPT Sampler	16	1
	F									-21.5		14	- 30
	F	 ⊡							1	<u> </u>			
	Þ.	 ∷∷ 					48	9			SPT Sampler		1
	F	 ⊡ 						ľ	ļ		of a campler	16	33
	Ł	[⊡]					┣-	+	\mathbf{I}	-23.0			-
	┝	 · · ·							1			15	-
	F	[⊡]					33	10			SPT Sampler	16	30
	1		<u> </u>							-24.5		14	1

(Continued)

DR	ILLING	LOC	G (Cont. Sheet)	INSTALLA Jackso			rict	<u> </u>			SHEET OF 2]
PROJEC	 T			COORDINA				'UM	HORIZONTAL	Ves	TICAL		4
	sonville Ha	arbor I	Vile Point	State P					NAD83	<u>.</u>	MLLW		
	ON COORDI			ELEVATIO						<u>. </u>			-
			- ,197,002	-9.5 Ft.				-					i i
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA		RÉC.	BOX OR SAMPLE	RQD OR UD		REMARKS		BLOWS/ 0.5 FT.	N-VALUE	1
					47	11		-26.0	SPT Sampl	er	18 17 14		
					27	12			SPT Sampl	er	19 14 12	26	
		•••			41	13		-27.5	SPT Sampl	er	12 15 16 14	- 30	
-30.5	21. <u>0</u>				34	14		-29.0	SPT Sampl	er	14 11 15 20	35	20
			NOTES: 1. USACE Jacksonville is the custor these original files. 2. Soils are field visually classified if accordance with the Unified Soils Classification System. 3. Laboratory Testing Results SAMPLE SAMPLE LABORA ID DEPTH CLASSIFIC 1 0.0/1.5 SP 8 10.5/12.0 SP-S *Lab visual classification based on g curve. No Atterberg limits.	in TORY CATION 				30.5 140# ha 2.0' split	mmer w/30" drop use	ed wit	:h		

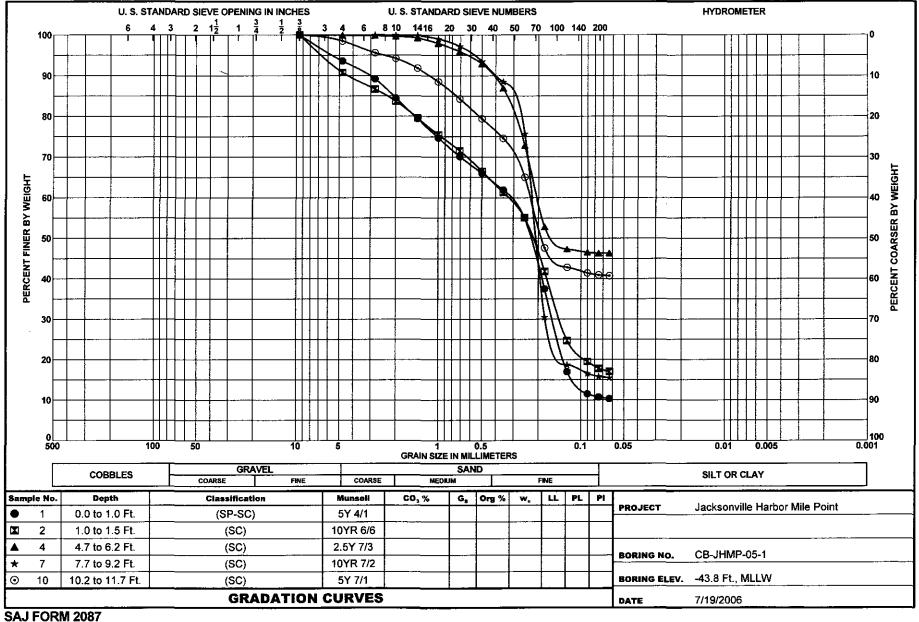
			DIVISION		INS	TALL	ATIO		<u></u>		SHEE	T 1	
DRIL	LING I	LOG	South Atlantic		J	ack	sonv	ille Di	istrict		OF 2	SHEE	TS
1. PROJ										ee Remarks			
Ja	cksonville	Harbo	r Mile Point		10.				SYSTEM/DATUM	1	VERTI		-
2. BORI	NG DESIGN	ATION	LOCATION COOR	DINATES	11.				IE, FLE (U.S. FI		<u> ML</u> AUTO HA		
	3-JHMP-0		X = 517,056					g 15(MANUAL		ER
	LING AGEN		1	NTRACTOR FILE NO.	12,	то1	TAL S	AMPL	LES	DISTURBED	UNDISTU	RBED (L	(0)
	OF DRILL		s - CESAS	· · · · · · · · · · · · · · · · · · ·						2	0		
	anny Hewe								ER CORE BOXES				-
5. DIRE	CTION OF		DEG. FROM VERTICAL	BEARING	14.	ELE	VAT	ON G	ROUND WATER	N/A		LETED	_
	ERTICAL				15.	DA'	TE BO	RING)	09-01-06		-01-06	
8. THIC	KNESS OF	OVERB	URDEN N/A		16.	ELI		ION T	OP OF BORING	-22.5 Ft.			
7 0507					17.	TO	TAL F	ECO	VERY FOR BORIN				-
	'H DRILLED		······	<u></u>	18.	SIG	NAT	URE A	ND TITLE OF IN	SPECTOR			
8. TOTA	L DEPTH C	ING 10.0 Ft.		L,			Tayl	or, Geologist					
ELEV.	DEPTH	LEGEND	CLASSIFICATION O	F MATERIALS	R	% E¢.	BOX OR SAMPLE	RQD OR UD		REMARXS		0.5 FT.	N-VALUE
-22.5	0.0					Ī			-22.5				
-31.0	8.5		SILT, inorganic-H, high p few shell up to 1/2", wet, At El28.0 Ft., little fine- quartz	gray (MH)		15	1		-31.0	Free Fall of Sam	ıpler		
	- - - -		sand-sized quartz, little o 1/2", moist, gray/green (lay, few shell up to		42	2			SPT Sample		3 3 7	10
-32.5	<u>10.0</u>				+	-			-32.5			-	
	· · · · · · · · · · · · · · · · · · ·		 NOTES: USACE Jacksonville is these original files. Soils are field visually accordance with the Unif Classification System. Laboratory Testing Reference of the system. 	classified in ied Soils esults		i			2.0' split spo	er w/30" drop used on (1-3/8" I.D. x 2"	' With " O.D.).		
	- - - -		SAMPLE SAMPLE ID DEPTH 1 0.0/8.5	LABORATORY CLASSIFICATION SP-SM*	-								

(Continued)

Boring Designation CB-JHMP-05-8

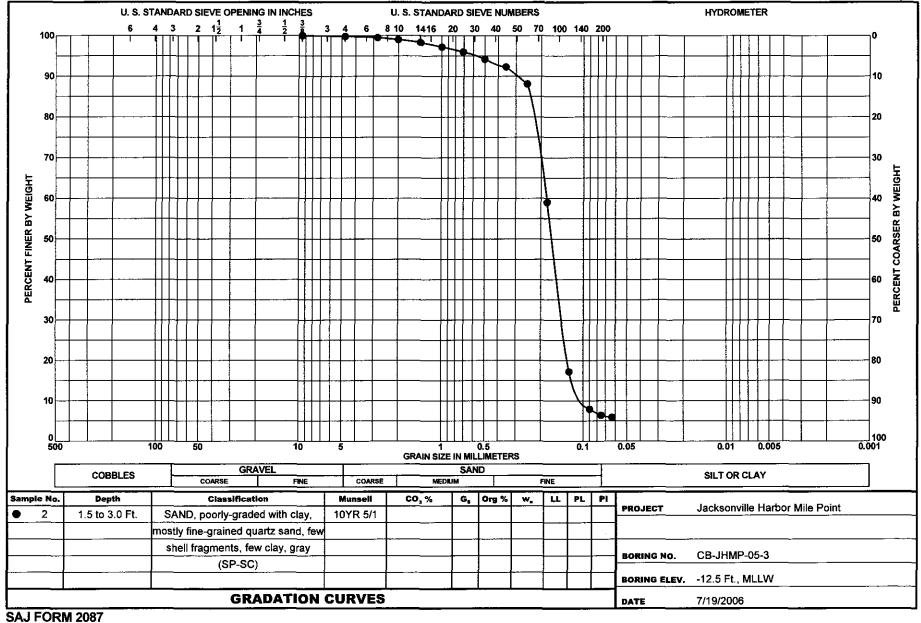
DRI	LLING	LOC	G (Cont. Sheet)	INSTALLA Jackso				<u> </u>			SHEET	2 Sheets]
PROJEC				COORDINA	_				HORIZONTAL		RTICAL	JNEE (8	4
	sonville Ha	rbor I	Aile Point	State F					NAD83		MLLW		
	ON COORDI			ELEVATIO					1 11/1000		MILLAN		4
	517,0 <u>56</u>			-22.5 F			OKIN	6					
	517,050		,190,070										-
ELEV.	DEPTH	LEGEND	CLASSIFICATION OF MATERIA	LS	RÉC.	BOX OR SAMPLE	RQD OR UD		REMAI	RKS	BLOWS/	N-VALUE	
			2 8.5/10.0 SP-S	M*	-				·				-15
			*Lab visual classification based on curve. No Atterberg limits.	gradation									
													-20
													-25 - - - - - - - - - - - - -
													-30

Boring Designation CB-JHMP-05-9

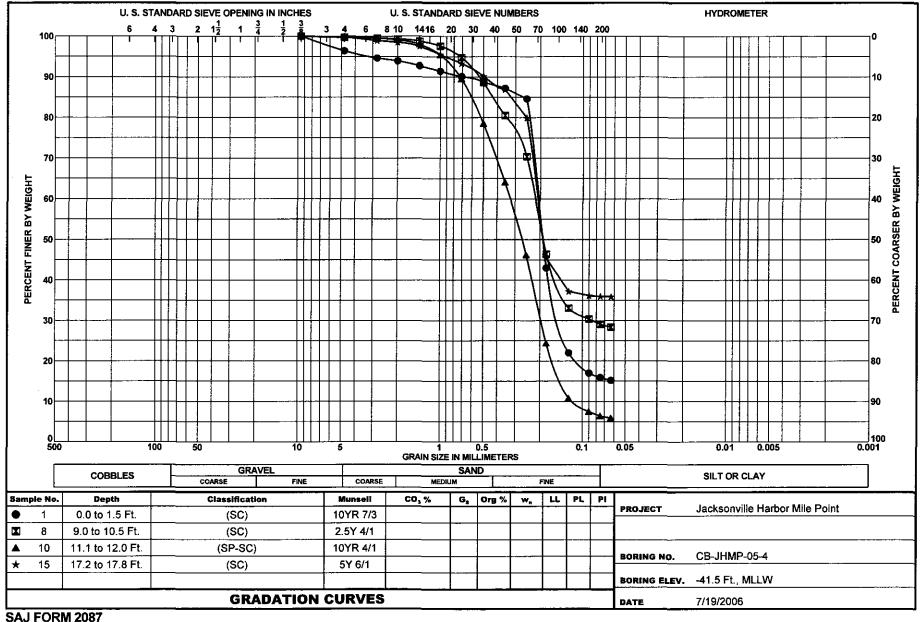

	<u> </u>	DIVISION			········	INST				9			EET 1			
DRILLING LOG South Atlantic							Jacksonville District							EETS		
1. PROJECT							9. SIZE AND TYPE OF BIT See Remarks									
Jacksonville Harbor Mile Point							10. COORDINATE SYSTEM/DATUM HORIZONTAL VERTICAL									
							State Plane, FLE (U.S. Ft.) NAD83 MLLW									
2. BORING DESIGNATION LOCATION COORDINATES								11. MANUFACTURER'S DESIGNATION OF DRILL AUTO HAMMER								
CB-JHMP-05-9 X = 515,753 Y = 2,193,548								iling) 15(00		MANU				
3. DRILLING AGENCY CONTRACTOR FILE NO. Corps of Engineers - CESAS							TOTA	L S/	AMPL	LES	3	UNDIS1	UKSED	(00)		
4. NAME OF DRILLER							OTA	1 M		ER CORE BOXES		<u> </u>				
Danny Hewett																
5. DIRECTION OF BORING DEG. FROM BEARING						14. 1										
VERTICAL						15. 1	15. DATE BORING STARTED COMPLETED									
						40	6. ELEVATION TOP OF BORING -25.0 Ft.									
6. THICKNESS OF OVERBURDEN N/A							_				-25.0 Ft.					
7. DEPTH DRILLED INTO ROCK N/A								_		VERY FOR BORIN						
B. TOTAL DEPTH OF	BORIN	G 8.1	Ft.] '•. '				or, Geologist	, 601 UK					
						<u> </u>	_	_	Tayr				2.	ш		
ELEV. DEPTH	TEGEND	CLA	SSIFICATI	ON OF I	MATERIALS	RE		SAMPL	ROD OR UD		REMARKS		BLOWS/ 0.5 FT.	N-VALUE		
										05.0						
-25.0 0.0		ILT, inorc	anic-H. hi	igh plas	ticity, very soft,		+-	+		-25.0				┥──┤		
F I		vet, gray		J .	·····, ···,											
								1						1 1		
E I						5	3	1			Free Fall of Sam	pler				
L I																
<u> </u>							_}_			27.6				 		
<u> </u>																
-																
	11					1	1	1						1		
_																
-						4		2			Free Fall of Sam	pler				
-												•				
	11															
-							ſ									
								l		l						
-32.6 7.6	Ì ÌÌ.		ne maaral	line	lood on distant		_	_		-32.6	<u> </u>			<u> </u>		
-33.1 8.1		and, little	y, mostly i silt, moist	une-gra t. grav	ined sand-sized (SM)	3	3	3		-33.1	SPT Sample	r	3			
t l									Ì	140# hamme	r w/30" drop used	with	_			
E l	[IOTES:						ļ		2.0' split spor	on (1-3/8" I.D. x 2	" O.D.).				
F I				ville is t	he custodian for					Abbreviations	s'					
t I	t	hese origi	inal files.								, light of Rods.					
⊢ !	2	. Soils ar	re field vis	ually cl	assified in						-					
F I	la	iccordanc	e with the	Unified	Soils			- [4						
E I		Jassificat	tion Syster	m.										1		
	3	J. Labora	tory Testir	ng Resi	ults											
F I				-												
		AMPLE ID	SAMPI DEPT		LABORATORY					1				1		
	-					-			İ	1						
F 1		1	0.0/2.	.6	CH*											
	*	Lab visua	l classifica	ation ba	ased on gradation	1 I										
F	c	urve. No	Atterberg	i limits.						1						
									1	4						
			_							L				1		

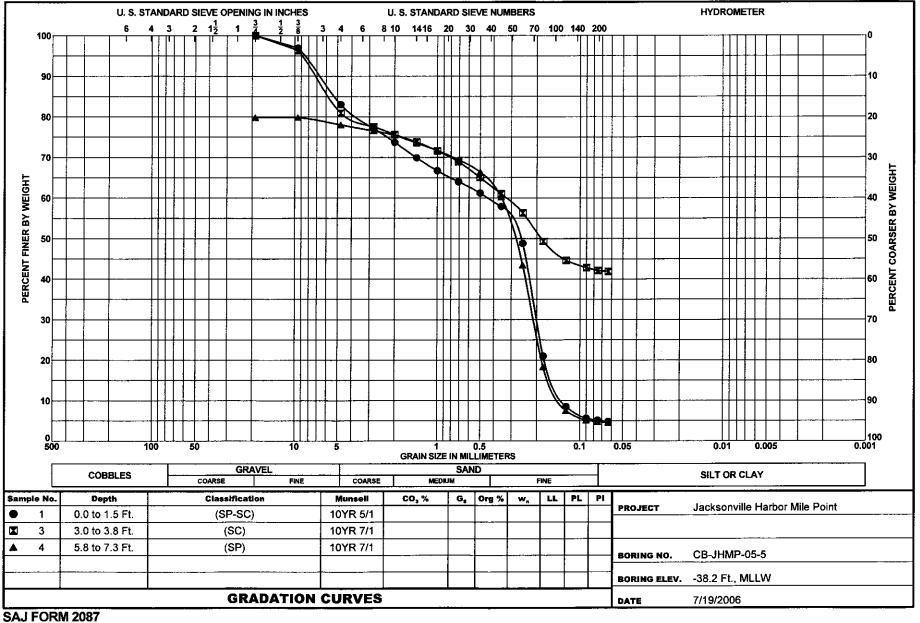
SAJ FORM 1836 JUN 02

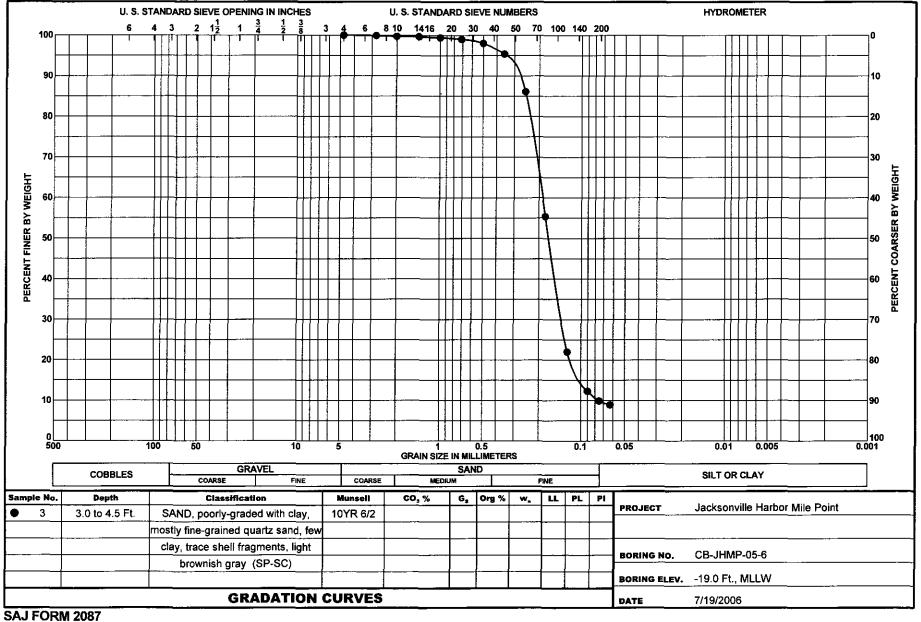
GEOTECHNICAL ATTACHMENT

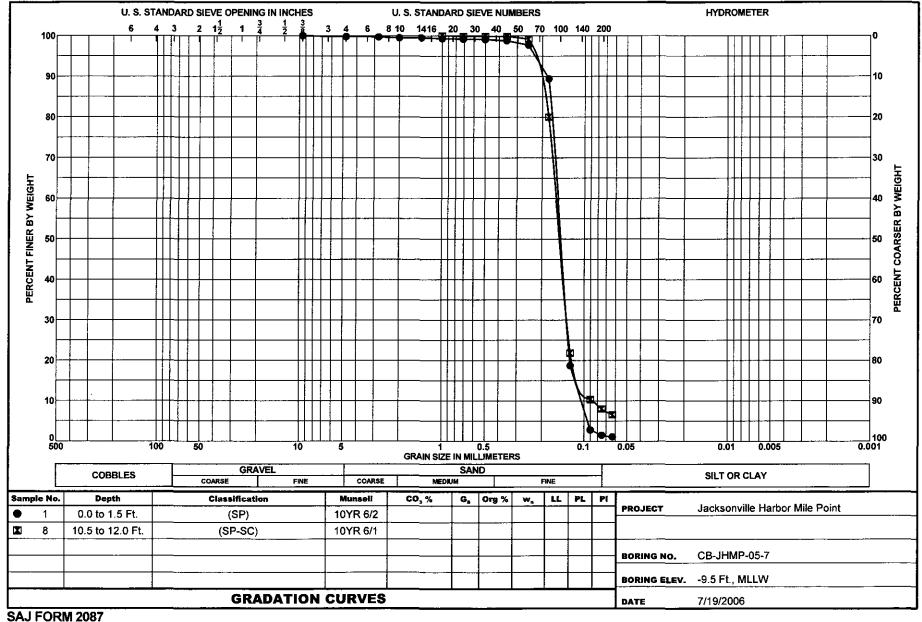

Analytical Data from 2005

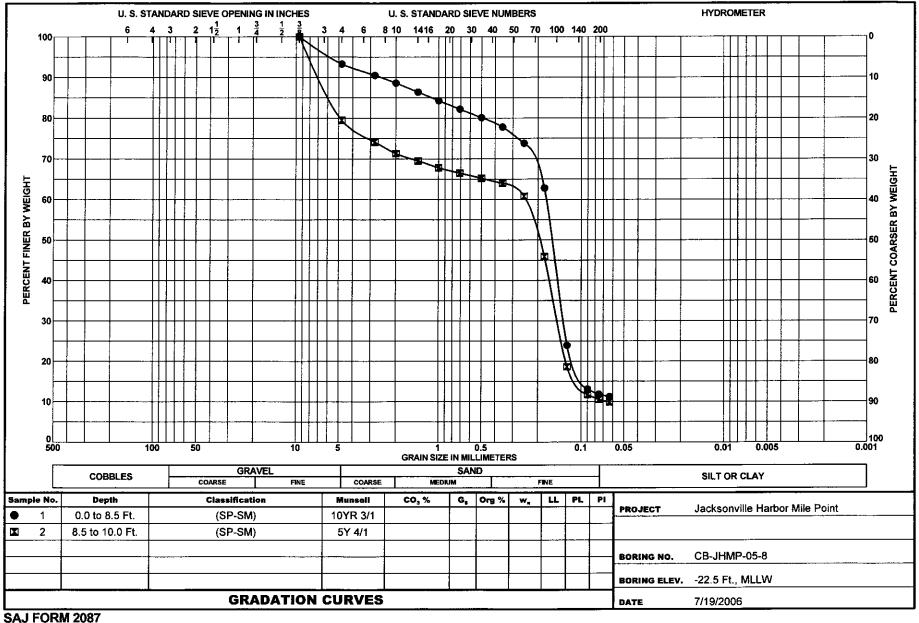
ATTACHMENT B

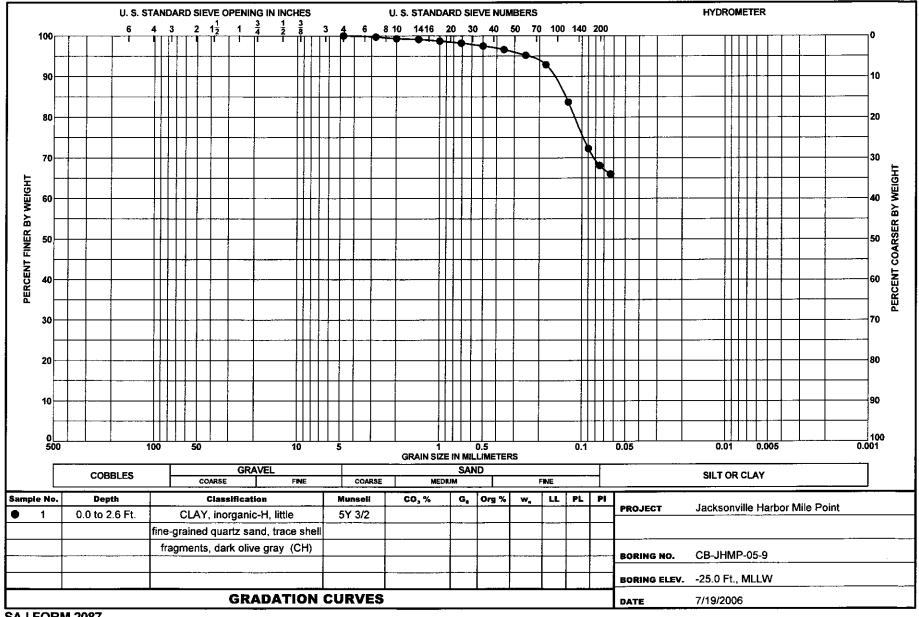



SAJ FORM 208 JUN 02




JUN 02




SAJ FURM Z JUN 02

JUN 02

SAJ FORM 2087 JUN 02 SHIP SIMULATION REPORT

ATTACHMENT C

NAVIGATION STUDY FOR MILE POINT CHANNEL IMPROVEMENTS

INTRODUCTION

Jacksonville, FL is located on the northeast corner of the state (Figure 1). The ships calling at the port of Jacksonville (JAXPORT) must transit St. Johns River, which links Jacksonville to the Atlantic Ocean. Presently, the St. Johns Bar Pilots Association restricts the movement of larger vessels during ebb tide due to strong crosscurrents at a section of St. Johns River known as Mile Point (Figure 2). Mile Point Lower Range and Turn and Training Wall Reach are crossed by the Atlantic IntraCoastal Waterway (IWW). The crosscurrents occur from Pablo Creek on the south and Sisters Creek on the north.

The US Army Corps of Engineers District, Jacksonville (SAJ) proposes to increase the cross-sectional area for flow into and out of Pablo Creek. The increase in cross-sectional area is designed to reduce the current magnitude and ease the angle at which the current enters the St. Johns River. This proposal is shown in Figure 3. SAJ also proposed widening Training Wall Reach by 100 ft on the southwest side to allow two-way traffic (Figure 4).

The U. S. Army Engineer Research and Development Center (ERDC) conducted a navigation study utilizing real-time ship simulation modeling to evaluate the proposed improvements to Mile Point. Model development and online testing occurred at the ERDC Waterways Experiment Station (WES) in Vicksburg, MS during the period from May 2005 to September 2006.

RECONAISSANCE TRIP

The Reconnaissance trip for the Mile Point study was conducted May 2 - 5, 2005. The purpose of the trip was to meet with representatives of SAJ and the St. Johns Bar Pilots Association. These meetings took place in the SAJ office and upon ships transiting the study area so navigation practices could be observed. In addition, ERDC representatives took photographs, which were later used for simulation model development. ERDC was represented by Dennis Webb and Don Wilson. Mr. Phil Sylvester and James McRae represented SAJ onboard some of the transits. Capt. Joe Heath of St. Johns Bar Pilots Association coordinated the vessel rides.

<u>May 3.</u> Mr. Webb and Mr. Wilson boarded the *Horizon Discovery* at Blount Island Berth 34 at approximately 1700 on May 3. The *Horizon Discovery* is a 700-ft length-over-all (LOA) containership. The *Horizon Discovery* has a beam of 90 ft and was loaded to a draft of approximately 30 ft. The ship got underway at approximately 1915. The pilot was Capt. Joe Heath. The transit began near the end of flood tide. The tide was ebbing

by the time ship reached Mile Point. Figure 5 shows a view from the starboard wing of the *Horizon Discovery* on Training Wall Reach, approaching Mile Point Lower Range and Turn. Significant crosscurrents and eddies were clearly visible where Pablo Creek flowed into the St. Johns River. The ERDC team departed the ship between the jetties along with Capt. Heath at approximately 2015.

<u>May 4.</u> Mr. Webb and Mr. James McRae (CESAJ) boarded the *MSC Parana* at the sea buoy with the pilot at approximately 0800 on May 4, 2005. The pilot was Capt. Heath. The *MSC Parana* is 661-ft long (LOA) containership. The *MSC Parana*'s beam is 93 ft and she was loaded to a draft of approximately 25 ft. The transit began during slack tide, which turned to ebb during the transit. The inbound *MSC Parana* met the outbound *Nicos Tomasas* in Training Wall Reach, just west of Mile Point Lower Range and Turn. The view from the *MSC Parana*'s port wing while approaching the *Nicos Tomasas* is shown in Figure 6. The *MSC Parana* arrived at the Talleyrand Terminals, Berths 7 and 8 at approximately 1015.

Mr. Webb and Mr. Phil Sylvester (CESAJ) boarded the *Gypsum Centennial* at approximately 1600, on May 4, 2005, at the U. S. Gypsum dock. The pilot was Capt. James Winegeart. The *Gypsum Centennial* is a 646 ft LOA product carrier, with a beam of 93 ft. The *Gypsum Centennial* was empty, drafting approximately 18 ft. The vessel left the U. S. Gypsum dock at approximately 1620, during the last portion of ebb tide. The tide changed to flood during the transit. The team departed the ship at approximately 1800, with the pilot, at the sea buoy.

DATABASE DEVELOPMENT

Currents for both the existing and proposed channels were calculated by SAJ. Initially, a two-dimensional model was used. However, that model was converted to threedimensional later in the study. Current data for the maximum strength of both the ebb and flood tides in St. Johns River and the maximum strength of ebb tide at Pablo Creek were extracted and converted into the format required by the ERDC Ship/Tow Simulator.

Two ship models were used for the Mile Point Navigation Study. The *Sibohelle* is a 797x 106- x 38-ft tanker. The *Susan Maersk* is a 1140- x 140- x 47.5 ft containership. The Mile Point portion of St. Johns River is presently 40 ft deep, mean low water (MLW). The depth portion of the simulator database was overridden to a depth of 52 ft MLW to allow the *Susan Maersk* to transit. This is done to simulate a worst case scenario. Two two-way runs were also simulated. For those scenarios, the Sibohelle met the *SL Pride*. The *SL Pride* is a 865- x 106- 30-ft containership.

The visual scene was modified as per some of the photos taken during the reconnaissance trip. Figure 7 shows visual scene as one of the St. Johns River Pilots operates the simulator

The ERDC Ship/Tow Simulator provides an Electronic Chart Display and Information System (ECDIS) for the pilots (Figure 7). The ECDIS was modified to reflect proposed improvements.

VALIDATION

Validation for Mile Point was conducted September 27 - 30, 2005. Validation is a checkout of the existing condition simulation databases. An existing condition model must be successfully validated before it can be modified to reflect proposed conditions. Two St. Johns River pilots participated in validation. The visual scene, bank effects, ship models, radar and ECDIS were all successfully validated. However, the current database was not successfully validated. The initial model verification resulted in the conclusion that the simulated water current vector fields provided by the District did not accurately reflect conditions in the river near Mile Point and those simulated vector fields would not be adequate for conducting a testing program of project alternatives. Therefore, the remainder of validation time was used to develop a flow field based on pilot input. That flow field was furnished to SAJ to assist them in evaluating the current model results. That flow field is considered proprietary and is not included with this report.

The District developed revised water current vector fields from additional model studies. The revised currents were reviewed by the pilots in Jacksonville and determined to be suitable for validation on the simulator. The May 2006 simulation testing runs were preceded by a successful validation of the revised water current vector fields.

RESULTS

Testing with ship pilots was conducted May 15 - 18, July 11-13 and July 17 - 2006. Two pilots participated in the May session. One pilot attended each of the July sessions. Simulation of towboat traffic was conducted Sept 18 - 20, 2006. At the end of each week of testing, the pilots were given a final questionnaire to complete. These questionnaires are included in Appendix A.

Results are presented in the form of composite track plots.

Inbound, Maximum Ebb from Pablo Creek.

Results of inbound simulations with the maximum ebb tide coming out of Pablo Creek are shown in Plates 1 - 3. Plate 1 shows the *Susan Maersk* transiting the reach in the existing channel. Although only one of the four ships left the channel, the pilots did not feel this was a safe condition or one they would try in real life. Plate 2 shows the same condition, but with the Alternative 1 conditions, i.e. the mouth of Pablo Creek widened. With the exception of one ship which went slightly out of the channel across from buoy R-24, the ships were tightly grouped through Mile Point Lower Range and Turn and Training Wall Reach. Plate 3 contains the track plots for the *Sibohelle* transiting the Alternative Channel. Five runs were completed under this condition because one pilot wanted to try it a second time. All runs were successful.

Outbound, Maximum Ebb from Pablo Creek.

Results of outbound simulations with the maximum ebb tide coming out of Pablo Creek are shown in Plates 4 - 6. Plate 2 shows the *Susan Maersk* transiting the reach in the existing channel. Although both runs were successful, the pilots did not feel this was a safe condition. Plate 5 shows the same condition, but with the Alternative 1 conditions. All three runs were successful. Plate 6 contains the track plots for the *Sibohelle* transiting the Alternative Channel. One ship lift the south side of the channel across from buoy R-22, but that was because the pilot started his turn late. Five runs were completed under this condition because one pilot wanted to try it a second time.

Inbound, Maximum Ebb in St. Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 7-9. Plate 7 shows the *Susan Maersk* transiting the reach in the existing channel. Although only one ship left the channel at the southern end of Training Wall Reach, the pilots reported it was a difficult situation. Plate 8 shows the same condition, but with the Alternative 1 conditions. All runs were successful. Plate 9 contains the track plots for the *Sibohelle* transiting the Alternative Channel. All runs were successful. Six runs were completed under this condition because one pilot wanted to try it three times.

Outbound, Maximum Ebb in St. Johns River.

Results of outbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 10 - 12. Plate 10 shows the *Susan Maersk* transiting the reach in the existing channel. Two of the ships left the channel by more than 100 ft on the south side of Mile Point Lower Rand and Turn. Plate 11 shows the same condition, but with the Alternative 1 conditions. One vessel went slightly outside of the channel near the north end of Training Wall Reach but the pilot did not feel it was significant. Plate 12 contains the track plots for the *Sibohelle* transiting the Alternative Channel. One vessel left the channel by about 50 ft while making the turn at Mile Point Lower Range and Turn.

Inbound, Maximum Flood in St. Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 13 - 15. Plate 13 shows the *Susan Maersk* transiting the reach in the existing channel. The ships were obviously being swept by the flood tide as they passed through Mile Point Lower Range and Turn and the southern end of Training Wall Reach. Two of the ships were nearly 200 ft out of the channel. Plate 14 shows the same condition, but with the Alternative 1 conditions. These ships were swept by the flood tide also and left the channel at the same places as in the existing condition run. However, they did not go out of the channel as far. Plate 15 contains the track plots for the *Sibohelle* transiting the Alternative Channel. The ships tended to go out of the channel in the same location as the *Susan Maersk* runs.

Outbound, Maximum Flood in St. Johns River.

Results of outbound simulations with the maximum flood tide in St. Johns River are shown in Plates 16 - 18. Plate 16 shows the *Susan Maersk* transiting the reach in the existing channel. One ship's stern swung out of the channel at the southern end of Training Wall Reach. All ships left the channel near buoy R-22. Plate 17 shows the same condition, but with the Alternative 1 conditions. The ship slightly left the channel near buoy R-22.

These ships were swept by the flood tide also and left the channel at the same places as in the existing condition run. However, they did not go out of the channel as far. Plate 18 contains the track plots for the *Sibohelle* transiting the Alternative Channel. The ships tended to go out of the channel in the same location as the *Susan Maersk* runs. One ship's stern swung out of the channel at the southern end of Training Wall Reach. One ship slightly left the channel near buoy R-22.

Two-way traffic scenarios.

Two two-way traffic scenarios were simulated to test the 100 ft widening. Results for the outbound *SL Pride* and inbound Sibohelle in maximum ebb tide are shown on Plate 19. The inbound ship remained near the center of the channel. Vessel interaction pushed the outbound ship's bow out of the channel. The second run of the same scenario is shown in Plate 20. The outbound Sibohelle left the channel while making room for inbound tanker.

Two-barge tow simulations.

Simulation of a two-barge tow was conducted for IWW traffic. Simulations were conducted for maximum ebb tide, maximum ebb from Pablo Creek, and maximum flood tide. Simulations were conducted for both northbound and southbound tows. This was done to assure that the improvements for deep-draft traffic would not adversely affect tow traffic. Two towboat captains participated in the study, each making three runs for each condition.

Results are shown in Plates 21 - 26. All runs were successful. The towboat captains felt that opening up Pablo Creek made the run easier.

Final Questionnaire

At the end of their simulator testing session, the pilots completed a final questionnaire. The final questionnaires are included as Appendix A. Three of the four ship pilots felt that Alternative 1 would reduce or eliminate tidal delays. One pilot felt that delays might be reduced after trying the proposal in real life. The two pilots that tried the widened Training Wall Reach (Alternative 2) did not feel it would provide more two-way traffic than they already have. The towboat captains felt the plan improved navigation. One pilot recommended removing some of the buoys.

CONCLUSIONS

Based upon the simulator results and the pilot's final questionnaires, the following conclusions are made for the Mile Point improvements.

- 1. Alternative 1 improved navigation for the maximum ebb, maximum ebb from Pablo Creek, and maximum flood.
- 2. Three of the four ship pilots felt that tidal restriction would be lifted or greatly reduced.
- 3. The pilots felt that widening Training Wall Reach would not improve twoway traffic beyond what they are already doing.
- 4. Alternative improved navigation for tow traffic on the IWW.

RECOMMENDATIONS

- 1. Based upon the simulation results and pilot comments, we recommend that Alternative 1 be constructed to reduce or eliminate tidal restrictions.
- 2. If Alternative 1 is too costly to construct, we recommend that examining alternatives that widen the mouth of Pablo's Creek by less amounts, thus making them less expensive. These alternatives should be modeled by SAJ using their 3D current model. Those currents should be furnished to ERDC so additional simulations can be undertaken with the pilots.

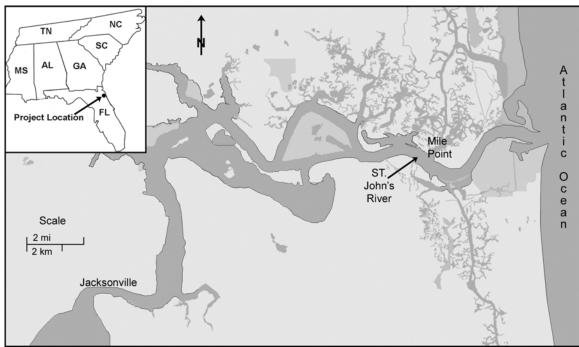


Figure 1. Project Location Map

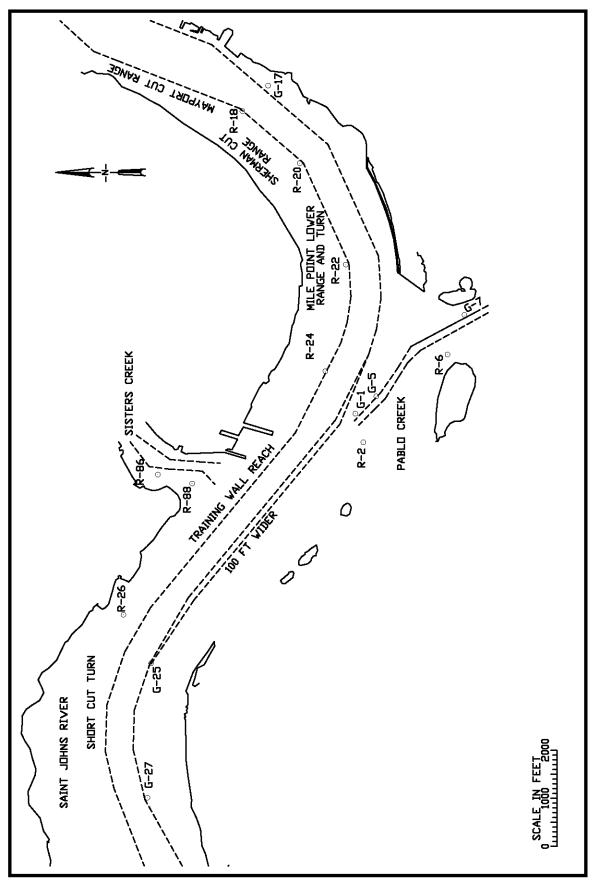


Figure 2. Mile Point, St. Johns River

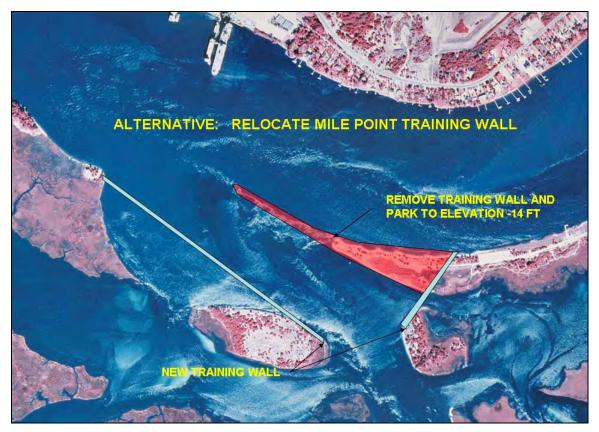


Figure 3. Proposed widening at mouth of Pablo Creek

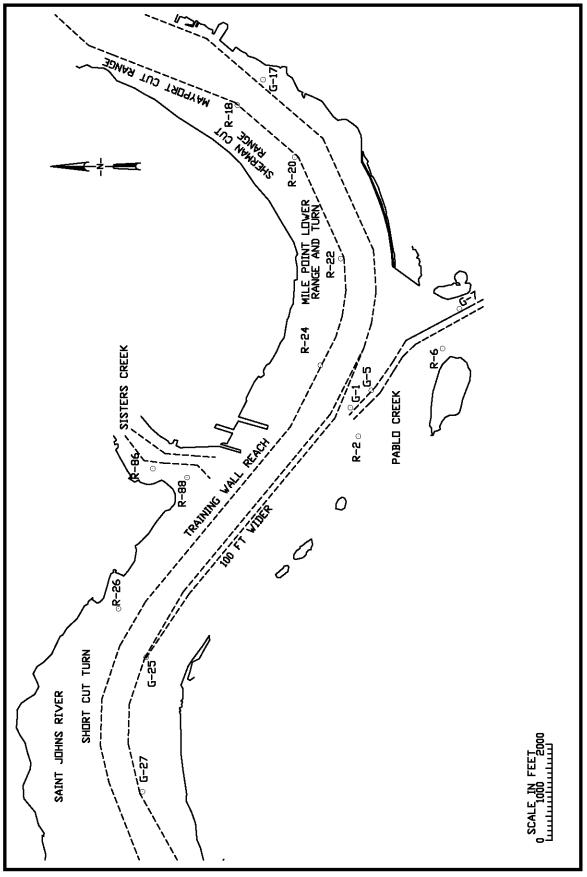


Figure 4. Alternative 2

Figure 5. Horizon Discovery heading outbound on Training Wall Reach

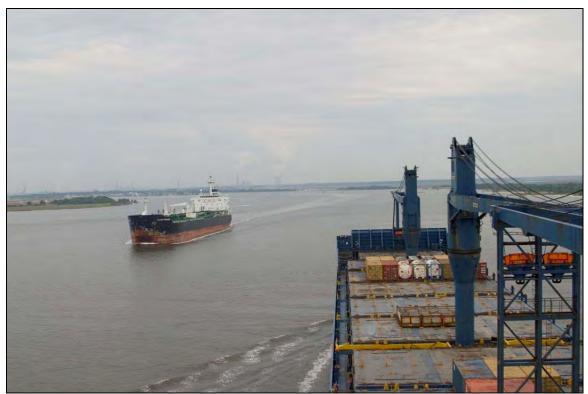


Figure 6. . The MSC Parana meeting the Nicos Tomasas in Training Wall Reach

Figure 7. St. Johns Pilot operating simulation of Mile Point

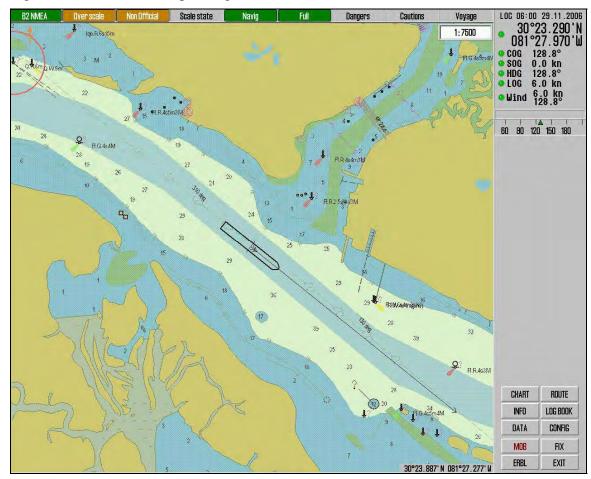


Figure 8. ECDIS display for Mile Point

ADDITIONAL SHIP SIMULATION REPORT

ATTACHMENT D

PROOF OF CONCEPT STUDY FOR MILE POINT CHANNEL WIDENERS

INTRODUCTION

Jacksonville, FL is located on the northeast corner of the state (Figure 1). The ships calling at the port of Jacksonville (JAXPORT) must transit St. Johns River, which links Jacksonville to the Atlantic Ocean. Presently, the St. Johns Bar Pilots Association restricts the movement of larger vessels during ebb tide due to strong crosscurrents at a section of St. Johns River known as Mile Point (Figure 2). Mile Point Lower Range and Turn and Training Wall Reach are crossed by the Atlantic IntraCoastal Waterway (ICW). The crosscurrents occur from Pablo Creek on the south and Sisters Creek on the north. JAXPORT considers it imperative that the tidal restriction be removed or significantly reduced.

The US Army Corps of Engineers District, Jacksonville (SAJ) proposed to increase the cross-sectional area for flow into and out of Pablo Creek. The increase in cross-sectional area is designed to reduce the current magnitude and ease the angle at which the current enters the St. Johns River. This proposal is shown in Figure 3. This proposal was studied by the U. S. Army Engineer Research and Development Center (ERDC) with a ship simulation model in 2004. That study concluded that the widening the mouth of Pablo Creek could reduce or eliminate the tidal restrictions. The proposed widening is referred to as Alternative 1.

SAJ now wishes to determine if widening on the west side of Training Wall Reach would be effective in reducing or eliminating the tidal restrictions. Three wideners of 300 ft, 400 ft, and 525 ft width were proposed (Figure 4). The wideners are referred to as Plan 1, Plan 2, and Plan 3, respectively. To assist SAJ in this determination, the ERDC conducted a "proof of concept" navigation study utilizing real-time ship simulation modeling to evaluate the proposed Mile Point wideners. Model development and online testing occurred at the ERDC in Vicksburg, MS during the period from June 2009 to September 2009.

STUDY ASSUMPTIONS

To quickly provide SAJ with input as to the effectiveness of the wideners, a "proof of concept" study was undertaken. If the wideners appear to be effective, a more robust study could be conducted.

Several assumptions were made to meet the time requirements of this effort. The existing condition currents from the 2004 study were used for all three plans. The same current directions and magnitudes from the 2004 were used for Plans 1, 2, and 3. The depths in within the wideners were deepened. The water in the area proposed to be widened is fairly deep, so this seemed a reasonable assumption. Subsequent analysis SAJ's three-

dimensional hydrodynamic modeling effort indicate that this is true. Results from this model were not available to get them converted in the simulator database format and checked out prior to real time testing.

Three pilots participated in the real-time simulation study. All three are members of the St. Johns River Pilots Association. There were Captains Jay Winegeart, Tim McGill, and Bill Brauer. Captains McGill and Brauer conducted simulations from the afternoon of September 14 through the morning of September 16. Captain Winegeart conducted simulations from the afternoon of September 16 all day September 17. Mr. Phil Sylvester represented SAJ at the simulations September 14 – 15. For many full navigation studies, six pilots participate for one week each. However, for this "proof of concept" study, an adequate amount of exercises were undertaken to evaluate the wideners.

RESULTS

Results are presented in the form of composite track plots.

Plan 1 – 300 ft widener

Inbound, Maximum Ebb in Saint Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 1-2. Plate 1 shows two runs of the *Sibohelle* transiting the reach in the Plan 1 channel. Both pilots took their vessels into the 300 ft widener. However, they only used about 100 ft of the widener. Both pilots felt that going further into the widener forced their ships into an unsafe alignment with Training Wall Reach. Plate 2 shows two runs of the *Susan Maersk* transiting the reach in the Plan 1 channel. One run left the north side of the channel twice. Only one pilot took his vessels into the 300 ft widener. Both pilots felt that going further into the widener forced their ships into an unsafe alignment with Training Wall Reach.

Inbound, Maximum Ebb from Pablo Creek.

Results of inbound simulations with the maximum ebb tide from Pablo Creek are shown in Plates 3 - 5. Plate 3 shows two runs of the *Sibohelle* transiting the reach in the Plan 1 channel. The pilots used the southern portion of the widener, but were not comfortable bringing the ship into that position. Plate 4 shows two runs of the *Susan Maersk* transiting the reach. They also used the southern portion of the widener. One ship was set so severely by the flow from Pablo Creek that it left the north side of the channel. The track plot of one run of the *Sabrina* is shown in Plate 5. The ebb tide coming out of Pablo Creek forced the ship out of the channel on the north side.

Inbound, Maximum Ebb in Saint Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 6-8. Plate 8 shows two runs of the *Sibohelle* transiting the reach in the Plan 2 channel. Neither pilot brought their vessel into the widener. Plate 7 shows two runs of the *Susan Maersk* transiting the reach in the Plan 2 channel. Only one pilot took his vessels into the widener. Both ships ended up on the north side of the channel near Atlantic Marine. The track plot of one run of the *Sabrina* is shown in Plate 8. The pilot used the widener to make the turn.

Inbound, Maximum Ebb from Pablo Creek.

Results of inbound simulations with the maximum ebb tide from Pablo Creek are shown in Plates 9 - 11. Plate 9 shows one run of the *Sibohelle* transiting the reach in the Plan 2 channel. The pilot did not bring his ship into the widener, but did come to the edge of the existing channel. Plate 10 shows the *Susan Maersk* transiting the reach. The pilot did not bring his ship into the widener. The track plot of one run of the *Sabrina* is shown in Plate 11. The pilot brought the ship into the widener to make the turn.

Plan 3 – 525 ft widener

Inbound, Maximum Ebb in Saint Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 12 - 14. Plate 12 shows two runs of the *Sibohelle* transiting the reach in the Plan 3 channel. On pilot took his ship deep into the widener, the other just crossed into it. Plate 13 shows two runs of the *Susan Maersk* transiting the reach in the Plan 3 channel. Both pilots used a small portion of the widener. One ship was severely set towards Atlantic Marine. The track plot of one run of the *Sabrina* is shown in Plate 14. The pilot did not use the widener.

Alternate 1 from 2004 study

Inbound, Maximum Ebb in Saint Johns River.

Results of inbound simulations with the maximum ebb tide in St. Johns River are shown in Plates 15 - 16. Plate 15 shows two runs of the *Sibohelle* transiting the reach in the existing channel with the mouth of Pablo Creek widened. The pilot was able to make the turn. Plate 16 shows two runs of the *Susan Maersk* transiting the reach in the existing channel with the mouth of Pablo Creek widened. Both pilots were able to make the turn.

Inbound, Maximum Ebb from Pablo Creek.

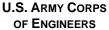
Results of inbound simulations with the maximum ebb tide from Pablo Creek are shown in Plates 17 - 18. Plate 17shows three runs of the *Sibohelle* transiting the reach in the existing channel with the mouth of Pablo Creek widened. All three runs were successful.

Plate 18 shows two runs the *Susan Maersk* transiting the reach. Both runs were successful.

Pilot Comments

The three pilots furnished the ERDC with an e-mail, as a record of their final comments.

This will be added later.


CONCLUSIONS

Based upon the simulator results and the pilot's final questionnaires, the following conclusions are made for the Mile Point improvements.

- 1. The pilots, as observed by ERDC and SAJ personnel, attempted to use the wideners to make the turn and avoid getting set toward Atlantic Marine.
- 2. The pilots felt that using the wideners put their vessels in harms way and would not use them unless they were 100% certain about currents.
- 3. The pilots, after using the wideners in the simulation, stated that they felt the wideners would not reduce tidal restrictions for Mile Point.
- 4. Based upon the simulator runs, the pilots felt that Alternative 1, widening the mouth of Pablo Creek, could reduce or eliminate tidal restrictions for Mile Point

U.S. ARMY CORPS OF ENGINEERS, JACKSONVILLE DISTRICT

ATTACHMENT E - VE STUDY FY'08

VALUE ENGINEERING STUDY REPORT

FINAL REPORT COPY

Mile Point Feasibility Report Study (Jacksonville Harbor Navigation Study)

Duval County, Florida

Sponsored By: Jacksonville Port Authority and U.S. Army Engineering District, Jacksonville

SEPTEMBER 2008

DOD SERVICE: USACE VALUE ENGINEERING OFFICER: Fred McAuley CONTROL NO: CESAJ-VE-08-009C

Final Value Engineering Report on the

Mile Point Feasibility Report Study

(Jacksonville Harbor Navigation Study)

DUVAL COUNTY, FLORIDA

September 2008

STUDY SPONSOR: Jacksonville Port Authority & USACE, Jacksonville District

VALUE ENGINEERING FIRM: Jacksonville District ADDRESS: 701 San Marco Blvd Jacksonville, FL 32232-0019 (904) 232-1903 TELEPHONE:

VALUE ENGINEERING STUDY TEAM LEADER: Fred McAuley

VALUE ENGINEERING STUDY TEAM MEMBERS

Steve Ross, SAJ-DP-C

Paul Stodola, SAJ-PD-EA

Steve Conger, SAJ-EN-DW

Stephen Myers, SAJ-EN-GG

Jason Spinning, SAJ-DP-C Fred McAuley, SAJ-EN-T

Richard Powell, SAJ-PD-PN

Samantha Borer, SAJ-PD-PN

Brian Cornwell, SAJ-EN-WM

Brian Blake, SAJ-EN-C

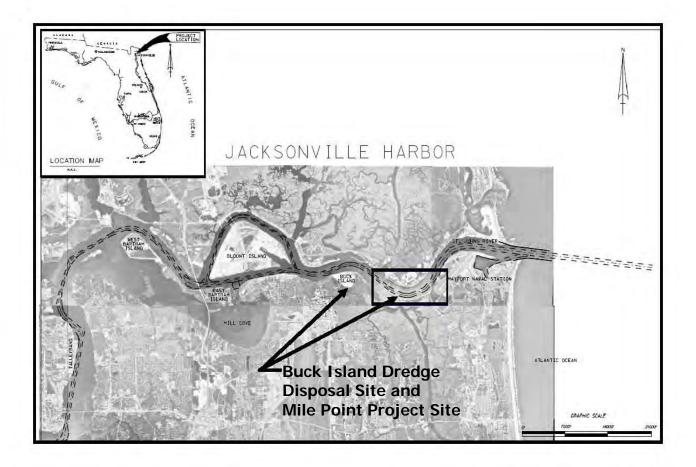
VALUE ENGINEERING TEAM STUDY TABLE OF CONTENTS

Page No.
Cover
Table of Contents2
Project Description and Background3
Executive Summary6
Summary of Proposals
Proposals:
C-1 Develop Improved Training Wall Sections and Delete Scour Stone
C-2 Develop a Composite Plan for Mile Point Navigation Improvements and Dredge Disposal Supporting Salt Marsh Mitigation and Restoration of Great Marsh Island 13
Value Engineering Comments 21
Supporting Documents: i
Appendix A: Contact Directoryii
Appendix B: Speculation Listiv
Appendix C: Cost Model viii
Appendix D: Function Analysis System Technique (FAST) Diagramx
Appendix E: Supporting Informationxii Alternative Plan Cost Estimates

VALUE ENGINEERING TEAM STUDY PROJECT DESCRIPTION AND BACKGROUND PROJECT TITLE: Mile Point Improvements Project PROJECT LOCATION: Duval County, Florida

Mile Point is located in Duval County, Florida. It consists of about 5,000 feet of shoreline located along the north shore of the St. Johns River and east of the Intracoastal Waterway (IWW). The Mile Point study is intended to assess Federal interest in navigation improvements to include an evaluation of benefits, costs, and environmental impacts. The feasibility study was authorized by a resolution of the House Committee on Transportation and Infrastructure, March 24, 1998. The study will determine plans to evaluate the Mile Point erosion problem and to provide recommendation for reducing the difficult crosscurrents during the ebb flow at the confluence of the St. Johns River with the IWW.

Benefits of the proposed action would minimize the impacts of the flows out of the IWW during the ebb tide to slow the velocities on the north bank and slow the progression of erosion. Due to the difficult crosscurrents in the channel the St. Johns Bar Pilots have restricted navigation for vessels transiting on a draft of 33 feet or deeper. Reducing the difficult crosscurrents in the harbor would allow the pilots to reduce or eliminate these navigation restrictions. Adverse impacts would include loss of salt marsh that would be mitigated. Measures taken to avoid, minimize, and compensate for adverse impacts include beneficial use of dredged material, creation of habitat units beyond the required mitigation, and providing flow improvement measures to mitigate for erosion caused by the project.

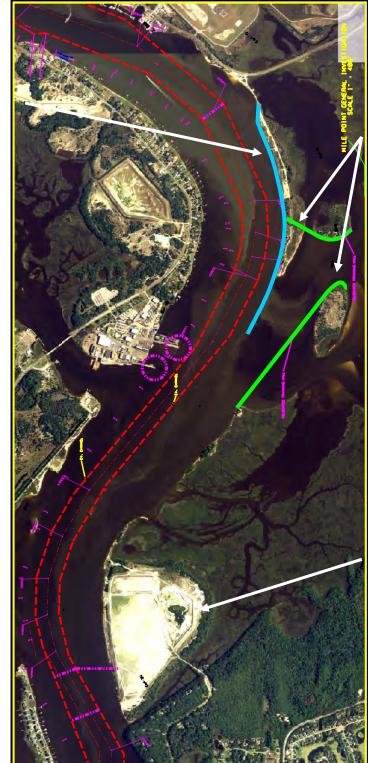

<u>Alternatives</u>: Alternatives that were evaluated include Non-structural alternatives include operational measures and a no action alternative. Structural alternatives include a North shoreline groin field, San Pablo Creek IWW Submerged Weir, Rebuild Mile Point Training Wall, 150 Foot Training Wall Reach Widening, Eastern Chicopit Bay Diversion, Relocate Mile Point Training Wall, and a Short Cut Widener. Combinations of these alternatives were also evaluated.

The emerging alternative identified at the time of the Value Engineering study was Alternative 3B -- Relocate Mile Point Training Wall. This alternative relocated and constructed new east and west training walls, using armor and bedding stone for erosion control, and placed approximately 0.9 MCY of dredge material by pipeline upland into the Buck Island dredge disposal site located approximately 2 to 3 miles west of the project site. The estimated cost for the refined initial plan, Final Alternative 3B, design is \$76.388 million. Defining and developing salt marsh mitigation requirements for the project resulted in further refinement to the plan. A salt marsh restoration plan was identified and incorporated into the Alternative 3B – Great Marsh Island Required Mitigation (18.2 Acre) plan estimated as \$55.945 million. These two plans were used as baseline for the VE study alternatives.

See the Supporting Documents for the Value Engineering Team Members, the Speculation List, Cost Models, FAST Diagram (identifying project functions), and Supporting Information for Proposals and comments including detailed cost estimates.

VALUE ENGINEERING TEAM STUDY PROJECT DESCRIPTION AND BACKGROUND PROJECT TITLE: Mile Point Improvements Project PROJECT LOCATION: Duval County, Florida

JACKSONVILLE HARBOR AND MILE POINT PROJECT AREA MAP


VALUE ENGINEERING TEAM STUDY PROJECT DESCRIPTION AND BACKGROUND PROJECT TITLE: Mile Point Improvements Project PROJECT LOCATION: Duval County, Florida

Existing Training

Wall to be

Reconfigured

MILE POINT PROJECT AREA SITE MAP (Alternative 3B – Relocate Mile Point Training Wall)

Proposed New Training Wall to be Relocated

Proposed Upland Dredge Disposal – Buck Island

VALUE ENGINEERING TEAM STUDY EXECUTIVE SUMMARY

The initial Alternative 3B was limited in development and quantities for features were early plan formulation level of detail with rough order of magnitude cost estimate. The formal VE study process was initiated May 1, 2008, and continued with alternative plan development though June, July and August 2008. Revisions resulted in the revised Final Alternative 3B Plan (Relocate Retaining Walls with Upland Disposal), Alternative 3B – Great Marsh Island Required Mitigation (18.2 Acre), and the Tentatively Selected Plan (TSP), VE Alternative 3B, which were developed using VE ideas for equal comparison and best plan selection. These two Alternative 3B plans were considered to represent the Mile Point base condition plan and the potential VE plan, and are incorporated into the Final Value Engineering Study Report dated September 2008. The participants included District project design team (PDT) members listed in Appendix A.

Value Engineering (VE) is a process used to study the functions a project is to accomplish. As a result, the VE team takes a critical look at how these functions are being met, and it identifies alternative ways to achieve the equivalent function while increasing the value, and the cost ratio of the project. The project was studied using the Corps of Engineers standard Value Engineering (VE) methodology:

<u>Information Phase</u>: The Team was presented figures, descriptions of project work, and cost estimates to fully understand the work to be performed and the functions to be achieved. Cost Models (see Appendix C) were compared to determine areas of relative high cost to ensure that the team focused on those parts of the project that offered the most potential for cost savings.

<u>Speculation Phase</u>: The Team speculated by conducting brainstorming sessions to generate ideas for alternative designs. All team members contributed ideas and critical analysis of the ideas was discouraged (see Appendix B).

<u>Analysis Phase</u>: Evaluation, testing and critical analysis of all ideas generated during speculation was performed to determine potential for savings and possibilities for risk. Ideas were ranked by priority for development. Ideas that did not survive critical analysis were deleted.

Development Phase: VE team members developed the selected priority ideas identified during analysis into written proposals. Proposal descriptions and possible impacts to schedule and funding were identified for each item discussed. Savings were estimated where realized.

<u>Presentation Phase</u>: Presentation Phase includes publication of the VE Study Report for distribution, review and coordination. Notation reflecting "Recommended Action" for each proposal is shown on Summary of Proposals / Recommended Action. Further formal coordination of VE action items will be through the project PDT and VEO. Savings realized from the VE study are reported to Division and HQ, and are credited to the District assigned Value Engineering goals.

VALUE ENGINEERING TEAM STUDY SUMMARY OF PROPOSALS / RECOMMENDED ACTION

PROPOSAL <u>NUMBER</u>	DESCRIPTION	POTENTIAL SAVINGS	RECOMMENED <u>ACTION</u>
C-1	Develop Improved Training Wall Section and Delete Scour Stone	ns \$12,234,000	Accepted in <u>NED/TSP</u>
C-2	Develop a Composite Plan for Mile Point Navigation Improvements and Dredge Disposal Supporting Salt Marsh Mitigation and Restoration of Great Marsh Island	d <u>\$9,056,000</u>	Accepted in <u>NED/TSP</u>
Estim	nated Total First Cost Savings	\$21,290,000	

VALUE ENGINEERING PROPOSAL PROPOSAL NO: C-1 PAGE NO: 1 OF 5 DESCRIPTION: Develop Improved Training Wall Sections and Delete Scour Stone

<u>ORIGINAL DESIGN</u>: Alternative 3B-Relocation of the Training Wall, initially included removal of the 3,110 feet of an existing Mile Point training wall and reconstruction of a relocated eastern training wall (approximately 2,050 feet), and construction of a new western training wall (approximately 4,250 feet). New channel armoring was to be provided for the improved confluence opening and between training walls by jetty stone (revised to use bedding stone at a 2 foot thickness). Total quantities of stone included the following: bedding stone scour protection using 100,000 CY; and training walls used 32,800 CY of armor stone and 11,700 CY of filter stone. Dredging to reshape confluence was designated to -16 MLW as influenced by the depth of stone and a 2 foot authorized paid over depth. Dredged material was to be placed by pipe-line into the upland disposal site at Buck Island located approximately 2 to 3 miles west of the Mile Point project site.

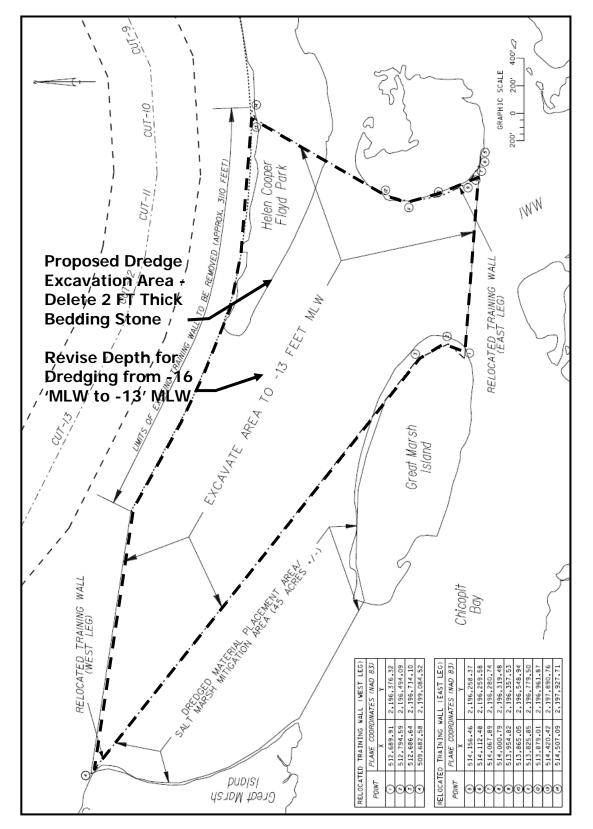
The initial plan was renamed "Final Alternative 3B - Relocation of the Training Wall", with a reduced dredge by pipeline to Buck Island material quantity of 889,000 CY. This quantity is adjusted by adding 150,000 CY for the required depth for bedding stone and paid overdepth to justify proposed savings. The Mile Point Dredge Area Plan with notes on dredging depths and bedding stone scour protection is shown on Figure 1. Modified East and West Training Wall Structures Sectional Views are shown in Figure 2. This alternative is considered the baseline plan for comparison of the VE alternative plan.

<u>PROPOSED DESIGN</u>: Improved Mile Point IWW channel widening and deepening will reduce currents and cross-currents at the confluence of the main channel. Erosion potential is greatly reduced with improvement in place. Scour toe sections would be added to protect the structural integrity of the training walls. Optimization to the training wall sections as recommended has potential to reduce the needs for vast quantities of scour stone armoring. Elimination of the scour mat and refinement to the paid overdepth reduces dredge material quantities. The new dredging depth for Mile Point changes from -16' MLW to -13' MLW (-14'+2' overdepth to -12'+1' overdepth). See notes shown on Figures 1 and 2.

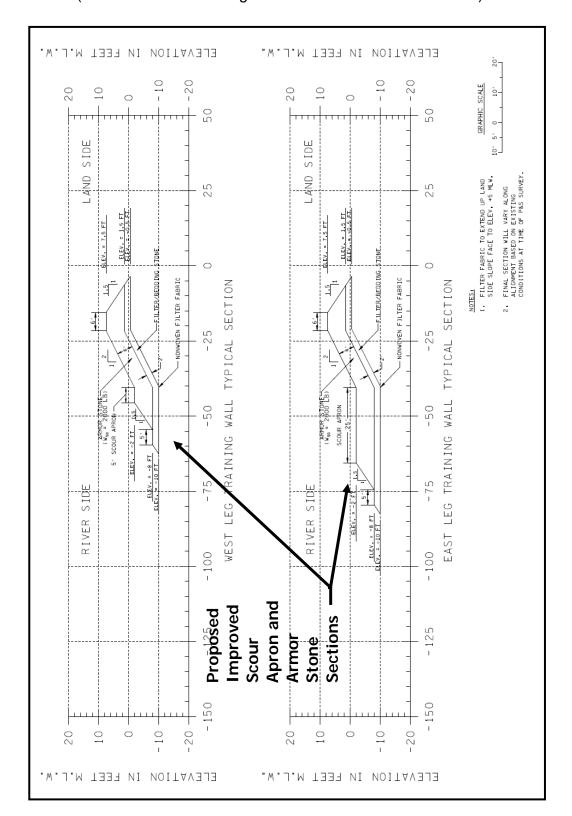
ADVANTAGES:

- Training wall structures incorporates larger scour aprons designed for optimal service life and minimal maintenance, repair and replacement part of savings from scour blanket are reinvested in scour aprons.
- Elimination of the 2 foot thick scour mat and refinement to the paid overdepth to 1 foot would reduce dredge material quantities.
- New surveys and coordination of Mile Point navigation and flowway requirements indicates potential for reduced excavation quantities to develop the navigation improvements nets total reduced dredge quantities.
- Recommended changes are provided early in the plan formulation process to permit modification of the alternative plan under study.

PROPOSAL NO: C-1


PAGE NO: 2 OF 5

<u>JUSTIFICATION</u>: The recommended VE plan includes removal of the western 3,110 feet of existing Mile Point training wall and the construction of a new Western Leg and a relocated Eastern Leg training wall of approximately 4,250 feet and 2,050 feet as generally described in the initial plan. Total stone class and weights are increased, and the new section incorporates larger scour aprons. The original planned mass bedding stone is eliminated and part of the total savings is used to pay for increases in stone quantities. Incorporation of the improved training wall structures are assumed to provide 85 to 100 years service and are designed for optimal service life, and minimal maintenance, repair and replacement.


Total quantities of stone included the following: training walls used 48,800 CY of armor stone and 52,900 CY of filter stone. Dredging to reshape confluence was reduced by 150,000 CY.

Savings will be reported under the SAJ Value Engineering program based on estimates for the initial Alternative 3B and modified Alternative VE-3B+FIC. Savings are estimated as \$12,234,000.

PROPOSAL NO: C-1

FIGURE 1: ALTERNATIVE 3B MILE POINT DREDGE AREA PLAN

PROPOSAL NO: C-1 PAGE NO: 5 OF 5

	-			
DE	LETIONS			
ITEM	UNITS	QUANTITY	UNIT COST	тоти
S-1 Filter Stone	CY	7,900	\$182.57	\$1,44
S-1 Armor Stone	CY	22,100	\$436.29	\$9,64
S-2 Filter Stone	CY	3,800	\$178.65	\$67
S-2 Armor Stone	CY	10,700	\$437.22	\$4,67
Bedding Stone (2' Thick)	CY	100,000	\$197.87	\$19,78
Dredging to Buck Island (+3' for Stone/POD)	CY	150,000	\$21.24	\$3,18
		Total Deletion	ns	\$39,41
ITEM	UNITS	QUANTITY	UNIT COST	TOTA
S-1 Improved Section - Filter Stone	CY	18,400	\$182.57	\$3,35
S-1 Improved Section - Armor Stone	CY	36,900	\$436.29	\$16,09
S-1 Improved Section - Filter Fabric	SY	34,556	\$3.82	\$13
S-2 Improved Section - Filter Stone	CY	11,900	\$178.65	\$2,12
S-2 Improved Section - Armor Stone	CY	12,300	\$437.22	\$5,37
S-1 Improved Section - Filter Fabric	SY	22,500	\$3.82	\$8
		Total Additio	ns	\$27,18
		1 otal / taatio		ψ27,10
		crease/Increa	se	\$12,23
		0.00%		
*	Mark-ups	ecrease/Incre		\$12,23

PROPOSAL NO: C-2 PAGE NO: 1 OF 8 DESCRIPTION: Develop a Composite Plan for Mile Point Navigation Improvements and Dredge Disposal Supporting Salt Marsh Mitigation and Restoration of Great Marsh Island

<u>ORIGINAL DESIGN</u>: The initial plan, Alternative 3B-Relocation of the Training Wall, includes removal of the 3,110 feet of an existing Mile Point training wall and reconstruction of a relocated eastern training wall (approximately 2,050 feet), and construction of a new western training wall (approximately 4,250 feet). Refinements were made to the structures for reduced quantities of bedding and armor stone. Dredging to reshape confluence to -16 MLW was refined to -13 MLW. Dredged material quantities were reduced from ~1.3 MCY to 889,000 CY (by updated survey and elimination of scour stone), and material would then be placed by pipeline into the upland disposal site at Buck Island located approximately 2 to 3 miles west of the Mile Point project site. The mitigation feature was a known project requirement at the time of the initial VE sessions, though the estimated quantities and costs were not developed at the start of the VE study.

Reconstruction of the new eastern training wall would result in the removal of the western portion of Helen Cooper Floyd Park. This portion of the park consists of jurisdictional wetlands, specifically salt marsh, as well as disturbed uplands. The salt marsh boundaries had been previously delineated by the landowner (US Navy), and it was calculated that the proposed relocation of the training wall would impact 8.15 acres of marsh. Two conceptual alternatives being considered for the mitigation site were: 1. Required Marsh Restoration Area - 18.2 Acres (Low Marsh - 16.4 acres and High Marsh - 1.8 acres); and 2. Optimal Marsh Restoration Area - 45 Acres (Low Marsh - 43 acres and High Marsh - 2 acres). Material to create the restoration area would come from the authorized project.

The initial plan was further modified to incorporate the required salt marsh mitigation feature, and it was renamed "Alternative 3B – Great Marsh Island Required Mitigation (18.2 Acres)". This plan retains the removal of 889,000 CY of dredge material with quantities for the 18.2 acre mitigation site by 16-inch pipeline and the remaining dredge material by 30-inch pipeline to Buck Island. Dredge by Pipeline to Buck Island and Relocate Training Walls is shown on Figure 1. Great Marsh Island salt marsh and high marsh mitigation alternatives are shown as Figure 2 and 3. This alternative is considered the baseline plan for comparison of the VE alternative plan.

<u>PROPOSED DESIGN</u>: As a result of the number of closely related, dependent and sequentially supporting ideas for project features identified during the VE study brainstorming and analysis sessions, a composite plan has been developed incorporating four specific Speculation ideas:

- Fully develop Great Marsh Island as a material placement location and salt marsh mitigation feature with available project dredge material quantities (~45 acres +/-).
- Evaluate dredging depths and navigation performance, and balance dredge excavation quantities to salt marsh mitigation feature fill requirements.

PROPOSAL NO: C-2

- Develop stone training wall structures for optimal service life and minimal maintenance, repair and replacement – incorporate larger scour aprons and eliminate mass bedding stone.
- Add Chicopit Bay flowway to allow for improved water quality and environmental stability of the project area by increasing flushing capacities and channel flow dynamics, and place dredge material into Great Marsh Island mitigation improvements (~8 acres +/-).

Plan views of the modified composite Alternative VE-3B Plan with removal of 889,000 CY of dredge material by pipeline to Great Marsh Island, relocation of Training Walls, Great Marsh Island salt marsh mitigation areas and modified stone training wall structures are shown on Figures 4 and 5.

ADVANTAGES:

- Per the U.S. Clean Water Act and Florida state statute, mitigation for the loss of salt marsh at Helen Cooper Floyd Park would be required. The eroded breakthrough at Great Marsh Island would provide an appropriate mitigation site.
- New surveys and coordination of Mile Point navigation and flowway requirements indicates potential for balanced excavation to develop the Great Marsh Island mitigation feature – nets total reduced dredge quantities ~410,000 CY.
- Training wall structures designed for optimal service life and minimal maintenance, repair and replacement incorporates larger scour aprons. The mass bedding stone is eliminated; however, the size of stone increases and net cost savings are reinvested in scour aprons.
- There is both a reduction in quantities to be dredged and the proposed mitigation site is closer than Buck Island, thereby reducing pipeline pumping distance and cost.
- The size and capacity of dredge equipment needed to excavate and move material changes significantly, i.e. a 30-inch cutter-suction pipeline operation could be reduced to a 16-inch cutter-suction pipeline.
- Recommended changes are provided early in the plan formulation process to permit modification of the alternative plan under study.

DISADVANTAGES:

- Achieving the correct elevation for salt marsh mitigation will likely require a phased approach. See Comment 1 for additional details.
- The restoration area would need to be monitored for at least five years.
- Potential cultural resources will have to be determined within the proposed restoration area.

<u>JUSTIFICATION</u>: The recommended VE plan includes removal of the existing western Mile Point training wall and the construction of a new Western Leg and a relocated Eastern Leg training wall of approximately 4,250 feet and 2,050 feet as generally described in the initial plan.

PROPOSAL NO: C-2

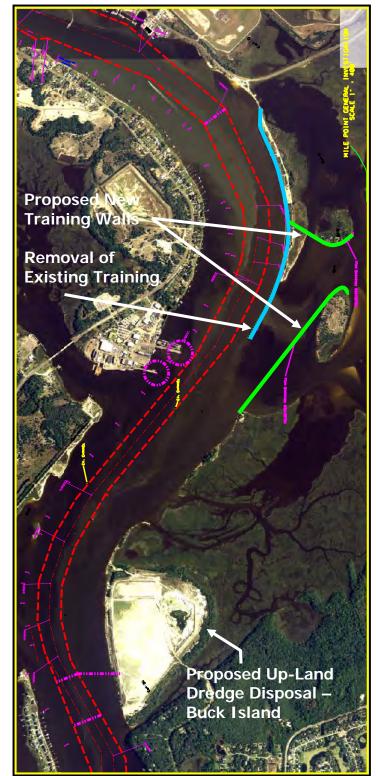
PAGE NO: 3 OF 8

The recommended plan is modified to realize beneficial use of approximately 889,000 CY of dredged material by creating a combination of salt marsh and high marsh mitigation areas that restores wetlands lost on Great Marsh Island and Helen Cooper Floyd Park. Restoring Great Marsh Island is both the least cost alternative for dredged material and also provides additional acres of salt marsh restoration above the 18.2 required acres.

This plan incorporates the beneficial use of dredged material by creating a salt marsh mitigation area that restores wetlands lost on Great Marsh Island. Environmental Restoration benefits (National Environmental Restoration) were realized with this alternative. Restoration in excess of the required mitigation (18.2 acres) could be used as credits (26.8 acres) for a future project. The mitigation site at Great Marsh Island is closer than Buck Island, which would result in a substantial cost savings by reducing pumping distance of dredged material and allow a smaller dredge and less pipeline.

As presented in Proposal C-1, improved training wall structures are assumed to provide 85 to 100 years service and are designed for optimal service life and minimal maintenance, repair and replacement incorporates larger scour aprons.

The Chicopit Bay flow improvement channel (FIC) was added to the design of this alternative to allow for improved water quality and environmental stability of the project area by increasing flushing capacities and channel flow dynamics. Dredged material potentially contributes an additional ~8 acres of salt marsh.

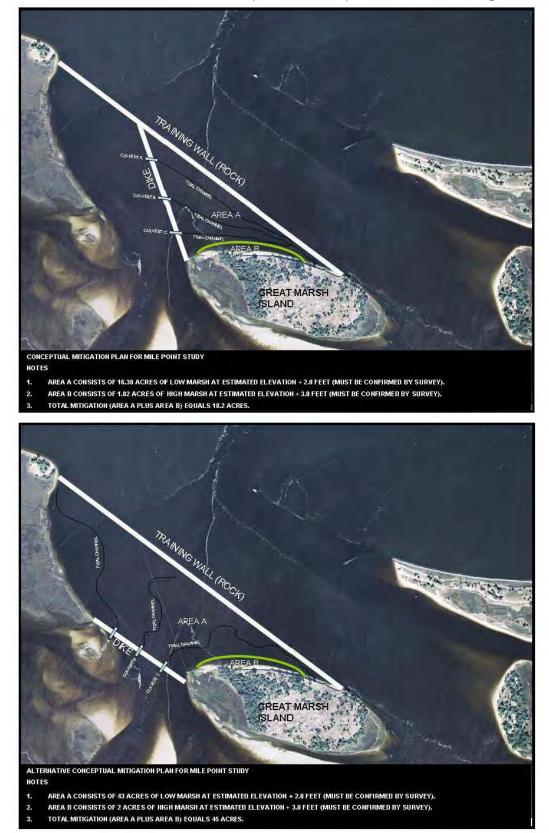

The preferred alternative is Relocation of the Mile Point Training Wall and is referred to as Alternative VE-3B+FIC in the report. This alternative was the only alternative that provides for a reduction in erosion on the Mile Point shoreline and allows for the St. Johns Bar Pilots to lift the restrictions to navigation.

Savings will be reported under the SAJ Value Engineering program based on estimates for the modified initial alternative plan, "Alternative 3B – Great Marsh Island Required Mitigation (18.2 Acres)", and modified Alternative VE-3B+FIC. Savings are estimated as \$9.056 million.

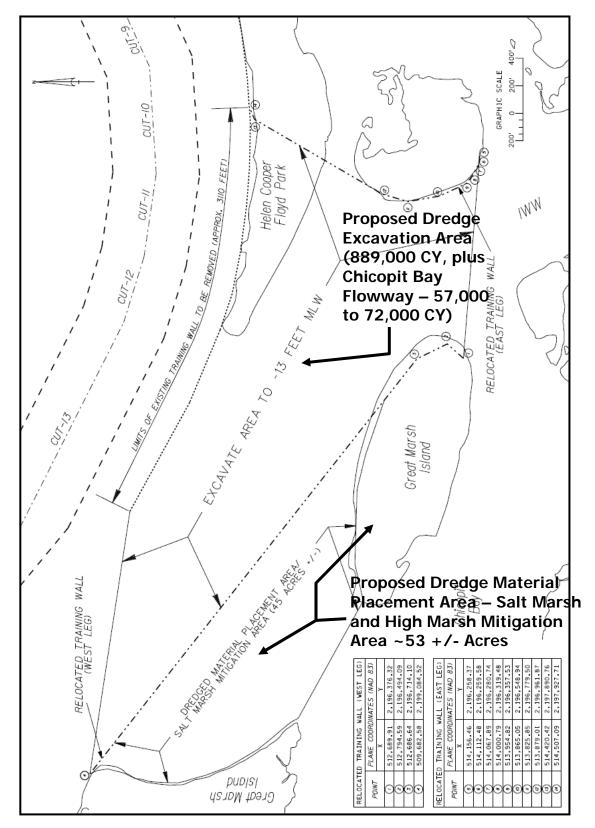
PROPOSAL NO: C-2

PAGE NO: 4 OF 8

FIGURE 1: ORIGINAL ALTERNATIVE 3B PLAN (Dredge by Pipeline to Buck Island and Relocate Training Walls)



PROPOSAL NO:


C-2

PAGE NO: 5 OF 8

FIGURE 2 AND 3: ALTERNATIVE 3B MITIGATION PLANS (Great Marsh Island Minimal 18 Acre Required and Expanded 45 Acre Mitigation Plans)

PROPOSAL NO: C-2

FIGURE 4: PROPOSED MODIFIED ALTERNATIVE 3B MILE POINT PLAN

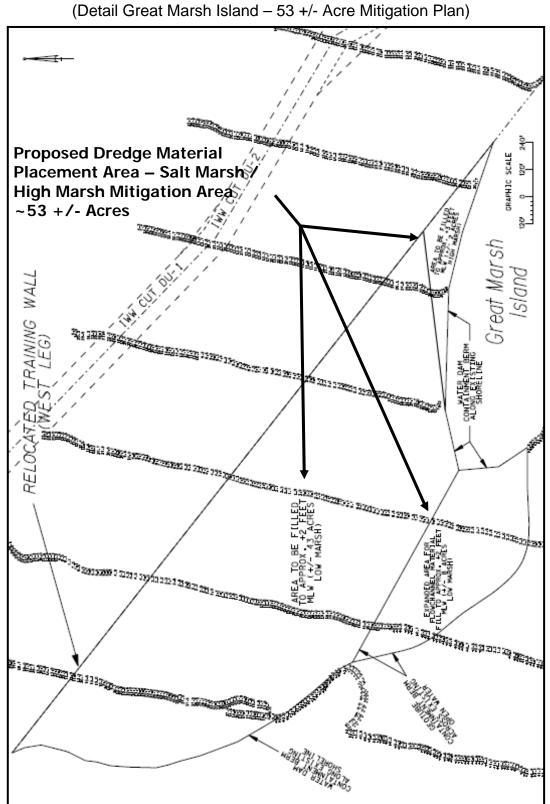


FIGURE 5: PROPOSED MODIFIED ALTERNATIVE 3B MITIGATION PLAN (Detail Great Marsh Island – 53 +/- Acre Mitigation Plan)

PROPOSAL NO: C-2

PAGE NO: 8 OF 8

PROPOSAL DESCRIPTION: Composite F				
	DELETIONS			
ITEM	UNITS	QUANTITY	UNIT COST	ΤΟΤΑ
Alternative 3B Great Marsh Island	LS	1	\$55,945,078.00	\$55,94
Required Mitigation (18.2 Acre)				
			↓	
	_		┞────┼	
<u> </u>			┝────┼	
+			├ ────┼	
+				
+			l	
+				
-		Total Deletio	ns	\$55,94
			<u></u>	¥- ,
	ADDITIONS			
ITEM	UNITS	QUANTITY	UNIT COST	TOTA
Proposed Modified Alternative VE-3B	LS	1	\$46,888,664.00	\$46,88
			└─── ↓	
			↓	
			↓	
+			┣─────┣	
+			┨────┤	
+				
+				
		Total Additions		\$46,88
				ψ.ς,
	Net Cost Decrease/Increase * Mark-ups 0.00%			\$9,05
				····
	Total Cost Decrease/Increase			\$9,05

The following comments are provided on ideas that were considered by the VE team and are documented to varying levels of detail. Comments may be integrated with selected modified plan, or may stand alone.

<u>COMMENT 1:</u> Subsequent to the formation of Alternative 3B, it was determined that the western portion of Helen Cooper Floyd Park consists of jurisdictional wetlands, specifically salt marsh, as well as disturbed uplands. The salt marsh boundaries had been previously delineated by the landowner (US Navy), and with this information it was calculated that the proposed relocation of the training wall would impact 8.15 acres of marsh. Instead of placing the dredged material at Buck Island, the recommended alternative is to use the material to mitigate for project related impacts. This could be accomplished by restoring salt marsh which historically occurred within the eroded breakthrough at nearby Great Marsh Island.

The mitigation plan could be implemented in phases as follows:

Phase 1: Construction of the project would include: surveys to determine existing elevations or depths of the proposed salt marsh restoration area as well as elevations of low and high salt marsh of adjacent marsh areas; relocation of the training wall; placement of berm type structures on the south, east and west sides of the restoration area; and placement of dredged material into the contained restoration area. The target elevation of the restoration area should be comparable to adjacent marsh, with settling taken into consideration. This work would be accomplished under the initial construction contract.

Phase 2: After the dredged material within the restoration area has settled, the following tasks would be performed: elevations within the restoration area would be determined; if necessary, material would be added or removed in order to achieve elevations that match adjacent existing low and high marsh; biological site survey of the upland area of Great Marsh Island prior to use as potential borrow area; construction of tidal channels within the restoration area; and transplanting low and high marsh species of plants from adjacent donor marshes to the restoration area. This work would be accomplished under a second construction contract; however, the planting could be performed by a separate contract administered by SAJ-PD-EC.

Phase 3: The restoration site would be monitored for a minimum of five years.

ADVANTAGES:

• Per the U.S. Clean Water Act and Florida state statute, mitigation for the loss of salt marsh at Helen Cooper Floyd Park would be required. The eroded breakthrough at Great Marsh Island would provide an appropriate mitigation site.

- The project will attempt to restore the entire eroded breakthrough, which would result in the restoration of ~53 +/- acres of marsh area. This beneficial use of dredged material would exceed the required 18.2 acres of mitigation, and would provide a higher net increase of salt marsh functions and values.
- The proposed mitigation site is closer than Buck Island, thereby reducing pumping distance and cost.
- Equipment needed to excavate and move material would change significantly, i.e. a smaller dredge could be used, due to the proximity of the mitigation site. This would also result in a cost savings.
- Recommended changes are provided early in the plan formulation process to permit modification of the alternative plan under study.

DISADVANTAGES:

- Achieving the correct elevation for salt marsh mitigation will likely require a phased approach. Dredged material would be placed in the mitigation site during the first phase of the mitigation plan, and then an amount of time would have to be allocated for settling of the material to take place. During the second phase of the plan, the elevation of the mitigation site would be assessed and, if necessary, material would be added or removed in order to achieve the correct elevation for low and high marsh Construction of tidal channels and planting of salt marsh vegetation would be performed once the correct elevation is achieved. The restoration area would need to be monitored for at least five years.
- Potential cultural resources will have to be determined within the proposed restoration area.

<u>JUSTIFICATION</u>: This opportunity incorporates the beneficial use of dredged material on Great Marsh Island by creating a salt marsh mitigation area that restores wetlands lost by improvement in the Mile Point project area. The initial plan can be modified to realize beneficial use of approximately 889,000 CY of dredged material by creating a salt marsh mitigation area. The Chicopit Bay flow improvement channel (FIC) provides an additional 50,000 to 70,000 CY, or potentially 8 +/- acres. The total acreage may range to 53 acres.

The Uniform Mitigation Assessment Method was used to determine that 18.2 acres of mitigation would be required to offset the loss of 8.15 acres of salt marsh at Helen Cooper Floyd Park. As a beneficial use of dredged material, the project will attempt to restore the entire eroded breakthrough at Great Marsh Island. This would result in the restoration of ~53 acres of marsh, and would provide a higher net increase of salt marsh functions and values. Environmental benefits of this magnitude could help justify the proposed project in addition to the economic benefits.

The District could also request that any restoration in excess of the required mitigation (18.2 acres) could be used as credits (34.8 acres) for a future project. Restoring Great Marsh Island is both the least cost alternative for dredged material and also provides additional acres of salt marsh restoration above the required minimum acres. Environmental Restoration benefits (National Environmental Restoration NER) will be realized with this option.

It should be noted that identifying appropriate mitigation sites can be problematic; however, in this case, the proposed site is ideal due its close proximity to the project and the fact that salt marsh historically occurred at this location. The proposed west training wall would protect the mitigation site from future erosion while supporting tidal exchange. In addition to the wall, containment of material within the mitigation site would require some type of berm along the southern side and possibly the east and west sides of the site. These containment structures would have openings to also allow for tidal exchange and provide water quality control required by permitting for dredged material placement. With proper containment and a phased, planned approach, the use of the proposed site should result in a highly successful mitigation effort. The proximity of the mitigation site would also allow for smaller, less expensive equipment to be used, i.e. a smaller dredge and less pipeline. Finally, the mitigation site at Great Marsh Island is closer than Buck Island, which would result in a substantial cost savings by reducing pumping distance of dredged material.

<u>COMMENT 2:</u> A reconstructed marsh mitigation area is being considered south of Structure 1. Two conceptual alternatives are being considered for the mitigation site: 1. - Minimal Marsh Restoration Area –18.2 Acres (Low Marsh - 16.38 acres and High Marsh - 1.82 acres); and 2. - Optimal Marsh Restoration Area, 41.4 Acres (Low Marsh – 39.58 acres and High Marsh 1.82 acres).

<u>PROPOSED DESIGN</u>: It is recommended that the following containment systems be evaluated for the south mitigation containment wall. The four systems are Geotubes, a water dam (Aqua-Dam), stone revetment or sand. The two mitigation alternatives will require different lengths of wall. The Minimal Marsh plan requires an approximately 1,200 LF wall. The Optimal Marsh plan requires approximately a 1,000 LF wall.

ADVANTAGES:

- Containment using a south dike structure would assure water quality compliance during dredge material placement.
- Geotubes are flexible offering an 8 to 10 year service life for erosion protection.
- Both Geotubes and water dam provides initial containment for water decanting.
- Stone containment dike offers the longest service life.
- Stone work is currently in contract scope.
- Sand/earth work is also in contract scope.

DISADVANTAGES:

- Geotubes will have a limited service life likely 8-10 years, but should not require replacement one the marsh is established.
- Temporary water dam requires both placement and removal one year service.
- Damage repair to Geotube and water dam systems are sometimes required from vandalism.
- Stone systems are costly for long distance transportation and on-site equipment placement.
- Higher superiority may be needed for sand berm and service length is unknown.

<u>JUSTIFICATION</u>: The west training wall will serve as one containment structure for either dredge material placement mitigation alternative. The mitigation site will require some type of southern containment berm feature for placement of dredge material and decanting of water from dredging fill process. It will also provide water quality control likely required by permitting for hydraulic dredging operations.

Additional functions of the containment berm may consider long term protection from erosion attack and wash out (as is the current condition) and protection of marsh plantings from storm surge. The new structure may be considered for construction using Geotubes, a water dam, stone or sand. Evaluation of flexibility should consider that the new south mitigation wall may be only an initial "one-time use" containment wall for initial dredge placement. All plans are initially placed below water surface approximately -3 feet to a final height of +5 feet.

Geotubes are frequently used for dredge material placement for both water decanting and extended protection of developing marsh plantings. Geotubes can have drain pipes and soil cover with planting integrated into their use. Geotubes can also be developed with low weir sections to complement the planed marsh drainage patterns shown in both mitigation plans.

The water dam alternative is considered a "one-time use" application and should be removed following dredge placement. The water dam system work well for water containment and decanting, but will require some off-set to prevent material from building up against it thereby complicating removal. Drain pipes can be placed with water dam systems. The water dam could remain in place for a full year for protection of the developing marsh plants. It would likely be a temporary dam purchase system with contractor placement with some technical support from the manufacturer. Purchase pricing for an 8 foot height is \$100 per LF and for a 10 height is \$250 per LF plus installation. See Aqua-Dam at the following web site: http://www.waterstructures.com/

The stone containment berm is very traditional for marsh restoration containment features and offers tidal delivery of water to the new marsh area through the open rock structures including both north training wall and south wall. Stone is prone to be expensive for transportation and placement. The level of service may be more than is required for the south side of the medication site.

A sand berm could be used for initial dredge placement and it could be incorporated into the final native planting scheme. Drain pipes can be placed with the berm. A sand berm is likely a lower service life for Geotube and stone alternatives.

The south wall is a far less critical structure than the training wall, primarily serving during dredge placement and for early establishment of marsh grasses. The lower cost alternative may be fully satisfactory, but the longer service life for storm may be desired.

Dredge material and water decanting is considered a contractor option to achieve work within permit limitations using methods he is familiar with. Estimated cost per 1,000 LF is provided for each system:

- 1. Geotube \$85,000
- 2. Water Dam (Aqua-Dam) \$135,000
- 3. Stone \$433,000 (Not a best buy)
- 4. Sand Berm \$35,000 \$50,000

PROPOSED MITIGATION CONTAINMENT ALTERNATIVES (Alternative Dredge Containment Systems – Geotubes)

Island and Marsh Recreation with Geotube Containment

Typical Covered and Planted Section and Geotube Filling Operation

Geotube Dredge Containment Applications

PROPOSED MITIGATION CONTAINMENT ALTERNATIVES (Alternative Dredge Containment Systems – Aqua-Dam)

Aqua-Dam Water Containment Applications

PROPOSED MITIGATION CONTAINMENT ALTERNATIVES (Alternative Dredge Containment Systems – Stone)

Typical Stone Containment Dike Section and Photos (May be Fully Constructed from Barges or Supported by Land Equipment)

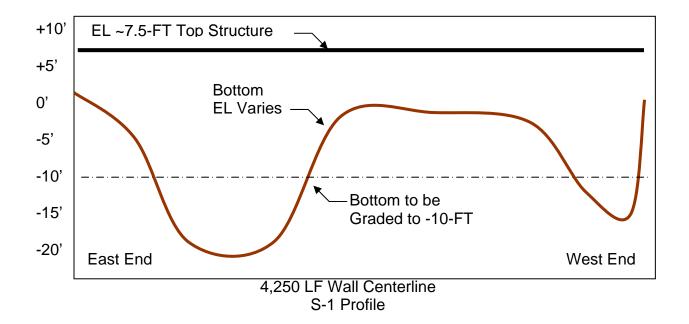
<u>COMMENT 3:</u> Alternative 3B provides relocations of reconfigured stone training walls for the west and east side of the southern IWW connection to the St. Johns River. The west training wall (Structure 1 - 4,250 LF) extends westward from Great Marsh Island and will be new filter and armor stone. The east wall (Structure 2 - 2,050 LF) will be constructed using relocated existing training wall filter and armor stone materials with new stone as needed. A reconstructed marsh mitigation area is being considered south of Structure 1.

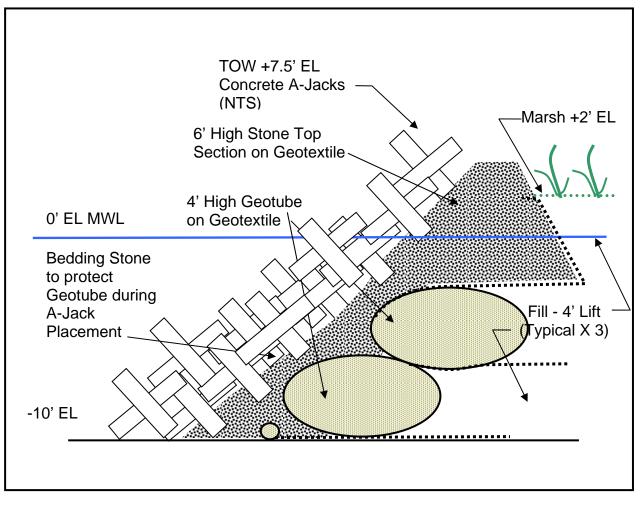
<u>PROPOSED DESIGN</u>: The new S-1 west training wall is recommended to be studied for construction with Geotubes covered with geotextile and bedding stone layer, and topped with concrete armor units such as A-Jacks. The combinations of systems will be backed with overlapping geotextile filter material. The wall will serve as both the revetment and containment structure for the planned salt marsh mitigation area. The armor units will rise to EL 7.5-FT. Sufficient permeability on the upper wall will allow for tide inflow into the proposed mitigation areas south of the wall. This is recommended for analysis during PED design phase where more detailed analysis can be applied.

ADVANTAGES:

- Eliminates the need to transport heavy stone over long distance from the quarry source out of state.
- Interlocking nature of A-jacks will reduce instability due to scour at the toe.
- Efficient shipping on pallets would be available from close proximity to project.
- Two sets of Geotubes and 6 foot stone provide vertical height for containment for dredge material.
- The geotextiles provides dredge material containment and bedding stone provided protection of the Geotubes for placement of armor units (A-Jacks).

DISADVANTAGES:


- Construction of interlocking A-jacks below water level may be difficult.
- Bedding stone is needed for protection of geotextiles and Geotubes.


<u>JUSTIFICATION</u>: New filter, bedding and jetty stone will likely come from a middle or north Georgia source and likely will be shipped by rail. Total new stone quantities for Structure 1 are estimated as 18,400 CY for filter stone and 36,900 CY for armor stone. The armor unit wall will can be constructed of factory manufactured units that are shipped on pallets that minimizes shipping volume and distance. Each layered system supports another – A-Jacks stabilize wall, bedding stone protects Geotubes, Geotubes support stone and fill, and geotextile scour and filter materials contains fill material. The proposed wall will have inherent permeability that should allow tidal exchange from the mitigation marsh area, but prevent pulling of marsh area soils out through the rock wall. The concept was developed to a limited stage for material quantity take-off and pricing for the VE study. A limited service life was applied for 50 years with full replacement. It is not recommended as the feature cost basis for initial plan authorization. It is however recommended for analysis during PED design phase where more detailed analysis can be applied.

PROPOSED TRAINING WALL PLAN AND PROFILE

S-1 Training Wall and Mitigation Area Plan

CONCEPTUAL CROSS SECTION OF NEW S-1 WALL

COST ESTIN	MATE WORK	SHEET		
COMMENT 2 DESCRIPTION: Develop A-Ja	acks, Geotube	and Stone T	raining Wall Syste	m
DE	ELETIONS	1		
				TOTAL
ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
S-1 Filter Stone	CY CY	18,400	\$183	\$3,359,2
S-1 Armor Stone Filter Fabric	SY	36,900	\$436 \$3.82	\$16,099,1
	51	34,556	\$3.0Z	\$132,0
-				
-				
		Total Deletio	ns	\$19,590,3
AI	DDITIONS			
ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
Concrete Armor Unit	EA	188,160	\$31.24	\$5,877,3
Armor Unit Transportation	EA	188,160	\$1.82	\$342,8
Geotube embankments	LF	8,500	\$65.21	\$554,2
Geotextile	SF	310,500	\$3.82	\$1,186,1
Bedding/Filter Stone	CY	26,000	\$182.57	\$4,746,8
Replaced Year 50 - Present Worth 4.7/8%	LS	1	\$1,176,000	\$1,176,0
				• • • • • • •
Total Additions		ns	\$13,883,4	
Net Cost Decrease/Increase				\$5,706,9
* Mark-ups 0.00%			\$5,706,9	
	Total Cost Decrease/Increase			
* Mark-ups: Gen. Contractor Mark-up - (Field	 Office/Home (Dffice/Profit/Bo	ond); PED, Con M	lgt;
Contingencies included in unit prices				

<u>COMMENT 4:</u> The current plan for Alternative 3B provides relocations of reconfigured stone training walls for the west and east side of the southern IWW connection to the St. Johns River. The west training wall (Structure 1 - 4,250 LF) will be new filter and armor stone. The east wall (Structure 2 - 2,050 LF) will be constructed using the relocated existing training wall filter and armor stone materials. A reconstructed marsh mitigation area is being considered south of Structure 1.

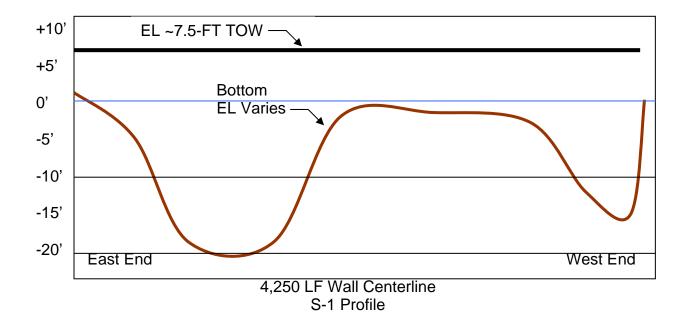
<u>PROPOSED DESIGN</u>: The new S-1 west training wall is recommended to be developed to be constructed with a steel sheet pile wall with inflow windows and augmented with a filter stone. The wall will serve as both the training wall and containment structure for the planned salt marsh mitigation area. The sheet pile will be driven to grade (~EL +6.5-FT) for placement of a concrete cap (TOW EL 7.5-FT) and every other sheet will be driven lower to approximately EL -1-FT for tide inflow into the proposed mitigation areas south of the wall.

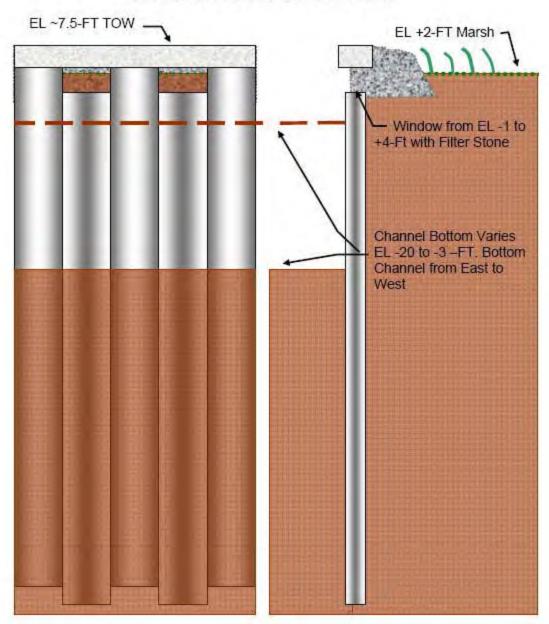
ADVANTAGES:

- Reduces the class and amount of stone required and related transportation from remote stone sources
- Provides a faster construction method using a core sheet pile wall modified for water delivery into redeveloped marsh area.
- Sheet pile wall may be full depth cantilevered or be shortened using a tie-back system.

DISADVANTAGES:

- Steel sheet pile may be limited to approximately a 50-year service life for the Mile Point application.
- If a wall tie-back system is required, the fill placement may require phasing before full fill placement is made.


<u>JUSTIFICATION</u>: New filter, bedding and jetty stone will likely come form a middle or north Georgia source and will likely be shipped by rail. Total new stone quantities for Structure 1 are estimated as 18,400 CY for filter stone and 36,900 CY for armor stone. Structure 2 will approximately use all 14,600 CY of stone from the existing training wall structure. If a shortfall is identified the sheet pile concept can be developed and integrated with stone to complete Structure 2. The proposed sheet pile wall will be developed with alternating full height sheet and lowered sheets to allow tidal inflow into the mitigation marsh area. Modeling can optimize the number of windows needed. A concrete cap and toe stone is assumed for further stability of the wall. The lower gaps will be filled with a filter stone to permit incoming water, but prevent pulling of marsh areas soils back through the windows. The windows are assumed to be set at elevation -1- to +4-FT or 5-FT height by 2-FT in width. Windows can be analyzed for desired elevations and widths. Epoxy coating is assumed to provide 4 coats on both sides. A PZC-18 (24.2 #/SF replaces the old PZ-27 section) sheet size is assumed.


The concept was developed to a limited stage for material quantity take-off and pricing for the VE study. A limited service life was applied for 50 years with full replacement. It is not recommended as the feature cost basis for initial plan authorization. It is however recommended for analysis during PED design phase where more detailed analysis can be applied.

CURRENT TRAINING WALL PLAN AND PROFILE

S-1 Training Wall and Mitigation Area Plan

PROPOSED TRAINING WALL

Sheet Pile Wall Elevation and Cross-Section

Wall Elevation

Wall Section

PROPOSAL DESCRIPTION: Develop Steel	Sheet Pile Tr	aining Wall Sv	/stem	
TROPOSAL DESCRIPTION. Develop Steel	Sheet lie In		JSIEIII	
DE	ELETIONS			
ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
S-1 Filter Stone	CY	18,400	\$183	\$3,359,2
S-1 Armor Stone	CY	36,900	\$436	\$16,099,1
Fllter Fabric	SY	34,556	\$3.82	\$132,0
		Total Deletion	ns	\$19,590,3
			-	+ -,,-
AI	DDITIONS			
ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
S-1 Sheet Pile (PZC-18 - 35' to 47' deep)	LF	4,250	\$4,179	\$17,760,3
Wailer/Tie-back/Toe & Filter Stone/Conc Cap				
Replaced Year 50 - Present Worth 4.7/8%	LS	1	\$1,644,000	\$1,644,0
		Total Additio	20	\$19,404,3
		TOLAI AUUILIO	15	Φ19,404, 3
Net Cost Decrease/Increase				\$186,0
	Mark-ups 0.00%		ψ100,0	
		ecrease/Incre	ease	\$186,0
				+.00,0
* Made and Oracle And Inc. (Field	 Office/Home () Office/Profit/Br	ond): PED_Con M	lat:
* Mark-ups: Gen. Contractor Mark-up - (Field)				

SUPPORTING DOCUMENTS

CONTACT DIRECTORY

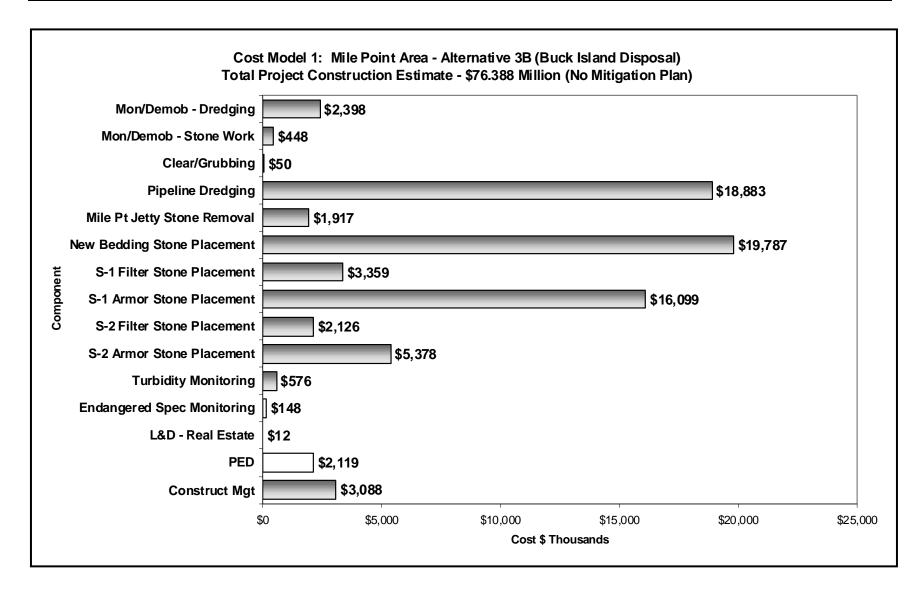
VALUE ENGINEERING TEAM STUDY APPENDIX A: CONTACT DIRECTORY & VE STUDY TEAM MEMBERS

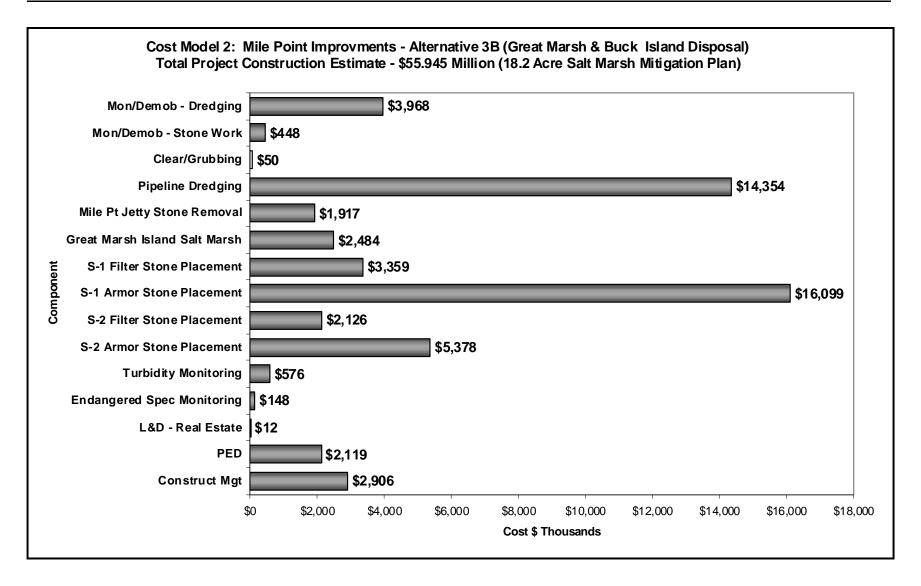
CONTACT NAME ORGANIZATION TELEPHONE NUMBER SAJ-DP-C Steve Ross. 904-232-1363 Richard Powell, SAJ-PD-PN 904-232-1694 Paul Stodola, SAJ-PD-EA 904-232-3271 Samantha Borer, SAJ-PD-PN 904-232-1066 SAJ-EN-DW 904-232-1601 Steve Conger, Brian Blake, SAJ-EN-C 904-232-1003 Stephen Myers, SAJ-EN-GG 904-232-3914 Brian Cornwell, SAJ-EN-WM 904-232-2915 Jason Spinning, SAJ-DP-C 904-232-1231 Fred McAuley, SAJ-EN-T 904-232-1903

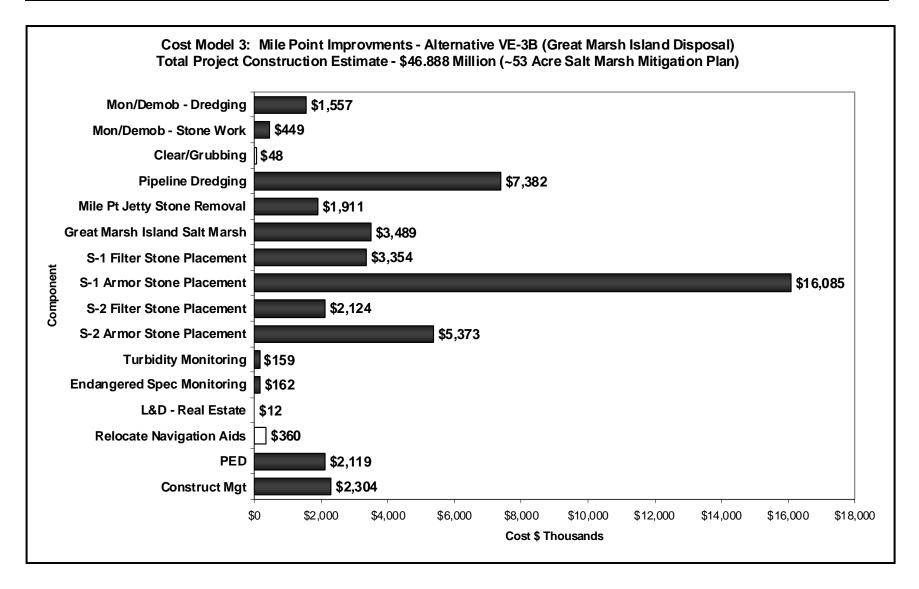
VALUE ENGINEERING TEAM STUDY APPENDIX B:

SPECULATION LIST

VALUE ENGINEERING TEAM STUDY APPENDIX B: SPECULATION LIST

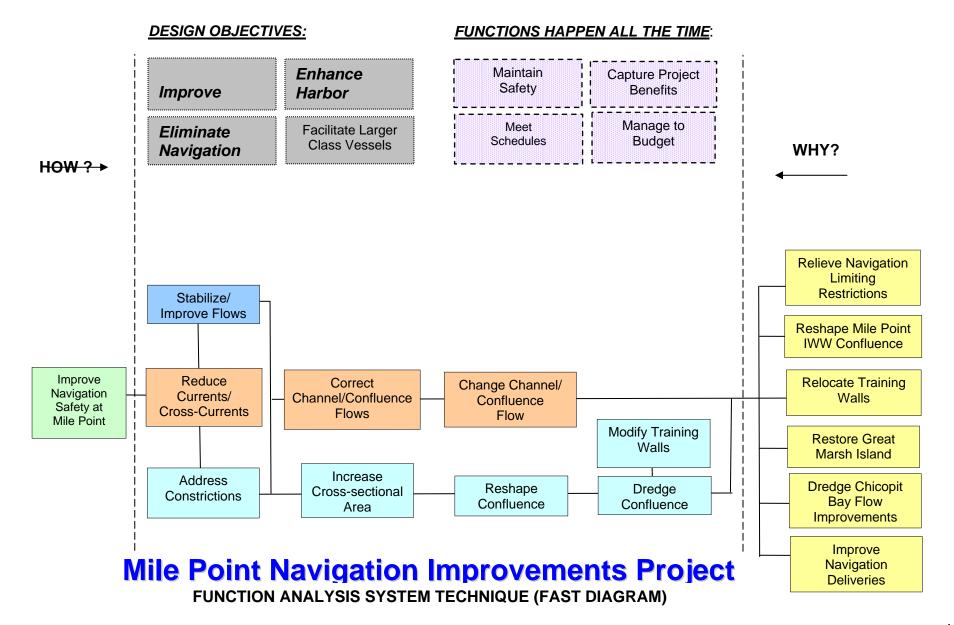

S	peculation List for Mile Point Navigational Improvements - Plan Alternative 3B (Relo	cate Trainir	ng Wall)
No.	DescriptionActions: D = Develop; X = Deleted; C = Comment; BD = Done	Action	Assigned
	Alternative wall systems - sheetpile, concrete Core-lok, Dolos	С	FM/SM
	Develop optimal training wall section - scour toe and delete 25 Ac bedding stone	C	BC/SC
	Remove training wall rock in future for reuse (Alt 2)	Х	
	Sheetpile with rock toe	Х	
	Composite sheet pile	Х	
6	Revisit need for 25 acres of stone - reduce to minimal required	D	BC, SC
	Use articulated concrete mat for erosion protection (Commercial or MVD systems)	D	FM
	Reduce southern length western leg of training wall at GMI (Design phase)	С	SC
9	Endorse 40 acre mitigation alternative (+ close disposal; + equipment)	D	SC/PS
10	Develop required mitigation up to 40 acres with options for cells and future completion (Match excavation/fill)	See 9	
	Use overdepth as material source as needed	See 9	н
	Reuse rock Hellen Cooper-Floyd Park (if Alternative 2)	X	
	Material source options to include Chicopit Bay	C	SC
		See	
14	Explore containment berm alternatives for mitigation site	15,16,20	FM
	Use water dam or rock for containment berm	See 14	FM
	Use dredge sand for containment berm	See 14	FM
	Identify 40 acre vs. 25 acre mitigation alternative as a lift	С	PS
	Procurement alternatives supported include small business, use of best value RFP		
	or IFB	С	BB/FM
	Consider reduced depth 16' vs. 14' vs. 12'	D	BC/SC
	Consider geotubes - minimal or maximum life	See 14	FM
	Use natural openings for culverts for mitigation feature	С	FM
	Planting by contract or natural	С	PS
	If mitigation borrow is needed use high ground on Great Marsh Island (eliminate		
	exotics)	С	PS
24	Use existing 8 acre seed source for reseeding new mitigation area	С	PS
25	Develop east side as mitigation area	Х	
	Alternate 3B - No disposal at Buck Island (See Mayport, dig dry material first -		
26	Design refinement - balance excavation to mitigation fill)	D	PS/SC/BE
27	Look to lower rock spec for the western wall (lower risk exposure)	Х	SM
28	Reuse existing training wall rock for east wall	BD	SM/BC
	Fill existing S-2 low areas to minimize rock quantities	D	SC
30		-	-


COST MODEL


Cost Model 1: Mile Point Alternative 3B (No Mitigation Plan)

Cost Model 2: Mile Point Alternative 3B (18.2 Acre Mitigation Plan)

Cost Model 3: Mile Point Alternative VE-3B (53 Acre Mitigation Plan)



FUNCTION ANALYSIS SYSTEM TECHNIQUE (FAST) DIAGRAM

APPENDIX D: FAST DIAGRAM

OF ENGINEERS

U.S. ARMY CORPS OF ENGINEERS, JACKSONVILLE DISTRICT ATTACHMENT F - VE STUDY FY'11

VALUE ENGINEERING STUDY REPORT

113114 Mile Point Improvements Feasibility Study Value Engineering Proposal Using Concrete Structural Units for West Training Wall

Jacksonville - Duval County, Florida

Sponsored By: Jacksonville Port Authority and U.S. Army Engineering District, Jacksonville

January 2011

VALUE ENGINEERING TEAM STUDY

DOD SERVICE:USACEVALUE ENGINEERING OFFICER:Fred McAuleyCONTROL NO:CE-SAJ-VE-2011-002C

Value Engineering Study Report

113114 Mile Point Improvements Feasibility Study Value Engineering Proposal Using Concrete Structural Units for the West Training Wall Jacksonville – Duval County, Florida

January 2011

STUDY SPONSOR: JaxPort & USACE, Jacksonville District

VALUE ENGINEERING FIRM:	Jacksonville District
ADDRESS:	701 San Marco Blvd
	Jacksonville, FL 32232-0019
TELEPHONE:	(904) 232-1903

VALUE ENGINEERING STUDY TEAM LEADER:

Fred McAuley, Jr., EN-T

VALUE ENGINEERING STUDY TEAM MEMBERS:

Steve Ross, SAJ-DP-C	Richard Powell, SAJ-PD-PN
Paul Stodola, SAJ-PD-EA	Samantha Borer, SAJ-PD-PN
Steve Conger, SAJ-EN-DW	Brian Blake, SAJ-EN-C
Stephen Myers, SAJ-EN-GG	Brian Cornwell, SAJ-EN-WM
Jason McKinnon, SAJ-EN-GS	Paul Stroup, SAJ-EN-DS

ER 11-1-321

113114 Mile Point Improvements Feasibility Study Value Engineering Proposal Using Concrete Structural Units for the West Training Wall Jacksonville, Florida

INTRODUCTION: The Mile Point Improvements Feasibility Study recommends navigation safety improvements to remove existing navigation restrictions by modifications to the southern confluence point of the St. Johns River Federal Channel and the Intracoastal Waterway by deepening and widening this area. Modifications will also include reconfiguring and relocating the Mile Point Training walls. The East Training Wall will reuse existing armor stone being excavated from the current training wall, and West Training Wall will require approximately 70,000 tons new armor stone at a first cost of approximately \$18 million. Total armor and filter stone for both training wall structures is estimated to cost approximately \$29 million. This cost for stone materials represents approximately 58% of the cost for the pending recommended plan.

Due to concerns for the cost of the recommended Mile Point improvements, a second alternative West Training Wall system was conceptually identified and developed for cost estimating using stacked Geotubes to replace the West Training Wall stone structure. The East Training Wall was to continue using existing recovered stone. While initial cost reductions were identified, concerns about reliability, repair and replacement were also recognized. It was therefore desired to further identify and develop a more sustainable lower maintenance alternative system with less frequent repair and replacement.

The PDT met on 18 November 2011 to discuss and identify other possible alternative solutions. A Value Engineering Proposal (VEP) introducing a West Training Wall conceptual configuration using Concrete Structural Units (CSU) system was identified by the District Project Development Team (PDT). The third alternative has been developed for consideration and incorporation into the Mile Point Improvements Feasibility Study. The following Table provides a summary of three alternative plans under consideration and the associated cost for construction, O&M and PED:

		Relative Wall		
Alternative West	Construction	O&M Cost	PED	Total Project
Training Wall	Cost Estimate	Estimate (PW)	<u>Cost</u>	<u>Cost *</u>
1. Stone Wall	\$47,375,000	\$0	\$2,841,000	\$50,216,000
2. Geotube Wall	\$25,705,000	\$6,986,000	\$1,200,000	\$33,891,000
3. Concrete Struct	ural			
Unit Wall	\$28,896,000	\$0	\$1,200,000	\$30,096,000

These estimates reflect quantities and estimated unit costs through December 2010. Both Construction and forecasted PED estimated costs are under coordination and refinement through February-March 2011. One equal cost modification item is the additional localized fill in deep areas of the West Training Wall foundation using geotubes and/or geobags. This cost remains under development and applies equally to each alternative plan. Also, updated cost estimates will reflect Sources Sought input for alternatives structural systems, and the NED Plan Cost Schedule Risk Analysis (CSRA), in order to obtain a revised Cost Center of Expertise Project Cost Certification. This Risk Assessment will establish applied contingency using Concrete Structural Units. See Value Engineering Cost Estimates shown as Figures 9A through

<u>CURRENT PROJECT CONCEPTS</u>: Alternative 1, the initial Draft Feasibility Study Final NED Plan featured a combination of bedding and armor stone for the 4,250 LF wall. See the Mile Point Area Plan and West Training Wall Section shown in Figures 1 and 2. This stone training wall system was estimated at \$22,391,000. The estimated construction and PED cost for the Mile Point Improvements Project totals \$50,216,000 with this system.

Alternative 2, an alternative West Training Wall for the Mile Point Improvements Feasibility Study was developed to identify potential reductions in project cost. The alternative featured stacked Geotubes to replace the West Training Wall stone structure. The Geotube alternative training wall section, using three large-diameter stacked Geotubes, would serve as the initial dredge disposal containment system and secondarily as shoreline erosion protection along the nearly 4,000 FT closed gap between the current existing Great Marsh Island land features shown in Figure 3. The stacked Geotubes are placed with two Geotubes as a foundation (Placed on a scour apron) supporting a third top Geotube to achieve the elevation of +7.5 FT (+2.5 FT above MHW).

The original project plan also used single layer of Geotubes along the south side of the new marsh mitigation area. With this alternative, Geotubes are to be placed on both sides of the marsh restoration area with smaller Geotubes remaining on the south side. The 16-Inch dredging plant forecasted to be used for the project is complimentary for Geotube placement. Both Geotube applications will have a second fabric cover added to the top of the Geotube for extended UV protection. The corresponding ROM for the Geotube West Training Wall estimate is \$1,642,000, and is based on a barebones Geotube configuration with no additional protection applications such as stone or earth fill on the riverside. A minor adjustment for the south Geotube was also included in the cost update using the most current Geotube assembly and unit costs.

The total estimated initial construction and PED cost for the Mile Point Improvements Project totals \$26,905,000 with a Geotube system.

Risk evaluation for the three alternatives identified the riverside as being more critical and complicated with the stacked large-diameter Geotubes. A series of applicable risk exposure conditions were developed for life cycle cost estimating. Basic risks include UV degradation, vandalism and damage from debris and navigation impact exposure. It is assumed the geotubes would require a repair/replacement action on a five year cycle. It is considered that this would be coordinated with future O&M dredging cycles and the initial contract costs for the O&M project would fund equipment mobilization and dredging of maintenance material. A minor cost (\$7.50/CY above normal O&M dredge unit costs) would be applied to the Geotube restoration for dredge material placement (31,078 CY) to Mile Point for Geotube filling. The two upper and front Geotubes are at greater risk for damage and fatigue, although the bottom Geotube could also fail due to load stresses, damage from debris and potential exposure to navigation impact.

To identify potential life cycle cost, a future replacement factor was applied for replacement of the west training wall Geotubes at a five year period. The five year frequency was selected based on potential stress and damage failure and it also matched planned O&M dredge cycles in the project area. Total cost for each five year period replacement cycle is estimated as \$1,952,000. See the Life Cycle Cost Costs Calculations in Figure 8. The Geotube repair and replacement activities for a 50 year service period are estimated as \$6,986,000 in Present Worth dollars. The First Cost for the Geotube training wall is \$1,642,000, plus \$6,986,000 in PW O&M costs totals \$8,628,000. The total PW estimated construction and PED cost for the Mile Point Improvements Project totals \$33,891,000 with the Geotube system with O&M cost applied.

No additional annual O&M cost burden was applied as normal maintenance such as periodic inspection and vegetation control as these would be nearly equally to either stone, Geotubes, or CSU.

PROPOSED PROJECT SOLUTION: It is recommended that the project delivery team develop an Alternative 3 using a Concrete Structural Units (CSU) as alternative for the West Training Wall. The specific concrete structure will require development for project performance conditions at Mile Point. CSU's will need to provide both shoreline erosion protection and containment of dredge material placed within the Great Marsh Island salt marsh restoration area. They should also provide tidal connectivity for the salt marsh

mitigation area and plants. The performance of the CSU system could be an added environmental mitigation measurement effort to produce enhanced oyster and fish habitat and further water quality deliveries – these are not provided by Geotubes and would be more effectively provided by CSU system than natural stone.

Two options may be considered for development of the structural units for the West Training Wall. The first option would be the specific design of a structural unit for fabrication and placement by contractors. This would be developed by the design PDT during the PED phase. A second option would be the development of a clear detailed performance specification supporting development and delivery of an acceptable concrete training wall structural unit by plan holders. Typically this would provide an existing system, or structural unit, and would require documentation for performance and experience with placement in similar applications as Mile Point. To help the PDT identify potential existing systems, a Sources Sought Solicitation was issued seeking industry input for structural systems to develop a training wall feature for the Mile Point Navigation Improvements project. This Request for Information (RFI) remains open through early March 2011. The purpose of the request for information is to gather industry-wide feedback on alternative materials and systems that have been developed and used for coastal and river structures similar to the currently presented stone training wall structure. It is intended that with industry input providing various alternative structures, this will preclude approval for sole source procurement for single system or structural unit.

One response to the RFI was submitted by Living Shoreline Solutions, Inc. The Wave Attenuation Device System (WADS), developed by Living Shoreline Solutions, is recommended for review as a high performance and long term structural concrete system as an alternative to the Geotube and natural stone training wall systems. The WADS system has been identified as an effective shoreline erosion protection system with excellent performance in a wave energy regime. Recent regional projects include a 2004 WADS application for mitigation of storm damage to Saw Grass Point Salt Marsh, on Dauphine Island, Alabama, which was supported by the National Sea Grant College Program by NOAA. This application proved to be cost effective, as well as successful with delivery of erosion protection and sustaining of salt marsh, bird, fish and oyster habitat within the Mobile Bay estuary. With over 13 years of research & development and Peer Reviewed technologies with proven project success rates that are well documented.

Furthermore, the ph neutral marine concrete WADS structure provides a hard surface for potential oyster habitat. Approximately 20 oysters per square foot can be expected for submerged portions of the structures. This corresponds to approximately 1 million oysters for the West Training Wall. This level of performance should be also achievable with a new CSU unit. The WADS structures are hollow cast concrete with triangular windows that invites fish population of the structures both inside and nearby for nesting and refuge from predators. This further adds to the environmental interest for the project. The engineering performance and enhanced environmental deliveries can be studied for wider applications for other Jacksonville District coastal and navigation projects.

Information on Living Shorelines Solutions WADS units is provided in Figures 4, 5A and 5B, and is shown for background on the WADS use in a similar application. The West Training Wall is assumed to require a single row of opposing triangular structures placed at approximately elevation -2-FT for the full 4,250 LF of wall. The units would be approximately 9.5-FT high and each base side would be 15-FT. A total 567 units would be required. Some additional grading fill work is recommended to limit the final height of the units to 9.5-FT. A stone bedding layer placed over a geotextile fabric is provided for the foundation.

A modified structure may be adapted from the Reefball system, a well established concrete structure typically used for artificial reef and in mitigation deliveries of broad marine habitats. It is currently moving more into shoreline erosion protection in both bay and coastal applications. A specially designed 40 FT by 6.6 FT Reefball mat system is under development for use with the Miami-Dade Shoreline Demonstration project scheduled for placement this FY. The Reef Ball Foundation is a non-profit organization that functions as an international environmental protection and recovery of reef systems through coral rescue, propagation and transplant operations, mitigation projects, mangrove restorations and nursery development. Reef Ball also participates in education and outreach regarding environmental stewardship and coral reefs. The Reef Ball Foundation now operates all aspects of the business as a non-profit organization. By 2007, the foundation has deployed 550,000 reef balls worldwide in over 70 countries. A response to the Sources Sought request is expected to be submitted by Reef Innovations, the regional commercial manufacturer and point of contact for Reefball structures.

Information on Reefball systems is provided in Figures 6 and 7. The West Training Wall is assumed to require a double row of Reefball structures placed at approximately elevation -2-FT for the full 4,250 LF of wall. The wall would require approximately 802

units if placed on a diagonal or 1,133 units is placed parallel with the shoreline. Selection of the alignment will depend on unit performance and modeling. Some additional grading fill work is recommended to limit the final height of the units to 9.5-FT. A stone bedding layer placed over a geotextile fabric is provided for the foundation.

The project will be constructed through a general contractor with the CSU's or other structures as a performance specification item of work. The input for site specific design requirements of the CSU units would be by the PDT. If selected by the general contractor, the design of the alternative structural units would be included in the procurement action by the licensed dealer of any selected patented technology. The site specific design of other types of units would be by the contractor.

Estimated cost for the CSU alternative for the West Training Wall is \$4,937,000. This cost can further be refined during PED phase with broader project team participation and support by others with existing structural systems identified for possible use on the Mile Point project. For the present, the Life Cycle Cost for the CSU training wall is considered to be equal to the Stone Training Wall and are not further developed because future Life Cycle Costs for repair and replacement only applies to the Geotube system.

JUSTIFICATION: In summary, this recommended Concrete Structure Unit (CSU) or the selected commercial training wall structure should prove to be both cost effective and it provides the reliability for an 80- to 100-year training wall. It provides better tidal exchange to marsh area, and adds oyster and fish habitat over the other systems. Structural units can be casted near the project area and barged for placement on the prepared foundation described. The units to be used on both ends can also be reduced with change in existing elevations at both existing land features of Great Marsh Island. This could use reduced unit heights of approximately 5-FT over these portions of the training wall.

By design, the CSU or other viable system will be uniquely configured to remain stable in moderate to high wave energy environments. Wave energy attenuation can be delivered for desired project performance conditions. The near proximity of the Mile Point project site offers opportunities to easily monitor both environmental and technical performance of the training wall and marsh restoration. The data and lessons learned will have broad applications to coastal and navigation project district-wide. Identifying the use of the CSU system as an environmental and technical monitoring study effort along with the expected performance with an actual project should help justify

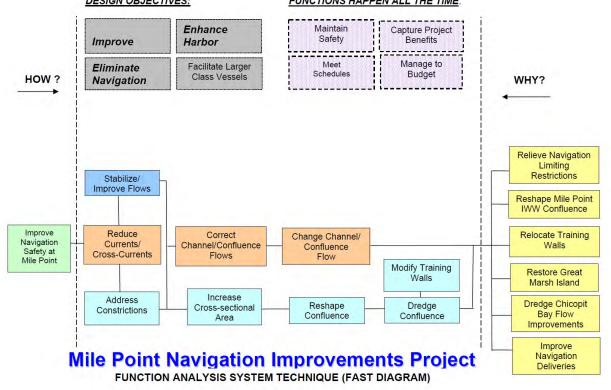
replacement alternatives using stone on other coastal and river navigation projects. Unlike some pilot projects with a limited period of performance, Mile Point will remain in service delivering benefits for many years.

Both periods of service and price comparisons for the three training wall alternatives is revealing. The stone training wall is the most expensive of the three alternatives by a significant measure. The original plan using stone, estimated as \$50,216,000, can be reduced to \$26,905,000 using a Geotube training wall system, initially with project first cost avoidance of \$23,311,000. The Geotube alternative represents a barebones containment alternative for placement of all dredge materials from the Mile Point Improvements Project. It assumes future repair and replacement would fall within O&M program coverage for the next 50 years. The Geotube alternative cost avoidance is reduced to \$16,325,000 when Present Worth costs for future repair and replacement cycles (estimated as \$6,986,000) is applied.

The estimated cost for the Mile Point Improvements Project using the CSU or acceptable commercial structure for the West Training Wall feature is \$30,096,000. This estimate is based on the December scope, materials and quantities and may represent an approximately 90% level of accuracy. The PDT will continue developing detailed costs through March 2011. Each of the three alternatives may be assumed to have the same level of accuracy. Adding approximately 10% would result with the following estimated costs:

1. Stone Wall -- \$50.216 million to \$55.234 million (No significant O&M cost risk).

2. Geotube Wall: -- \$33.891 million (\$25.705 million, plus \$6.986 million PW O&M) to \$37.280 million.


3. Concrete Structural Unit Wall -- \$30.096 million to \$33.106 million (No significant O&M cost risk).

Compared to the stone training wall alternative, approximately \$20,120,000 can be reduced from the stone training wall with use of the CSU system. The CSU alternative has an initial first cost increase of \$3,191,000 when compared to the Geotube training wall alternative; however, adjustments for future Geotube repair and replacement results in a reduced or net cost decrease for the WADS system of \$3,795,000. Therefore, the CSU training wall will result in a minor initial cost while delivering a lower life cycle cost. It has a broader habitat delivery than either the stone or Geotube. It has the possibility of broad application to regional coastal and navigation projects and placement with the Mile Point Project can help Jacksonville District realize more sustainable efficiencies and environmental effectiveness for many projects.

West Training Wall Value Engineering Function Analysis Lists (Verb-Noun Functions)

Primary Functions:	Secondary Functions:
Improve Navigation Safety	Resolve Navigation Restrictions
Open Confluence Constrictions	Dredge/Wider/Deeper Confluence
Reestablish River Shoreline	Backfill Great Marsh Island Breach
Reconnect Great Marsh Island	Contain Dredge Material
Establish Salt Marsh Mitigation Area	Protect Salt Marsh Remediation
Prevent Shoreline Erosion	Deliver Tidal Exchange to Marsh
Deliver Safe Navigation	Eliminate Navigation Restrictions

Mile Point Navigation Improvements Project FAST Diagram
DESIGN OBJECTIVES:
FUNCTIONS HAPPEN ALL THE TIME:

Mile Point Improvements Feasibility Study PDT/VE Team

Steve Ross, SAJ-DP-C	Richard Powell, SAJ-PD-PN
Paul Stodola, SAJ-PD-EA	Samantha Borer, SAJ-PD-PN
Steve Conger, SAJ-EN-DW	Brian Blake, SAJ-EN-C
Stephen Myer, SAJ-EN-GG	Brian Cornwell, SAJ-EN-WM
Jason McKinnon, SAJ-EN-GS	Paul Stroup, SAJ-EN-DS
Fred McAuley, SAJ-EN-T	

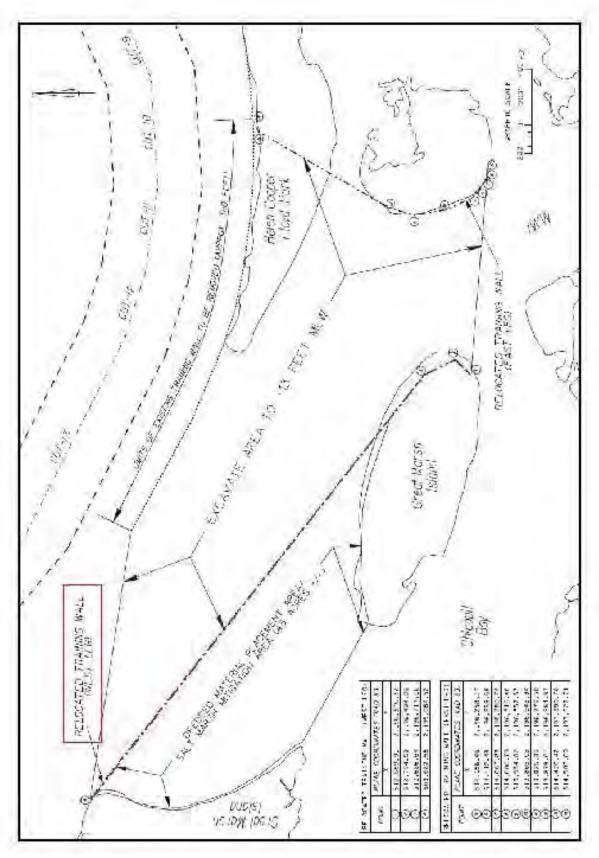


FIGURE 1: MILE POINT AREA PLAN WITH 4,250 LF WEST TRAINING WALL

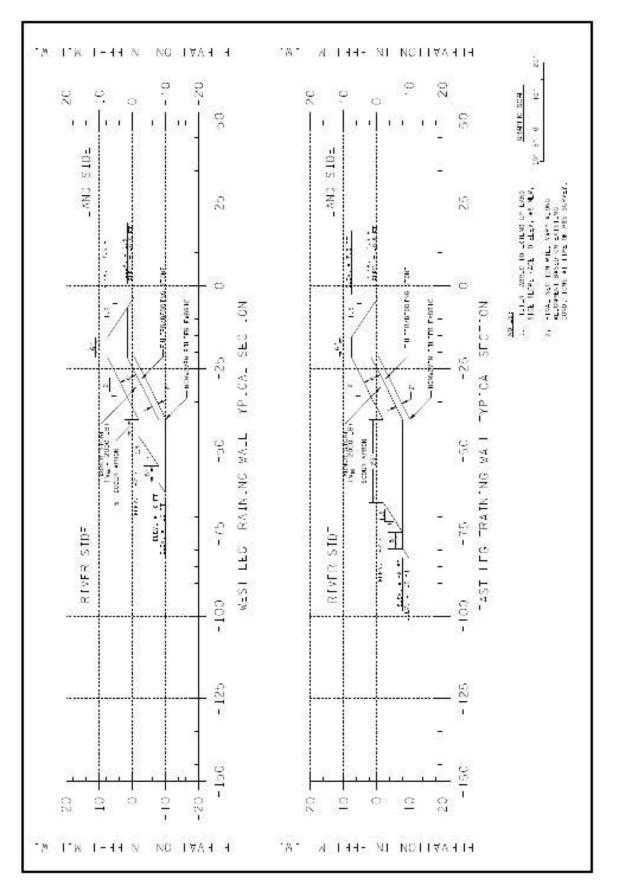
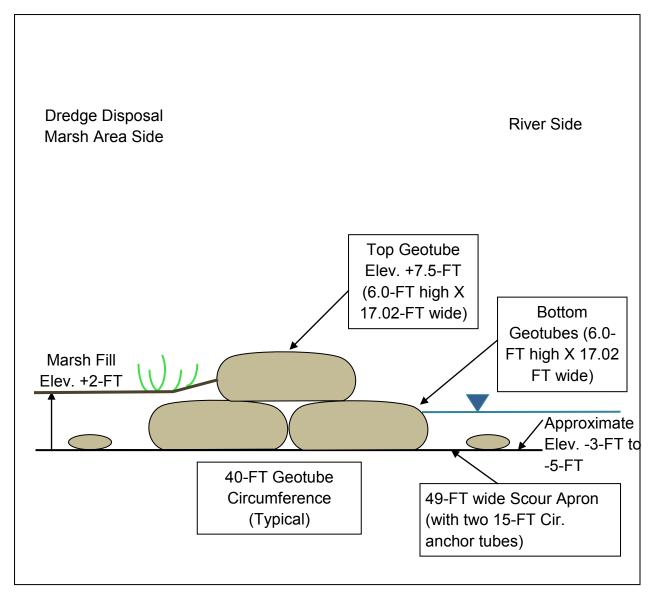
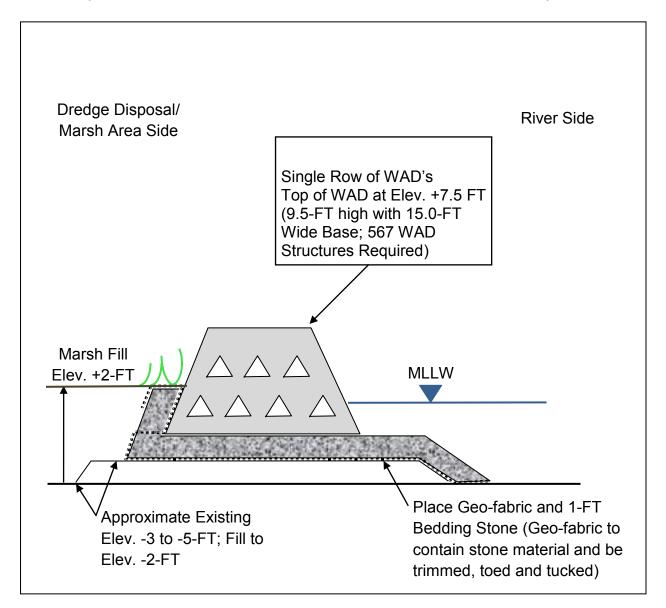




FIGURE 2: MILE POINT WEST TRAINING WALL SECTION

FIGURE 3: ALTERNATIVE MILE POINT WEST TRAINING WALL SECTION (APPROXIMATELY ~12-FT HIGH GEOTUBE SECTION)

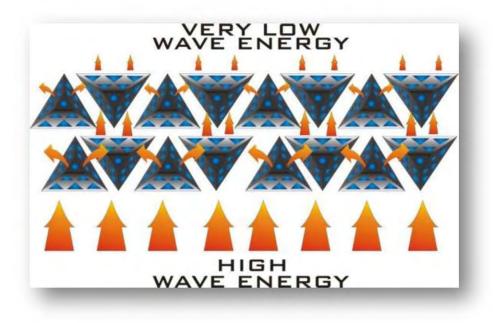


FIGURE 4: MILE POINT WEST TRAINING WALL WAVE ATTENUATION DEVICE SECTION (APPROXIMATELY 9.5-FT HIGH WAD STRUCTURE SECTION)

FIGURE 5A: EXAMPLE FOR SHORELINE PROTECTION WITH A HIGH ENERGY DOUBLE ROW WAVE BREAK WAVE ATTENUATION DEVICE APPLICATION (Living Shoreline Solutions, Inc.)

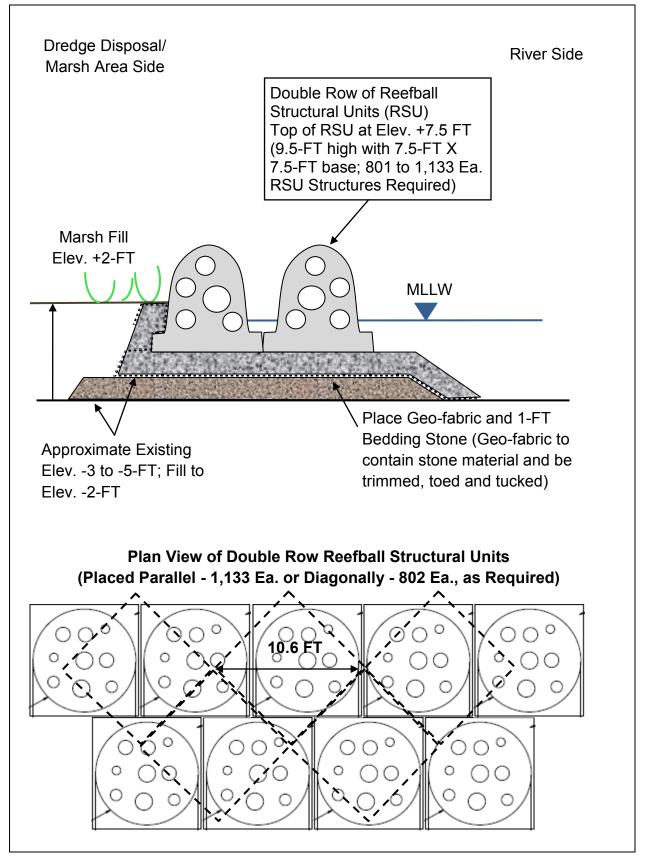


FIGURE 5B:EXAMPLE FOR SHORELINE PROTECTION AND FILL CONTAINMENT WITH WAD AND GEOTEXTILE FABRIC (Gulf Breeze, Florida – 2007)

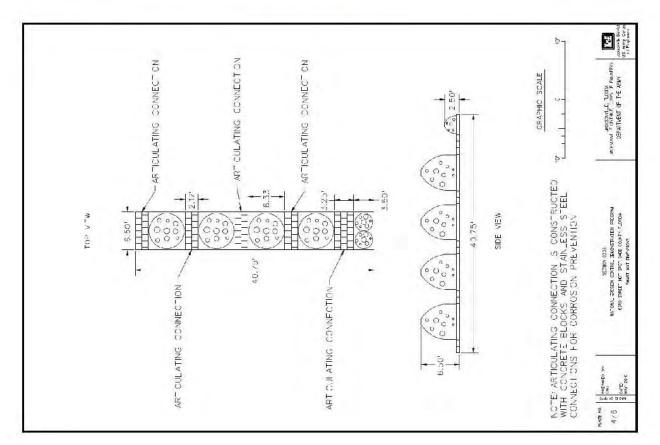

FIGURE 6: MILE POINT WEST TRAINING WALL REEFBALL STRUCTURAL UNIT SECTION (APPROXIMATELY ~9.5-FT HIGH RSU SECTION)

FIGURE 7: EXAMPLE FOR MILE POINT WEST TRAINING WALL REEFBALL STRUCTURAL UNIT SECTION APPLICATION

(http://www.reefball.org/)

FIG				OSTS CALCU	JLATIONS	-
				Wall Analysis for		
				Feasibility Study		
Alternative 1: West T	raining Wa	ll with Ston	e System vs. Alt	ernative 2: West T	raining Wall with	h Geotube
System						
			ems Service Life	e: 50-Years)		
ANNUAL PERCENTAC	GE RATE: 4	.375%	3			
				Iternative 1	Altern	
INITIAL COST			PRESEN	IT WORTH	PRESEN	T WORTH
Original Alternative 1						
Point Project with Sto	one Training	g Wall		\$50,216,000		
Alternative 2 Capital						400.005.00
Project with Geotube	Training W TOTAL	all	<u> </u>	\$50,216,000		\$26,905,00
50B	IUIAL			\$50,216,000		\$26,905,00
(Given: i = 4.375%)	1. 11	PRESENT	1			
(Given. 1 = 4.375%) SINGLE	YEAR	WORTH		PRESENT		PRESENT
EXPENDITURE		FACTOR	ESTIMATE	WORTH	ESTIMATE	WORTH
Replace Geotube	5	0.80727	\$0	\$0	\$1,952,174	\$1,575,92
Replace Geotube	10	0.65168	\$0 \$0	\$0 \$0	\$1,952,174	\$1,272,19
Replace Geotube	15	0.52608	\$0	\$0	\$1,952,174	\$1,027,00
Replace Geotube	20	0.42469	\$0	\$0	\$1,952,174	\$829,06
Replace Geotube	25	0.34284	\$0	\$0	\$1,952,174	\$669,27
Replace Geotube	30	0.27676	\$0	\$0	\$1,952,174	\$540,28
Replace Geotube	35	0.22342	\$0	\$0	\$1,952,174	\$436,15
Replace Geotube	40	0.18036	\$0	\$0	\$1,952,174	\$352,09
Replace Geotube	45	0.14560	\$0	\$0	\$1,952,174	\$284,23
	50	0.11754	\$0	\$0	\$0	\$
SALVAGE VALUE	0	0	\$0	\$0	\$0	\$
SUB	TOTAL	1	4	\$0	-1	\$6,986,23
(Given: i = 4.375%)		UNIT PMT	2			
ANNUAL	YEAR	PW		PRESENT	(s	PRESENT
EXPENDITURE	Q	FACTOR	ESTIMATE	WORTH	ESTIMATE	WORTH
	25	15.02087	\$0	\$0	\$0	\$
	50	20.17058	\$0	\$0	\$0	\$
	75	21.93609	\$0	\$0	\$0	\$
	100	22.54137	\$0	\$0	\$0	\$
SUB	TOTAL			\$0		\$
			(
TOTAL PRES				\$50,216,000		\$33,891,00
TOTAL LIFE C				-\$16,325,000		\$16,325,00
Annual O&M reflects ann						
Alternative	west train			Point Improveme	nts reasibility 5	tudy
		Operati	on and Mainten	ance Forecasi		
Origin	al Altornati	ve 1 Canita	L Cost Mile Poir	nt Project with Sto	ne Training Wa	11
	ent Activity/		Unit	Unit Cost	Quantity	Total
1	Sint Activity/	Action	Onit	Onit 00st	Quantity	\$
2						
3 Total			1	1		\$
						Ŷ
Alte	rnative 2 C	apital Cost	s: Mile Point Pro	ject with Geotube	Training Wall	
	ent Activity/		Unit	Unit Cost	Quantity	Total
1 Repair/repla			LF	\$386.21	4,250	\$1,641,39
2 Dredge mat			CY	\$7.50	41,438	\$310,78
3 Total	<u> </u>		21 C	-	,	\$1,952,17
						,
NOTES: Federal disc	count rate fo	r FY 2010 is	4.375% for 50-ye	ears.		
Repair/repla	cement of 1	00% of Geo	tubes each five ye	ears.		20
Geotube Fil	I Volume = 3	3.25 CY/LF	X 3 Geotubes X 4	,250 LF = 41,437.5	CY	20

FIGURE 8: LIFE CYCLE COST COSTS CALCULATIONS

FIGURE 9A: COSTS ESTIMATES

COST ESTIMATE WORKSHEET

DDODOSAL DESCRIPTION: Alternative 1. Mile Daint Nevigation Improvement Projects with West					
PROPOSAL DESCRIPTION: Alternative 1 - Mile Point Navigation Improvement Projects with West Training Wall with Stone System vs. Alternative 2 - West Training Wall with Geotube System					
	Thanking Wait with Stone System vs. Alterna		maining wai	with Geolube Sy	316111
		S - Alternati	vo 1		
	ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
1	Mob/Demob - Prep Work	LS	1	\$2,239,548.00	\$2,239,54
	Pipeline Dredging	LS	1	\$5,625,459.00	\$5,625,45
	Mile Pt Jetty Stone Removal	LS	1	\$1,957,059.00	\$1,957,05
	Stone Structures	LS	1	\$30,575,059.00	\$30,575,05
	Turbidity Monitoring	LS	1	\$275,103.00	\$275,10
	Endangered Spec Monitoring	LS	1	\$169,615.00	\$169,61
	L&D - Real Estate	LS	1	\$72,000.00	\$72,00
	Great Marsh Island Salt Marsh	LS	1	\$3,729,421.00	\$3,729,42
	Relocate Navigation Aids	LS	1	\$378,000.00	\$378,00
	PED	LS	1	\$2,841,490.00	\$2,841,49
11	Construction Mgt	LS	1	\$2,352,915.00	\$2,352,91
12	9				\$
13					9
14					\$
15					\$
16					\$
			Total Deletio	ns	\$50,215,66
	ADDITION	S - Alternati	ve 2		
	ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
1	Mob/Demob - Pipeline Dredging	LS	1	\$1,683,000.00	\$1,683,00
	Mile Pt Training Wall Mob/Demob	LS	1	\$503,000.00	\$503,00
	Mile Pt Training Wall Relocation	LS	1	\$1,295,000.00	\$1,295,00
	Mile Pt Training Wall Disposal	LS	1	\$615,000.00	\$615,00
	Mile Pt Training Wall Extension	LS	1	\$8,318,000.00	\$8,318,00
	Chicopit Bay Channel Dredging	LS	1	\$266,000.00	\$266,00
	IWW Dredging & Disposal	LS	1	\$4,156,000.00	\$4,156,00
	Great Marsh Island Geotube Containment	LS	1	\$2,731,000.00	\$2,731,00
	Construction Environmental Monitoring	Mo	6.80	\$63,970.59	\$435,00
	L&D - Real Estate	LS	0.00	\$72,000.00	\$72,00
	Relocate Navigation Aids	LS	1	\$369,000.00	\$369,00
	Great Marsh Island Salt Marsh Mitigation		1	\$3,662,000.00	\$3,662,00
	PED	LS	1	\$1,200,000.00	\$1,200,00
		LS			
	Construction Mgt	L3	I	φ1,000,000.00	\$1,600,00
15					<u></u>
			Total Additio	ns	\$26,905,00
			L		* 00.040.00
		Net Cost Sa			\$23,310,66
		Mark-ups	0.00%		
	Alternate 2 Total Cost Savings (Minus O&M PW) \$16,324				
		e 2 Present Worth (O&M Replacement) \$6,986,2			
	Alternate 2 Total First Cost, Plus O&M (PW) \$33,891,23				
	Mark-ups: Gen. Contractor Mark-up - Include		es (Field Off	ce/Home Office/F	Profit/Bond);
*	Contingencies - 26.0% are included in Unit F				
**	Repair/replacement of 100% of Geotubes ea	ch five years.			

FIGURE 9B: COSTS ESTIMATES

COST ESTIMATE WORKSHEET

PROPOSAL DESCRIPTION: Alternative 1 - Mile Point Navigation Improvement Projects with West Training Wall with Stone System vs. Alternative 3 - West Training Wall with Concrete Structural Unit (CSU)

=	ITEM	UNITS	QUANTITY	UNIT COST	TOTAL
1	Mob/Demob - Prep Work	LS	1	\$2,239,548.00	\$2,239,548
2	Pipeline Dredging	LS	1		\$5,625,459
	Mile Pt Jetty Stone Removal	LS	1		\$1,957,059
	Stone Structures	LS	1	\$30,575,059.00	\$30,575,059
5	Turbidity Monitoring	LS	1	\$275,103.00	\$275,103
	Great Marsh Island Salt Marsh	LS	1	\$3,729,421.00	\$3,729,421
	Endangered Spec Monitoring	LS	1	\$169,615.00	\$169,615
	L&D - Real Estate	LS	1	\$72,000.00	\$72,000
9	Relocate Navigation Aids	LS	1	\$378,000.00	\$378,000
	PED	LS	1	\$2,841,490.00	\$2,841,490
11	Construction Mgt	LS	1	\$2,352,915.00	\$2,352,915
12		1.1	1	1	\$0
13				F	\$0
14				P	\$0
15				h	\$0
16					\$0
			Total Deletio	ns	\$50,215,669
	ITEM	IS - Alternati UNITS	QUANTITY	UNIT COST	TOTAL
			QUANTITY		
	Mob/Demob - Pipeline Dredging	LS	1	\$1,683,144.00	\$1,683,144
	Mob/Demob - Stone Work	LS	1	\$460,733.00	\$460,733
_	Clear/Grubbing	Ac	13		\$42,349
	Pipeline Dredging	LS	1	\$5,491,519.00	\$5,491,519
	Mile Pt Jetty Stone Removal	CY	14,600		\$1,910,410
	S-2 Filter Stone Placement	CY	11,900	\$199.78	\$2,377,382
	S-2 Armor Stone Placement	CY	12,300		\$5,940,654
	Fill & Grade West Train Wall Foundation	CY	9,900	\$6.25	\$61,875
	Bedding Stone	CY	5,000		\$1,008,950
-	Geotextile fabric	SY	20,300	\$12.04	\$244,412
-	CTWS Containment Structures	Ea	567	\$6,396.00	\$3,626,532
	Turbidity Monitoring	Mo	6.80	\$39,493.11	\$268,553
	Endangered Spec Monitoring	Mo	6.80	\$24,349.54	\$165,577
	L&D - Real Estate	LS	1	\$72,000.00	\$72,000
	Relocate Navigation Aids	LS	1	· · · · · · · · · · · · · · · · · · ·	\$369,000
	Great Marsh Island Mitigation Salt Marsh	LS	1	<u> </u>	\$3,661,990
	PED	LS	1	<u> </u>	\$1,200,000
18	Construction Mgt	LS	1	\$1,716,003.00	\$1,716,003
			Total Additio	ns	\$30,301,083
-					
	Alternate 3	Net Cost Sa	vings		\$19,914,586
		Net Cost Sa Mark-ups	vings 0.00%		\$19,914,586 \$0

 Alternate 3
 Total First Cost (No O&M Increase)
 \$30,301,083

 Mark-ups: Gen. Contractor Mark-up - Included in Unit Prices (Field Office/Home Office/Profit/Bond);
 * Contingencies - 26.0% are included in Unit Prices.

APPENDIX A-2

COST ENGINEERING

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

A. CC	OST ESTIMATES	
A.1	GENERAL INFORMATION	
A.1.1	Recommended Alternative Plans	
A.1.2	Construction Cost	
A.1.3	Non-construction Cost	
A.1.4	Plan Formulation Cost Estimates	
A.1.5		
A.1.6	Total Project Cost Summary	
A.2	PLAN FORMULATION COST ESTIMATES	
A.3	MCACES Cost Estimate	
A.4	PROJECT SCHEDULE	
A.5	RISK AND UNCERTAINTY ANALYSIS	
A.5.1	Risk Analysis Methods	
A.5.2		
A.6	TOTAL PROJECT COST SUMMARY	
A.7	TOTAL PROJECT COST SUMMARY WITH COST RISK ANALYSIS,	
CC	ONTINGENCY AND SCHEDULE ANALYSIS ESCALATION	
A.8	COST DX TPCS CERTIFICATION	C-13

APPENDED TO APPENDIX A-2

APPENDIX A-2A– PROJECT COST AND SCHEDULE RISK ANALYSIS REPORT

A. COST ESTIMATES

A.1 GENERAL INFORMATION

Corps of Engineers cost estimates for planning purposes are prepared in accordance with the following guidance:

- Engineer Technical Letter (ETL) 1110-2-573, Construction Cost Estimating Guide for Civil Works, 30 September 2008
- Engineer Regulation (ER) 1110-1-1300, Cost Engineering Policy and General Requirements, 26 March 1993
- ER 1110-2-1302, Civil Works Cost Engineering, 15 September 2008
- ER 1110-2-1150, Engineering and Design For Civil Works Projects, 31 August 1999
- ER 1105-2-100, Planning Guidance Notebook, 22 April 2000, as amended
- Engineer Manual (EM) 1110-2-1304 (Tables revised 31 March 2009), Civil Works Construction Cost Index System, 31 March 2000
- CECW-CP Memorandum For Distribution, Subject: Initiatives To Improve The Accuracy Of Total Project Costs In Civil Works Feasibility Studies Requiring Congressional Authorization, 19 Sep 2007
- CECW-CE Memorandum For Distribution, Subject: Application of Cost Risk Analysis Methods To Develop Contingencies For Civil Works Total Project Costs, 3 Jul 2007
- Cost and Schedule Risk Analysis Process (CSRA) Guidance, 17 May 2009

The goals of the cost estimating for the Duval County, Jacksonville Harbor (Mile Point) Navigation Study are to present a Total Project Cost (construction and non-construction costs) for the recommended plans at the current price level to be used for project justification/authorization and to project costs forward in time for budgeting purposes. In addition, the costing efforts are intended to produce a final product (cost estimate) that is reliable and accurate and that supports the definition of the Government's and the non-Federal sponsor's obligations. The cost estimating effort for the study also yielded a series of alternative plan formulation cost estimates for decision making. The final set of plan formulation cost estimates used for plan selection rely on construction feature unit pricing and are prepared in Civil Works Breakdown Structure (CWBS) format to the sub-feature level. The cost estimate supporting the National Economic Development (NED) plan (Recommended Plan/Locally Preferred Alternative Plan) is prepared in MCACES/MII format to the CWBS sub-feature level. This estimate is supported by the preferred labor, equipment, materials and crew/production breakdown. A fully funded (escalated for inflation through project completion) cost estimate, the Baseline Cost Estimate or Total Project Cost Summary, has also been developed. A risk analysis was prepared that addresses uncertainties in and sets contingencies for the Recommended Alternative Plans cost items. The final Cost Schedule Risk Analysis Report produced by the Walla Walla District Cost Center of Expertise is appended to this appendix.

A.1.1 **Recommended Alternative Plans**

The final Recommended Plan (NED and Locally Preferred Alternative) were chosen by the Project Delivery Team according to Cost Effectiveness/Incremental Cost Analysis procedures and resulted directly from the plan formulation described above. The Economics Appendix fully describes the plan selection. The scope of work for the Recommended Alternative Plans is found in Appendix A, Engineering. The MCACES/MII cost estimate for the Recommended Alternative Plans (Section B.3, below) is based on that scope and is formatted in the CWBS. The notes provided in the body of the estimate detail the estimate parameters and assumptions. These include pricing at the Fiscal Year 2011 price level (1 October 2010-30 September 2011). For project justification purposes the estimate cost are categorized under the appropriate CWBS code and include both construction and nonconstruction costs.

The construction costs fall under the following feature codes:

- 02 Relocations
- 06 Fish and Wildlife Facilities
- 12 Navigation Ports and Harbors

The non-construction costs fall under the following feature codes:

- 01 Lands and Damages
- 30 Planning, Engineering and Design
- 31 Construction Management

A.1.2 **Construction Cost**

The MCACES/MII estimate on the final Recommended Plan contains contingencies as noted in the estimate (below). These contingencies were determined as a result of the risk analysis. Additional information follows on the risk analysis. Major risk factors are shown in the sensitivity analyses.

A.1.3 Non-construction Cost

Non-construction costs include Real Estate, Planning, Engineering and Design (PED), and Construction Management (Supervision and Administration, S&A). Real Estate costs were provided by Real Estate Division. These costs are best described in the Real Estate Appendix, Appendix D. They include lands costs and administrative costs and are distinguished as non-Federal sponsor costs or government costs. Contingencies for the Real Estate costs were also determined during risk analysis based on direct input from the Real Estate PDT representative. The Real Estate risk analysis is further described below. Planning, Engineering and Design costs are broken down into Preconstruction, Engineering and Design (PED), or preparation of contract plans and specifications; Engineering During Construction (EDC); and the Project Implementation Report (PIR). PED costs were solicited from Engineering Division via the Project Manager, as suggested by the guidance Construction Management costs was solicited from Construction-Operations Division via the Project Manager, again as suggested by the guidance. Eight percent of total construction cost is used as the rate for Construction Management costs for the cost estimate for the Recommended Plan. This percentage is based on actual funds spent for construction management on past contracts. When this percentage is calculated by Construction-Operations Division for planning projects it is itemized to show amounts allocated for each task anticipated to occur during construction. Only the gross percentage is shown herein.

The main report details both cost allocation and cost apportionment for the Federal government and the non-Federal sponsor. Also included in the main report are the non-Federal sponsor's obligations (items of local cooperation).

A.1.4 **Plan Formulation Cost Estimates**

For the plan formulation cost estimates, unit prices for each major or variable construction element were developed in MCACES/MII. These unit prices were entered into spreadsheets that differentiated each plan by the quantities required to construct the plans. Designs and quantities for the construction elements were provided to Cost Branch by the Engineering Technical Lead (see the Engineering Appendix for construction methods, design assumptions and design data). Preconstruction, Engineering and Design costs and Construction Management costs were calculated using percentages at this level of estimating.

The plan formulation process for this study involved numerous iterations. Since the costs for the plans were calculated via spreadsheet software it was fairly simple to adjust them as time went by (for example, as unit prices increased due to changes in price level), as plan components changed and as plans were added or removed from consideration. Refer to the Economics Section in the Main Report for the final Plan Formulation cost tables.

A.1.5 **Construction Schedule**

A construction schedule was prepared by the Engineering PDT in conjunction with the Planning Technical Lead and the construction-operations team member that reflected all project construction components. The schedule considered not only durations of individual components but also timing of construction contracts. This schedule was coupled with the project schedule in preparation for the generation of the Total Project Cost Summary as well as for the completion of the risk analysis. The construction schedule will change as design of the project proceeds in the plans and specifications phase and then it will change again when the contract is awarded and the contractor provides his schedule, which may be based on multiple crews with shift work and overtime. Both the construction schedule and the project schedule are provided below. The official schedule is the project schedule and it is given precedence herein wherever a conflict appears between these two schedules.

A.1.6 **Total Project Cost Summary**

The Total Project Cost Summary includes escalation through project completion. The cost estimate for the Recommended Plan is prepared with an identified price level date. Inflation factors are used to adjust the pricing to the project schedule. This estimate is known as the Fully Funded Cost Estimate or Total Project Cost Summary. It includes all Federal and non-Federal costs: Lands, Easements, Rights of Way and Relocations; construction features; Preconstruction Engineering and Design; Construction Management; Contingency; and Inflation.

A.3. MCACES Cost Estimate

U.S. Army Corps of Engineers Project : JHFMILEPT2011-5-Final NED Plan FY11 Mile Point FY-11 NED Plan Baseline Cost Estimate

Title Page

(Incorporating Cost Review Comment changes March 2011) Revised Final NED Plan - Alternative VE-3B - Concrete Structural Units System VE Alternative Feasibility Study

Mile Point Improvements,

Jacksonville Harbor,

Estimated by Cost Engineering Branch Designed by Jacksonville District Prepared by B. Blake Preparation Date 3/24/2011 Effective Date of Pricing 3/24/2011 Estimated Construction Time 465 Days This report is not copyrighted, but the information contained herein is For Official Use Only.

Library Properties	i
Project Notes	ii
Project Cost Summary Report	1
Alternative VE-3B with Chicopit Bay Flow Improvement Channel	1
Construction Cost	1
02 Relocations	1
0203 Aids To Navigation	1
06 Fish and Wildlife Facilities	1
0603 Wildlife Facilities & Sanctuary	1
12 Navigation Ports & Harbors	1
1202 Harbors	1
Non Construction Cost	1
01 Lands and Damages	1
0118 General Revalutation Report(GRR)	1
30 Planning, Engineering and Design	1
3018 General Reevaluat'n Report (GRR)	1
31 Construction Management	1
3123 Construction Contracts	1
Contract Cost Summary Report	2
Alternative VE-3B with Chicopit Bay Flow Improvement Channel	2

Construction Cost	2
02 Relocations	2
0203 Aids To Navigation	2
06 Fish and Wildlife Facilities	2
0603 Wildlife Facilities & Sanctuary	2
12 Navigation Ports & Harbors	2
1202 Harbors	2
Non Construction Cost	2
01 Lands and Damages	2
0118 General Revalutation Report(GRR)	2
30 Planning, Engineering and Design	2
3018 General Reevaluat'n Report (GRR)	2
31 Construction Management	2
3123 Construction Contracts	2
Project Direct Costs Report	3
Alternative VE-3B with Chicopit Bay Flow Improvement Channel	3
Construction Cost	3
02 Relocations	
0203 Aids To Navigation	
06 Fish and Wildlife Facilities	

0603 Wildlife Facilities & Sanctuary	3
12 Navigation Ports & Harbors	3
1202 Harbors	3
on Construction Cost	3
01 Lands and Damages	3
0118 General Revalutation Report(GRR)	3
30 Planning, Engineering and Design	3
3018 General Reevaluat'n Report (GRR)	3
31 Construction Management	3
3123 Construction Contracts	3

Designed by

Jacksonville District

Estimated by Cost Engineering Branch

Prepared by B. Blake

Direct Costs

LaborCost EQCost MatlCost SubBidCost CEDEP OTHER Design Document Feasibility Study - Revised Final NED Plan Document Date 1/21/2011

> District Jacksonville Contact Steve Conger, Ext. 1601

Budget Year 2011 UOM System Original

Timeline/Currency

Preparation Date 3/24/2011 Escalation Date 10/1/2010 Eff. Pricing Date 3/24/2011 Estimated Duration 465 Day(s)

> Currency US dollars Exchange Rate 1.000000

Costbook CB08EB: MII English Cost Book 2008

Labor LFL2010: Labor_Florida_2010B

Labor Rates

LaborCost1 LaborCost2 LaborCost3 LaborCost4

Equipment EP07R03: MII Equipment Region 3r 2007 Note: Price quote for off-road diesel from Gate Petroleum, Jacksonville, FL. on 3 March 2011.

03 SOUTHEAST

Sales Tax 8.50 Working Hours per Year 1,530 Labor Adjustment Factor 1.00 Cost of Money 2.63 Cost of Money Discount 25.00 Tire Recap Cost Factor 1.50 Tire Recap Wear Factor 1.80 Tire Repair Factor 0.15 Equipment Cost Factor 1.00 Standby Depreciation Factor 0.50

Fuel

Electricity 0.089 Gas 3.550 Diesel Off-Road 3.240 Diesel On-Road 3.550

Shipping Rates

Over 0 CWT 10.26 Over 240 CWT 9.59 Over 300 CWT 8.41 Over 400 CWT 7.64 Over 500 CWT 4.49 Over 700 CWT 4.36 Over 800 CWT 4.99

Date Author Note

10/29/2010 B. Blake Concrete Structural Units Western Training Wall VE Alternative Plan.

Reference draft VE Study Plan provided by CESAJ-EN-T/F. McAuley, District VE, for subject VE alternative plan.

The plan includes the use of concrete structural modules (WADS) or equivalent concrete structural units (i.e., reef balls, etc) to construct an alternative Training Wall system in lieu of the Armor Stone system used in the Final NED Plan for the Western Training Wall feature.

The WADS units are provided by Living Shoreline Solutions, Inc. A price quote for the manufacture and installation of the WADS for the subject VE Study cost estimate was provided by Mr. Thomas J. Brown, CEO, to Mr. McAuley during a telephone conversation on 28 October 2010.

The WADS or equivalent concrete structural units will be placed only the same alignment that was used in the design of the Armor Stone training wall based on the dimensions presented in the draft VE Study Plan. This will include the placement of geotextile fabric and a bedding stone foundation to be constructed prior to structure placement by the Prime Contractor.

VE Plan quantity estimates (per CESAJ-EN-T email dated 29 October 2010).

567 WADS units required - 10' high by 15' base. Estimated cost for forming and placement of WADS is \$1,000 each, plus GC mark-up and contingencies.

Additional fill by dredge (above that required for Geotubes) and drag-bar to elevation -2': (4,250' long X 20' wide X 2' thick) = 6,500 CY.

Stone bedding: $4,250' \log X 30'$ wide X 1' thick = 9,500 CY.

Geotextile: 4,250' long X 43' wide = 20,300 SY.

Assumed the same total construction time for this plan is the same as the previous Geotube Berm plan alternative for the VE Study cost estimate or 465 days.

- 12/6/2010 B. Blake Changed the contingency from 23 percent back to 26 percent which was the NED Plan CSRA based contingency. This in order to do equal comparative cost estimates of VE Plan Alternatives.
- 12/9/2010 B. Blake Revised quantities for the concrete units construction provided by the VE/F. McAuley on 7 December 2010.

The changes were made to the following construction components.

1. Sub Bottom Preparation - from 6,500 cy to 9,900 cy.

2. Bedding Stone Foundation - from 9,500 cy to 5,000 cy.

1/19/2011 B. Blake Revised Final NED Plan Estimate including Profit and CSRA Contingency.

The revised scope of work including the Concrete Structural Units VE alternative for the Great Marsh Island Western Training Wall was provided by the ETL/S. Conger via email dated 17 December 2010, and the cost for the units (WADS) was provided by the District VE/F. McAuley via email dated 23 November 2010.

Change to Scope of Work for the Great Marsh Island Western Leg Training Wall as follows.

1. 567 10' x 15' Concrete Structural Units placed interlocked along the 4,250 lf length of the planned Training Wall system.

Date Author Note

2. 40,500 cyds of bottom grading for the Training Wall foundation.

3. 32,000 syds of geotextile bag material to contain the graded foundation material within the deeper holes located along the limits of the Training Wall.

A Source Sought RFI solicitation was completed 28 January 2011 that indicated that the Living Shoreline Solutions Wave Antenuation System (WADS) was the highest rated system available from industry for the construction of the Concrete Structural Units Training Wall. For this reason the WADS system and cost are used in the final NED Plan estimate. Other systems including Reef Ball units, etc. were also submitted following an extension to the RFI solicitation date along with two other proposals that may provide competitive alternatives that could be further evaluated during the PED and contract solicitation phase of the project to avoid sole sourcing.

2/24/2011 B. Blake Updated the PED costs based on revised PDT input period of 14-24 February 2011 and final revision submitted by the PM/S. Ross on 28 February 2011.

Also updated all material costs with updated price quotations in February 2011.

Refer to separate project and construction schedule presented in the Cost Engineering Appendix.

Final project contingency was developed based on a revised Cost Schedule Risk Analysis (CSRA) based on updated PDT input including consideration of the revised scope of work for the Eastern Training Wall Feature.

The contingency is not included in the Baseline Cost Estimate and will be applied separately in the Final Plan updated Total Project Cost Summary (TPCS) as part of obtaining the update Cost DCX Certification.

3/21/2011 B. Blake Revised estimate to incorporate Cost DCX Independent Review Comments submitted via Dr. Checks by Joe Ellsworth/CESAM on 14 March 2011.

Comment Changes as follows:

1. Revised equipment fuel rates in MII and CEDE as per comment 3825212.

2. Removed extra contingency applied to the Mitigation Monitoring cost as per comment 3833489.

3. Revised the contractor Bond rate as per comment 3833490.

4. Revised the Relocation cost for Aids to Navigation based on updated cost input from the U.S. Coast Guard, 7th District ATON Office, Mr. Joe Embress on 21 March 2011, as per comment 3833501.

5. Updated the Mobilization/Demobilization cost for the Structural (Stone) work based on an itemized cost breakdown as per comments 3833502 and 3833504.

6. Added note to the Geotube installation cost item to explain the volume of the tubes and necessary quantity of dredge material needed to fill them, as per comment 3833505.

7. Added note to the Water Dam installation cost item to explain the basis of cost being a single supplier as per comment 3833510.

8. Added additional notes to the cost items utilizing quantity links and conversion as per comment 3833512.

9. Revised the stone weight conversion based on conversation with the project ETL/S. Conger to use 1.838 tons per cubic yard for Armor Stone verses previous 1.893 tons per cubic yard assumed in the estimate, as per comment 3833514.

Date Author Note

Construction Quantites from the final Draft Report Engineering Appendix provided by the ETL on 28 Jan 2011.

Clearing and Grubbing

3/24/2011 B. Blake Revised Mitigation Construction Plan for the Oyster Habitat Construction as per email from the Environmental PDT representative/Paul Stodola on 24 March 2011 in response to Cost Review comments submitted by CESAM/J. Ellsworth via Dr. Checks on 14 March 2011.

Comment 3833489.

Reference MII, feature 06, Monitoring Cost is priced including a 25% contingency per year. Contingency Cost should only be included in the Total Project Cost Summary. Same comment applies to the Planting Cost. From the notes it appears the quantity and unit price includes contingency. Also the quantity and unit cost appears to be based on Sep 2008 price level. Cost should be updated to the effective date of the MII estimate. Submitted By: Joseph Ellsworth (251-690-2628). Submitted On: 14-Mar-11

RESPONSE: Concur. Contingency costs for monitoring and planting will only be included in the Total Project Cost Summary. Appropriate revisions will be made including updating the costs.

Comment 3833494.

Oyster shell material is \$27.50 per ton as quoted by Gulf Coast Aggregates per CESAJ-PD-ES/P. Stodola appears to be somewhat low, especially for such a small quantity? Submitted By: Joseph Ellsworth (251-690-2628). Submitted On: 14-Mar-11

RESPONSE: We are in the process of updating the cost. We re-contacted Gulf Coast Aggregates and their price is now \$35 per ton of fossilized oyster shell, and this does not include delivery. They are sending us a quote for delivery to our project area. Some of our recent contacts have suggested that fossilized oyster shell should not be used for oyster restoration projects. They claim that spats appear to be more attracted, based on chemical cues, to recently shucked shell. A larger oyster shucking house on the east coast of Florida has quoted us a price of \$20/cubic yard, and this again does not include delivery. In this case, we would have to provide transport.

Comment 3833515.

Plant cost at \$5.00 per each appears to be somewhat high. Recent pricing for a Gulf Coast project Plant cost at \$5.00 per each appears to be somewhat high. Recent pricing for a Gulf Coast project was in the \$3.00 to \$3.50 range. Re-evaluate and revise as needed. Notes indicate effective pricing is 22 Sep 2008. Submitted By: Joseph Ellsworth (251-690-2628). Submitted On: 14-Mar-11

RESPONSE: We have received an updated quote of \$3-\$4 per plant, installed. Based on our discussions, we are now proposing to use commercially grown plants rather than transplants.

Additional response from CESAJ-PD-EC/P. Stodola via email dated 24 March 2011.

Brian, as we discussed, we would like to change the scope of work on the oyster mitigation. We propose to use 10 cubic yards of shucked oyster shell (\$20 cubic yard), and the shell would be placed in 10 separate piles within one of our created tidal channels. The shell would come from St. Augustine, and we would have to determine transport costs as well as placement costs. Please let me know if you need anything else.

Date Author Note

3/24/2011 B. Blake Cost for Relocation of Aids to Navigation.

The U.S. Coast Guard, 7th District ATON office confirmed that the previous 2008 cost of \$300,000 was still the cost for the project. The USCG POC was that provided the confirmation via email on 24 March 2011 was Charlie.P.Pantelakos@uscg.mil.

3/24/2011 B. Blake Final Project Contingency.

The updated Cost Schedule Risk Analysis (CSRA) produced a final plan total project cost contingency of 29 percent. The contingency in not included in th MII estimate but will be applied separately in the Total Project Cost Summary TPCS to be included in the final report Cost Engineering Appendix.

The CSRA Report will be included as supplemental appendix to the Cost Engineering Appendix in the final report.

Description	Quantity	UOM	ContractCost	Escalation	Contingency	ProjectCost
Project Cost Summary Report – CWWBS SubFeature Level 2			27,660,467	0	0	27,660,467
Alternative VE-3B with Chicopit Bay Flow Improvement Channel	1.00	LS	27,660,467	0	0	27,660,467
Construction Cost	1.00	LS	24,593,008	0	0	24,593,008
02 Relocations	1.00	LS	327,487	0	0	327,487
0203 Aids To Navigation	1.00	LS	327,487	0	0	327,487
06 Fish and Wildlife Facilities	1.00	LS	2,348,606	0	0	2,348,606
0603 Wildlife Facilities & Sanctuary	1.00	LS	2,348,606	0	0	2,348,606
12 Navigation Ports & Harbors	1.00	LS	21,916,916	0	0	21,916,916
1202 Harbors	1.00	LS	21,916,916	0	0	21,916,916
Non Construction Cost	1.00	LS	3,067,459	0	0	3,067,459
01 Lands and Damages	1.00	LS	75,322	0	0	75,322
0118 General Revalutation Report(GRR)	1.00	LS	75,322	0	0	75,322
30 Planning, Engineering and Design	1.00	LS	1,562,112	0	0	1,562,112
3018 General Reevaluat'n Report (GRR)	1.00	LS	1,562,112	0	0	1,562,112
31 Construction Management	1.00	LS	1,430,025	0	0	1,430,025
3123 Construction Contracts	1.00	LS	1,430,025	0	0	1,430,025

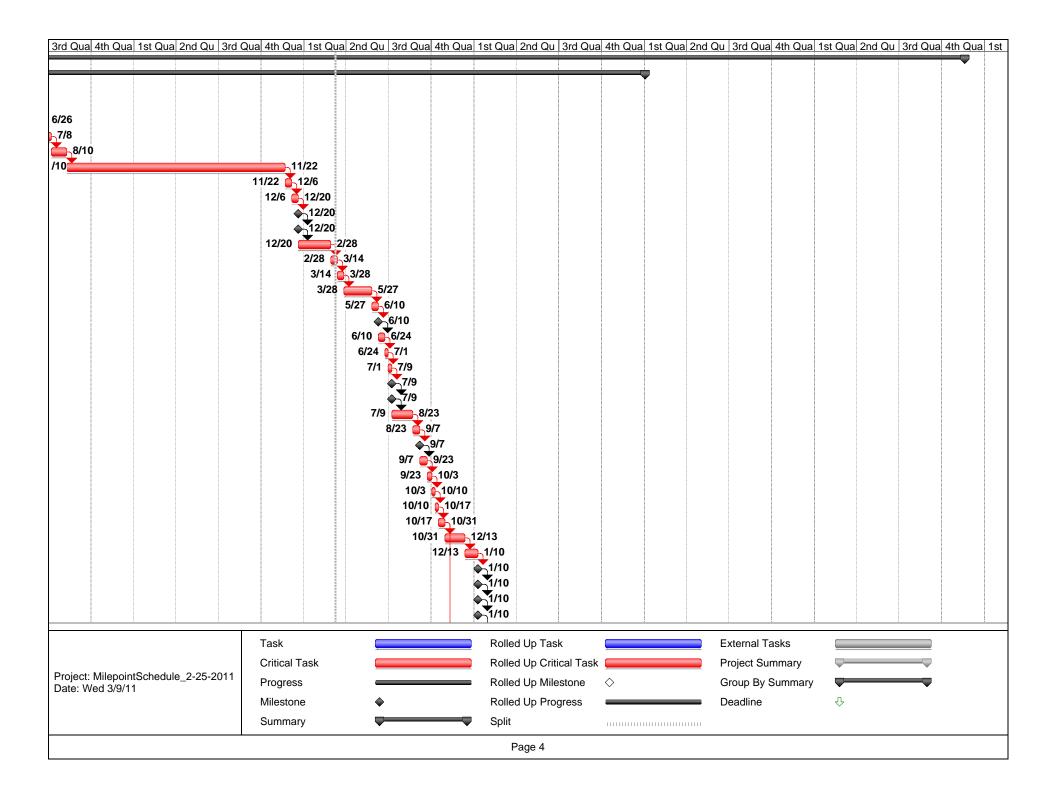
Contract Cost Summary Report Page 2

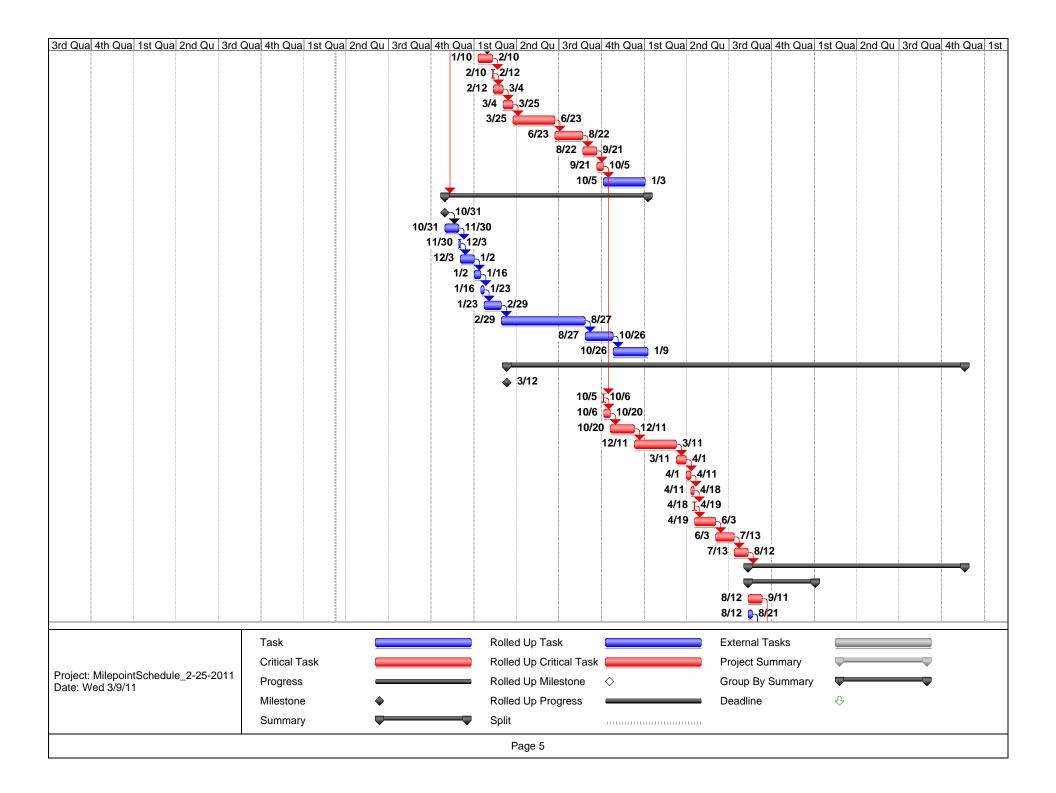
Description	Quantity	UOM	Contractor	DirectCost	SubCMU	CostToPrime	PrimeCMU	ContractCost
Contract Cost Summary Report- CWWBS SubFeature Level 2				21,295,857	3,076,382	24,372,239	3,288,227	27,660,467
Alternative VE-3B with Chicopit Bay Flow Improvement								
Channel	1.00	LS		21,295,857	3,076,382	24,372,239	3,288,227	27,660,467
Construction Cost	1.00	LS		18,485,857	3,076,382	21,562,239	3,030,769	24,593,008
02 Relocations	1.00	LS	Non-Construction	300,000	0	300,000	27,487	327,487
0203 Aids To Navigation	1.00	LS	Non-Construction	300,000	0	300,000	27,487	327,487
06 Fish and Wildlife Facilities	1.00	LS		1,741,357	410,125	2,151,482	197,124	2,348,606
			01.03 Environmental					
0603 Wildlife Facilities & Sanctuary	1.00	LS	Subcontractor	1,741,357	410,125	2,151,482	197,124	2,348,606
12 Navigation Ports & Harbors	1.00	LS		16,444,500	2,666,258	19,110,757	2,806,158	21,916,916
1202 Harbors	1.00	LS	01 Prime Contractor	16,444,500	2,666,258	19,110,757	2,806,158	21,916,916
Non Construction Cost	1.00	LS	Non-Construction	2,810,000	0	2,810,000	257,459	3,067,459
01 Lands and Damages	1.00	LS	Non-Construction	69,000	0	69,000	6,322	75,322
0118 General Revalutation Report(GRR)	1.00	LS	Non-Construction	69,000	0	69,000	6,322	75,322
30 Planning, Engineering and Design	1.00	LS	Non-Construction	1,431,000	0	1,431,000	131,112	1,562,112
3018 General Reevaluat'n Report (GRR)	1.00	LS	Non-Construction	1,431,000	0	1,431,000	131,112	1,562,112
31 Construction Management	1.00		Non-Construction	1,310,000	0	1,310,000	120,025	1,430,025
3123 Construction Contracts	1.00	LS	Non-Construction	1,310,000	0	1,310,000	120,025	1,430,025

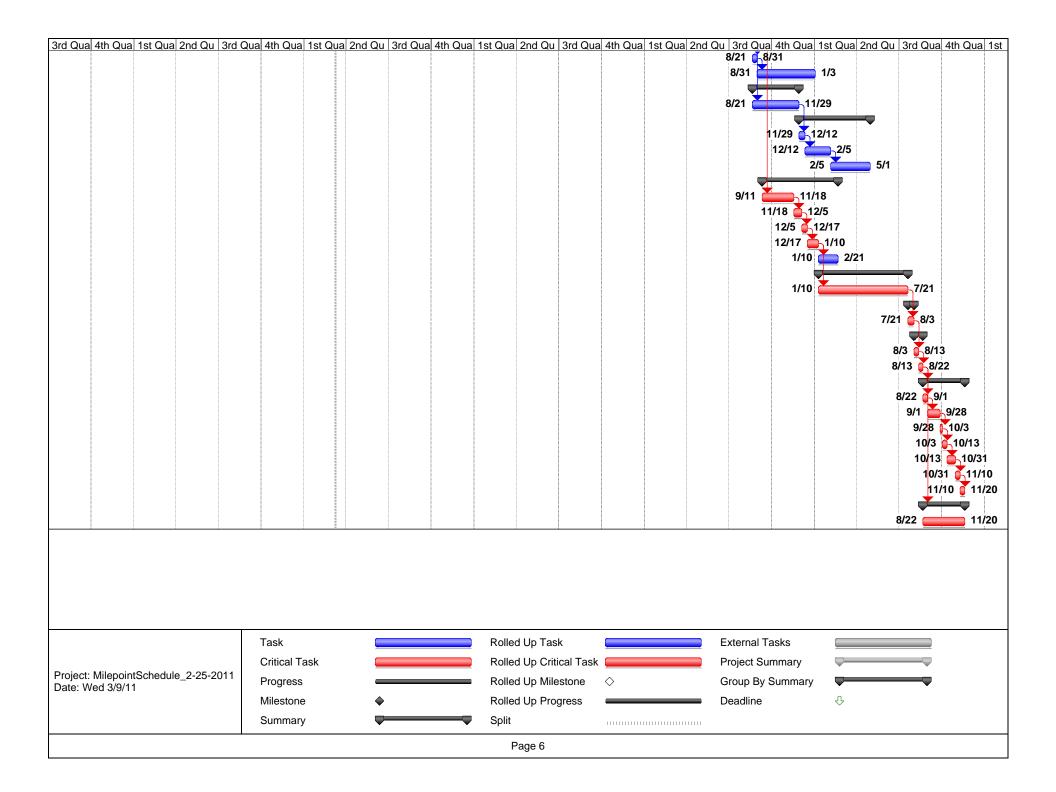
U.S. Army Corps of Engineers Project : JHFMILEPT2011-5-Final NED Plan FY11

Mile Point FY-11 NED Plan Baseline Cost Estimate

Project Direct Costs Report Page 3


Description	Quantity	UOM	Contractor	DirectLabor	DirectEQ	DirectMatl	DirectSubBid	DirectUserCost	DirectCost
Project Direct Costs Report – CWWBS SubFeature Level 2 Alternative VE-3B with Chicopit Bay Flow				1,661,476	1,808,094	4,199,483	6,216,777	7,410,027	21,295,857
Improvement Channel	1.00	LS		1,661,476	1,808,094	4,199,483	6,216,777	7,410,027	21,295,857
Construction Cost	1.00	LS		1,661,476	1,808,094	4,199,483	6,166,777	4,650,027	18,485,857
02 Relocations	1.00	LS	Non-Construction	0	0	0	0	300,000	300,000
0203 Aids To Navigation	1.00	LS	Non-Construction	0	0	0	0	300,000	300,000
06 Fish and Wildlife Facilities	1.00	LS		3,197	6,723	212	1,422,820	308,405	1,741,357
			01.03						
			Environmental						
0603 Wildlife Facilities & Sanctuary	1.00	LS	Subcontractor	3,197	6,723	212	1,422,820	308,405	1,741,357
12 Navigation Ports & Harbors	1.00	LS		1,658,279	1,801,371	4,199,271	4,743,957	4,041,622	16,444,500
			01 Prime						
1202 Harbors	1.00	LS	Contractor	1,658,279	1,801,371	4,199,271	4,743,957	4,041,622	16,444,500
Non Construction Cost	1.00	LS	Non-Construction	0	0	0	50,000	2,760,000	2,810,000
01 Lands and Damages	1.00	LS	Non-Construction	0	0	0	50,000	19,000	69,000
0118 General Revalutation Report(GRR)	1.00	LS	Non-Construction	0	0	0	50,000	19,000	69,000
30 Planning, Engineering and Design	1.00	LS	Non-Construction	0	0	0	0	1,431,000	1,431,000
3018 General Reevaluat'n Report (GRR)	1.00	LS	Non-Construction	0	0	0	0	1,431,000	1,431,000
31 Construction Management	1.00	LS	Non-Construction	0	0	0	0	1,310,000	1,310,000
3123 Construction Contracts	1.00	LS	Non-Construction	0	0	0	0	1,310,000	1,310,000


A.4. Project Schedule


	Task Name		:		Duration	Start		ecessors 1st Qua 2nd Qu
1		t Schedule: Planning to	Construction		2075 days	Mon 3/16/09	Thu 11/20/14	
2	Feasibility Phase				1389 days	Mon 3/16/09	Thu 1/3/13	
3		port to South Atlantic Divis	ion (SAD)		1 day	Mon 3/16/09	Tue 3/17/09	3/16 13/17
4		ent of Draft Report to HQ			44 days	Tue 3/17/09	Thu 4/30/09 3	3/17 4/3
5		nments on Draft Report			57 days	Thu 4/30/09	Fri 6/26/09 4	4/30 📥
6		se to HQ comments			12 days	Fri 6/26/09	Wed 7/8/09 5	6/26
7	Issue Resolution				33 days	Wed 7/8/09	Mon 8/10/09 6	7/5
8		dditional Analysis (Econ, C	Cost, Env, Eng)		469 days	Mon 8/10/09	Mon 11/22/10 7	
9	Updated Draft F	•			14 days	Mon 11/22/10	Mon 12/6/10 8	
10		& ATR (Concurrent)			14 days	Mon 12/6/10	Mon 12/20/10 9	
11	Update per DQ0)			0 days	Mon 12/20/10	Mon 12/20/10 10	
12	ATR (Concurrer	nt)			0 days	Mon 12/20/10	Mon 12/20/10 11	
13	Update per DQ0	C & ATR (including Cost)			70 days	Mon 12/20/10	Mon 2/28/11 12	
14	Submit Draft Re	port to South Atlantic Divis	ion (SAD)		14 days	Mon 2/28/11	Mon 3/14/11 13	
15	SAD Endorsem	ent of Draft Report to HQ			14 days	Mon 3/14/11	Mon 3/28/11 14	
16	AFB Meeting				60 days	Mon 3/28/11	Fri 5/27/11 15	
17	Receive Project	Guidance Memorandum (PGM)		14 days	Fri 5/27/11	Fri 6/10/11 16	
18	SAD/HQ Approv	ed Public Release of Draft	t		0 days	Fri 6/10/11	Fri 6/10/11 17	
19	Complete Draft	Feasibility Report			14 days	Fri 6/10/11	Fri 6/24/11 18	
20	Final Draft to Re	production			7 days	Fri 6/24/11	Fri 7/1/11 19	
21	Public Coordina	tion of Draft Report			8 days	Fri 7/1/11	Sat 7/9/11 20	
22	Initiate IEPR (Pe	ending Funding)			0 days	Sat 7/9/11	Sat 7/9/11 21	
23	Public Meeting	,			0 days	Sat 7/9/11	Sat 7/9/11 22	
24	End Public Com	ment Period			45 days	Sat 7/9/11	Tue 8/23/11 23	
25	Receive IEPR C	comments			15 days	Tue 8/23/11	Wed 9/7/11 24	
26	Final Fish & Wil	dlife CAR			0 days	Wed 9/7/11	Wed 9/7/11 25	
27	Respond to Pub	lic/IEPR Comments			16 days	Wed 9/7/11	Fri 9/23/11 26	
28	Report Finalized				10 days	Fri 9/23/11	Mon 10/3/11 27	
29	•	egal Certification			7 days	Mon 10/3/11	Mon 10/10/11 28	
30		port to Division Commande	er		7 days	Mon 10/10/11	Mon 10/17/11 29	
31		er Transmittal Letter			,	Mon 10/17/11	Mon 10/31/11 30	
32	-	iew Board (CWRB) - actua	l schedule 13 Decemb	er		Mon 10/31/11	Tue 12/13/11 31	
33		cy (S&A) letters signed and		.	28 days		Tue 1/10/12 32	
34	-	ports to State/agencies & f		essment (FA)	0 days	Tue 1/10/12	Tue 1/10/12 33	
35	Begin 30-day N				0 days	Tue 1/10/12	Tue 1/10/12 34	
36	HQUSACE polic				0 days	Tue 1/10/12	Tue 1/10/12 35	
37		nce, if needed (telephone of	vr video)		0 days	Tue 1/10/12	Tue 1/10/12 35	
57	Keview coniere				0 uays	10012	100/12/30	
		Task		Rolled Up Task		External Tas	ks	
Droject: Miles	ointSchedule 2 25 2011	Critical Task		Rolled Up Critical Task		Project Sum	•	
Date: Wed 3/9	ointSchedule_2-25-2011 9/11	Progress		Rolled Up Milestone	\diamond	Group By Su	immary	
		Milestone	♦		Deadline	\mathcal{C}		
		Summary	—	Split				

ID	0	Task Name				Duration	Start	Finish Predecessor	s 1st Qua 2nd Q
38		End 30-day S8	A & NEPA review per	iod		31 days	Tue 1/10/12	Fri 2/10/12 37	
39		District response	ses received			2 days	Fri 2/10/12	Sun 2/12/12 38	7
40		HQ review doc	umentation			21 days	Sun 2/12/12	Sun 3/4/12 39	
41		Final Chief of E	Engineers report to As	sistant Secretary of Arm	y Civil Works (ASA(CW))	21 days	Sun 3/4/12	Sun 3/25/12 40	
42		ASA(CW) Revi	ew Complete, letter to	OMB		90 days	Sun 3/25/12	Sat 6/23/12 41	
43		OMB review co	omplete, letter to ASA(CW)		60 days	Sat 6/23/12	Wed 8/22/12 42	
44		ASA(CW) lette	r to Congress			30 days	Wed 8/22/12	Fri 9/21/12 43	
45		Authorization E	Bill (WRDA or Appropri	ations Act)		14 days	Fri 9/21/12	Fri 10/5/12 44	
46		Fiscal closeout	Feasiblity Report			90 days	Fri 10/5/12	Thu 1/3/13 45	
47		PED Phase				436 days	Mon 10/31/11	Wed 1/9/13 31	
48		Design Agreen	nent (DA) Initiated (On	ce Division Engineer's T	ransmittal Letter)	0 days	Mon 10/31/11	Mon 10/31/11	
49		DA to Local Sp	onsor (LS) Concurren	ce Received		30 days	Mon 10/31/11	Wed 11/30/11 48	
50		DA submitted t	o SAD			3 days	Wed 11/30/11	Sat 12/3/11 49	
51		DA Approved				30 days	Sat 12/3/11	Mon 1/2/12 50	
52		DA Executed b	y LS			14 days	Mon 1/2/12	Mon 1/16/12 51	
53		DA Executed L	JSACE/Initiate PED			7 days	Mon 1/16/12	Mon 1/23/12 52	7
54		Fed/Non-Fed F	unding			37 days	Mon 1/23/12	Wed 2/29/12 53	
55		Complete P&S	Investigations			180 days	Wed 2/29/12	Mon 8/27/12 54	
56		Complete WQ0	C			60 days	Mon 8/27/12	Fri 10/26/12 55	
57		Complete P&S				75 days	Fri 10/26/12	Wed 1/9/13 56	
58		Construction Phase	ie			983 days	Mon 3/12/12	Thu 11/20/14	
59		Receive Initial	Project Funding			0 days	Mon 3/12/12	Mon 3/12/12	
60		Project Cooper	ation Agreement (PC/	 Initiated (Once Author 	ized and Funding)	1 day	Fri 10/5/12	Sat 10/6/12 45	
61		PCA Local Spo	onsor (LS) Concurrence	e Received		14 days	Sat 10/6/12	Sat 10/20/12 60	
62		PCA submitted	to HQ (once WQC re	ceived)		52 days	Sat 10/20/12	Tue 12/11/12 61	
63		PCA Approved	by ASA(CW)			90 days	Tue 12/11/12	Mon 3/11/13 62	
64		PCA Executed	•			21 days	Mon 3/11/13	Mon 4/1/13 63	
65		PCA Executed	•			10 days	Mon 4/1/13	Thu 4/11/13 64	
66		Fed/ Non-Fed	-			7 days	Thu 4/11/13	Thu 4/18/13 65	
67		Advertise (Con	tingent upon funding)			1 day	Thu 4/18/13	Fri 4/19/13 66	
68		Receive Propo	sals			45 days	Fri 4/19/13	Mon 6/3/13 67	
69		Award				40 days	Mon 6/3/13	Sat 7/13/13 68	
70		Issue NTP				30 days	Sat 7/13/13	Mon 8/12/13 69	
71		Construction	Start			465 days	Mon 8/12/13	Thu 11/20/14 70	
72		Mobilizati	on and Preparation	Work		144 days	Mon 8/12/13	Fri 1/3/14	
73		Mobil	ization for Site Work &	Structures		30 days	Mon 8/12/13	Wed 9/11/13	
74		Clear	ing & Grubbing of Mile	e Point Jetty Area		9 days	Mon 8/12/13	Wed 8/21/13	
						· · · · · · · · · · · · · · · · · · ·	`		
			Task		Rolled Up Task		External Tas	ks	
			Critical Task		Rolled Up Critical Task		Project Sum	mary 🔍	
		ointSchedule_2-25-2011	Progress		\diamond	Group By Su	immary		
Jate: V	Ved 3/9	//11	Milestone		 Rolled Up Milestone Rolled Up Progress 	·	Deadline		
				•			Deauline	\vee	
			Summary		Split				

76 Disposal Area 77 Mile Point Jetty Re 78 Armor Stone R 79 Eastern Training V 80 Geotextile Filter 81 Filter/Bedding 82 Armor Stone 83 Western Training V 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the CI 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantin 101 Aquatic Plantin 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids			Duration	Start	Finish Predecessors	1st Qua 2nd Qu
77 Mile Point Jetty Ref 78 Armor Stone Ref 79 Eastern Training V 80 Geotextile Filter 81 Filter/Bedding 82 Armor Stone 83 Western Training V 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	of Pipeline Dredge		10 days	Wed 8/21/13	Sat 8/31/13 74	
78 Armor Stone R 79 Eastern Training V 80 Geotextile Filter 81 Filter/Bedding 82 Armor Stone 83 Western Training 84 Sub-Bottom G 85 Geotextile Filter 86 Geotextile Filter 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	a Containment Berms		125 days	Sat 8/31/13	Fri 1/3/14 75	
79 Eastern Training V 80 Geotextile Filter 81 Filter/Bedding 82 Armor Stone 83 Western Training V 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filter 87 Bedding Stone 88 Install Concret 89 Dredging of the IV 90 Pipeline Dredg 91 Dredging of the CI 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	Relocation and Realignment		100 days	Wed 8/21/13	Fri 11/29/13	
80 Geotextile Filter 81 Filter/Bedding 82 Armor Stone 83 Western Training 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the CI 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Store 103 Demobilization 104 USCG Relocation 105 Relocate Aids Project: MilepointSchedule_2-25-2011 Task	Removal and Relocation		100 days	Wed 8/21/13	Fri 11/29/13 74	
81 Filter/Bedding 82 Armor Stone 83 Western Training 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Store 103 Demobilization 104 USCG Relocation 105 Relocate Aids	Wall Construction		153 days	Fri 11/29/13	Thu 5/1/14	
82 Armor Stone 83 Western Training 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Store 103 Demobilization 104 USCG Relocation 105 Relocate Aids	lter Fabric		13 days	Fri 11/29/13	Thu 12/12/13 78	
83 Western Training 84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	g Stone		55 days	Thu 12/12/13	Wed 2/5/14 80	
84 Sub-Bottom G 85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the C 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids			85 days	Wed 2/5/14	Thu 5/1/14 81	
85 Geotube Conta 86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the CI 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	g Wall Construction		163 days	Wed 9/11/13	Fri 2/21/14	
86 Geotextile Filte 87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredg 91 Dredging of the CI 92 Pipeline Dredg 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids		68 days	Wed 9/11/13	Mon 11/18/13 73		
87 Bedding Stone 88 Install Concret 89 Dredging of the IW 90 Pipeline Dredging of the CI 91 Dredging of the CI 92 Pipeline Dredging of the CI 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	ntainment for Bottom Fill	17 days	Mon 11/18/13	Thu 12/5/13 84		
88 Install Concret 89 Dredging of the IW 90 Pipeline Dredging of the C 91 Dredging of the C 92 Pipeline Dredging of the C 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids			12 days	Thu 12/5/13	Tue 12/17/13 85	
89 Dredging of the IW 90 Pipeline Dredging of the CI 91 Dredging of the CI 92 Pipeline Dredging of the CI 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	ne Foundation		24 days	Tue 12/17/13	Fri 1/10/14 86	
90 Pipeline Dredging of the CI 91 Dredging of the CI 92 Pipeline Dredging of the CI 93 Demobilization an 94 Demobilization an 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	ete Structural Units		42 days	Fri 1/10/14	Fri 2/21/14 87	
91 Dredging of the C 92 Pipeline Dredging of the C 93 Demobilization an 94 Demobilization 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	IWW Channel Flow Way		192 days	Fri 1/10/14	Mon 7/21/14	
92 Pipeline Dredg 93 Demobilization an 94 Demobilization 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantin 101 Aquatic Plantin 102 Biological Sun 103 Demobilization 104 USCG Relocation 105 Relocate Aids	dging & Disposal into Great Marsh Island		192 days	Fri 1/10/14	Mon 7/21/14 87	
93 Oemobilization and Demobilization and Demobilization and Site Cleanup 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization and Site Cleanup 98 Construct Tida 99 Construct Oys 100 Aquatic Plantin 101 Aquatic Plantin 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	Chicopit Bay Flow Channel		13 days	Mon 7/21/14	Sun 8/3/14	
94 Oemobilization 95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	dging & Disposal into Great Marsh Island		13 days	Mon 7/21/14	Sun 8/3/14 90	
95 Site Cleanup 96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	-		19 days	Sun 8/3/14	Fri 8/22/14	
96 Great Marsh Islam 97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	on of Pipeline Dredge	10 days	Sun 8/3/14	Wed 8/13/14 92		
97 Mobilization ar 98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids		9 days	Wed 8/13/14	Fri 8/22/14 94		
98 Construct Tida 99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Sun 103 Demobilization 104 USCG Relocation 105 Relocate Aids	nd Mitigation Site Management		90 days	Fri 8/22/14	Thu 11/20/14 95	
99 Construct Oys 100 Aquatic Plantir 101 Aquatic Plantir 102 Biological Sun 103 Demobilization 104 USCG Relocation 105 Relocate Aids	and Preparation Work	10 days	Fri 8/22/14	Mon 9/1/14 95		
100 Image: Constraint of the second system of t		27 days	Mon 9/1/14	Sun 9/28/14 97		
101 Image: Constraint of the second state of the second stat			5 days	Sun 9/28/14	Fri 10/3/14 98	
102 Biological Surv 103 Demobilization 104 USCG Relocation 105 Relocate Aids	-		10 days	Fri 10/3/14		
103 Demobilization 104 USCG Relocation 105 Relocate Aids Task Critica Project: MilepointSchedule_2-25-2011	-		18 days		Fri 10/31/14 100	
104 USCG Relocation 105 Relocate Aids Image: state of the	rvey & Unpland Area Planting		10 days	Fri 10/31/14	Mon 11/10/14 101	
105 Relocate Aids 105 Task Project: MilepointSchedule_2-25-2011 Progr	on & Site Cleanup			Mon 11/10/14	Thu 11/20/14 102	_
Task Project: MilepointSchedule_2-25-2011	n of Aids to Navigation		90 days	Fri 8/22/14	Thu 11/20/14 95	
Project: MilepointSchedule_2-25-2011	s to Navigation		90 days	Fri 8/22/14	Thu 11/20/14	
Project: MilepointSchedule_2-25-2011						
Project: MilepointSchedule_2-25-2011	x	Rolled Up Task		External Tas	-	
	cal Task)	Project Sum	mary		
Date: Wed 3/9/11	gress	>	Group By Su	ummary	▼	
Milest	stone 🔶	Rolled Up Progress		Deadline	Ф	
Sumn	imary	Colit				
		Page 3				

A.5 **RISK AND UNCERTAINTY ANALYSIS**

A.5.1 **Risk Analysis Methods**

The risk analysis was conducted according to the procedure outlines in the manual entitled, 'Cost and Schedule Risk Analysis Process,' dated 17 May 2009 and downloaded from the Corps' Cost Center of Expertise website. First, members of the PDT met to identify risk items, in both the construction cost estimate and the construction schedule. T hen, the Risk Register was completed. A fter that, the Risk Model was customized using commercially available 'Crystal Ball' software. 'Most likely,' 'high,' and 'low' values were assigned to estimate items using the software's 'Assumption' function and the triangular distribution. 'Forecasts' were defined and the model run.

For the features costed by the Corps it is assumed that the work will be performed by a prudent contractor at a fair and reasonable cost. While the cost estimate analyzed in the risk analysis may contain adjustments due to quotations on direct and indirect costs, it contains no separate adjustment due to competitiveness or bid strategies (ETL 1110-2-573, 30 Sep 2008). Market conditions such as the current price of fuel are included in the estimate.

After the model was run the results were documented by extracting the sensitivity chart, the forecast chart and the percentiles table for major items. The percentiles were used to determine the contingency at the 80% confidence level. At this time, risk reduction efforts were discussed within the Engineering PDT for further discussion.

The appropriate contingencies were then applied to the MCACES/MII estimate for the NED and Locally Preferred Plans, producing the 'After Risk Analysis' cost estimate contained herein. Upon completion of this estimate the Total Project Cost Summary was prepared.

A.5.2 Risk analysis results

Refer to the Final Cost Schedule Risk Analysis Report produced by the Walla Walla District Cost Center of Expertise at the attached sub-appendix.

A.6 TOTAL PROJECT COST SUMMARY

The Total Project Cost Summary (TPCS) addresses inflation through project completion (accomplished by escalation to mid-point of construction per ER 1110-2-1302, Appendix C, Page C-2). It is based on the scope of the SAP and the official project schedule. The TPCS includes Federal and non-Federal costs for lands and damages, all construction features, PED, and S&A, along with the appropriate contingencies and escalation associated with each of these activities. The TPCS is formatted according to the WBS and uses Civil Works Construction Cost Indexing System factors for escalation (EM 1110-2-1304) of construction costs and Office of Management and Budget (EC 11-2-18X, 20 Feb 2008) factors for escalation of PED and S&A costs.

The Total Project Cost Summary prepared using the MCACES/MII cost estimate on the Recommended Plans with contingencies set by the risk analysis (and the exceptions as described above) and the official project schedule. In performing the risk analysis by meeting with the PDT to discuss the construction schedule to prepare the risk register, a schedule was derived that is slightly different from the official schedule in that it has slightly shorter construction duration. A risk analysis was run on that schedule taking into consideration variations in construction duration, authorization date and appropriation date, and yet a third schedule developed, this one based on the risk analysis results at the 80% confidence level. A TPCS (Figure X+1) was prepared using this schedule as well. These timelines and costs are summarized in Table 18. They show the impact of delayed authorization and appropriation on the fully funded cost despite a slightly shorter construction duration.

The Cost Risk Analysis based total project contingency of 29 percent determined under the External Risk analysis in was applied to the Total Project Cost Summary along with the contingency adjusted total project schedule presented in Table B.5.3.

PROJECT: Mile Point Navigation Improvements LOCATION: Jacksonville Harbor, Duval County, Florida DISTRICT: SAJ PREPARED: 3/24/2011 POC: CHIEF, COST ENGINEERING, Tracy T. Leeser, P.E.

This Estimate reflects the scope and schedule in report;

INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT

				E	BASE COST		gram Year (B fective Price I	Level Date:	2012 1 OCT 11 IRST COST	FU Spent Thru:	LLY FUN	DED PROJEC	T ESTIMATE	E
WBS NUMBER A	Civil Works Feature & Sub-Feature Description B	COST _(\$K)C	CNTG (\$K) D	CNTG _(%)	TOTAL (\$K) F	ESC (%) G	COST (\$K) H	CNTG (\$K)	TOTAL _(\$K)	24-Mar-11 _(\$K)K	,	COST _(\$K)	CNTG (\$K) N	FULL _(\$K)
	Carlos and C		22			1.1					-			
02	RELOCATIONS	\$327	\$96	29%	\$424	1.6%	\$333	\$98	\$431			\$348	\$103	\$45
06 12	FISH & WILDLIFE FACILITIES	\$2,349	\$691	29% 29%	\$3,040	1.6%	\$2,386	\$702	\$3,088			\$2,498	\$735	\$3,23
12	NAVIGATION PORTS & HARBORS #N/A	\$21,917	\$6,452	29%	\$28,369	1.6%	\$22,261	\$6,554	\$28,815			\$23,022	\$6,778	\$29,79
	#N/A #N/A			-		1	\$0		\$0			\$0		s
	CONSTRUCTION ESTIMATE TOTALS:	\$24,593	\$7,240	5 7 8	\$31,833	1.6%	\$24,979	\$7,354	\$32,333			\$25,868	\$7,616	\$33,48
01	LANDS AND DAMAGES	\$75	\$22	29%	\$97	1.6%	\$77	\$23	\$99			\$77	\$23	\$9
30	PLANNING, ENGINEERING & DESIGN	\$1,562	\$460	29%	\$2,022	3.2%	\$1,612	\$475	\$2,087			\$1,634	\$481	\$2,11
31	CONSTRUCTION MANAGEMENT	\$1,430	\$421	29%	\$1,851	3.2%	\$1,476	\$434	\$1,910			\$1,598	\$470	\$2,068
	PROJECT COST TOTALS:	\$27,660	\$8,143	29%	\$35,804	1.7%	\$28,144	\$8,286	\$36,429			\$29,177	\$8,590	\$37,76
		CHIEF, COS	TENGINEER	RING, Tracy	T. Leeser, P.	E.								0.000
		PROJECT M	ANAGER, St	even R. Ro	ss, P.E.				ES	ESTIMATE TIMATED NO		RAL COST: RAL COST:	75% 25%	\$28,32 \$9,44
		CHIEF, REAL	L ESTATE, J	ohn Baker					ESTI	MATED TOTA	L PROJE	ECT COST:	1	\$37,762
		CHIEF, PLAN	NNING, xxx											
		CHIEF, ENG	INEERING, *	oox										
		CHIEF, OPE	RATIONS, XX	ox										
		CHIEF, CON	STRUCTION	I, XXXX										
		CHIEF, CON	TRACTING,	oox						IDE OF TOTAL	DRO IT	CT COST.		0
		CHIEF, PM-	PB, xxxx						U&M UUIS	DE OF TOTAL	L PROJE	CI COSI:	N	/A
		CHIEF, DPM	xxx											

**** TOTAL PROJECT COST SUMMARY ****

CONTRACT COST SUMMARY ****

PROJECT: Mile Point Navigation Improvements LOCATION: Jacksonville Harbor, Duval County, Florida INTEGRATED FEASIBILITY REPORT AND ENVIRONMENTAL ASSESSMENT This Estimate reflects the scope and schedule in report;

DISTRICT: SAJ

PREPARED: 3/24/2011 POC: CHIEF, COST ENGINEERING, Tracy T. Leeser, P.E.

	CONTRACT COST TOTALS:	\$27,660	\$8,143	-	\$35,804	110	\$28,144	\$8,286	\$36,429			\$29,177	\$8,590	\$37,76
	Project Operation: Project Management	51.400	GIT.	2070	97,097	5.2.70	aniard.	0404		201942	0,070	91,000	*11.0	42,00
31	CONSTRUCTION MANAGEMENT Construction Management	\$1.430	\$421	29%	\$1,851	3.2%	\$1,475	\$434	\$1,910	201402	8.3%	\$1,598	\$470	\$2,06
	Project Operations	\$109	\$32	29%	\$141	3.2%	\$113	\$33	\$146	2012Q3	1.0%	\$114	\$34	\$14
	Office of Counsel (PPA)	\$16	\$5	29%	\$21	3.2%	\$17	\$5	\$22	2014Q2	8.3%	\$18	\$5	\$
	Engineering During Construction	\$52	\$15	29%	\$68	3.2%	\$54	\$16	\$70	201402	8.3%	\$59	\$17	\$
	Contracting & Reprographics	\$71	\$21	29%	\$92	3.2%	\$73	\$22	\$95	2012Q3	1.0%	\$74	\$22	4
	Engineering Tech Review ITR & VE			29%	1.5									
	Engineering & Design	\$986	\$290	29%	\$1,276	3.2%	\$1,017	\$299	\$1,317	2012Q3	1.0%	\$1,028	\$303	\$1,3
	Planning & Environmental Compliance	\$196	\$58	29%	\$254	3.2%	\$203	\$60	\$262	2012Q3	1.0%	\$205	\$60	\$2
	Project Management	\$131	\$39	29%	\$170	3.2%	\$135	\$40	\$175	2012Q3	1.0%	\$137	\$40	\$1
30	PLANNING, ENGINEERING & DESIGN													
01	LANDS AND DAMAGES	\$75	\$22	29%	\$97	1.6%	\$77	\$23	\$99	2012Q3	0.4%	\$77	\$23	4
	CONSTRUCTION ESTIMATE TOTALS:	\$24,593	\$7,240	29%	\$31,833		\$24,979	\$7,354	\$32,333			\$25,868	\$7,615	\$33,4
														114
	#N/A. #N/A					1.0								
12	NAVIGATION PORTS & HARBORS	\$21,917	\$6,452	29%	\$28,369	1.6%	\$22,261	\$6,554	\$28,815	2014Q2	3.4%	\$23,022	\$6,778	\$29,
06	FISH & WILDLIFE FACILITIES	\$2,349	\$691	29%	\$3,040	1,6%	\$2,386	\$702	\$3,088	2015Q1	4.7%	\$2,498	\$735	\$3,
02	RELOCATIONS	\$327	\$96	29%	\$424	1.6%	\$333	\$98	\$431	2015Q1	4.7%	\$348	\$103	\$
A	B PROJECT CONSTRUCTION	c	D	E	F	G	н	1	7	P	L	м	N	0
UMBER	Feature & Sub-Feature Description	(\$K)	_(\$K)_	(%)	_(\$K)_	(%)	(SK)	(\$K)	(SK)	Date	(%)	(\$K)	(\$K)	(\$K)
WBS	Civil Works	COST	CNTG	CNTG	TOTAL	ESC	COST	CNTG	TOTAL	Mid-Point	ESC	COST	CNTG	FULL
	Effective Price Level:	24-Mar-11	R	ISK BASED	C_ 1.	Effe	ective Price L	Level Date:	1 OCT 11	FU	LLY FUNDE	D PROJEC	TESTIMATE	
	Estimate Prepared:	24-Mar-11					ram Year (B		2012				FOTUNTE	

A.7 COST DX TPCS CERTIFICATION JACKSONVILLE HARBOR (MILE POINT) NAVIGATION STUDY USACE - JACKSONVILLE DISTRICT

COST ENGINEERING DX TPCS RE-CERTIFICATION

The Jacksonville Harbor (Mile Point) Navigation Study presented by Jacksonville District has undergone a successful cost Agency Technical Review (ATR) as performed by Cost DX representatives. The ATR included study of the project scope, report, cost estimates, schedules, escalation, and risk-based contingencies in accordance with ER 1110-2-1150 Engineering and Design for Civil Works Projects and ER 1110-2-1302 Civil Works Cost Engineering.

As of 29 March2011, the Walla Walla District, Cost Engineering Directory of Expertise (Dx) for Civil Works, certifies the estimated total project cost of the Jacksonville Harbor (Mile Point) Navigation Study estimated values of:

 FY 2012 Price Level:
 \$36,429,000

 Fully Funded Amount:
 \$37,767,000

It remains the responsibility of the District to correctly reflect these cost values within the Final Report.

MAR-2011

Date

Kim C. Callan, PE, CCE, PM1 Chief, Cost Engineering Walla Walla District

APPENDIX A-2A

PROJECT COST AND SCHEDULE RISK ANALYSIS REPORT

A-2A. Project Cost and Schedule Risk Analysis Report

US Army Corps of Engineers®

Jacksonville Harbor, Mile Point Navigation Improvements

Jacksonville, Florida - Feasibility Study,

Revised Final NED Plan - Alternative VE-3B - Concrete Structural Units System VE Alternative

Project Cost and Schedule Risk Analysis Report

Prepared for:

U.S. Army Corps of Engineers, Jacksonville District

Prepared by:

U.S. Army Corps of Engineers Cost Engineering Directory of Expertise, Walla Walla

March 28, 2011

TABLE OF CONTENTS

EXECUTIVE SUMMARY	ES-1
MAIN REPORT	1
1.0 PURPOSE	1
2.0 BACKGROUND	1
3.0 REPORT SCOPE	1
4.0 METHODOLOGY / PROCESS	3
4.1 Identify and Assess Risk Factors	4
4.2 Quantify Risk Factor Impacts	5
4.3 Analyze Cost Estimate and Schedule Contingency	6
5.0 KEY ASSUMPTIONS	6
6.0 RESULTS	7
6.1 Risk Register	7
6.2 Cost Contingency and Sensitivity Analysis	8
6.2.1 Sensitivity Analysis	8
6.2.2 Sensitivity Analysis Results	9
7.0 MAJOR FINDINGS/OBSERVATIONS/RECOMMENDATIONS	13
7.1 Major Findings/Observations	13
7.2 Recommendations	17

LIST OF TABLES

Table ES-1. Contingency Analysis Table	ES-1
Table ES-2. Cost Summary	ES-2
Table 1. Project Cost Contingency Summary	8
Table 2. Schedule Duration Contingency Summary	10
Table 3. Project Cost Comparison Summary	14

LIST OF FIGURES

Figure 1.	Cost Sensitivity Analysis	11
Figure 2.	Schedule Sensitivity Analysis	12
Figure 3.	Project Cost Summary	15
Figure 4.	Project Duration Summary	16

LIST OF APPENDICES

Risk Register		APPENDIX A
---------------	--	------------

EXECUTIVE SUMMARY

Under the auspices of the US Army Corps of Engineers (USACE), Jacksonville District, this report presents a recommendation for the total project cost and schedule contingencies for the Jacksonville Harbor, Mile Point Navigation Improvements Jacksonville, Florida - Feasibility Study, Revised Final NED Plan - Alternative VE-3B - Concrete Structural Units System VE Alternative (Mile Point). In compliance with Engineer Regulation (ER) 1110-2-1302 CIVIL WORKS COST ENGINEERING, dated September 15, 2008, a formal risk analysis study was conducted for the development of contingency on the total project cost. The purpose of this risk analysis study was to establish project contingencies by identifying and measuring the cost and schedule impact of project uncertainties with respect to the estimated total project cost.

Specific to the Mile Point Project, the most likely total project cost (at price level) is estimated at approximately \$28 Million. Based on the results of the analysis, the Cost Engineering Directory of Expertise for Civil Works (Walla Walla District) recommends a contingency value of \$8 Million, or 29%. This contingency includes \$7.7 Million (28%) for cost growth potential due to risk analyzed in the base cost estimate and \$420,000 (1.5%) for cost growth potential due to risk analyzed in the baseline schedule.

Walla Walla Cost Dx performed risk analysis using the *Monte Carlo* technique, producing the aforementioned contingencies and identifying key risk drivers.

The following table ES-1 portrays the development of contingencies. The contingency is based on an 80% confidence level, as per USACE Civil Works guidance.

Most Likely Cost Estimate	\$27,660,467		
Confidence Level	Value (\$\$)	Contingency (%)	
5%	\$27,319,884	-1.23%	
50%	\$32,776,924	18.50%	
80%	\$35,804,452	29.44%	
95%	\$38,270,714	38.36%	

Table ES-1. Contingency Analysis Table

The following table ES-2 portrays the full costs of the recommended alternative based on the anticipated contracts. The costs are intended to address the congressional request of estimates to implement the project. The contingency is based on an 80% confidence level, as per accepted USACE Civil Works guidance.

Table ES-2. Cost Summary

MILE POINT		COST	CNTG	TOTAL
		(\$1,000)	(\$1,000)	(\$1,000)
01	LANDS AND DAMAGES	75	22	97
02	RELOCATIONS	327	95	422
06	FISH AND WILDLIFE FACILITIES	2,349	681	3,030
12	NAVIGATION PORTS AND HARBORS	21,917	6,356	28,273
30	PLANNING, ENGINEERING, & DESIGN	1,562	453	2,015
31	CONSTRUCTION MANAGEMENT	1,430	415	1,845
	TOTAL PROJECT COSTS	27,660	8,022	35,682
	Schedule Completion with Contingency	20 Nov 2014	30 months	18 May 2017

Notes:

1) All costs include the recommended contingency of 29%.

2) Costs exclude O&M and Life Cycle Cost estimates.

KEY FINDINGS/OBSERVATIONS RECOMMENDATIONS

The key cost risk drivers identified through sensitivity analysis are Risks CT-4 (Bidding Climate), EN-C-3 (Equipment Availability), and EN-C-2 (Quantity Estimates), which together contribute 82 percent of the statistical cost variance. CT-4 (Bidding Climate) represents the risk that ultimate bidding climate at time of contract award could cause a variance in costs, due to the market being either more or less favorable. EN-C-3 (Equipment Availability) represents the risk that the equipment available regionally (i.e. 16-inch vs. 24-inch pipeline dredge) could cause a variance in the ultimate contract costs. EN-C-2 (Quantity Estimates) represents the risk that variation in the estimated quantities of materials would cause variance in the ultimate contract costs.

The key schedule risk drivers identified through sensitivity analysis are Risks PD-E-4 (Permit Delays), DP-3 (Schedule Delays), and CT-2 (Protests), which together contribute 77 percent of the statistical schedule variance. PD-E-4 (Permit Delays) represents the risk that delays in obtaining permits may cause significant delay on the project. DP-3 (Schedule Delays) represents the risk of significant project implementation delay due to the uncertainty in obtaining authorization and appropriation, as currently planned. CT-2 (Protests) represents the risk that a bidder protest may significantly delay the start of project execution, if it occurred.

Recommendations, as detailed within the main report, include the implementation of cost and schedule contingencies, further iterative study of risks throughout the project life-cycle, potential mitigation throughout the PED phase, and proactive monitoring and control of risk identified in this study.

MAIN REPORT

1.0 PURPOSE

Under the auspices of the US Army Corps of Engineers (USACE), Jacksonville District, this report presents a recommendation for the total project cost and schedule contingencies for the Jacksonville Harbor, Mile Point Navigation Improvements, Revised NED Plan (Mile Point).

2.0 BACKGROUND

The Revised Final NED Plan - Alternative VE-3B - Concrete Structural Units System VE Alternative (Training Wall Reach Widening) and 3B (Relocate Mile Point Training Wall) were selected as having the greatest net benefits. The NED Plan is to relocate and widen the Training Wall Reach, including dredging and disposal of the Little Jetty Training Wall and Chicopit Bay Circulation Channel, including the construction of a 1,400 LF containment berm for hydraulic disposal at Great Marsh Island.

As a part of this effort, Jacksonville District requested that the USACE Cost Engineering Directory of Expertise for Civil Works (Cost Engineering Dx) provide an agency technical review (ATR) of the cost estimate and schedule for Recommended Project Plan. That tasking also included providing a risk analysis study to establish the resulting contingencies.

3.0 REPORT SCOPE

The scope of the risk analysis report is to calculate and present the cost and schedule contingencies at the 80 percent confidence level using the risk analysis processes, as mandated by U.S. Army Corps of Engineers (USACE) Engineer Regulation (ER) 1110-2-1150, Engineering and Design for Civil Works, ER 1110-2-1302, Civil Works Cost Engineering, and Engineer Technical Letter 1110-2-573, Construction Cost Estimating Guide for Civil Works. The report presents the contingency results for cost risks for all project features. The study and presentation does not include consideration for life cycle costs.

3.1 Project Scope

The formal process included extensive involvement of the PDT for risk identification and the development of the risk register. The analysis process evaluated the most likely Micro Computer Aided Cost Estimating System (MCACES) cost estimate, schedule, and funding profiles using Crystal Ball software to conduct a *Monte Carlo* simulation and

statistical sensitivity analysis, per the guidance in Engineer Technical Letter (ETL) CONSTRUCTION COST ESTIMATING GUIDE FOR CIVIL WORKS, dated September 30, 2008.

The project technical scope, estimates and schedules were developed and presented by the Jacksonville District. Consequently, these documents serve as the basis for the risk analysis.

The scope of this study addresses the identification of problems, needs, opportunities and potential solutions that are viable from an economic, environmental, and engineering viewpoint.

3.2 USACE Risk Analysis Process

The risk analysis process for this study follows the USACE Headquarters requirements as well as the guidance provided by the Cost Engineering Dx. The risk analysis process reflected within this report uses probabilistic cost and schedule risk analysis methods within the framework of the Crystal Ball software. Furthermore, the scope of the report includes the identification and communication of important steps, logic, key assumptions, limitations, and decisions to help ensure that risk analysis results can be appropriately interpreted.

Risk analysis results are also intended to provide project leadership with contingency information for scheduling, budgeting, and project control purposes, as well as to provide tools to support decision making and risk management as the project progresses through planning and implementation. To fully recognize its benefits, cost and schedule risk analysis should be considered as an ongoing process conducted concurrent to, and iteratively with, other important project processes such as scope and execution plan development, resource planning, procurement planning, cost estimating, budgeting and scheduling.

In addition to broadly defined risk analysis standards and recommended practices, this risk analysis was performed to meet the requirements and recommendations of the following documents and sources:

- Cost and Schedule Risk Analysis Process guidance prepared by the USACE Cost Engineering Dx.
- Engineer Regulation (ER) 1110-2-1302 CIVIL WORKS COST ENGINEERING, dated September 15, 2008.
- Engineer Technical Letter (ETL) CONSTRUCTION COST ESTIMATING GUIDE FOR CIVIL WORKS, dated September 30, 2008.

4.0 METHODOLOGY / PROCESS

The Cost Dx assembled a team, also relying on local Jacksonville District staff to further augment labor, expertise and information gathering. The Cost Dx team consisted of one senior civil cost engineer. The Jacksonville staff included two cost estimators, as well as coordination support from project management and the assigned project delivery team (PDT).

The Jacksonville PDT conducted a risk identification and qualitative analysis meeting prior to beginning the risk analysis effort. The two estimators then traveled to Walla Walla District to begin the risk analysis effort 22-23 April 2009. The Cost Dx conducted several subsequent iterations of the cost risk model at the request of the Jacksonville PDT, based on results of new research and the implementation of risk mitigation efforts. The first cost risk model was completed and results reported on June 8, 2009.

The results of the original cost and schedule risk analysis (CSRA) completed in June 2009 revealed that External Risk PD-E-3 (Environmental Restrictions) was a critical risk, adding a minimum of \$5 Million in cost impacts and 36 months in schedule impact. This was due to the uncertainty of a very significant cultural resource discovery, which was moderately probable, as substantial cultural resource investigations had not been completed. This prompted the project leadership to conduct more investigations to mitigate the risk prior to submission for authorization and approval. According to project leadership, these investigations have concluded that such a discovery is extremely unlikely, lowering the overall risk threshold and risk rating from "High" to "Low."

Additionally, the Jacksonville has obtained information regarding bidding climate and market conditions, External Risk CT-4 (Bidding Climate), suggesting that ultimate construction costs are trending toward more favorable pricing (due to economic strains on the industry). Therefore, Cost Dx remodeled the CSRA with the new data and results reported to the Jacksonville PDT on August 5, 2010.

Finally, the final revision to the NED plan and estimate occurred January through February 2011. The updated estimates and inputs were provided to the Cost Dx for update of the CSRA March 3, 2011. The CSRA, with the new changes incorporated, was reworked with preliminary results provided March 17, 2011. Some changes to the estimate were required through the process of the Cost Engineering portion of the Agency Technical Review (ATR). The changes were made and incorporated into the CSRA March 24, 2011. The changes were incorporated within the CSRA with final results and the final CSRA report provided to the Jacksonville PDT on March 27, 2011.

The risk analysis process for this study is intended to determine the probability of various cost outcomes and quantify the required contingency needed in the cost estimate to achieve any desired level of cost confidence.

In simple terms, contingency is an amount added to an estimate to allow for items, conditions or events for which the occurrence or impact is uncertain and that experience suggests will likely result in additional costs being incurred or additional time being required. The amount of contingency included in project control plans depends, at least in part, on the project leadership's willingness to accept risk of project overruns. The less risk that project leadership is willing to accept the more contingency should be applied in the project control plans. The risk of overrun is expressed, in a probabilistic context, using confidence levels.

The Cost Dx guidance for cost and schedule risk analysis generally focuses on the 80percent level of confidence (P80) for cost contingency calculation. It should be noted that use of P80 as a decision criteria is a risk averse approach (whereas the use of P50 would be a risk neutral approach, and use of levels less than 50 percent would be risk seeking). Thus, a P80 confidence level results in greater contingency as compared to a P50 confidence level. The selection of contingency at a particular confidence level is ultimately the decision and responsibility of the project's District and/or Division management.

The risk analysis process uses *Monte Carlo* techniques to determine probabilities and contingency. The *Monte Carlo* techniques are facilitated computationally by a commercially available risk analysis software package (Crystal Ball) that is an add-in to Microsoft Excel. Cost estimates are packaged into an Excel format and used directly for cost risk analysis purposes. The level of detail recreated in the Excel-format schedule is sufficient for risk analysis purposes that reflect the established risk register, but generally less than that of the native format.

The primary steps, in functional terms, of the risk analysis process are described in the following subsections. Risk analysis results are provided in Section 6.

4.1 Identify and Assess Risk Factors

Identifying the risk factors via the PDT is considered a qualitative process that results in establishing a risk register that serves as the document for the quantitative study using the Crystal Ball risk software. Risk factors are events and conditions that may influence or drive uncertainty in project performance. They may be inherent characteristics or conditions of the project or external influences, events, or conditions such as weather or economic conditions. Risk factors may have either favorable or unfavorable impacts on project cost and schedule.

Checklists or historical databases of common risk factors are sometimes used to facilitate risk factor identification. However, key risk factors are often unique to a project and not readily derivable from historical information. Therefore, input from the entire PDT was obtained using creative processes such as brainstorming or other facilitated risk assessment meetings.

Formal PDT meetings are held for the purposes of identifying and assessing risk factors. The meetings should include capable and qualified representatives from multiple project team disciplines and functions, for example:

- Project/Program managers
- Contracting/acquisition
- Real Estate
- Relocations
- Environmental
- Civil and Coastal Design
- Cost and schedule engineers
- Construction
- Key Sponsors

The initial formal meetings should focus primarily on risk factor identification using brainstorming techniques, but also include some facilitated discussions based on risk factors common to projects of similar scope and geographic location. Subsequent meetings should focus primarily on risk factor assessment and quantification.

4.2 Quantify Risk Factor Impacts

The quantitative impacts of risk factors on project plans were analyzed using a combination of professional judgment, empirical data and analytical techniques. Risk factor impacts were quantified using probability distributions (density functions) because risk factors are entered into the Crystal Ball software in the form of probability density functions.

Similar to the identification and assessment process, risk factor quantification involved multiple project team disciplines and functions. However, the quantification process relied more extensively on collaboration between cost engineering and risk analysis team members with lesser inputs from other functions and disciplines. This process used an iterative approach to estimate the following elements of each risk factor:

- Maximum possible value for the risk factor
- Minimum possible value for the risk factor
- Most likely value (the statistical mode), if applicable
- Nature of the probability density function used to approximate risk factor uncertainty
- Mathematical correlations between risk factors
- Affected cost estimate and schedule elements

The resulting product from the PDT discussions is captured within a risk register as presented in section 6 for both cost and schedule risk concerns. Note that the risk register records the PDT's risk concerns, discussions related to those concerns, and potential impacts to the current cost and schedule estimates. The concerns and discussions support the team's decisions related to event likelihood, impact, and the resulting risk levels for each risk event.

4.3 Analyze Cost Estimate and Schedule Contingency

Contingency is analyzed using the Crystal Ball software, an add-in to the Microsoft Excel format of the cost estimate and schedule. *Monte Carlo* simulations are performed by applying the risk factors (quantified as probability density functions) to the appropriate estimated cost and schedule elements identified by the PDT. Contingencies are calculated by applying only the moderate and high level risks identified for each option (i.e., low-level risks are typically not considered, but remain within the risk register to serve historical purposes as well as support follow-on risk studies as the project and risks evolve).

For the cost estimate, the contingency is calculated as the difference between the P80 cost forecast and the baseline cost estimate. Each option-specific contingency is then allocated on a civil works feature level based on the dollar-weighted relative risk of each feature as quantified by *Monte Carlo* simulation. Standard deviation is used as the feature-specific measure of risk for contingency allocation purposes. This approach results in a relatively larger portion of all the project feature cost contingency being allocated to features with relatively higher estimated cost uncertainty.

5.0 PROJECT ASSUMPTIONS

The following data sources and assumptions were used in quantifying the costs associated with the with- and without-project conditions at Jacksonville Harbor, Mile Point Navigation Improvements.

a. The MII MCACES (Micro-Computer Aided Cost Estimating Software) file "JHFMILEPT2011-5-Final NED Plan FY11 no contingency.mlp" was the basis for the cost and schedule risk analyses herein.

b. The cost comparisons and risk analyses performed and reflected within this report are based on design scope and estimates that are at the feasibility level.

c. The schedule was analyzed for impact to the project cost in terms of both uncaptured escalation (variance from OMB factors and the local market) and monthly recurring

costs (unavoidable fixed contract costs and/or languishing federal administration costs incurred throughout delay).

d. Per the CWCCIS Historical State Adjustment Factors in EM 1110-2-1304, State Adjustment Factor for Florida is 0.94, meaning that this project is not susceptible to differential between the local market and OMB inflation factors for future construction.

e. Per the data in the estimate, the Job Office Overhead (JOOH) amount for the Contract Cost comprises approximately 3.46% of the Project Cost at Baseline. Thus, the assumed monthly recurring rate for this project is 3.46%. For the P80 schedule, this comprises approximately 1.52% of the total contingency due to the accrual of residual fixed costs associated with delay.

f. The Cost Dx guidance generally focuses on the eighty-percent level of confidence (P80) for cost contingency calculation. For this risk analysis, the eighty-percent level of confidence (P80) was used. It should be noted that the use of P80 as a decision criteria is a moderately risk averse approach, generally resulting in higher cost contingencies. However, the P80 level of confidence also assumes a small degree of risk that the recommended contingencies may be inadequate to capture actual project costs.

g. Only high and moderate risk level impacts, as identified in the risk register, were considered for the purposes of calculating cost contingency. Low level risk impacts should be maintained in project management documentation, and reviewed at each project milestone to determine if they should be placed on the risk "watch list" for further monitoring and evaluation.

6.0 RESULTS

The cost and schedule risk analysis results are provided in the following sections. In addition to contingency calculation results, sensitivity analyses are presented to provide decision makers with an understanding of variability and the key contributors to the cause of this variability.

6.1 Risk Register

A risk register is a tool commonly used in project planning and risk analysis. The actual risk register is provided in Appendix A. The complete risk register includes low level risks, as well as additional information regarding the nature and impacts of each risk.

It is important to note that a risk register can be an effective tool for managing identified risks throughout the project life cycle. As such, it is generally recommended that risk registers be updated as the designs, cost estimates, and schedule are further refined,

especially on large projects with extended schedules. Recommended uses of the risk register going forward include:

- Documenting risk mitigation strategies being pursued in response to the identified risks and their assessment in terms of probability and impact.
- Providing project sponsors, stakeholders, and leadership/management with a documented framework from which risk status can be reported in the context of project controls.
- Communicating risk management issues.
- Providing a mechanism for eliciting feedback and project control input.
- Identifying risk transfer, elimination, or mitigation actions required for implementation of risk management plans.

6.2 Cost Contingency and Sensitivity Analysis

Table 1 provides the raw construction cost contingencies calculated for the P80 confidence level and rounded to the nearest thousand. The construction cost contingencies for the P50 and P100 confidence levels are also provided for illustrative purposes only.

Contingency was quantified as approximately \$8 Million at the P80 confidence level (29.4% of the baseline cost estimate). For comparison, the cost contingency at the P50 and P100 confidence levels was quantified as 18.5% and 54.6% of the baseline cost estimate, respectively.

Risk Analysis Forecast	Baseline Estimate	Project Contingency ^{1,2} (\$)	Total Contingency (%)			
50% Confidence Level						
Project Cost	\$27,660,467	\$5,116,457	18.50%			
80% Confidence Level						
Project Cost	\$27,660,467	\$8,143,985	29.44%			
100% Confidence Level						
Project Cost	\$27,660,467	\$15,105,868	54.61%			

Table 1. Project Cost Contingency Summary

Notes:

1) These figures combine uncertainty in the baseline cost estimates and schedule.

2) A P100 confidence level is an abstract concept for illustration only, as the nature of risk and uncertainty (specifically the presence of "unknown unknowns") makes 100% confidence a theoretical impossibility.

6.2.1 Sensitivity Analysis

Sensitivity analysis generally ranks the relative impact of each risk/opportunity as a percentage of total cost uncertainty. The Crystal Ball software uses a statistical measure (contribution to variance) that approximates the impact of each risk/opportunity contributing to variability of cost outcomes during *Monte Carlo* simulation.

Key cost drivers identified in the sensitivity analysis can be used to support development of a risk management plan that will facilitate control of risk factors and their potential impacts throughout the project lifecycle. Together with the risk register, sensitivity analysis results can also be used to support development of strategies to eliminate, mitigate, accept or transfer key risks.

6.2.2 Sensitivity Analysis Results

The risks/opportunities considered as key or primary cost drivers are ranked in order of importance in contribution to variance bar charts. Opportunities that have a potential to reduce project cost and are shown with a negative sign; risks are shown with a positive sign to reflect the potential to increase project cost. A longer bar in the sensitivity analysis chart represents a greater potential impact to total project cost.

Figure 1 presents a sensitivity analysis for cost growth risk from the high level cost risks identified in the risk register. Likewise, Figure 2 presents a sensitivity analysis for schedule growth risk from the high level schedule risks identified in the risk register.

6.3 Schedule and Contingency Risk Analysis

Table 2 provides the schedule duration contingencies calculated for the P80 confidence level. The schedule duration contingencies for the P50 and P100 confidence levels are also provided for illustrative purposes.

Schedule duration contingency was quantified as 30 months based on the P80 level of confidence. These contingencies were used to calculate the projected monthly recurring cost impact of project delays that are included in the Table 1 presentation of total cost contingency. The schedule contingencies were calculated by applying the high level schedule risks identified in the risk register for each option to the durations of critical path and near critical path tasks.

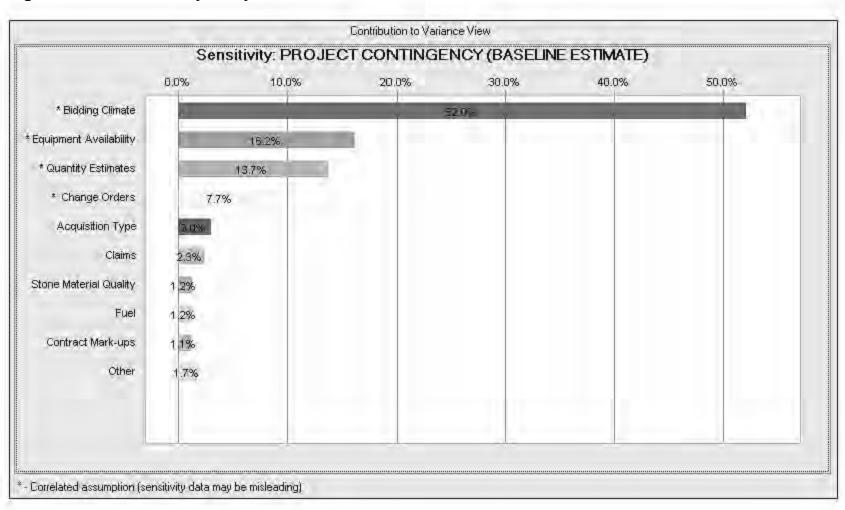
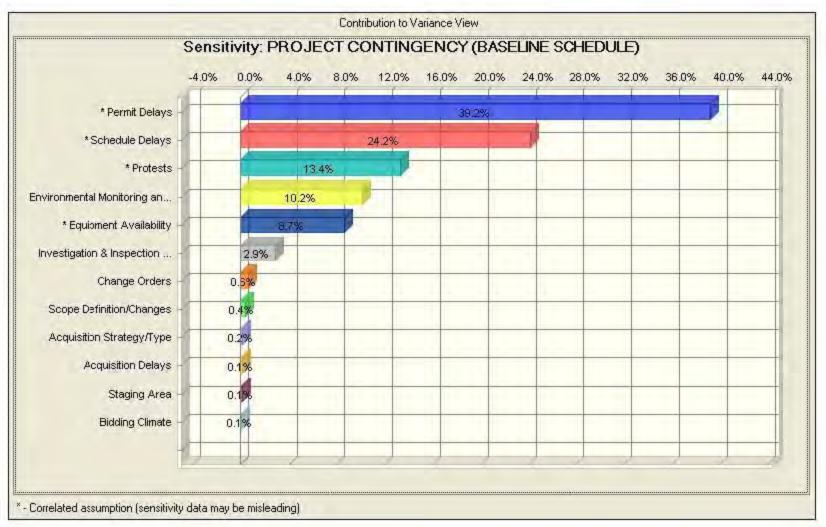

The schedule was not resource loaded and contained open-ended tasks and non-zero lags (gaps in the logic between tasks) that limit the overall utility of the schedule risk analysis. These issues should be considered as limitations in the utility of the schedule contingency data presented. Schedule contingency impacts presented in this analysis are based solely on projected monthly recurring costs.

Table 2. Schedule Duration Contingency Summary

Risk Analysis Forecast	Baseline Schedule Duration (months)	Contingency ¹ (months)	Contingency (%)
50% Confidence Level			
Total Project Duration	68	23	33%
80% Confidence Level			
Total Project Duration	68	30	44%
100% Confidence Level			
Total Project Duration	68	45	67%


Notes: 1) The schedule was not resource loaded and contained open-ended tasks and non-zero lags (gaps in the logic between tasks) that limit the overall utility of the schedule risk analysis. These issues should be considered as limitations in the utility of the schedule contingency data presented in Table 2.

2) A P100 confidence level is an abstract concept for illustration only, as the nature of risk and uncertainty (specifically the presence of "unknown unknowns") makes 100% confidence a theoretical impossibility.

Figure 1. Cost Sensitivity Analysis

Figure 2. Schedule Sensitivity Analysis

7.0 MAJOR FINDINGS/OBSERVATIONS/RECOMMENDATIONS

This section provides a summary of significant risk analysis results that are identified in the preceding sections of the report. Risk analysis results are intended to provide project leadership with contingency information for scheduling, budgeting, and project control purposes, as well as to provide tools to support decision making and risk management as projects progress through planning and implementation. Because of the potential for use of risk analysis results for such diverse purposes, this section also reiterates and highlights important steps, logic, key assumptions, limitations, and decisions to help ensure that the risk analysis results are appropriately interpreted.

7.1 Major Findings/Observations

Total project cost comparison summaries are provided in Table 3 and Figure 3. Additional major findings and observations of the risk analysis are listed below.

- 1. The key cost risk drivers identified through sensitivity analysis are Risks CT-4 (Bidding Climate), EN-C-3 (Equipment Availability), and EN-C-2 (Quantity Estimates), which together contribute 82 percent of the statistical cost variance.
- The key schedule risk drivers identified through sensitivity analysis are Risks PD-E-4 (Permit Delays), DP-3 (Schedule Delays), and CT-2 (Protests), which together contribute 77 percent of the statistical schedule variance.
- 3. The schedule was not resource loaded and contains open-ended tasks, and non-zero lags (gaps in the logic between tasks) that limit the overall utility of the schedule risk analysis. These issues should be considered as limitations in the utility of the schedule contingency data presented. Schedule contingency impacts presented in this analysis are based solely on projected monthly recurring costs. Resource impacts related to potential schedule delays could not be evaluated.
- 4. Operation and maintenance activities were not included in the cost estimate or schedules. Therefore, a full lifecycle risk analysis could not be performed. Risk analysis results or conclusions could be significantly different if the necessary operation and maintenance activities were included.

Confidence	Project Cost	Contingency
Level	(\$)	(%)
P0	\$22,656,136	-18.09%
P5	\$27,319,884	-1.23%
P10	\$28,323,970	2.40%
P15	\$29,061,427	5.06%
P20	\$29,672,679	7.27%
P25	\$30,270,680	9.44%
P30	\$30,843,997	11.51%
P35	\$31,341,319	13.31%
P40	\$31,826,234	15.06%
P45	\$32,311,775	16.82%
P50	\$32,776,924	18.50%
P55	\$33,240,512	20.17%
P60	\$33,728,730	21.94%
P65	\$34,216,760	23.70%
P70	\$34,689,217	25.41%
P75	\$35,237,230	27.39%
P80	\$35,804,452	29.44%
P85	\$36,427,500	31.70%
P90	\$37,189,845	34.45%
P95	\$38,270,714	38.36%
P100	\$42,766,335	54.61%

Table 3. Project Cost C	Comparison Summary
-------------------------	--------------------

Figure 3. Project Cost Summary

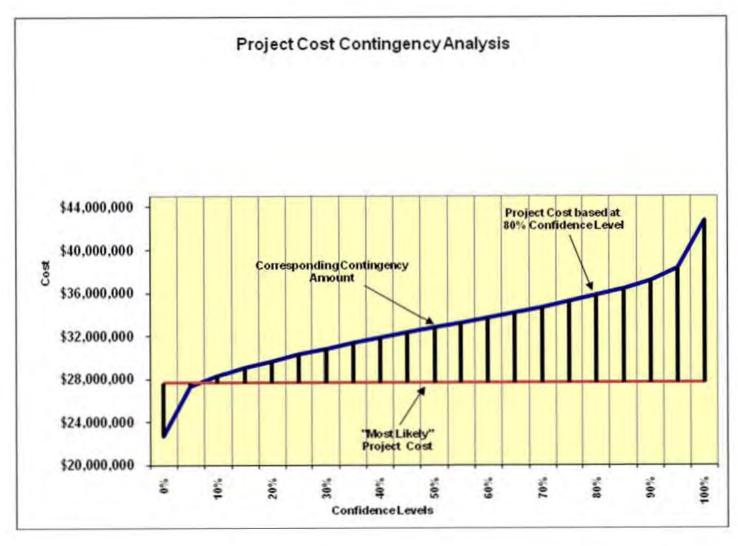
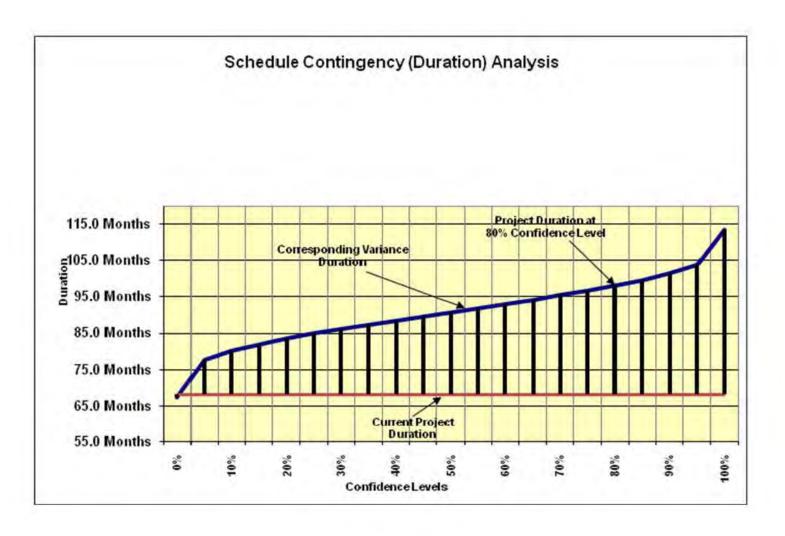



Figure 4. Project Duration Summary

7.2 Recommendations

Risk Management is an all-encompassing, iterative, and life-cycle process of project management. The Project Management Institute's (PMI) *A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 4th edition,* states that "project risk management includes the processes concerned with conducting risk management planning, identification, analysis, responses, and monitoring and control on a project." Risk identification and analysis are processes within the knowledge area of risk management. Its outputs pertinent to this effort include the risk register, risk quantification (risk analysis model), contingency report, and the sensitivity analysis.

The intended use of these outputs is implementation by the project leadership with respect to risk responses (such as mitigation) and risk monitoring and control. In short, the effectiveness of the project risk management effort requires that proactive management of risks does not conclude with the study completed in this report.

The Cost and Schedule Risk Analysis (CSRA) produced by the PDT identifies issues that require the development of subsequent risk response and mitigation plans. This section provides a list of recommendations for continued management of the risks identified and analyzed in this study. Note that this list is not all inclusive and should not substitute a formal risk management and response plan.

<u>1. Key Cost Risk Drivers</u>: The key cost risk drivers identified through sensitivity analysis are Risks CT-4 (Bidding Climate), EN-C-3 (Equipment Availability), and EN-C-2 (Quantity Estimates), which together contribute 82 percent of the statistical cost variance.

a) <u>Bidding Climate</u>: Project leadership should continuously monitor price fluctuations and behaviors in the regional industry, and certainly as part of the PDT's ongoing market research. Project leadership should craft the acquisition strategy with respect to the market trends to minimize the impact of industry contraction or saturation and to maximize competition.

b) <u>Equipment Availability</u>: Project leadership should conduct market research to determine the regional trends regarding the availability of equipment to meet the requirements in parallel to the general market research being conducted. The PDT may also consider changing the engineering requirements or methodologies to increase competition and/or the likelihood of equipment being available.

c) <u>Quantity Estimates</u>: Project leadership should conduct further research and/or survey to validate the scope and quantities estimated, as well as the production/estimate structure within the project scoping documents.

<u>2. Key Schedule Risk Drivers</u>: The key schedule risk drivers identified through sensitivity analysis are Risks PD-E-4 (Permit Delays), DP-3 (Schedule Delays), and CT-2 (Protests), which together contribute 77 percent of the statistical schedule variance.

a) <u>Permit Delays</u>: Project leadership should take proactive measures with respect to obtaining required permits as well as proactive monitoring and control. Changes to anticipated permit timelines should be communicated to management in a timely manner.

b) <u>Schedule Delays</u>: Project leadership should take proactive measures with respect to the schedule and the timeline for budget approval and disbursement of project funds. Changes to the anticipated timeline with respect to schedule should be controlled and reported to management for expeditious schedule recovery efforts.

c) <u>Protests</u>: Project leadership should account for the probability of contractor protests both in budgeting protest and bid preparation fees, as well as crafting an acquisition plan and solicitation that minimizes the likelihood of protest.

<u>3. Risk Management</u>: Project leadership should use of the outputs created during the risk analysis effort as tools in future risk management processes. The risk register should be updated at each major project milestone. The results of the sensitivity analysis may also be used for response planning strategy and development. These tools should be used in conjunction with regular risk review meetings.

<u>4. Risk Analysis Updates</u>: Project leadership should review risk items identified in the original risk register and add others, as required, throughout the project life-cycle. Risks should be reviewed for status and reevaluation (using qualitative measure, at a minimum) and placed on risk management watch lists if any risk's likelihood or impact significantly increases. Project leadership should also be mindful of the potential for secondary (new risks created specifically by the response to an original risk) and residual risks (risks that remain and have unintended impact following response).

APPENDIX A

JACKSONVILLE HARBOR, MILE POINT IMPROVEMENTS GRR - PDT Risk Register

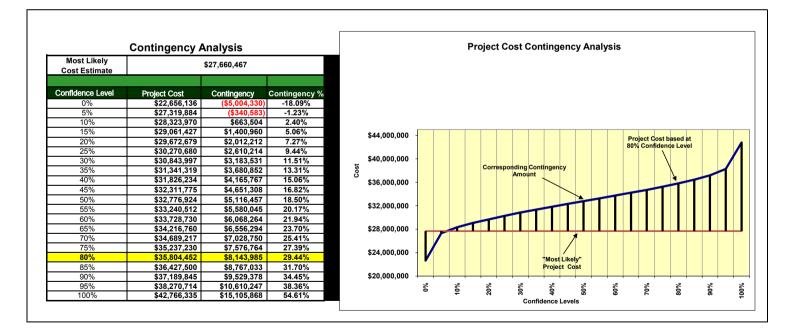
		_	Risk I	Level			
Likelihood of Occurrence	Very Likely	Low	Moderate	High	High	High	
f Occı	Likely	Low	Moderate	High	High	High	
ood o	Unlikely	Low	Low	Moderate	Moderate	High	
likelih	Very Unlikely	Low	Low	Low	Low	High	
-		Negligible	Marginal	Significant	Critical	Crisis	
		Impact	or Conseque	ence of Occu	irrence	\checkmark	
							\leq

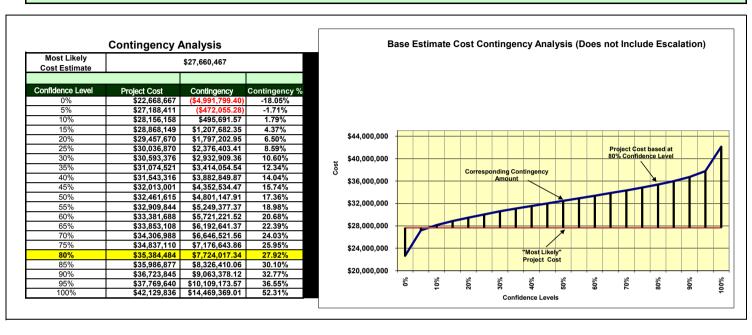
				Project Cost Project Schedule							1					
Risk No.	Risk/Opportunity Event	Discussion and Concerns	Likelihood*	Impact*	Risk Level*	Rough Order Impact (\$)	Likelihood*	Impact*	Risk Level*	Rough Order Impact (mo)		Responsibility/POC	Affected Project Component	Project Implications		
	Internal	Risks (Internal Risk Items are those that are generated, cause	ed, or controlle	d within the	e PDT's spher	e of influence.)										
CD-1	Change Orders	Time and cost impacts vary greatly on individual issues. Changes near end of project don't impact schedule.	Very Likely	Significant	HIGH	5 - 10%	Very Likely	Significant	HIGH	3 mo.	EN-W-1	Construction Division	Construction Cost & Schedule	Cost & Schedule		
CD-2	Safety Issues	Don't usually shut project down	Likely	Negligible	LOW	Minimal	Likely	Negligible	LOW	< 10 days		Construction Division	Construction Cost & Schedule	Cost & Schedule	Updated Schedule Impact to reflect ROI	
CD-3/ LS-2	Staging Area	Potential for problems with location; issues w/ runway; lights needed for cranes @ certain ht; aircraft- impact ht. restriction; Impacts contractor's operation	Unlikely	Siginificant	MODERATE	1 - 2%	Very Likely	Marginal	MODERATE	1 mo.		Construction Division	Project Cost & Schedule	Cost & Schedule		
CD-4	Claims	Claims are likely to occur, but not cause a drastic delay in project schedule	Likely	Significant	HIGH	5 - 15%	Very Likely	Negligible	LOW	0 mo.	DP-3	Construction Division	Project Cost & Schedule	Cost & Schedule		
CT-1	Acquisition Type	Impacts effort in award, some contract vehicles more conducive to lower cost; Prefer Best Value RFP w/ source selection plan; Increased cost/time to implement multiple awards	Unlikely	Significant	MODERATE	10%	Unlikely	Significant	MODERATE	2 mo.		Acquisition Strategy Board	Construction Cost & Schedule	Cost & Schedule	Combined CT-6 Acquisition Strategy cost info as it was determined to be duplicated	
CT-3	Acquisition Delays	If the Sole-Source J&A does not get approved, could impact the schedule by up to 12 months while the PDT comes up with another alternative.	N/A	N/A	N/A	N/A	Likely	Significant	HIGH	12 mo.		Acquisition Strategy Board	Construction Cost & Schedule	Cost & Schedule		npact, no cost impact; Updated Likelihood, rovided by Beau Corbett CT on 1/31/2011
CT-5	Acquisition Plan	Could split into multiple contracts if small business can do dredging	Very Unlikely	Significant	LOW	< 1%	N/A	N/A	N/A	N/A		Acquisition Strategy Board	Construction Cost	Cost		
	Proprietory Materials	This item is added in support of the possible sole source of the concrete structures, since there were no responses to the sources sought solicitation. If it is determined that a Sole-Source Justification and Approval (J&A) is required, the schedule may need to be increased to accomdate this effort. It and the solet solet accoundate the set of the solet solet accoundate the set of the solet.													provided by Beau Corbett CT on 1 Removed from risk register 3/2/1	Likelihood, Impact and ROI based on input /31/2011 and Steve Conger EN-D 2/4/2011. I due to responses from sources sought
	Procurement	could take 2-6 months to get sole sources approved through HQ.	N/A	N/A	N/A	N/A	Likely	Critical	HIGH	6 mo.		Contracting Division	Construction Cost	Cost & Schedule	so	licitation
CT-7/ DP-1	Project Component Sequencing	Subsequent proj. execution, if separate contracts for each phase/mult. contract (dredge/placement)	Unlikely	Marginal	LOW	\$200,000	N/A	N/A	N/A	N/A		PM/Planner/Contracting	Project Schedule	Schedule		
DP-2	Funding Stream	In short term, delays based on \$ amt. of contract are likely; delay in execution of proj. components	N/A	N/A	N/A	N/A	Likely	Marginal	MODERATE	Captured by DP- 3	DP-3	РМ	Project Schedule	Schedule	Removed from Study -Captured by DP-3	
DP-3	Schedule Delays	Hard to fund if not in 2013 budget- automatic sched, delay; in short term, delays based on \$ amt. of contract are likely; delay in execution of proj. components	Very Unlikely	Marginal	LOW	< 1%	Likely	Marginal	MODERATE	4 mo.	CT-2, EN-C-3, CD-4, EN-C-4, EN-G-1, EN-G-2, PD-E-2, PD-E-3, PD-E-4, DP-2		Project Cost & Schedule	Cost & Schedule	Updated Notes 2/9/2011 per input from Steve Ross DP-C	
DP-4/ EN-D-2	Scope Definition/Changes	Scope is well defined; little likelihood of scope increase or changes from current docs used for estimate development; Engineering pt. of view- if the project lingers, conditions may change	Very Unlikey	Critical	LOW	\$3,000,000	Unlikely	Significant	MODERATE	3 mo.	EN-C-2, EN-D-3	PMPlanner	Construction Cost & Schedule	Cost & Schedule	Updated ROI 2/9/2011 per input from Steve Ross DP-C and Steve Conger EN-DW	
EN-C-1	Production Estimates	Unit price per cubic yard	Likely	Marginal	MODERATE	\$4 M	N/A	N/A	N/A	N/A		Cost Engineering	Equipment/Production Rates	Cost		
EN-C-2	Quantity Estimates	Quantity over/under runs	Likely	Significant	HIGH	15%	N/A	N/A	N/A	N/A	EN-D-1, DP-4/ EN-D-2	Cost Engineering/Design Branch	Construction Cost	Cost		
EN-C-5	Awardable Range Increase	An additional 15% above the approximate 10% profit	Likely	Significant	HIGH	Captured by CT- 4	N/A	N/A	N/A	N/A		Cost Engineering	Funding	Cost	Risk Item covered by CT-4 Bidding Climate	
EN-C-8	Contract Mark-ups		Likely	Marginal	MODERATE	\$1.7 M	N/A	N/A	N/A	N/A						
EN-D-1	Design Costs	Haven't fully calculated full PED; compared to 8%, unlikely to exceed 4 million in PED costs	Unlikely	Marginal	LOW	<10%	Unlikely	Marginal	LOW	minimal to none	EN-D-3, EN-C-2	Cost Engineering/Design Branch	Construction Cost & Schedule	Cost & Schedule		
EN-D-3	Quantity Changes	Depends on time lapse- future condition vs. current; area is dynamic & can change	Likely	Significant	HIGH	Captured by EN- C-2	N/A	N/A	N/A	N/A	EN-D-1, DP-4/ EN-D-2	Design Branch	Construction Cost	Cost	Risk item covered by EN-C-2 Quantity Estimates	

				-	_	-		-							
EN-G-3	Investigation & Inspection Costs	I looked back at the JAX Harbor drilling completed in 2010. We had IGE est of ~\$300.000 for the mobilization alone for the drilling jack up. We were fortunate to get a lower cost ing, but under duress of construction, we may have to take what use can find. Therefore, \$300.000 and \$5.000 per day for equipment is ~\$3000 times 10 days max-\$30.000, and \$5.000 yed day for cave times 10 days = \$300.000 times 10 days max-\$30.000 and \$5.000 yed days core times 10 days = \$300.000 times at the back times to Worst case would put bits project costs for additional 10 holes would be less than \$370.000 times of the \$130 shown. The risk of this happening is low the \$370.000 times of the \$130 shown. The risk of this happening is low the \$150.000 times of the \$130 shown. The risk of this happening is low the \$150.000 times of the \$130 shown. The risk of this happening is low the \$150.000 times of the \$130 shown. The risk of this happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the happening is low the \$150.000 times of the \$130 shown. The risk of the \$150.000 times of t		Marginal	LOW	\$700,000	Unlikely	Significant	MODERATE	6 mo.		Geotechnical Branch	Project Cost & Schedule	Cost & Schedule	Updated Likelihood, Impact and ROI based on new feedback from Steve Myers EN-GG in email dated 3/12011; Cost aspect removed from risk analysis
EN-W-1	Modeling Accuracy	Pretty heavily refined model- 3D model; high level of confidence	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	1 mo.	CD-1; EN-W-2	H&H Branch	Construction Schedule	Schedule	Changed Schedule Impact to reflect ROI and feedback from Brian Cornwell EN-W
EN-W-2	Erosion Estimates	Erosion of adjacent shorelines and resultant shoaling; risk is that model is not accurate and proj. does not reduce erosion on Mile Pt. area	N/A	N/A	N/A	N/A	Very Unlikely	Significant	LOW	1 mo.	EN-W-1	H&H Branch	Construction Schedule	Schedule	
LS-1	Site Access	Has loading facility to load stone on barges- not a prob. since we own to gate on Blount Island; have rail into Tallyrand to load there as well	Unlikely	Marginal	LOW	\$0	Unlikely	Marginal	LOW	0 mo.		Sponsor	Project Cost & Schedule	Cost & Schedule	
LS-3	Highway Restrictions	Will probably truck in small aggregate; not expected to tear up road; stone by rail to terminal, then use barges	Very Unlikely	Significant	LOW	\$0	Unlikely	Marginal	LOW	0 mo.		Sponsor	Project Cost & Schedule	Cost & Schedule	Downgraded Schedule Likelihood due to research
LS-4	Cost Sharing	Prepared for it; risk may be a factor when it is time to sign agreement	N/A	N/A	N/A	N/A	Very Likely	Negligible	LOW	1 mo.		Sponsor	Project Schedule	Schedule	
LS-5	Public Support and Involvement	Currently a high level of support for project; only foresee small amt. of people having problem; people writing to Congress regularly	N/A	N/A	N/A	N/A	Likely	Negligible	LOW	1 mo.	DP-5/ PD-N-2	Sponsor	Project Schedule	Schedule	
OC-1	Project Partnership Agreement	Delay in project implementation	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	0.5-2 mo.		Counsel	Project Schedule	Schedule	
OD-1	Project Maintenance Requirements	50 yr. standpoint- not much maint. for training wall; dredging- area will naturally remain scoured	Very Unlikely	Marginal	LOW	1.0%	Very Unlikely	Marginal	LOW	1.0%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
OD-2	Monitoring Surveys	Don't plan on monitoring anymore than what we already require	Unlikely	Marginal	LOW	1.0%	Likely	Negligible	LOW	1.5%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
OD-3	O&M Funding	Already have funding for surveys, so unlikely to cause delays or additional costs to proj.	Unlikely	Negligible	LOW	1.0%	Unlikely	Negligible	LOW	1.0%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
PD-N-1	Economic Changes to Benefits	Feasibility level of study w/ high level of design; port level and administrative level; Any impacts to benefit analysis (ie, change in feet, commodity growth rates) would affect study costs, not project construction consts. he Hanjin construction completion seems to be a moving target, and already changed from 2015 (what is says in the Mileipoint draft report) to 2017 (what it will say in the Jax Hator CRR2 report) and who knows what in the future (the original Hanjin completion was suppose to be by end of 2011). That's not to say that the traffic cannot be made up by another entity (such as MOL) – but that would not likely occur until the MOL/TraPac terminal reaches capacity (it is less than a quarter of capacity right now).	Likely	Significant	HIGH	\$0	N/A	N/A	N/A	0 mo.		Planning Economics	Project Cost	Cost	Updated Cost Likelihood rating based on 2/22/2011 email input from Dan Abceassis
PD-N-3	Project Approval	Already capturing cost growth. Project expected to gain approval so unlikely that it will not get approved, however if delays to project approval then significant impacts.	N/A	N/A	N/A	N/A	Unlikely	Marginal	LOW	3 mo.		Planning Economics	Project Schedule	Schedule	Updated Schedule Impact rating 2/2/2011 per email input from Sam Borer PD-PN
RE-1	Land Acquisition Delays	All lands belong to government entities	Very Unlikely	Negligible	LOW	< 1%	Very Unlikely	Negligible	LOW	0 mo.		Real Estate	Project Cost & Schedule	Cost & Schedule	

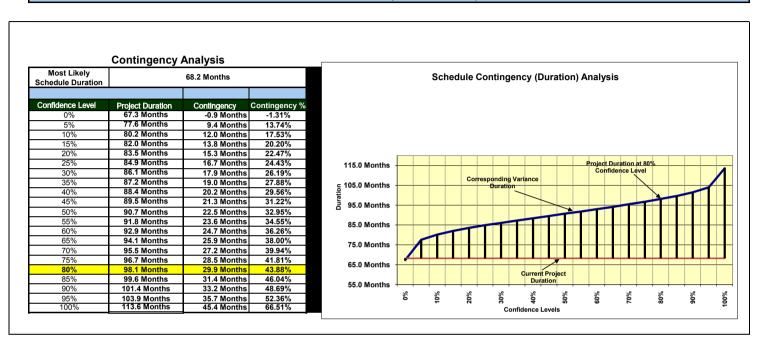
	Externa	I Risks (External Risk Items are those that are generated, cause	sed, or control	lled exclusiv	vely outside th	e PDT's sphere	e of influence.)]
CT-2	Protests	Delay in project execution; Sole source- can't get approved or if there is a protest it can kill contract- high risk	N/A	N/A	N/A	N/A	Likely	Significant	HIGH	6 mo.	DP-3	Contracting Division	Project Schedule	Schedule	
CT-4	Bidding Climate	Severe economic swings can increase / decrease number of potential bidders.	Likely	Marginal	MODERATE	-20% to +15%	Likely	Marginal	MODERATE	1 mo.	EN-C-7, EN-C-3				Updated Impact and ROI based on input provided by Beau Corbett CT on 1/31/2011
	Project Review and Authorization Delays	Likely b/c of public comment; review policy to adhere to; not a huge sched. impact; Delay in execution of project components. Uncertainties with IEPR may impact schedule.	N/A	N/A	N/A	N/A	Unlikely	Marginal	LOW	1 mo.	LS-5	PM/Planning	Project Schedule	Schedule	Updated Schedule Impact rating 2/2/2011 per email input from Sam Borer PD-PN
EN-C-3	Equipment Availability	Dredge may have to come from further away, increasing mobilization costs or size / type of equipment available.	Likely	Significant	HIGH	\$4.8 M	Likely	Marginal	MODERATE	1 mo.	DP-3, CT-4	Cost Engineering	Equipment	Cost & Schedule	Updated Schedule Likelihood and ROI
EN-C-4	Weather	Severe weather causing damage to project during construction.	Likely	Marginal	MODERATE	\$1.8 M	Likely	Negligible	LOW	1 mo.	DP-3	Cost Engineering	Labor/Production Rates	Cost & Schedule	Updated Schedule Impact since weather days already accounted for
EN-C-6	Fuel	\$x.xx per gallon was used in the Sep 08 MII, increases will effect equipment operating costs.	Very Likely	Significant	HIGH	\$446,000	N/A	N/A	N/A	N/A		Cost Engineering	Equipment	Cost	
EN-C-7	Labor	Labor Prices are fixed by Davis Bacon wage rates. Labor availability is subject to bidding climate.	Unlikely	Marginal	LOW	< 1%	N/A	N/A	N/A	N/A	CT-4	Cost Engineering	Labor/Production Rates	Cost	
EN-G-1	Stone Material Quality	Salvage stone- if quality of intended reusable stone is bad then need to purchase additional stone- slip in sched and increase to cost; EN-D feels the estimated 14,600CY of recoverable stone is conservative estimate of what is out there; don't know gradation of stone;	Unlikely	Significant	MODERATE	3.33%	Very Unlikely	Negligible	LOW	1 mo.	DP-3	Geotechnical	Project Cost & Schedule	Cost & Schedule	Updated ROI 2/3/2011 per email input from Steven Myers EN-GG; \$850,000 from EN-GG changed to 3.33% (~\$830,000) based on assumption that potentially as much as 20% of estimated quantity of reusable stone is not suitable-would increase current construction cost by about 3.33%
FN-G-2	Stone Material Availability	Have lots of nearby sources readily available	Very Unlikely	Significant	LOW	5%	Unlikely	Marginal	LOW	1 mo.	DP-3	Geotechnical	Construction Cost & Schedule	Cost & Schedule	Updated ROI 2/3/2011 per email input from Steven Myers EN-GG; \$850,000 from EN-GG changed to 5% of Construction Cost since item listed as significant impact and quick analysis showed increase in shipping costs from \$60 to 51/00/to vields about 5% increase
	Court Injunctions	If we should receive a court injunction, all work on the project will come to a complete halt, an external factor that we cannot control	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	Years		Counsel	Project Schedule	Schedule	Sou to shorton yields about 5% increase
PD-E-1	Environmental Monitoring and Mitigation	Predicting final marsh elevations difficult, may require future funding for long term monitoring	Unlikely	Significant	MODERATE	\$1,000,000	Unlikely	Critical	MODERATE	12 mo.		Planning Environmental	Project Cost & Schedule	Cost & Schedule	
PD-E-2	Endangered Species Impact	Manatee takes, although unlikely, could create a slip in schedule during construction	Unlikely	Negligible	LOW	\$240,000	Unlikely	Negligible	LOW	3 days	DP-3	Planning Environmental	Project Cost & Schedule	Cost & Schedule	Updated Cost Impact rating to reflect \$240,000 magnitude and Schedule Likelihood and Impact based on 2/10/2011 email input from Grady Caulk PD-EP
PD-E-3	Environmental Restrictions	A potentially significant submerged prehistoric site has been identified in the proposed Graft Marsh Island restoration area. The prefered alternative (restore marsh in Graet Marsh Island) will have a 'no adverse effect'. Resulting in no miligation cost. Other alternatives, which are very unlikely to be used, may result in an adverse effect determination requiring mitigation. If needed additional evaluation and mitigation activities may take at least 36 months.	Very Unlikely	Critical	LOW	\$5,000,000+	Very Unlikely	Critical	LOW	36 mo.	DP-3	Planning Environmental	Project Schedule	Schedule	Updated Cost and Schedule Likelihood & Impact rating to reflect feedback in 21/02011 email input from Grady Gaulk PD-EP
PD-E-4	Permit Delays	Anticipate time to get permit and meet that- not significant	Likely	Negligible	LOW	\$20,000	Unlikely	Critical	MODERATE	12 mo.	DP-3	Planning Environmental	Project Schedule	Schedule	Updated Schedule Impact Rating based on 2/10/2011 email input from Grady Caulk PD- EP
RE-2	Property Values	Administrative costs only	Very Unlikely	Negligible	LOW	< 1%	Very Unlikely	Negligible	LOW	0 mo.		Real Estate	Project Cost & Schedule	Cost & Schedule	

*Likelihood, Impact, and Risk Level to be verified through market research and analysis (conducted by cost engineer). 1. Risk/Opportunity identified with reference to the Risk Identification Checklist and through deliberation and study of the PDT.

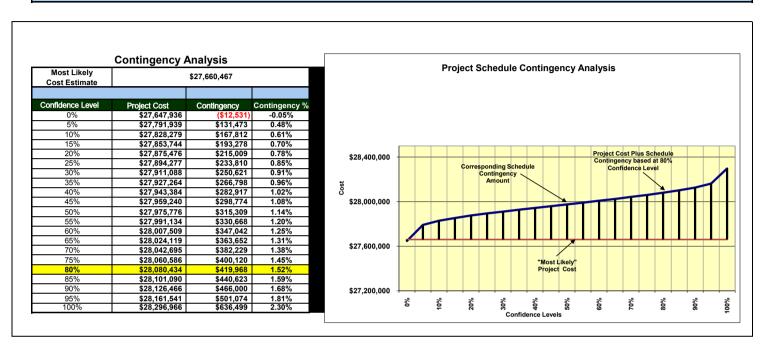

2. Discussions and Concerns elaborates on Risk/Opportunity Events and includes any assumptions or findings (should contain information pertinent to eventual study and analysis of event's impact to project).

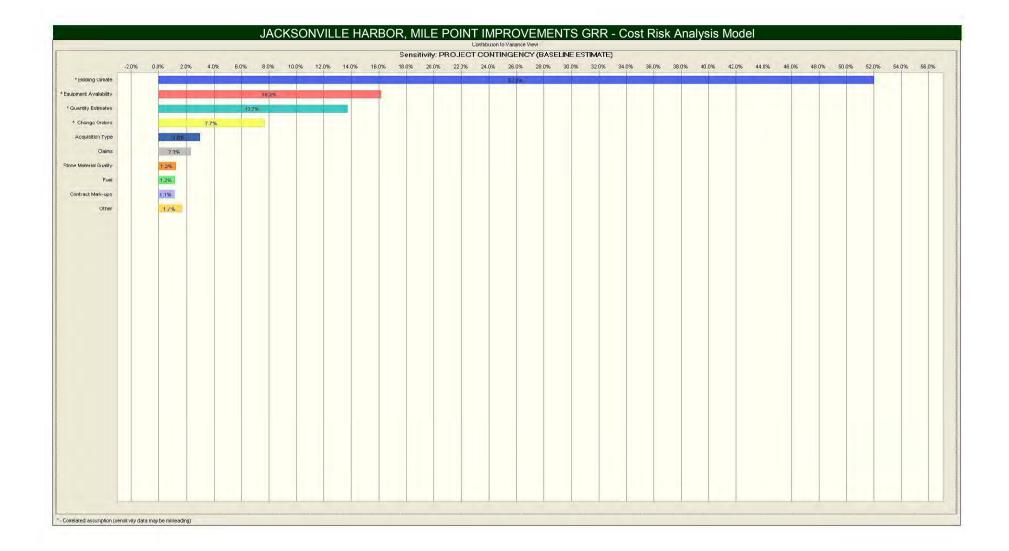

Discussions and Concerns elaborates on Rsk/Opportunity Events and includes any assumptions of Indings (should contain information pertinent to eventual study and analysis of events impact to project).
 Likelihoodi is a measure of the probability of the vent occurring – very Unlikely, Unlikely, Likely, Likely

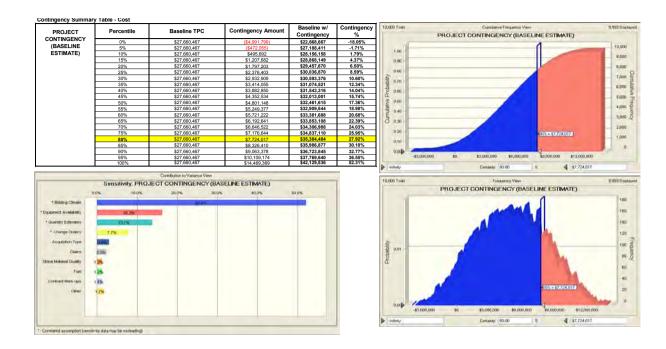
On leaded in exogences incertions that may be related to break the origination of the six and include the tasks are nanoted contently window a double contained.
 Affected Project Component identifies the specific item of the project to which the risk directly or strongly correlates.
 Project implications identifies whether or not the risk item affects project cosh, project schedule, or both.
 Project implications identifies the studied and further developed by the Cost Engineer. The nanoted Contact for an Analysis Method for Cost (Contingency) and Schedule (Escalation) Growth.


Contingency on Base Estimate	80% Confidence Project Cost
Baseline Estimate Cost (Most Likely) ->	\$27,660,467
Baseline Estimate Cost Contingency Amount ->	\$7,724,017
Baseline Estimate Construction Cost (80% Confidence) ->	\$35,384,484
Contingency on Schedule	80% Confidence Project Schedule
Project Schedule Duration (Most Likely) ->	68.2 Months
Schedule Contingency Duration ->	29.9 Months
Project Schedule Duration (80% Confidence) ->	98.1 Months
Project Schedule Contingency Amount (80% Confidence) ->	\$419,968
Project Contingency	80% Confidence Project Cost
Project Contingency Amount (80% Confidence) ->	\$8,143,985
Project Contingency Percentage (80% Confidence) ->	29%
Project Cost (80% Confidence) ->	\$35,804,452

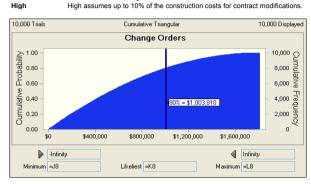
- PROJECT CONTINGENCY DEVELOPMENT -




- BASE CONTINGENCY DEVELOPMENT -


- SCHEDULE CONTINGENCY (DURATION) DEVELOPMENT -

- SCHEDULE CONTINGENCY (AMOUNT) DEVELOPMENT -



Rake Mail Rake Mail Rake Mail Isother Low Model Mail Mage Magee Magee Magee Magee <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>rystal Ball Simulat</th> <th></th> <th></th> <th></th> <th>Crystal Ball Simulat</th> <th></th> <th><u> </u></th>										rystal Ball Simulat				Crystal Ball Simulat		<u> </u>
Rank De Rank De Data Description Lating of Rank De Distribution Round Low Most Law Head Head<					Project Co	ost			E	xpected Values (\$	\$\$)	1	E	4		
Rest view list item up to up to the list item up to up to divide the RDT spectral item up to up to the list item. Up to	Risk No.	Risk/Opportunity Event	Discussion and Concerns	Likelihood*	Impact*	Risk Level*			Low	Most Likely	High		Low	Most Likely	High	Percentages are calculate variance from the assump
Charge Order The ordinary stray stray in yound water, down and water of an end water, water of the strain strain stray to stray the strain strain stray to stray. Sunda	rnal Risks (I	nternal Risk Items are those	that are generated, caused, or controlled within the PDT's	sphere of influ	ience.)					-						the cost values change th
Q-1/L S Singing Area decemine accords required contraction; impact diversion required orbits in the contract diversion required orbits and required activity and relates at the source diversion required with a source diversource diversion require required with a source dive	CD-1	Change Orders	Time and cost impacts vary greatly on individual issues. Changes near end of project don't impact schedule.	Very Likely	Significant	HIGH	Triangular		\$0	\$0	\$1,809,705		0.0%	0.0%	6.5%	percentages reflect varial
CT-1 Acquisition Type Impact divisions during cases during cases during on the sease casts much canced by the formation of the bases during on the sease casts much cases during during during on the sease casts much during durin	D-3/ LS-2	Staging Area		Unlikely	Siginificant	MODERATE	Uniform		\$0	\$0	\$293,583		0.0%	0.0%	1.1%	
CT-1 Acquisition Type Prefer Set Value RPP ** score section spectro spec	CD-4	Claims		Likely	Significant	HIGH	Uniform		\$0	\$0	\$2,201,872		0.0%	0.0%	8.0%	
EHC-2 Quantity Estimates Quantity control result Likely Significant NOME CD1 (1/1) NO EA/C EHC-2 Quantity Estimates Quantity control result Quantity Significant NOME Uniform CD1 (1/1/2) NO 12/4/3/37 EHC-2 Contract Mark-ups Quantity control result Model Model Uniform (1/1/2) NO 12/4/3/37 16/2 2/2/5 0/0/5 <td>CT-1</td> <td>Acquisition Type</td> <td>Prefer Best Value RFP w/ source selection plan; Increased cost/time to</td> <td>Unlikely</td> <td>Significant</td> <td>MODERATE</td> <td>Uniform</td> <td></td> <td>\$0</td> <td>\$0</td> <td>\$2,459,301</td> <td>1</td> <td>0.0%</td> <td>0.0%</td> <td>8.9%</td> <td></td>	CT-1	Acquisition Type	Prefer Best Value RFP w/ source selection plan; Increased cost/time to	Unlikely	Significant	MODERATE	Uniform		\$0	\$0	\$2,459,301	1	0.0%	0.0%	8.9%	
EHC-8 Contract Mark-ups Likely Marginal MOCERATE Linkom (#151,072) % 578.542 Send Risks (External Risk Items are these that are generated, caused, or controlled exclusively outside the PDT's sphere of the sphere results Uniform EL4C-0 (#11,020) % 578.542 CT-4 Bidding Climate Severe scontex seque rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the PDT's sphere of the sphere rates (acused, or controlled exclusively outside the poly of the sphere rates (acused, or controlled exclusively outside the poly of the sphere rates (acused, or controlled exclusively outside the poly of the sphere rates (acused, or controlled exclusively outside the poly of the sphere rate (acused, or controlled exclusively outside the poly of the sphere rate (acused, or controlled exclusively outside the poly of the sphere rates (acused, or controlled exclusively outside the poly of the sphere rates (acused, or controlled exclused the poly of the sphere rates (acused, or controlled excluse	EN-C-1	Production Estimates	Unit price per cubic yard	Likely	Marginal	MODERATE	Triangular		(\$356,860)	\$0	\$513,046	1	-1.3%	0.0%	1.9%	1
CT-4 Bidding Climate Severe exonence samps can recrease / document ended to be for table baters. Likely Marginal MODERATE Uniform EH-C-3 (44.318.001) 53.081.051 EH-C-4 Bidding Climate Severe exonence samps can recrease / document ended to be for table baters. Likely Marginal MODERATE Uniform EH-C-3 (44.318.002) 160 53.081.051 EH-C-4 Verafter Severe exonence samps can recrease / document ended to be for table baters. Likely Separline the sevent ended to be for table baters. Likely Separline the sevent ended to be for table baters. 1.17.8% 0.0% 3.1% EH-C-4 Weather Severe exonence samps can recrease / document ended to be for table baters. Likely Separline the sevent ended to be for table baters. 1.17.8% 0.0% 3.1% EH-C-4 Weather Severe wanter on and partice document ended to be for table baters. Likely ModeRATE Uniform 1.46.0.07 3.8 1.081.01 1.051.01 1.056.01 1.056.01 1.15%.07 0.0% 3.3% EH-C-1 Store pathers to use to the for table of the capters of table of the ca	EN-C-2	Quantity Estimates	Quantity overlunder runs	Likely	Significant	HIGH	Uniform	CD-1	(\$1,642,931)	\$0	\$2,464,397		-5.9%	0.0%	8.9%	
CT-4 Bidding Climate Severe scored: stating can torrass / document out or potential bidden; Likely Maginal MODERATE Linform EHC-3 (64.518.602) 53.081.501 ENC-4 Bedgin guiment Availability Dedge may have to come from forther away, toroassig mobilization costs: Likely Significant Significant Timegalar CT-4 100 Significant Significant 0.0% <td>EN-C-8</td> <td>Contract Mark-ups</td> <td></td> <td>Likely</td> <td>Marginal</td> <td>MODERATE</td> <td>Uniform</td> <td></td> <td>(\$621,072)</td> <td>\$0</td> <td>\$786,962</td> <td></td> <td>-2.2%</td> <td>0.0%</td> <td>2.8%</td> <td></td>	EN-C-8	Contract Mark-ups		Likely	Marginal	MODERATE	Uniform		(\$621,072)	\$0	\$786,962		-2.2%	0.0%	2.8%	
B4C-3 Equipment Availability Design may have to come from further away, storessing mobilization cost of the regenerative available. Likely Significant Trianguinr CT.4 50 56 566 566 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% EN-C-4 Weather Severe wateries causing damage to rogate during contraction. Likely Marginal MODERATE Uniform 100	ernal Risks (External Risk Items are tho	se that are generated, caused, or controlled exclusively out	side the PDT's	sphere of influ	ience.)										
ENC-5 Equipment Availability Superior Lange of equipment available Link Link <thlink< th=""> Link Link</thlink<>	CT-4	Bidding Climate	Severe economic swings can increase / decrease number of potential bidders.	Likely	Marginal	MODERATE	Uniform	EN-C-3	(\$4,918,602)	\$0	\$3,688,951		-17.8%	0.0%	13.3%	
ENC-6 Fuel Sxx per palknass used in the Sign OM III, Crosses and efficiency of the ender granger to assign costs. Sign ficant isini Uniform (\$400.07) \$80 \$1,09.01 EN-C-6 Subage store if aging friended readers to be add notices to in the data of correst to incide and increase to incide and incincide andian and and andincincide and incide and incide and incid	EN-C-3	Equipment Availability		Likely	Significant	HIGH	Triangular	CT-4	\$0	\$0	\$861,135		0.0%	0.0%	3.1%	
EN-C6 Field Or operating costs. Very Levy System Uniform Option States 1.5% 0.0% 3.8% EN-C6 States Stat	EN-C-4	Weather	Severe weather causing damage to project during construction.	Likely	Marginal	MODERATE	Uniform		\$0	\$0	\$1,136,875		0.0%	0.0%	4.1%	
Eh-Cs Store Matterial Quality purphase additional store-sign in table and increase to conclusion store store in table additionaries to conclusion store in table additionaries to conclusion store additingendef additionaries to conclusion store addi	EN-C-6	Fuel	operating costs.	Very Likely	Significant	HIGH	Uniform		(\$409,067)	\$0	\$1,058,101		-1.5%	0.0%	3.8%	
PD-E-1 and Mitigation term monitoring of the significant MODERATE Uniform 50 88 \$1,000,000 0.0% 0.0% 3.6%	EN-G-1	Stone Material Quality	purchase additional stone- slip in sched and increase to cost; EN-D feels the	Unlikely	Significant	MODERATE	Uniform	EN-G-3	(\$782,791)	\$0	\$929,392		-2.8%	0.0%	3.4%	
Placeholder for Project	PD-E-1			Unlikely	Significant	MODERATE	Uniform		\$0	\$0	\$1,000,000		0.0%	0.0%	3.6%	
												Placeholder for Project				

Risk Refer No.	Risk Event	Low	Most Likely	High
CD-1	Change Orders	\$0	\$0	\$1,809,705

Notes: This item captures the risk of the change orders impacting construction costs. Likely Low Nost likely scenario assumes not changes of the baseline estimate. Low assumes no change orders. High assumes up to 10% of the construction costs for contract modifications.

Assumption: Change Orders

Percentile	Assumption values
0%	\$98
10%	\$93,050
20%	\$189,680
30%	\$299,662
40%	\$419,445
50%	\$544,106
60%	\$675,458
70%	\$824,554
80%	\$1,003,810
90%	\$1,241,109
100%	\$1,795,973

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII

Construction Costs Minus Dredging Dredging Mob. Construction less Dredging

\$24,593,008 Construction Costs from Mill \$5,085,967 Construction Cost- Pipeline Dredging \$1,409,992 Construction Cost- Mob, Demob and Prep Work \$18,097,049

Risk Refer No.	Risk Event	Low	Most Likely	High
CD-3/ LS-2	Staging Area	\$0	\$0	\$293,583

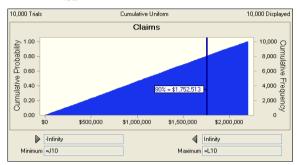
This item captures the risk that there will be cost impact to the stone placement for the jetty work due to the unavailability of staging areas. The sponsor and the Corps is confident in the availability of the staging areas currently contemplated. Most likely assumes no change to the baseline estimate. Notes: Likely Low High

The baseline estimate was made on the most optimum conditions. High assumes that the availability of staging areas for cranes is less favorable, creating a total cost impact of up to 2% of the total of the jetty construction costs.

Assumption: Staging Area

Percentile	Assumption values
0%	\$38
10%	\$29,369
20%	\$60,146
30%	\$90,047
40%	\$120,626
50%	\$149,007
60%	\$178,590
70%	\$207,373
80%	\$236,829
90%	\$265,957
100%	\$293,511

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII


Construction Cost- Bank Stabilize, Dikes & Jetties

\$14,679,144.38

Risk Refer No.	Risk Event	Low	Most Likely	High
CD-4	Claims	\$0	\$0	\$2,201,872

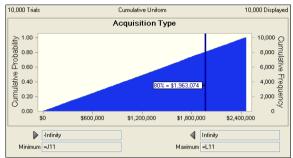
Notes: This item captures the risk that there will be contractor claims due to issues with the

I mis mem captures the risk that there will be contractor claims due to issues with the existing site conditions (particularly in-water). Most likely assumes no change to the baseline estimate. Low assumes no change to the baseline estimate as no claims are filed. High assumes that contractor claims create cost growth on the jetty construction by up to 15%. Likely Low High

Assumption: Claims

Percentile	Assumption values	
0%	\$252	
10%	\$221,828	
20%	\$443,809	
30%	\$661,525	
40%	\$878,396	
50%	\$1,089,936	
60%	\$1,311,122	
70%	\$1,534,138	
80%	\$1,752,513	
90%	\$1,969,110	
100%	\$2,201,841	

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII


Construction Cost- Bank Stabilize, Dikes & Jetties

\$14,679,144.38

Risk Refer No.	Risk Event	Low	Most Likely	High
CT-1	Acquisition Type	\$0	\$0	\$2,459,301

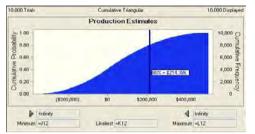
Notes: This item captures the risk that the overall costs could increase due to the selected

Inis item captures the risk that the overall costs could increase due to the selected acquisition strategy. Most likely assumes no change to baseline estimate. Low assumes no change from the baseline estimate. High assumes up to 10% increase due to acquisition strategy, particularly with the likelihood that best value tradeoff process will be used. Likely Low High

Assumption: Acquisition Type

Percentile	Assumption values	
0%	\$287	
10%	\$245,444	
20%	\$498,558	
30%	\$744,669	
40%	\$984,467	
50%	\$1,241,549	
60%	\$1,479,030	
70%	\$1,715,965	
80%	\$1,963,074	
90%	\$2,211,113	
100%	\$2,459,162	

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011


**Used Contract Costs from MII

Construction Cost \$24,593,007.98

This item captures the risk that dredging productivity could affect the dredging costs due to the actual characterization of materials or the effective work time due to navigation traffic disruptions. Most likely assumes no changes to the baseline estimate. Low assumes that the effective work time is up to 15% worse than currently estimated. High assumes that the effective work time is up to 15% worse than currently estimated. Notes:

Likely Low High

16-inch LPP Excavation 16-inch Excavation Total

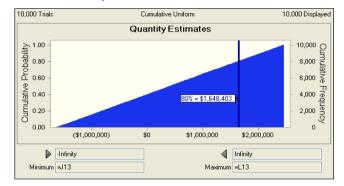
Best	Worst	Likely	
88%	119%		
\$170,099	\$229,390	\$192,454	Construction Cost- Pipeline Dredging- Chicopit Bay Circ Channel Excavation & Dis
89%	116%		
\$2,725,578	\$3,536,192	\$3,060,082	Construction Cost- Pipeline Dredging- Little Jetty Training Wall Excavation & Dispo
\$2,895,676	\$3,765,582	\$3,252,537	
88 38%	119.2%		

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011
**Changed EWT in CEDEP and transferred cost changes to MII to obtain values
**Used Contract Costs from MII

88.38% 89.07% 119.2% 115.6%

Assumption: Production Estimates

0%	(\$353,988)	
10%	(\$181,541)	
20%	(\$107,571)	
30%	(\$47,847)	
40%	\$1,519	
50%	\$43,561	
60%	\$95,153	
70%	\$150,242	
80%	\$214,386	
90%	\$297,979	
100%	\$500,287	


Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-2	Quantity Estimates	(\$1,642,931)	\$0	\$2,464,397

Notes: This item captures the risk that there will be a variation in quantity currently estimated (VEQ). This item captures the risk that there will be more quantity equired due to dynamic changes over time of the confluence floor. Likely

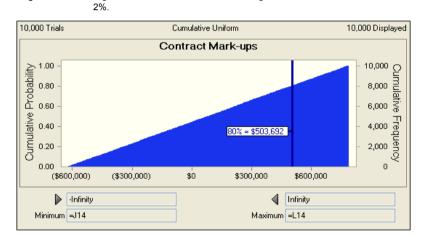
Most likely assumes no change to the baseline estimate.

Low assumes that the the quantity of dredging and stone is up to 10% less than currently Low estimated.

High High assumes that the quantity of the dredging and stone is up to 15% more than currently estimated.

Assumption: Quantity Estimates

Percentile	Assumption values
0%	(\$1,642,291)
10%	(\$1,213,254)
20%	(\$810,730)
30%	(\$409,116)
40%	\$10,188
50%	\$406,692
60%	\$814,274
70%	\$1,225,612
80%	\$1,648,403
90%	\$2,063,398
100%	\$2,464,077


From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011

**Used Contract Costs from MII

	90.00% 90.00% Best			
	Dest	worst	Likely	
West Training Wall	\$5,022,490	\$6,417,626	\$5,580,544	Construction Cost- Bank Stabilize, Dikes & Jetties- Western Training Wall Construction
East Training Wall	\$6,836,607	\$8,735,664	\$7,596,230	Construction Cost- Bank Stabilize, Dikes & Jetties- Eastern Training Wall Realignment
Dredging 16-inch	\$2,754,074	\$3,519,095	\$3,060,082	Construction Cost- Pipeline Dredging- Little Jetty Training Wall Excavation & Disposal
Dredging 16-inch LPP	\$173,209	\$221,323	\$192,454	Construction Cost- Pipeline Dredging- Chicopit Bay Circ Channel Excavation & Disposal
Total	\$14,786,380	\$18,893,707	\$16,429,311	
	90.00%	115.00%		
	90.00%	115.00%		

Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-8	Contract Mark-ups	(\$621,072)	\$0	\$786,962

Notes:	This item captures the risk that the contractor markups could significantly fluctuate, affecting total construction costs.
Likely Low	Most likely is the contractor's markups cost from the baseline estimate.
High	Low assumes that FOOH could be as low as 4%, HOOH 5%, Profit 8%, and Bond 0.5%. High assumes that FOOH could be as high as 8%, HOOH 15%, Profit 12%, and Bond

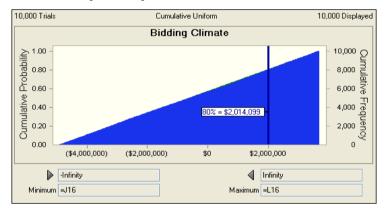
Assumption: Contract Mark-ups

Percentile	Assumption values
0%	(\$620,872)
10%	(\$482,019)
20%	(\$337,993)
30%	(\$199,347)
40%	(\$56,670)
50%	\$83,234
60%	\$221,349
70%	\$361,264
80%	\$503,692
90%	\$646,986
100%	\$786,782

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011

**Used Contract Costs from MII

Construction Cost \$24,593,007.98


Risk Refer No.	Risk Event	Low	Most Likely	High
CT-4 E	Bidding Climate	(\$4,918,602)	\$0	\$3,688,951

Notes: This item captures the both the opportunity for considerable savings and the risk of considerably higher prices due to market conditions in the jetty and dredging construction industries.

Likely Most likely assumes no change from baseline estimate.

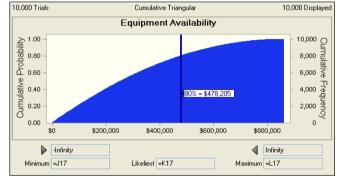
Low Low assumes that the use of an "industry day" could produce some savings (as it has on previous projects) by as much as 20%.

High High assumes that by the time the contract is let in 2013 (or later), market conditions could change (less favorable), increasing ultimate construction costs by up to 15%. Historical trends, per documentation received 6-28-10, is that high bids are coming in around 15% higher than the government estimates.

Assumption: Bidding Climate

Percentile	Assumption values	
0%	(\$4,918,391)	
10%	(\$4,054,611)	
20%	(\$3,199,120)	
30%	(\$2,380,493)	
40%	(\$1,496,036)	
50%	(\$581,819)	
60%	\$320,427	
70%	\$1,167,687	
80%	\$2,014,099	
90%	\$2,841,187	
100%	\$3,688,020	

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII Construction Cost \$24,593,007.98


Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-3	Equipment Availability	\$0	\$0	\$861,135

Notes: This item captures the risk that the dredging costs could increased based on the limited availability of equipment in the dredging industry and regional market.

Likely Most likely assumes no change to the current estimate (using 16" pipeline). Low

Low assumes no change from the most likely. High assumes that costs could increase up to as much as it would cost to mobilize and

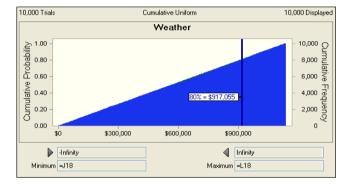
High utilize a 24" pipeline.

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII

	16-inch	24-inch	
16-inch LPP Excavation 16-inch	\$192,454	\$200,964	1.04421769 Construction Cost- Pipeline Dredging- Chicopit Bay Circ Channel Excavation & Disposal
Excavation	\$3,060,082	\$3,186,532	1.04132231 Construction Cost- Pipeline Dredging- Little Jetty Training Wall Excavation & Disposal
Mob	\$1,409,992	\$2,136,167	1.51502111 Construction Cost- Mob, Demob and Prep Work
Total	\$4,662,528	\$5,523,663	

Assumption: Equipment Availability

Percentile	Assumption values
0%	\$63
10%	\$44,669
20%	\$93,098
30%	\$143,031
40%	\$197,544
50%	\$257,128
60%	\$322,175
70%	\$393,342
80%	\$478,205
90%	\$595,296
100%	\$856,654


Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-4	Weather	\$0	\$0	\$1,136,875
				1 1 1 1 1

Notes:	This item captures the risk of damage due to a severe storm.
--------	--

Likely Most likely assumes no changes to the baseline estimate.

Low assumes no impact due to weather.

High High assumes that a severe weather event occurs, creating a 7 day period of standby and causing rework of a 100' section of jetty.

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011

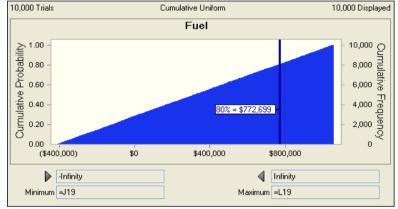
Jetty Storm Damag	je	Duration
West Training Wall	\$5,580,544	9/11/2013
East Training Wall	\$7,596,230	5/1/2014
Total	\$13,176,774	
100' of damage	\$878,452	
Standby Costs		

\$13,176,774
\$56,796
\$397,575
\$258,424

**Used Contract Costs from MII

232 Construction Cost- Bank Stabilize, Dikes & Jetties- Western Training Wall Construction Construction Cost- Bank Stabilize, Dikes & Jetties- Eastern Training Wall Realignment

Assumption: Weather


Percentile	Assumption values		
0%	\$423		
10%	\$113,346		
20%	\$225,207		
30%	\$343,245		
40%	\$455,358		
50%	\$574,435		
60%	\$692,411		
70%	\$798,936		
80%	\$917,055		
90%	\$1,022,755		
100%	\$1,136,796		

Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-6	Fuel	(\$409,067)	\$0	\$1,058,101

Notes:

LikelyMost likely assumes no change to the baseline estimate.

- Low Low assumes that the fuel price for off-road and marine diesel to be \$2.30/gallon. High High assumes that the fuel price for off-road and marine diesel to be \$4.80/gallon.

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2 From CEDEP file: JHFMIPT 2011-1 6 INCH PORTABLE.xlsm dated 1/21/2011 From CEDEP file: JHFMIPT 2011-1 16 INCH CHICOPIT FC.xlsm dated 1/21/2011 From CEDEP file: JHFMIPT 2011-1 16 INCH PABLO CK FW.xlsm **Used Equipment Costs from MII **Used Equipment Operating Costs from CEDEP

Equipment Costs Likely Worst Best MII \$1,808,094 \$1,882,770 \$1,744,677 Construction Cost CEDEP Portable 6-Inch \$60,398 \$91,466 \$49,475 CEDEP 16-Inch \$2,660,283 \$1,373,199 \$1,707,926 Total \$3,576,418 \$4,634,519 \$3,167,351

Assumption: Fuel

Percentile	Assumption values
0%	(\$408,877)
10%	(\$265,629)
20%	(\$115,515)
30%	\$23,773
40%	\$171,858
50%	\$320,549
60%	\$469,718
70%	\$613,805
80%	\$772,699
90%	\$912,368
100%	\$1.057.950

Risk Refer No.	Risk Event	Low	Most Likely	High
EN-G-1	Stone Material Quality	(\$782,791)	\$0	\$929,392

Notes: This item captures the risk that the material planned on being salvaged and reused will not be suitable for placement in the jetty construction.

Likely Most likely assumes no change to the baseline estimate. Low assumes that there is more recovered reusable stone than estimated, decreasing the amount of purchase stone by 15% and resulting in an overall cost savings of 2.83% (based on input from geotechnical design and analysis by EN-C).

High High assumes that there is approx 15% less recovered reusbale stone than estimated, increasing the amount of purchase stone and resulting in an increase in the project cost by up to 3.36% (based on input from geotechnical design and analysis by EN-C).

Assumption: Stone Material Quality

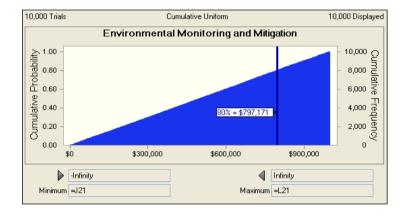
Percentile	Assumption values	
0%	(\$782,673)	
10%	(\$611,251)	
20%	(\$445,472)	
30%	(\$279,037)	
40%	(\$109,732)	
50%	\$63,878	
60%	\$239,901	
70%	\$403,546	
80%	\$581,944	
90%	\$755,323	
100%	\$929,347	

From MII File: JHFMILEPT2011-3-Final NED Plan FY11 no contingency.mlp dated 3/1/2011 **Used Contract Costs from MII

Per phone conversation with Steve Conger 2/22/2011 it is expected to recover approximately 14,600 CY of reusable armor stone, which is a conservative estimate. There may be more recovered reusable stone which would decrease the amunt needed to be purchased.

Stone Material Quality:

High would be less reusable stone than what is considered in estimate, increasing the amount of stone to be purchased. VEQ clause limits to 15% variation in expected quantity. Estimated Amt of Reusable Stone % Not Suitable (as decimal) CY Not Suitable %/CY Potential Cost Increase % of Construction Costs 14,600 0.15 2190 \$383 \$837,806 3.36%


Low would be more reusable stone than what is considered in estimate, decreasing the amount of stone to be purchased. VEQ clause limits to 15% variation in estimated quantit Estimated Amt of Purchased Stone 15% Variation OCY Decrease \$/CY Potential Cost Savings % of Construction Costs 12,300 0.15 1.845 \$383 \$705,823 2.83%

If there is 15% less reusable stone (2190 CY less), the contractor would need to purchase the difference (2190 CY) which is more than a 15% increase (17.8%) to the estimated amount of stone to purchase. This quantity overrun would not be subject to the VEQ clause and the price of the additional stone over 15% would need to be negotiated.

Low	Most Likely	High
tion \$0	\$0	\$1,000,000
1		

- Notes:
 This item captures the risk that there will be more moniotring and mitigation required due to changing conditions in the marsh elevations.

 Likely
 Most likely assumes no change to the baseline estimate.
- Low Low assumes no change to the baseline estimate.
- High High assumes that monitoring and mitigation efforts could cost up to \$1 Million more.

Assumption: Environmental Monitoring and Mitigation

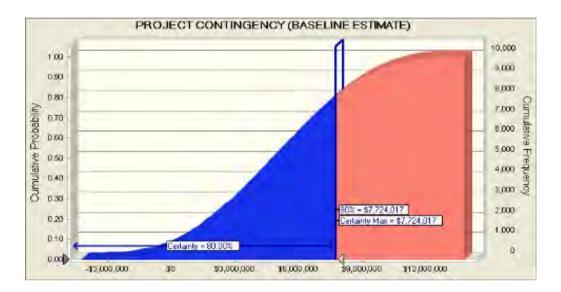
Percentile	Assumption values
0%	\$63
10%	\$99,408
20%	\$202,629
30%	\$302,679
40%	\$401,879
50%	\$499,994
60%	\$599,099
70%	\$697,531
80%	\$797,171
90%	\$897,819
100%	\$999,733

Crystal Ball Report - Full

Simulation stopped on 3/26/2011 at 4:28 PM Simulation stopped on 3/26/2011 at 4:28 PM

Run preferences: Number of trials run Monte Carlo	10,000
Seed	999
Precision control on Confidence level	95.00%
Run statistics:	
Total running time (sec)	11.30
Trials/second (average)	885
Random numbers per sec	11,505
Crystal Ball data:	
Assumptions	13
Correlations	2
Correlated groups	2
Decision variables	0
Forecasts	1

Forecasts


Worksheet: [Risk Analysis (Cost)-Milepoint_3-26-11 - GRM Review.xlsx]Cost Risk Model

Forecast: PROJECT CONTINGENCY (BASELINE ESTIMATE)

Cell: K23

Summary:

Certainty level is 80.00% Certainty range is from -Infinity to \$7,724,017 Entire range is from -\$4,991,799 to \$14,469,369 Base case is \$0 After 10,000 trials, the std. error of the mean is \$32,453

Statistics: Trials	Forecast values 10,000
Base Case	\$0
Mean	\$4,792,883
Median	\$4,801,313
Mode	
Standard Deviation	\$3,245,338
Variance	\$10,532,220,166,484
Skewness	0.0152
Kurtosis	2.44
Coeff. of Variability	0.6771
Minimum	-\$4,991,799
Maximum	\$14,469,369
Range Width	\$19,461,168
Mean Std. Error	\$32,453

Forecast: PROJECT CONTINGENCY (BASELINE ESTIMATE) (cont'd)

Percentiles:	Forecast values
0%	-\$4,991,799
10%	\$495,692
20%	\$1,797,203
30%	\$2,932,909
40%	\$3,882,850
50%	\$4,801,148
60%	\$5,721,222
70%	\$6,646,522
80%	\$7,724,017
90%	\$9,063,378
100%	\$14,469,369

End of Forecasts

Cell: K23

Assumptions

Cell: K8

Worksheet: [Risk Analysis (Cost)-Milepoint_3-26-11 - GRM Review.xlsx]Cost Risk Model

Assumption: Change Orders

Assumption. Change Orders				
Triangular distribution with para Minimum Likeliest Maximum	\$0 \$0 \$1,809,705	(=J8) (=K8) (=L8)		
	Change Orders	11,000,000		
Correlated with: Quantity Estimates (K13)			Coefficient 0.50	
Assumption: Acquisition Type				Cell: K11
Uniform distribution with param Minimum Maximum	neters: \$0 \$2,459,301	(=J11) (=L11)		
	Acquisition Type	2,000,000 \$1,000,000		
Assumption: Bidding Climate				Cell: K16
Uniform distribution with param Minimum Maximum	neters: (\$4,918,602) \$3,688,951 Bidding Climate	(=J16) (=L16)		
	Ournalide/A Fridabally 9 00 1 9 00 1	000,000		
Correlated with: Equipment Availability (K17)			Coefficient 0.50	

Assumption: Claims

Minimum (=J10) \$0 Maximum \$2,201,872 (=L10) Claims 6.80 0.00 0.40 0.20 Cell: K14 Uniform distribution with parameters: Minimum (\$621,072) (=J14) Maximum \$786,962 (=L14) Contract Mark-ups Assumption: Environmental Monitoring and Mitigation Uniform distribution with parameters: Minimum \$0 (=J21) Maximum \$1,000,000 (=L21) Environmental Monitoring and Mitigation 0.00 0.40 11.21 Triangular distribution with parameters:

Page 5

Cell: K17

Cell: K21

Uniform distribution with parameters:

Assumption: Contract Mark-ups

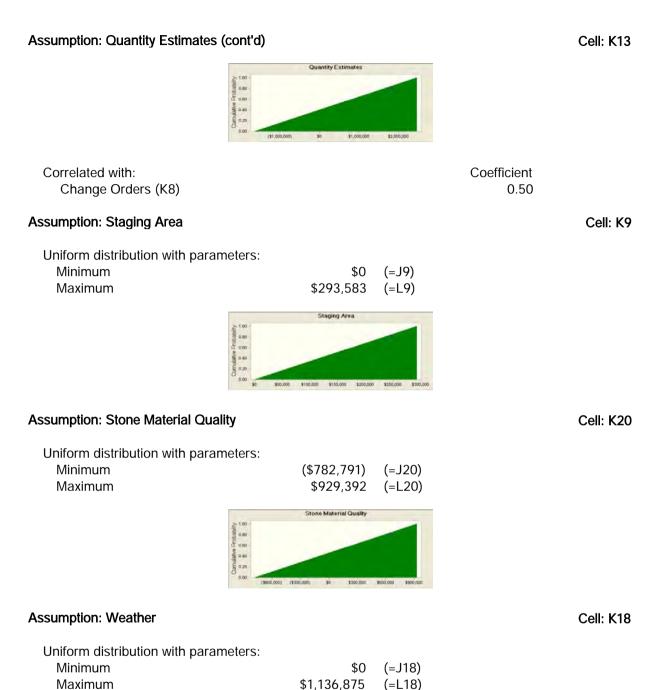
Assumption: Equipment Availability

Minimum	\$0	(=J17)
Likeliest	\$0	(=K17)
Maximum	\$861,135	(=L17)

Equipment Availability

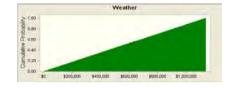
0.40 1 20 Correlated with: Coefficient Bidding Climate (K16) 0.50 **Assumption: Fuel** Uniform distribution with parameters: (\$409,067) Minimum (=J19) Maximum \$1,058,101 (=L19) Fuel 6.80 una 0.40 Assumption: Production Estimates Cell: K12 Triangular distribution with parameters: Minimum (\$356,860) (=J12) Likeliest (=K12) \$0 Maximum \$513,046 (=L12) Production Estimates una 11.40 \$200.00 \$400,000 **Assumption: Quantity Estimates**

Uniform distribution with parameters:

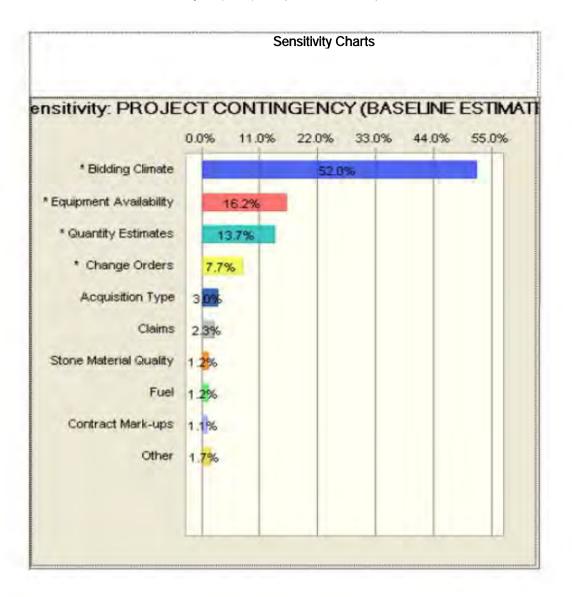

Assumption: Equipment Availability (cont'd)

e Probabili

Minimum	(\$1,642,931)	(=J13)
Maximum	\$2,464,397	(=L13)


Cell: K13

Cell: K19



Assumption: Weather (cont'd)

Cell: K18

End of Assumptions

JACKSONVILLE HARBOR, MILE POINT IMPROVEMENTS GRR - PDT Risk Register

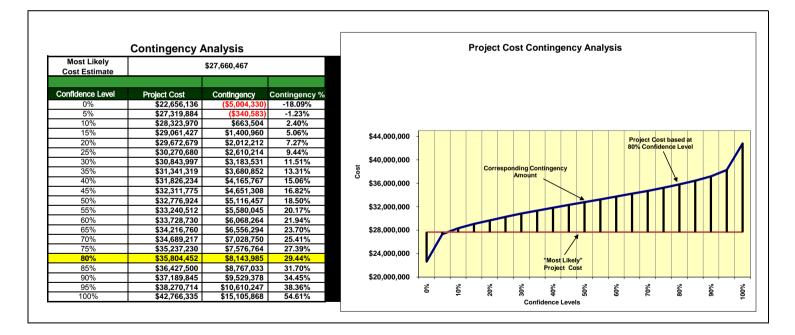
		_	Risk	Level		
Likelihood of Occurrence	Very Likely	Low	Moderate	High	High	High
f Occl	Likely	Low	Moderate	High	High	High
ood ol	Unlikely	Low	Low	Moderate	Moderate	High
-ikelih	Very Unlikely	Low	Low	Low	Low	High
-		Negligible	Marginal	Significant	Critical	Crisis
		Impact	or Conseque	ence of Occu	irrence	\checkmark

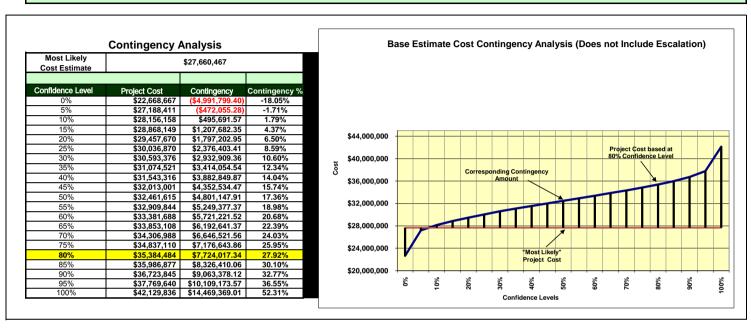
		_		Pro	iect Cost			Projec	t Schedule						1	
Risk	Risk/Opportunity					Rough Order				Rough Order			Affected Project			
No.	Event	Discussion and Concerns	Likelihood*	Impact*	Risk Level*	Impact (\$)	Likelihood*	Impact*	Risk Level*	Impact (mo)	to Other(s)	Responsibility/POC	Component	Project Implications		
	Internal	Risks (Internal Risk Items are those that are generated, cause	ed, or controlle	d within the	e PDT's spher	e of influence.)	1	•								
CD-1	Change Orders	Time and cost impacts vary greatly on individual issues. Changes near end of project don't impact schedule.	Very Likely	Significant	HIGH	5 - 10%	Very Likely	Significant	HIGH	3 mo.	EN-W-1	Construction Division	Construction Cost & Schedule	Cost & Schedule		
													Construction Cost &		Updated Schedule Impact to	
CD-2 CD-3/	Safety Issues	Don't usually shut project down Potential for problems with location; issues w/ runway; lights needed for	Likely	Negligible	LOW	Minimal	Likely	Negligible	LOW	< 10 days		Construction Division	Schedule	Cost & Schedule	reflect ROI	
LS-2	Staging Area	cranes @ certain ht; aircraft- impact ht. restriction; Impacts contractor's operation	Unlikely	Siginificant	MODERATE	1 - 2%	Very Likely	Marginal	MODERATE	1 mo.		Construction Division	Project Cost & Schedule	Cost & Schedule		
CD-4	Claims	Claims are likely to occur, but not cause a drastic delay in project schedule	Likely	Significant	HIGH	5 - 15%	Very Likely	Negligible	LOW	0 mo.	DP-3	Construction Division	Project Cost & Schedule	Cost & Schedule		
CT-1	Acquisition Type	Impacts effort in award, some contract vehicles more conducive to lower cost; Prefer Best Value RFP w/ source selection plan; Increased cost/time to implement multiple awards	Unlikely	Significant	MODERATE	10%	Unlikely	Significant	MODERATE	2 mo.		Acquisition Strategy Board	Construction Cost & Schedule	Cost & Schedule	Combined CT-6 Acquisition Strategy cost info as it was determined to be duplicated	
CT-3	Acquisition Delays	Delays in getting the contract solicited could impact the current schedule (1 month delay due to overwhelming response or other administrative procedures).	N/A	N/A	N/A	N/A	Unlikely	Significant	MODERATE	1 mo.		Acquisition Strategy Board	Construction Cost & Schedule	Cost & Schedule	Likelihood, Impact and ROI based	dule impact, no cost impact; Updated I on input provided by Beau Corbett CT on 1/31/2011
CT-5	Acquisition Plan	Could split into multiple contracts if small business can do dredging	Very Unlikely	Significant	LOW	< 1%	N/A	N/A	N/A	N/A		Acquisition Strategy Board	Construction Cost	Cost		
CT-6/ EN-D-4	Proprietory Materials Procurement	This item is added in support of the possible sole source of the concrete structures, since there were no responses to the sources sought solicitation. It is determined that a Sole-Source Justification and Approval (JAA) is required, the schedule may need to be increased to accomodate this effort. It could take 2-8 months to get sole sources approved through HQ.	NA	N/A	N/A	NA	Likely	Critical	нідн	6 mo.		Contracting Division	Construction Cost	Cost & Schedule	input provided by Beau Corbett 2/4/2011. Removed from risk regi	ed Likelihood, Impact and ROI based on CT on 1/31/2011 and Steve Conger EN-D ster 32/11 due to responses from sources ht solicitation
CT-7/	Project Component	Subsequent proj. execution, if separate contracts for each phase/mult.														
DP-1	Sequencing	contract (dredge/placement)	Unlikely	Marginal	LOW	\$200,000	N/A	N/A	N/A	N/A		PM/Planner/Contracting	Project Schedule	Schedule		
DP-2	Funding Stream	In short term, delays based on \$ amt. of contract are likely; delay in execution of proj. components	N/A	N/A	N/A	N/A	Likely	Marginal	MODERATE	Captured by DP- 3	DP-3 CT-2, EN-C-3,	РМ	Project Schedule	Schedule	Removed from Study -Captured by DP-3	
DP-3	Schedule Delays	Hard to fund if not in 2013 budget- automatic sched. delay, in short term, delays based on \$ amt. of contract are likely; delay in execution of proj. components	Very Unlikely	Marginal	LOW	< 1%	Likely	Marginal	MODERATE	4 mo.	CD-4, EN-C-4, EN-G-1, EN-G-2, PD-E-2, PD-E-3, PD-E-4, DP-2		Project Cost & Schedule	Cost & Schedule	Updated Notes 2/9/2011 per input from Steve Ross DP-C Updated ROI 2/9/2011 per input	
DP-4/ EN-D-2	Scope Definition/Changes	Scope is well defined; little likelihood of scope increase or changes from current docs used for estimate development; Engineering pt. of view- if the project lingers, conditions may change	Very Unlikey	Critical	LOW	\$3,000,000	Unlikely	Significant	MODERATE	3 mo.	EN-C-2, EN-D-3	PMPlanner	Construction Cost & Schedule	Cost & Schedule	from Steve Ross DP-C and Steve Conger EN-DW	
EN-C-1	Production Estimates	Unit price per cubic yard	Likely	Marginal	MODERATE	\$4 M	N/A	N/A	N/A	N/A		Cost Engineering	Equipment/Production Rates	Cost		
EN-C-2	Quantity Estimates	Quantity over/under runs	Likely	Significant	HIGH	15%	N/A	N/A	N/A	N/A	EN-D-1, DP-4/ EN-D-2	Cost Engineering/Design Branch	Construction Cost	Cost		
EN-C-5	Awardable Range Increase	An additional 15% above the approximate 10% profit	Likely	Significant	HIGH	Captured by CT- 4	N/A	N/A	N/A	N/A		Cost Engineering	Funding	Cost	Risk Item covered by CT-4 Bidding Climate	
EN-C-8	Contract Mark-ups		Likely	Marginal	MODERATE	\$1.7 M	N/A	N/A	N/A	N/A						
EN-D-1	Design Costs	Haven't fully calculated full PED; compared to 8%, unlikely to exceed 4 million in PED costs	Unlikely	Marginal	LOW	<10%	Unlikely	Marginal	LOW	minimal to none	EN-D-3, EN-C-2	Cost Engineering/Design Branch	Construction Cost & Schedule	Cost & Schedule		
EN-D-3	Quantity Changes	Depends on time lapse- future condition vs. current; area is dynamic & can change	Likely	Significant	HIGH	Captured by EN- C-2	N/A	N/A	N/A	N/A	EN-D-1, DP-4/ EN-D-2	Design Branch	Construction Cost	Cost	Risk item covered by EN-C-2 Quantity Estimates	

-				-	_			-							
EN-G-3	Investigation & Inspection Costs	I looked back at the JAX Harbor drilling completed in 2010. We had IGE est of ~\$300.000 for the mobilization alone for the drilling jack up. We were fortunate to get a lower cost ing, but under duress of construction, we may have to take what use can find. Therefore, \$300.000 and \$5.000 per day for equipment is ~\$3000 times 10 days max-\$30.000, and \$5.000 yed day for cave times 10 days = \$300.000 times 10 days max-\$30.000 and \$5.000 yed days core times 10 days = \$300.000 times at the back times to Worst case would put bits project costs for additional 10 holes would be less than \$370.000 times of the \$130 shown. The risk of the happening is low the \$370.000 times of the \$130 shown. The risk of the happening is low.		Marginal	LOW	\$700,000	Unlikely	Significant	MODERATE	6 mo.		Geotechnical Branch	Project Cost & Schedule	Cost & Schedule	Updated Likelihood, Impact and ROI based on new feedback from Steve Myers EN-GG in email dated 3/1/2011
EN-W-1	Modeling Accuracy	Pretty heavily refined model- 3D model; high level of confidence	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	1 mo.	CD-1; EN-W-2	H&H Branch	Construction Schedule	Schedule	Changed Schedule Impact to reflect ROI and feedback from Brian Cornwell EN-W
EN-W-2	Erosion Estimates	Erosion of adjacent shorelines and resultant shoaling; risk is that model is not accurate and proj. does not reduce erosion on Mile Pt. area	N/A	N/A	N/A	N/A	Very Unlikely	Significant	LOW	1 mo.	EN-W-1	H&H Branch	Construction Schedule	Schedule	
LS-1	Site Access	Has loading facility to load stone on barges- not a prob. since we own to gate on Blount Island; have rail into Tallyrand to load there as well	Unlikely	Marginal	LOW	\$0	Unlikely	Marginal	LOW	0 mo.		Sponsor	Project Cost & Schedule	Cost & Schedule	
LS-3	Highway Restrictions	Will probably truck in small aggregate; not expected to tear up road; stone by rail to terminal, then use barges	Very Unlikely	Significant	LOW	\$0	Unlikely	Marginal	LOW	0 mo.		Sponsor	Project Cost & Schedule	Cost & Schedule	Downgraded Schedule Likelihood due to research
LS-4	Cost Sharing	Prepared for it; risk may be a factor when it is time to sign agreement	N/A	N/A	N/A	N/A	Very Likely	Negligible	LOW	1 mo.		Sponsor	Project Schedule	Schedule	
LS-5	Public Support and Involvement	Currently a high level of support for project; only foresee small amt. of people having problem; people writing to Congress regularly	N/A	N/A	N/A	N/A	Likely	Negligible	LOW	1 mo.	DP-5/ PD-N-2	Sponsor	Project Schedule	Schedule	
OC-1	Project Partnership Agreement	Delay in project implementation	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	0.5-2 mo.		Counsel	Project Schedule	Schedule	
OD-1	Project Maintenance Requirements	50 yr. standpoint- not much maint. for training wall; dredging- area will naturally remain scoured	Very Unlikely	Marginal	LOW	1.0%	Very Unlikely	Marginal	LOW	1.0%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
OD-2	Monitoring Surveys	Don't plan on monitoring anymore than what we already require	Unlikely	Marginal	LOW	1.0%	Likely	Negligible	LOW	1.5%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
OD-3	O&M Funding	Already have funding for surveys, so unlikely to cause delays or additional costs to proj.	Unlikely	Negligible	LOW	1.0%	Unlikely	Negligible	LOW	1.0%		Operations Division	Project Cost & Schedule	Cost & Schedule	Updated Cost and Schedule ROI 2/1/2011 per email input from John Bearce OD-N
PD-N-1	Economic Changes to Benefits	Feasibility level of study w/ high level of design; port level and administrative level; Any impacts to benefit analysis (ie, change in fleet, commodity growth rates) would affect study costs, not project construction consts. he Hanjin construction completion seems to be a moving target, and already changed from 2015 (what is says in the Mileipoint draft report) to 2017 (what it will say in the Jax Hator CRR2 report) and who knows what in the future (the original Hanjin completion was suppose to be by end of 2011). That's not to say that the traffic cannot be made up by another entity (such as MOL) – but that would not likely occur until the MOL/TraPace terminal reaches capacity (it is less than a quarter of capacity right now).	Likely	Significant	HIGH	\$0	N/A	N/A	N/A	0 mo.		Planning Economics	Project Cost	Cost	Updated Cost Likelihood rating based on 2222011 email input from Dan Abecassis
PD-N-3	Project Approval	Aready capturing cost growth. Project expected to gain approval so unlikely that it will not get approved, however if delays to project approval then significant impacts.	N/A	N/A	N/A	N/A	Unlikely	Marginal	LOW	3 mo.		Planning Economics	Project Schedule	Schedule	Updated Schedule Impact rating 2/2/2011 per email input from Sam Borer PD-PN
RE-1	Land Acquisition Delays	All lands belong to government entities	Very Unlikely	Negligible	LOW	< 1%	Very Unlikely	Negligible	LOW	0 mo.		Real Estate	Project Cost & Schedule	Cost & Schedule	

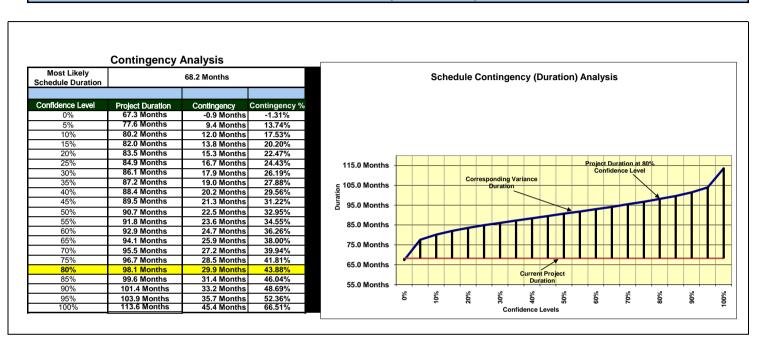
	Externa	I Risks (External Risk Items are those that are generated, cau	sed, or control	led exclusi	velv outside th	e PDT's sphere	e of influence)									
CT-2	Protests	Delay in project execution; Sole source- can't get approved or if there is a protest it can kill contract- high risk	N/A	N/A	N/A	N/A	Likely	Significant	HIGH	6 mo.	DP-3	Contracting Division	Project Schedule	Schedule		
CT-4	Bidding Climate	Severe economic swings can increase / decrease number of potential bidders.	Likely	Marginal	MODERATE	-20% to +15%	Likely	Marginal	MODERATE	1 mo.	EN-C-7, EN-C-3				Updated Impact and ROI based on input provided by Beau Corbett CT on 1/31/2011	
	Project Review and Authorization Delays	Likely b/c of public comment; review policy to adhere to; not a huge sched. impact; Delay in execution of project components. Uncertainties with IEPR may impact schedule.	N/A	N/A	N/A	N/A	Unlikely	Marginal	LOW	1 mo.	LS-5	PM/Planning	Project Schedule	Schedule	Updated Schedule Impact rating 2/2/2011 per email input from Sam Borer PD-PN	
EN-C-3	Equipment Availability	Dredge may have to come from further away, increasing mobilization costs or size / type of equipment available.	Likely	Significant	HIGH	\$4.8 M	Likely	Marginal	MODERATE	1 mo.	DP-3, CT-4	Cost Engineering	Equipment	Cost & Schedule	Updated Schedule Likelihood and ROI	
EN-C-4	Weather	Severe weather causing damage to project during construction.	Likely	Marginal	MODERATE	\$1.8 M	Likely	Negligible	LOW	1 mo.	DP-3	Cost Engineering	Labor/Production Rates	Cost & Schedule	Updated Schedule Impact since weather days already accounted for	
EN-C-6	Fuel	\$x.xx per gallon was used in the Sep 08 Mil, increases will effect equipment operating costs.	Very Likely	Significant	HIGH	\$446,000	N/A	N/A	N/A	N/A		Cost Engineering	Equipment	Cost		
EN-C-7	Labor	Labor Prices are fixed by Davis Bacon wage rates. Labor availability is subject to bidding climate.	Unlikely	Marginal	LOW	< 1%	N/A	N/A	N/A	N/A	CT-4	Cost Engineering	Labor/Production Rates	Cost		
EN-G-1	Stone Material Quality	Salvage stone- if quality of intended reusable stone is bad then need to purchase additional stone- slip in sched and increase to cost; EN-D feels the estimated 14,600CY of recoverable stone is conservative estimate of what is out there; don't know gradation of stone;	Unlikely	Significant	MODERATE	3.33%	Very Unlikely	Negligible	LOW	1 mo.	DP-3	Geotechnical	Project Cost & Schedule	Cost & Schedule	Updated ROI 2/3/2011 per email input from S from EN-GG changed to 3.33% (-\$830,000, potentially as much as 20% of estimated que suitable- would increase current constru) based on assumption that antity of reusable stone is not
EN-G-2	Stone Material Availability	Have lots of nearby sources readily available	Very Unlikely	Significant	LOW	5%	Unlikely	Marginal	LOW	1 mo.	DP-3	Geotechnical	Construction Cost & Schedule	Cost & Schedule	Updated ROI 2/3/2011 per email input from S from EN-GG changed to 5% of Construction significant impact and quick analysis showed from \$60 to \$100/ton yields ab	on Cost since item listed as ed increase in shipping costs
OC-2	Court Injunctions	If we should receive a court injunction, all work on the project will come to a complete halt, an external factor that we cannot control	N/A	N/A	N/A	N/A	Very Unlikely	Critical	LOW	Years		Counsel	Project Schedule	Schedule		
PD-E-1	Environmental Monitoring and Mitigation	Predicting final marsh elevations difficult, may require future funding for long term monitoring	Unlikely	Significant	MODERATE	\$1,000,000	Unlikely	Critical	MODERATE	12 mo.		Planning Environmental	Project Cost & Schedule	Cost & Schedule		
PD-E-2	Endangered Species Impact	Manatee takes, although unlikely, could create a slip in schedule during construction	Unlikely	Negligible	LOW	\$240,000	Unlikely	Negligible	LOW	3 days	DP-3	Planning Environmental	Project Cost & Schedule	Cost & Schedule	Updated Cost Impact rating to reflect \$240,0 Likelihood and Impact based on 2/10/2011 en EP	
PD-E-3	Environmental Restrictions	A potentially significant submerged prehistoric site has been identified in the proposed Creat March Island restoration area. The prefered alternative (restore marsh in Great Marsh Island) will have a 'no adverse effect*. Resulting in on miligation cost. Other alternatives, which are very unlikely to be used, may result in an adverse effect determination requiring miligation. If needed additional evaluation and mitigation activities may take at least 36 months.	Very Unlikely	Critical	LOW	\$5,000,000+	Very Unlikely	Critical	LOW	36 mo.	DP-3	Planning Environmental	Project Schedule	Schedule	Updated Cost and Schedule Likelihood & Impact rating to reflect feedback in 2/10/2011 email input from Grady Guik PD-EP	
PD-E-4	Permit Delays	Anticipate time to get permit and meet that- not significant	Likely	Negligible	LOW	\$20,000	Unlikely	Critical	MODERATE	12 mo.	DP-3	Planning Environmental	Project Schedule	Schedule	Updated Schedule Impact Rating based on 2/10/2011 email input from Grady Caulk PD- EP	
RE-2	Property Values	Administrative costs only	Very Unlikely	Negligible	LOW	< 1%	Very Unlikely	Negligible	LOW	0 mo.		Real Estate	Project Cost & Schedule	Cost & Schedule		_

*Likelihood, Impact, and Risk Level to be verified through market research and analysis (conducted by cost engineer). 1. Risk/Opportunity identified with reference to the Risk Identification Checklist and through deliberation and study of the PDT.

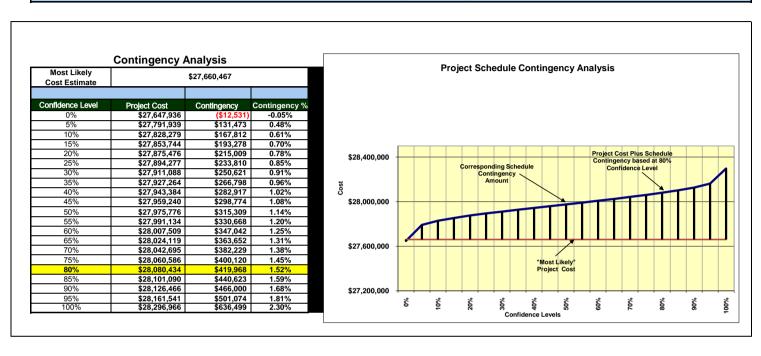

2. Discussions and Concerns elaborates on Risk/Opportunity Events and includes any assumptions or findings (should contain information pertinent to eventual study and analysis of event's impact to project).

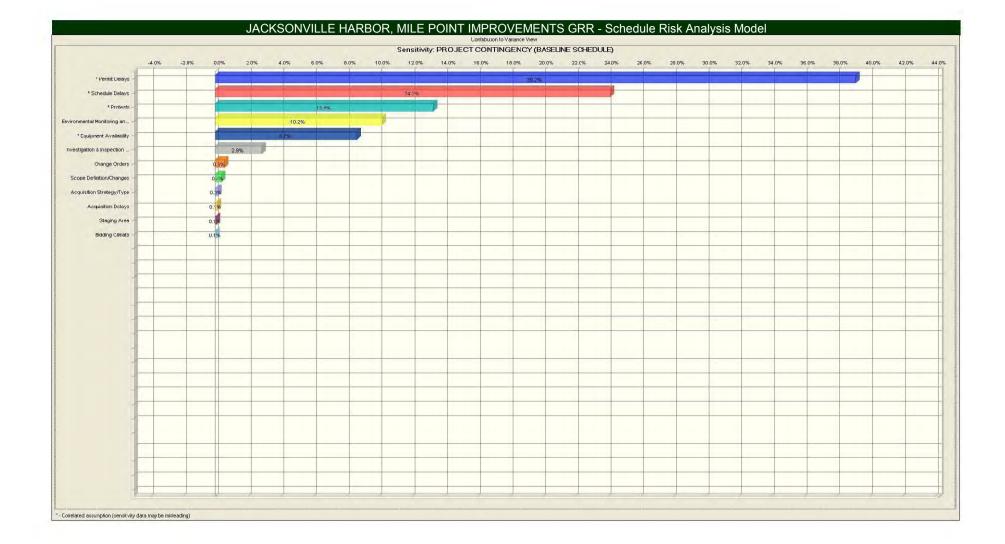

Discussions and Concerns elaborates on Rsk/Opportunity Events and includes any assumptions of Indings (should contain information pertinent to eventual study and analysis of events impact to project).
 Likelihoodi is a measure of the probability of the vent occurring – very Unlikely, Unlikely, Nedrately Likely, Tei killabilood of the event will be as mar for both Cost and Schedule, regardless of impact.
 maps is a measure of the event's effect on project objectives with relation to scope, cost, and/or schedule – Negligible, Marginal, Significant, Critical, or Crisis. Impacts on Project Cost may vary in severity from impacts on Project Schedule.
 Risk Level is the resultant of Likelihood and Impact Low, Moderate, or High. Refer to the matrix located at top of page.
 Variance Distribution refers to the behavior of the individual risk item with respect to its potential effects on Project Cost and Schedule. For example, an item with clearly defined parameters and a solid most likely scenario would probably follow a triangular or normal distribution. A risk item for which the PDT has little data or probablity of modeling with respect to effects on cost or schedule (i.e., anyone's guess?) would probably follow a uniform or distribution.
 The responsibility of POC is the entity responsible as the Subject Matter Expert (SME) for action, monitoring, or information on the PDT for the identified risk or opportunity.
 Correlation recognizes those risk events that may be related to one another. Care should be given to ensure the risks are handled correctly without a "double counting."

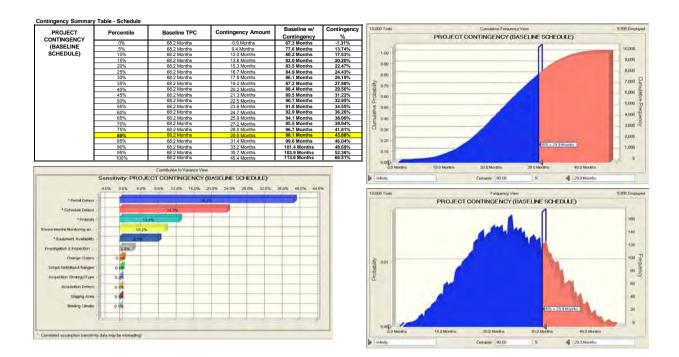
On leaded in exogences incertions that may be related to break the origination of the six and include the tasks are nanoted contently window a double contained.
 Affected Project Component identifies the specific item of the project to which the risk directly or strongly correlates.
 Project implications identifies whether or not the risk item affects project cosh, project schedule, or both.
 Project implications identifies the studied and further developed by the Cost Engineer. The nanoted Contact for an Analysis Method for Cost (Contingency) and Schedule (Escalation) Growth.


Contingency on Base Estimate	80% Confidence Project Cost
Baseline Estimate Cost (Most Likely) ->	\$27,660,467
Baseline Estimate Cost Contingency Amount ->	\$7,724,017
Baseline Estimate Construction Cost (80% Confidence) ->	\$35,384,484
Contingency on Schedule	80% Confidence Project Schedule
Project Schedule Duration (Most Likely) ->	68.2 Months
Schedule Contingency Duration ->	29.9 Months
Project Schedule Duration (80% Confidence) ->	98.1 Months
Project Schedule Contingency Amount (80% Confidence) ->	\$419,968
Project Contingency	80% Confidence Project Cost
Project Contingency Amount (80% Confidence) ->	\$8,143,985
Project Contingency Percentage (80% Confidence) ->	29%
Project Cost (80% Confidence) ->	\$35,804,452

- PROJECT CONTINGENCY DEVELOPMENT -




- BASE CONTINGENCY DEVELOPMENT -


- SCHEDULE CONTINGENCY (DURATION) DEVELOPMENT -

- SCHEDULE CONTINGENCY (AMOUNT) DEVELOPMENT -

				Project Co			-		rystal Ball Simulat xpected Values (\$		4		Crystal Ball Simulat Expected Values (%		4
				Project Co	ost	-		E	xpected values (\$	\$\$)	+		expected values (%	ss) ا	+
Risk No.	Risk/Opportunity Event	Discussion and Concerns	Likelihood*	Impact*	Risk Level*	Variance Distribution	Correlation to Other(s)	Low	Most Likely	High		Low	Most Likely	High	Percentages are calculate variance from the assumption
ernal Risks (Internal Risk items are those that are generated, caused, or controlled within the PDT's sphere of influence.)											1				facilitate iteration of the m the cost values change the
rnai Kisks (i	nternal Risk items are those		PDT's sphere c	f influence.)			T			1	1		1		project phases. Uniform of percentages reflect variation
CD-1	Change Orders	Time and cost impacts vary greatly on individual issues. Changes near end of project don't impact schedule.	Very Likely	Significant	HIGH	Uniform	EN-W-1	0.0 Months	0.0 Months	3.0 Months		0.0%	0.0%	4.4%	total project cost.
CD-3/ LS-2	Staging Area	Potential for problems with location; issues w/runway; lights needed for cranes @ certain ht; aircraft- impact ht. restriction; impacts contractor's operation	Very Likely	Marginal	MODERATE	Uniform		0.0 Months	0.0 Months	1.0 Months	1	0.0%	0.0%	1.5%	1
50-5/ 13-2	Staging Area	Impacts effort in award, some contract vehicles more conducive to	very circly	magna	IIIODEIO(TE	Childrin		0.0 1001010	0.0 10.0 0	1.0 1001010	4	0.0 %	0.0 %	1.076	4
CT-1	Acquisition Strategy/Type	lower cost; Prefer Best Value RFP w/ source selection plan; Increased cost/time to implement multiple awards	Unlikely	Significant	MODERATE	Uniform		0.0 Months	0.0 Months	2.0 Months		0.0%	0.0%	2.9%	
CT-3	Acquisition Delays	If the Sole-Source J&A does not get approved, could impact the schedule by up to 12 months while the PDT comes up with another alternative.	Unlikely	Significant	MODERATE	Uniform		0.0 Months	0.0 Months	1.0 Months	Ţ	0.0%	0.0%	1.5%	1
DP-3	Schedule Delavs	Hard to fund if not in 2013 budget- automatic sched. delay; In short term, delays based on \$ amt. of contract are likely; delay in execution of proi. components	Likely	Marginal	MODERATE	Uniform	CD-4, EN-C-4, EN-G-1, EN-G-2, PD-E-2, PD-E-3.	0.0 Months	0.0 Months	4.0 Months		0.0%	0.0%	5.9%	1
		Scope is well defined; little likelihood of scope increase or changes									1				1
P-4/ EN-D-2	Scope Definition/Changes	from current docs used for estimate development; Engineering pt. of view- if the project lingers, conditions may change	Unlikely	Significant	MODERATE	Uniform		0.0 Months	0.0 Months	3.0 Months		0.0%	0.0%	4.4%	
EN-G-3	Investigation & Inspection Costs	Good quality stone readily avail; won't need further investigation	Unlikely	Significant	MODERATE	Uniform		0.0 Months	0.0 Months	6.0 Months		0.0%	0.0%	8.8%	
		• • • • • • • • • • • • • • • • • • •	· · ·								1				í –
ernal Risks (External Risk Items are tho	se that are generated, caused, or controlled exclusive	ly outside the	PDT's sphere o	of influence.)		<u> </u>			1	4		1		4
CT-2	Protests	Delay in project execution	Likely	Significant	HIGH	Uniform	DP-3	0.0 Months	0.0 Months	6.0 Months		0.0%	0.0%	8.8%	
CT-4	Bidding Climate	Severe economic swings can increase / decrease number of potential bidders.	Likely	Marginal	MODERATE	Uniform		0.0 Months	0.0 Months	1.0 Months		0.0%	0.0%	1.5%	
EN-C-3	Equipment Availability	Dredge may have to come from further away, increasing mobilization costs or size / type of equipment available.	Likely	Marginal	MODERATE	Uniform	DP-3, CT-4	-1.0 Months	0.0 Months	1.0 Months	Ţ	-1.5%	0.0%	1.5%	1
PD-E-1	Environmental Monitoring and Mitigation	Predicting final marsh elevations difficult, may require future funding for long term monitoring	Unlikely	Critical	MODERATE	Uniform		0.0 Months	0.0 Months	12.0 Months	1	0.0%	0.0%	17.6%	1
	-						l				1				1
PD-E-4	Permit Delays	Anticipate time to get permit and meet that- not significant	Unlikely	Critical	MODERATE	Uniform	DP-3	-6.0 Months	0.0 Months	12.0 Months	Not Part of Study -	-8.8%	0.0%	17.6%	4

JACKSONVILLE HARBOR, MILE POINT IMPROVEMENTS GRR - SCHEDULE RISK ANALYSIS

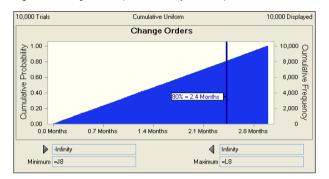
Enter Estimated Total Project Cost (Price Level)	\$27,660,467
Max. Anticipated Annual Amount	\$4,868,909
Enter Current OMB Escalation Rate	1.80%
Enter Current Project Location Escalation Rate	1.80%
Enter Assumed Hotel Rate	3.46%

	Date	Escalation Delta Amount	Hotel Amount	Total Schedule Contingency
Enter Current Project Start	16-Mar-09			
Enter Baseline Project Completion	20-Nov-14			
Project Completion at 0% Confidence	23-Oct-14		(\$12,531.09)	(\$12,531.09)
Project Completion at 5% Confidence	1-Sep-15		\$131,472.77	\$131,472.77
Project Completion at 10% Confidence	18-Nov-15		\$167,811.93	\$167,811.93
Project Completion at 15% Confidence	13-Jan-16		\$193,277.74	\$193,277.74
Project Completion at 20% Confidence	29-Feb-16		\$215,008.95	\$215,008.95
Project Completion at 25% Confidence	9-Apr-16		\$233,810.28	\$233,810.28
Project Completion at 30% Confidence	16-May-16		\$250,621.35	\$250,621.35
Project Completion at 35% Confidence	20-Jun-16		\$266,797.67	\$266,797.67
Project Completion at 40% Confidence	25-Jul-16		\$282,917.36	\$282,917.36
Project Completion at 45% Confidence	28-Aug-16		\$298,773.56	\$298,773.56
Project Completion at 50% Confidence	3-Oct-16		\$315,309.48	\$315,309.48
Project Completion at 55% Confidence	5-Nov-16		\$330,667.79	\$330,667.79
Project Completion at 60% Confidence	11-Dec-16		\$347,042.25	\$347,042.25
Project Completion at 65% Confidence	16-Jan-17		\$363,652.44	\$363,652.44
Project Completion at 70% Confidence	25-Feb-17		\$382,228.83	\$382,228.83
Project Completion at 75% Confidence	5-Apr-17		\$400,119.77	\$400,119.77
Project Completion at 80% Confidence	18-May-17		\$419,967.76	\$419,967.76
Project Completion at 85% Confidence	2-Jul-17		\$440,623.11	\$440,623.11
Project Completion at 90% Confidence	26-Aug-17		\$465,999.77	\$465,999.77
Project Completion at 95% Confidence	10-Nov-17		\$501,073.90	\$501,073.90
Project Completion at 100% Confidence	31-Aug-18		\$636,499.29	\$636,499.29

Entry Required

Do Not Overwrite

Summary Data -- Do Not Overwrite

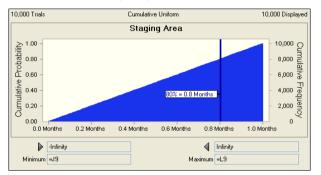

Risk Refer No.	Risk Event	Low	Most Likely	High
CD-1	Change Orders	0.0 Months	0.0 Months	3.0 Months

 Notes:
 This item captures the risk of schedule delay due to change orders.

 Likely
 Most likely assumes no schedule growth due to change orders.

 Low
 Low assumes no schedule growth due to change orders.

 High
 High assumes up to 3 months delay, based on input from Construction Division.


Assumption: Change Orders

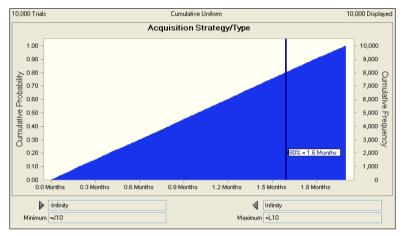
Percentile	Assumption values
0%	0.0 Months
10%	0.3 Months
20%	0.6 Months
30%	0.9 Months
40%	1.2 Months
50%	1.5 Months
60%	1.8 Months
70%	2.1 Months
80%	2.4 Months
90%	2.7 Months
100%	3.0 Months

Risk Refer No.	Risk Event	Low	Most Likely	High
CD-3/ LS-2	Staging Area	0.0 Months	0.0 Months	1.0 Months

Notes:	This item captures the risk that there will be schedule impact to the stone placement for the jetty work due to the unavailability of staging areas. The sponsor and the Corps is
	confident in the availability of the staging areas currently contemplated.
Likely	Most likely assumes no change to the baseline schedule.
Low	The baseline schedule was made on the most optimum conditions.
High	High assumes that the availability of staging areas for cranes is less favorable, creating a

igh High assumes that the availability of staging areas for cranes is less favorable, creating total schedule impact of up to one month.

Assumption: Staging Area

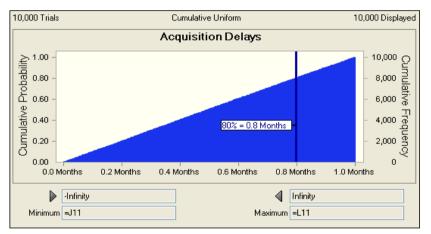

Percentile	Assumption values
0%	0.0 Months
10%	0.1 Months
20%	0.2 Months
30%	0.3 Months
40%	0.4 Months
50%	0.5 Months
60%	0.6 Months
70%	0.7 Months
80%	0.8 Months
90%	0.9 Months
100%	1.0 Months

Risk Refer No.	Risk Event	Low	Most Likely	High
CT-1 Acquisition Strategy/Type		0.0 Months	0.0 Months	2.0 Months

This item captures the risk of total project schedule delay due to the selected acquisition strategy. Most likely assumes no change to baseline schedule. Low assumes no change to baseline schedule. Notes:

Likely Low

High High assumes that acquisition strategy could delay the schedule by up to 2 months.



Assumption: Acquisition Strategy/Type		
Percentile	Assumption values	
0%	0.0 Months	
10%	0.2 Months	
20%	0.4 Months	
30%	0.6 Months	
40%	0.8 Months	
50%	1.0 Months	
60%	1.2 Months	
70%	1.4 Months	
80%	1.6 Months	
90%	1.8 Months	
100%	2.0 Months	

Risk Refer No.	Risk Event	Low	Most Likely	High
CT-3	Acquisition Delays	0.0 Months	0.0 Months	1.0 Months

Notes:	This item captures the risk that delays in getting the contract solicited could impact the current schedule (1 month delay due to overwhelming response or other administrative procedures).
Likely	Most likely assumes no change to the baseline schedule.
Low High	Low assumes no change to the baseline schedule.

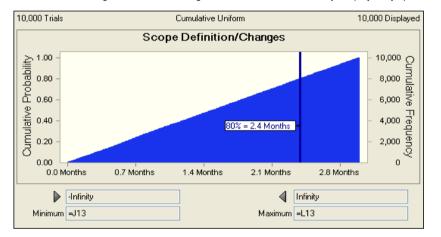
High assumes that delays in the soliciitation could delay the schedule by up to one month.

Assumption: Acquisition Delays

Percentile	Assumption values
0%	0.0 Months
10%	0.1 Months
20%	0.2 Months
30%	0.3 Months
40%	0.4 Months
50%	0.5 Months
60%	0.6 Months
70%	0.7 Months
80%	0.8 Months
90%	0.9 Months
100%	1.0 Months

Risk Refer No.	Risk Event	Low	Most Likely	High
DP-3	Schedule Delays	0.0 Months	0.0 Months	4.0 Months

Notes:	This item captures the risk that the project could experience delay if it is not in the 2010 budget.
Likely	Most likely assumes no change to the baseline schedule.
Low	Low assumes no change to the baseline schedule.
11	I the beaution of the table of the second state of


Assumption: Schedule Delays

Percentile	Assumption values
0%	0.0 Months
10%	0.4 Months
20%	0.8 Months
30%	1.2 Months
40%	1.6 Months
50%	2.0 Months
60%	2.4 Months
70%	2.8 Months
80%	3.2 Months
90%	3.6 Months
100%	4.0 Months

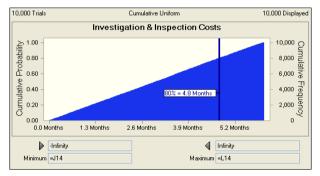
Risk Refer No.	Risk Event	Low	Most Likely	High
DP-4/ EN-D-2	Scope Definition/Changes	0.0 Months	0.0 Months	3.0 Months

Notes:	This item captures the risk that there could be some conditions that changes that affect
	project scope, particularly if the project languishes.
Likely	Most likely assumes no change to the baseline schedule.
Low	Low assumes no change to the baseline schedule.
High	

High assumes that changes in site conditions could delay the project by up to 3 months.

Assumption: Scope Definition/Changes

Percentile	Assumption values
Fercentile	Assumption values
0%	0.0 Months
10%	0.3 Months
20%	0.6 Months
30%	0.9 Months
40%	1.2 Months
50%	1.5 Months
60%	1.8 Months
70%	2.1 Months
80%	2.4 Months
90%	2.7 Months
100%	3.0 Months


Risk Refer No.	Risk Event	Low	Most Likely	High
EN-G-3	Investigation & Inspection Costs	0.0 Months	0.0 Months	6.0 Months

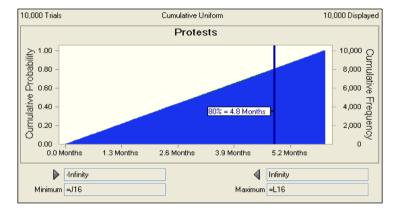
This captures the risk that more investigation and inspection is actually required than currently contemplated. Notes:

Likely Most likely assumes no change to the baseline schedule.

Low	Low assumes no change to the baseline schedule.
Llark	Ligh appument bet increased investigation and increase

sumes that increased investigation and inspection could delay the schedule by up High assume to 6 months. High

Assumption: Investigation & Inspection Costs

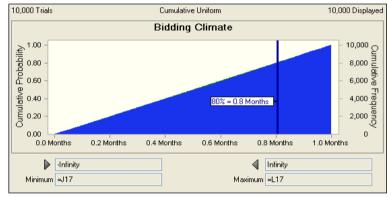

Percentile	Assumption values
0%	0.0 Months
10%	0.6 Months
20%	1.2 Months
30%	1.8 Months
40%	2.4 Months
50%	3.0 Months
60%	3.6 Months
70%	4.2 Months
80%	4.8 Months
90%	5.4 Months
100%	6.0 Months

Risk Refer No.	Risk Event	Low	Most Likely	High
CT-2	Protests	0.0 Months	0.0 Months	6.0 Months
8				

Notes:

- This item captures the risk that there could be schedule delays due to contractor protests.
- Likely Most likely assumes no change from the current schedule.
- Low Low assumes no change from the current schedule.

High High assumes that contractor protests could cause up to 6 months of delay.


Assumption: Protests

Percentile	Assumption values
0%	0.0 Months
10%	0.6 Months
20%	1.2 Months
30%	1.8 Months
40%	2.4 Months
50%	3.0 Months
60%	3.6 Months
70%	4.2 Months
80%	4.8 Months
90%	5.4 Months
100%	6.0 Months

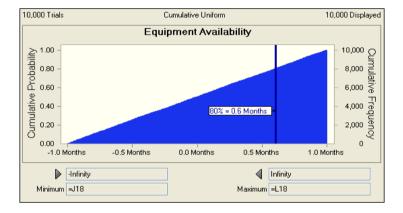
Risk Refer No.	Risk Event	Low	Most Likely	High
CT-4	Bidding Climate	0.0 Months	0.0 Months	1.0 Months

- This item captures the risk of total project schedule delay due to the selected acquisition

 Notes:
 strategy.
- Likely Most likely assumes no change to baseline schedule.
- Low assumes no change to baseline schedule.
- High High assumes that acquisition strategy could delay the schedule by up to 1 month.

Assumption: Bidding Climate

Percentile	Assumption values
0%	0.0 Months
10%	0.1 Months
20%	0.2 Months
30%	0.3 Months
40%	0.4 Months
50%	0.5 Months
60%	0.6 Months
70%	0.7 Months
80%	0.8 Months
90%	0.9 Months
100%	1.0 Months


Risk Refer No.	Risk Event	Low	Most Likely	High
EN-C-3	Equipment Availability	-1.0 Months	0.0 Months	1.0 Months

Notes:	This item captures the risk that limited availability of equipment in the dredging industry and
	regional market could cause schedule delays.

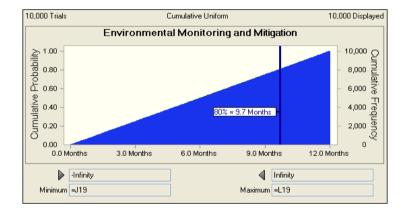
Likely Most likely assumes no change to the current schedule (using 16" pipeline).

Low Low assumes that schedule could improve by up to 1 month if dredge mobilizes from local area.

High High assumes that limited equipment availability could create up to 1 month of delay.

Assumption: Equipment Availability

Percentile	Assumption values
0%	'-1.0 Months
10%	'-0.8 Months
20%	'-0.6 Months
30%	'-0.4 Months
40%	'-0.2 Months
50%	0.0 Months
60%	0.2 Months
70%	0.4 Months
80%	0.6 Months
90%	0.8 Months
100%	1.0 Months


Risk Refer No.	Risk Event	Low	Most Likely	High
PD-E-1	Environmental Monitoring and Mitigation	0.0 Months	0.0 Months	12.0 Months

 Notes:
 This item captures the risk that there will be more moniotring and mitigation required due to changing conditions in the marsh elevations.

 Likely
 Most likely assumes no change to the baseline schedule.

Low assumes no change to the baseline schedule.

High High assumes that monitoring and mitigation efforts could cause delays up to one year.

Assumption: Environmental Monitoring and Mitigation

Percentile	Assumption values
0%	0.0 Months
10%	1.2 Months
20%	2.4 Months
30%	3.6 Months
40%	4.8 Months
50%	6.1 Months
60%	7.3 Months
70%	8.5 Months
80%	9.7 Months
90%	10.8 Months
100%	12.0 Months

Risk Refer No.	Risk Event	Low	Most Likely	High
PD-E-4	Permit Delays	-6.0 Months	0.0 Months	12.0 Months

This item captures the risk that inability to obtain permits in a timely manner could significantly impact the project schedule. Most likely assumes no change to baseline schedule. Low assumes that permits could be obtained much sooner than contemplated, allowing for Notes:

- Likely Low
- up to 6 months of improvement on the total project schedule. High assumes that issues in obtaining permits could cause up to one year in delay. High

Assumption: Permit Delays

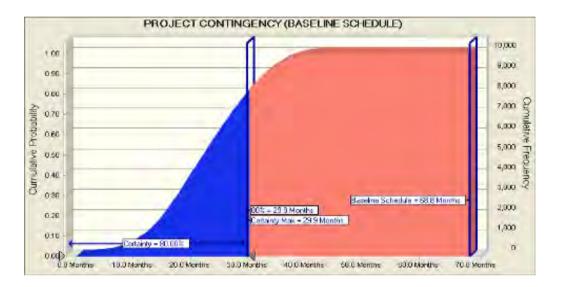
Percentile	Assumption values
0%	'-6.0 Months
10%	'-4.2 Months
20%	'-2.5 Months
30%	'-0.7 Months
40%	1.2 Months
50%	3.1 Months
60%	4.8 Months
70%	6.6 Months
80%	8.4 Months
90%	10.2 Months
100%	12.0 Months

Crystal Ball Report - Full

Simulation started on 3/26/2011 at 5:28 PM Simulation stopped on 3/26/2011 at 5:29 PM

Run preferences: Number of trials run Monte Carlo	10,000
Seed	999
Precision control on Confidence level	95.00%
Run statistics:	
Total running time (sec)	12.16
Trials/second (average)	822
Random numbers per sec	9,868
Crystal Ball data:	
Assumptions	12
Correlations	3
Correlated groups	1
Decision variables	0
Forecasts	1

Forecasts


Worksheet: [Risk Analysis (Schedule)-Milepoint_3-2-11.xlsx]Schedule Risk Model

Forecast: PROJECT CONTINGENCY (BASELINE SCHEDULE)

Cell: K22

Summary:

Certainty level is 80.00% Certainty range is from -Infinity to 29.9 Months Entire range is from -0.9 Months to 45.4 Months Base case is 0.0 Months After 10,000 trials, the std. error of the mean is 0.1 Months

Statistics: Trials Base Case	Forecast values 10,000 0.0 Months
Mean	22.5 Months
Median	22.5 Months
Mode	
Standard Deviation	8.1 Months
Variance	65.0 Months
Skewness	0.0238
Kurtosis	2.44
Coeff. of Variability	0.3576
Minimum	-0.9 Months
Maximum	45.4 Months
Range Width	46.3 Months
Mean Std. Error	0.1 Months

Forecast: PROJECT CONTINGENCY (BASELINE SCHEDULE) (cont'd)

Percentiles:	Forecast values
0%	-0.9 Months
10%	12.0 Months
20%	15.3 Months
30%	17.9 Months
40%	20.2 Months
50%	22.5 Months
60%	24.7 Months
70%	27.2 Months
80%	29.9 Months
90%	33.2 Months
100%	45.4 Months

End of Forecasts

Page 4

Assumptions

(=J11)

(=L11)

Worksheet: [Risk Analysis (Schedule)-Milepoint_3-2-11.xlsx]Schedule Risk Model

Assumption: Acquisition Delays

Uniform distribution with parameters: Minimum Maximum

nge Orders						

0.30 0.40 0.20

Assumption: Change Orders

Uniform distribution with parameters: Minimum Maximum

51015.			
	0.0 Months	(=J8)	
	3.0 Months	(=L8)	

0.0 Months

1.0 Months

Acquisition Delays

DAMO

Uniform distribution with parameters:

Minimum	0.0 Months	(=J10)
Maximum	2.0 Months	(=L10)

Line and a second secon

Cell: K11

Cell: K10

Cell: K17

Assumption: Bidding Climate

Uniform distribution with param Minimum Maximum	eters: 0.0 Months 1.0 Months	(=J17) (=L17)		
	Bidding Climate Didding Climate Compared and State Compared and Didding Climate State Compared and State Compared and Climate State State State Climate State	Gil Martina I.G Martini		
Assumption: Environmental Monit	oring and Mitigation			Cell: K19
Uniform distribution with param Minimum Maximum	eters: 0.0 Months 12.0 Months	(=J19) (=L19)		
	Environmental Monitoring and Mi 2010 - 2010 - 2010 - 500 - 5	Monthin 12.0 Monthins		
Assumption: Equipment Availabili	Ŋ			Cell: K18
Uniform distribution with param Minimum Maximum	eters: -1.0 Months 1.0 Months	(=J18) (=L18)		
Correlated with: Schedule Delays (K12)	0.00 -0.8 Months -0.4 Months 0.0 Months 0.4 Mont	rs 0.8 Mortins	Coefficient 0.50	
Assumption: Investigation & Inspe	ction Costs			Cell: K14
Uniform distribution with param Minimum Maximum	eters: 0.0 Months 6.0 Months	(=J14) (=L14)		

Investigation & Inspection Costs

Permit Delays

Assumption: Investigation & Inspection Costs (cont'd)

Assumption: Permit Delays

naramotors n with distributio Uniform Mini

Minimum	
Maximum	

n distribution with parameters:		
num	-6.0 Months	(=J20)
mum	12.0 Months	(=L20)

intrive Probabili

1.00 e Probabili 0.40 1.20

Schedule Delays (K12)

Assumption: Protests

Correlated with:

Uniform distribution with para Minimum	meters: 0.0 Months (=J16)	
Maximum	6.0 Months (=L16)	
	Protests	
Correlated with: Schedule Delays (K12)		Coefficient 0.50
Assumption: Schedule Delays		

Uniform distribution with parameters:

Minimum	0.0 Months	(=J12)
Maximum	4.0 Months	(=L12)

Cell: K14

Cell: K20

Coefficient

0.50

Cell: K12

Assumption: Schedule Delays (cont'd)


5	ichedule Delay	15	
	5	Schedule Delay	Schedule Delays

Correlated with: Permit Delays (K20) Equipment Availability (K18) Protests (K16)

Assumption: Scope De	efinition/Changes
----------------------	-------------------

Uniform distribution with parameters:
Minimum
Maximum

0.0 Months	(=J13)
3.0 Months	(=L13)

0.0 Months

1.0 Months

Staging Area

(=J9)

(=L9)

Assumption: Staging Area

Uniform	distribution	with	parameters:
---------	--------------	------	-------------

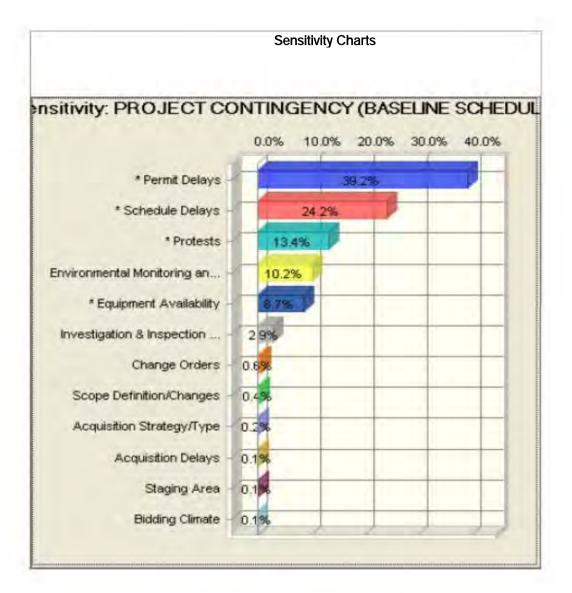
Minimum Maximum

Coefficient

0.50

0.50

0.50



0.90 0.40

End of Assumptions

Cell: K12

Cell: K13

